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Homogenization of Foliated Annuli (*). 

BJORN GUSTAFSSON - JACQUELINE MOSSINO - COLETTE PICARD 

Abstract. - Let t9 = ~o \ D1 be a regular annulus  in R N and r ~ - +  R be a regular funct ion  such 
that r = 0 on ado, r = 1 on aD 1 and Vr r 0. Let  K~ be the subset of  funct ions  v e W 1,p (t~) such 
that v = 0 on ado, v = 1 on atg], v = (unprescribed) constant on n given level surfaces of  r 
We study the convergence of sequences of  minimizat ion  problems of  the type 

where a ,  ~ L ~ (0, 1) and G: (x, ~) e t} x R N --> G(x, ~) E R is convex with respect to ~ and veri- 
f ies  some standard growth conditions. 

1.  - I n t r o d u c t i o n .  

Let  ~ = t ~ o \ ~  1 where t}o and ~91 are two regular open subsets of R N ( N > ~ 2 ) ,  

~9o D 91 and let r e C 1 (9; R) be such that  ~ = 0 on ado, r = 1 on ate1 and V~ r 0 on 9.  
Hence 0 < r < 1 in t~ and the level surfaces of r 

F ~ = { x e ~ ; r  where 0~<t~<l  (Fo= a~o, / ' l  = a~91) 

form a nested family separating F0 f rom/ '1 .  
For  n e N, let T~ = {ti,~; 0 ~< i ~< n} where (ti,~)i is a sequence of (n + 1) real num- 

bers in the interval[0, 1] such that  0 = to, s <  t l ,~< ... < t~-l,~ < t~,~ = 1. 
Hence the annulus t} with the n -  1 leaves Pi,~ = {~ = t~,~} may represent  a kind 

of foliated structure.  
For  every n e N, let us now consider convex minimization problems in the Sobolev 
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space W I'p (~) (1 < p < ~) of the form 

(2n) I n f f f f  ~ G(X, a~ (x) Vv(x)) gx; 

where 

v eKn 1, 

- -  Ks = {v e W I'p (D); v = 0 on 1"o, v = 1 on 1"l;Vt ~ Ts ,  v = (unprescribed) con- 
stant  on I t } ,  

- -  a,. = as o r where as ~ L ~ (0, 1) and verify 

(1.1) 3 C > 0 :  Y n e N ,  a.e. t e l0 ,1 [ ,  a_~(t)>~C, 

- -  G: (x, ~) e ~ • RN---~ G(x, ~) E R is a Carath~odory function (that is measur- 
able with respect to x, continuous with respect to ~) such that  

- -  for almost every x e t~, G(x, .) is a strictly convex functional which admits a 
gradient denoted by g(x, .), 

- -  there exist cl, c~, c4 > 0 and c~ e L 1 (~) such that ,  for almost every x e t~ and 
for every ~ e R N 

(1.2) cl I~1 p <~ G(x, ~) ~ c2 k~l p + cs(x), 

(1.3) [g(x, ~)1 <- c4(1 + !~IP-1). 

In this article we study the convergence of the sequence of minimization problems 
($~) as n goes to infinity. We shall prove the convergence of the solutions u~ (resp. of 
the minima) of ($~) to the solution (resp. to the minimum) of a minimization problem 
($) of the same form as (g's) under suitable assumptions on the limit behavior of the 
sequences (a~) and (T~). Actually the limit problem ($) is more simple as it reduces to 
a one dimensional problem. Most of the following results were announced for the par- 
ticular case p = 2 and G(x, ~) = 1~12 in [6]. In the more particular case where t~ is an in- 
terval of R,  say ~ =]0, 1[, ($~) becomes 

[/ ) Inf  as (t) v'(t) 2 dt; v e H 1 (0, 1), v(0) = 0, v(1) = 1 ; 

its convergence has been considered as an interesting example by S. SPAGNOL0 

(cF. [12]). 
ONE PHYSICAL INTERPRETATION OF (~'n) for  p = "2 and G(x, ~ ) =  I~[ 2 i s - - fo l low-  

ing[10] ,  p. 51-54 that  the quanti ty Inf($s)  represents the total conductance (one 
over the resistance) from 1"o to/~1, when ~ is considered as a resistor with (noncon- 
stant) conductivity coefficients a , ,  in which a family {F~,~, i = 1, . . . ,  n - 1} of infinite- 
ly thin sheets of perfect conductors are inserted (F0 and 1"1 should also be perfect con- 
ductors). Thus ~ can be regarded as a compound resistor consisting of n smaller resis- 
tors coupled in series, the i-th one being the part  t~, n Of ~e~ lying between Fi-1, ~ and 
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Fi, ~. If an electric voltage of unit strengh is applied to ~, namely so that F 0 is given 
potential zero, and/'1 potential one, then u~ represents the electric potential in ~. 
Moreover, the minimum of (2~) then represents not only the total conductance, but 
also the total electric effect produced in ~, and the total electric current through each 
surface I't (see section 3a below). 

In a subsequent paper [7], we will replace the infinitely thin sheets of perfect con- 
ductors/:i,~ by thin layers 2;i, ~,~ = (ti,~ - s < r < ti,~ + ~} of a highly conducting ma- 
terial, that is an is replaced by some constant )~ >> a~ on 2~, n,~. We will study the limit 
problem when z - ) 0 ,  ~--> ~ n---) ~ .  

2. - C o n v e r g e n c e  o f  ($~) t o  (2). 

THEOREM 2.1. - Under the previous assumptions, let us suppose that 

1 1 weakly* in L ~ (0, 1), as n --) ~. (2.1) there exists a_ e L~(O, 1) such that a_--~---> a 

(2.2) I T ~ l = m a x ( t i , ~ - t i - l , ~ ; l < i < ~ n } ~ O ,  as n - - ) ~ .  

Then the solution u~ of 

converges weakly in WI'p(~) to the solution u of 

I (~) Inf -~ G(x, a Vv) dx; v e 

where a = a o r and 

K =  (v e WI'P(~); v=O on Fo, v= 1 on FI~ Vt e]0, 1[, v=cons tan t  on Pt}. 

Moreover 

f l ___>fl G(x, a~ Vu~) dx -d G(x, a Vu) dx. 

2a) Some comments on the hypothesis (2.1) and (2.2). 

Since 0 < 1/a~(t) ~< 1/C a.e. t e]0, 1[, the sequence (1/a~) is bounded in L~(O, 1) 
and then a subsequence converges in w*-L~(0, 1). Assumption (2.1) means that all 
the sequence (1/a~) converges in w*-L ~ (0, 1) to 1/_a with a e L ~ (0, 1). We shall prove 
that this convergence is equivalent to the convergence of the sequence (1//a~) in w*- 
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L ~ (s Notice that assumption (1.1) can be weakened to 

(1.1)' V n e N ,  3 C s > O , a . e .  te]O, l[ ,  a_~(t)>~C~ (i.e. a,~>0 and 1/a_seL~(O,  1)). 

In fact, by the uniform boundedness theorem, (2.1) implies that  the sequence (1/as)  
is bounded in L ~ (0, 1), hence (1.1). 

Assumption (2.2) is related to the convergence of the sequence of convex Ks to the 
convex K in the Mosco sense (cf. [9]). Actually K can be identified with a subspace of 
WI'P (0, 1). 

Those comments are the object of three following lemmas: 

LEMMA 2.1. - L e t  (a~) such that (1/a~) e L ~ (0, 1). The two fol lowing properties are 

equivalent 

1 1 weakly* in  L ~ (0, 1). (i) ~ - ~  _~ 

1 1 weakly* in L ~ (t2) where as = as o r and a = a_ o r (ii) a-~ --* -~ 

PROOF. - Let us first assume (i). Applying the coarea formula (cf. [5] p. 249 or [11] 
p. 697), we get, for every f e  Ll(t2), 

1 

f 
where d~, denotes the ( N -  1) dimensional Hausdorff measure (sometimes denoted by 
dH N-  1 ). It  follows 

1 

l ( r !  f 
0 

1 

dt ~ ~ ~_ dr dt = a " 

Hence we have 

f a f d - ff for every f e L i (t2), 

that  is (ii). 
Conversely, assume now (ii). Let f e  L 1 (0, 1) and define f by 

a.e. x e t2, f ( x )  =f(r 
Fr 
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F rom the coarea formula, we get  f e L l ( ~ )  and 

j( f )(j ) f f(x) dx = _f(r dy ~ _a~ (r162 d], ~-~ f ~dt.f(t) 

Consequently,  (ii) implies (i). 

LEMMA 2.2. - Let K = {v �9 W I'p (0, 1); v(0) = 0, v(1) = 1}. Then the linear map- 
ping: v--->v=vor is an isomorphism from WI'P(0,1) onto E = ( v e W l ' p ( t ) ) ;  
Vt �9 [0, 1], v = constant on Ft } mapping K onto K. 

PROOF. - Clearly v~ o r = ~ o r implies v~ = v_2. F o r  v �9 E ,  we define v as follows: 
for all t e [0, 1], v(t) = the t race of v on Ft. Then v �9 W I'p (0, 1), v = v o r and _v(0) = 0, 
v(1) = 1 if and only if v �9 K. I t  remains to prove that  there  exists a constant  C > 0 

such that:  Vv �9 E ,  

IIs 
for then it will follow from the Banach theorem that  v ---) v o r is an isomorphism from 
W I'p (0, 1) onto E.  In order  to prove this inequality, we use the coarea formula and we 

obtain 

and 

1 1 1 

f Ivl"d  =o o 
~ 0 

f lVvl  dx 
D 

Lemma 2.2 is proved. 

1 1 

cs,<,, ~0 \f~ 0 
dt. 

LEMMA 2.3. - A s s u m e  IT.~I~O as n---)~. Then, i f  v~ �9  and v~--)v in 
w-WI'P(tg) as n ~ ,  we have v � 9  

PROOF. - Le t  v~--. v in w-Wl'P(t~) such that  v~ e K~. Le t  w n e g be defined by 

f w~ (ti, ~) = vi, ~, the  t race of v~ on F~, ~, 0 < i ~< n, 

w~ is an affine function on each interval  [ti_ 1, ~, t~,~]. 

Le t  w~ = _w~ o r Then w~ �9 K and since K is weakly closed in W 1,p (D), the lemma fol- 
lows if one can prove that  a subsequence of w~ converges to v in w-W I'p (t~). F o r  this, 
we will use the following assertion: there  exists a Cl-diffeomorphism D from ~ on- 
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to [0, 1] x/ 'o  such that  

D: x e t) ---) D(x) = (r ~(x)) = (t, y) e [0, 1] x Po, 

and the image measure D(dx) is equivalent to dt x dH N-  1 (y) denoted dt x dr(y)  (cf. 
Appendix). Le t  V~ = v~ oD -1 and W~ = w~ oD -1. For  t~,~< t ~< ti+l,~ and y e / o ,  we 

have 

W~ (t, y) - V~ (t, y) = w~ (t) - V~ (t, y) = 

= (v~, n--V~ (t, y)) 
$i + l , n  - -  t t - -  ti, n 

~- (V i  + 1, n - -  V n  ( t ,  y ) )  
t i +  1, n - -  ti ,  n ti+ 1,n - -  t i ,  n 

But 

vi, ~ - Vn (t, y) = V~ (ti, ~, y) - V~ (t, y) = - ~ -  (r, y) dr .  

t 

We get 

~i+l,n 

ti, n 

by HSlder's inequality (1 /p  + 1 / p '  = 1). I t  follows that  

co L p ((0, i) x F o ) 

<~ CIl%l~w~,~(~)IT~ i p-1 <~ CIT~ }p-1 

Consequently, IIw~ - v~ IIL,(~) <~ CI T~I 1/p' and then a subsequence of w~ converges to v in 

LP(~). 
Le t  us now prove that  (w~) is bounded in WI'P (~9). From this, it will follow that  a 

subsequence of (w~) converges to v in w-WI'P(~?) and thus v eK.  Since 

w" (t) vi + 1 - vi, 
_ = o n  [ t ~ , ~ ,  t i + l , ~ ]  

~i + 1, n - -  ~i ,n  

we have 

1 
I - -  n - 1  . ,~IVi+l'n--Vi'nlP 

Iw~ IP dt = E 
i=o ~ti+l,,~-ti,~) ~-1" 

o 
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But 

ti*!,n 

r aV~ 
V i + l , n - - V i ,  n -~" j --~--(v,y)dv, a.e. yePo, 

t~, n 

and from H61der's inequality, 

ti+l,n 

,Vi+l,n_Vi, nlP~(ti+l,n_ti  ) p - l f  ]OVn P ,,~ -~t-(~, y) d'; , 
tl, n 

a.e. y e F o .  

We obtain 

1 1 

Iw_~ I p dt <. - ~ - ( t ,  y) dt , 
0 0 

a.e.y eFo 

which gives, by integration with respect to y, 

1 

1 f f Iw: I ~ dt <. IFo--[ 
0 ]0, l[xFo 

I OV~ i P P 

Thanks to the boundary conditions 

W p 

and from Lemma 2.2, 

IP 

Consequently, (wn) is bounded in WI, P(f~). The proof is complete. 

2b) Proof of Theorem 2.1. 

The proof consists of three steps: 

LEMMA 2.4. - F o r  every v e K, there exist v~ ~ Kn such ~hat v~--~ v in w-Wl,P (t~) 
and 

f ~G(x ,a~Vv~)dx- - ,  f 1 a G(X, a Vv) dx . 
D 
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PROOF. - Let v � 9  By Lemma 2.2, v = V_or with v �9 K. Define v_~ by 

t 1 

l fa  fo  -~-~v ds, where ~= - ds . 

0 0 

Hence v~ e K and, from (2.1), ~---) 1 and v~(t)-~ v(t) for each t. Let  vn = v_~ o r Then 
v~ �9 K and, by Lebesgue's convergence theorem, v~---)v in L p (t)). Moreover Vv~ = 
=~(a/(a~))Vv---> Vv in w-LP(t)) y from (2.1) and Lemma 2.1, and 

f lG(x 'a~Vv~)dx= f l G ( x '  ~Vv)  

But G(x, (a/~,)Vv)--> G(x, aVv) in LI(~), by (1.2), since (a/~)Vv--) aVv in LP(~)  N 

(see[8] p. 22). Applying Lemma 2.1, we obtain 

LEMMA 2.5. - I f  v~-* v in w-Wl'P(t)), then 

liminff lG(x,a Vv )dx>  f 1 -sG(x, a Vv) dx . 

PROOF. - Since G(x, .) is convex and admits a gradient denoted g(x, .), we 

have 

Thus 

G(x, as Vvn) >I G(x, a Vv) + g(x, a Vv)(a~ Vv~ - a Vv). 

f lG(x,a~Vv~)dx >~ f l G ( x ,  aVv)dx+ f g(x, aVv)(Vv~- ~-~Vv) dx. 

But g(x, aVv)e L p' (~)N by (1.3), Vv~--~ Vv in w-(LP(~))  N and, from Lemma 2.1, 

f g(x, a Vv) Vv dx ..o | g(x, a 
( 

Vv) Vv dx. 
an .) 

Consequently lim inf f -~n G(x, an Vvn) dx >1 f 1-5 G(x, a Vv) dx. 
D t~ 
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E N D  OF THE PROOF OF THEOREM 2.1.  - From Lemma 2.4, there exists v~ e K~ such 
that  v~--)u in w - W I ' P ( ~ )  and 

f ~nG(x,a~ Vv~)dx--~ f 1G(x,a Vu)dx. 

Since (u~) is the solution of (~n), we have 

f l G(x,a~Vu,)dx<- f l G(x,a~Vv~)dx. 
t~ D 

It  follows, by (1.1) and (1.2), that  (u~) is bounded in WI'P (t~) and so there exist a sub- 
sequence of (u~) (still denoted (u~) for simplicity) and u* e W I'p (D) such that  u~--, u* 
in w-WI,P(~9). From Lemma 2.3, u* eK.  Applying Lemma 2.5, we get 

f l inff -~ G(x , a Vu * ) dx <. lim Vun ) dx <~ lim sup f f -~ G(x , an Vun ) dx <~ 

<~limsup f l G ( x ,  anVv~)dx= f 1 -~ G(x, a Vu) dx. 
~ D 

Consequently u* = u, the unique solution of (2), all the sequence (un) converges to u 
in w -  WI,P(~9) and 

f l  l i m f l  -~G(x, a Vu) dx = -d-~G(x, a~Vu~) dx. 

REMARK. - The previous method used in order to prove the convergence of the 
minimization problems ($n) is, in fact, a method introduced by De Giorgi which con- 
sists of first proving the/ ' -convergence of the functionals one wants to minimize and 
then to deduce the convergence of related minimization problems (cf. [4] and 
also [2]). 

3. - S o m e  f u r t h e r  r e s u l t s .  

3a) Some properties of (~). 

In this paragraph, we give Euler's equation of ($~) and some properties of the sol- 
ution and the minimum of (2~) for the case where G is positively homogeneous. 
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(3.~) 

PROPOSITION 3 . 1 .  - The solution u, of ( ~ )  is characterized by 

div(g(x,a~Vu~))=O int)i,~, l<~i<.n,  

u~= 0 on Fo, un= 1 on I"1, 
u,~ = ci, n (constant) on Pi, ~, 1 <~ i <<- n - 1, 

f g(x, a, Vu~). v d7 independent of is i (1 i 

Fi,7~ 

where ~(x)= Vr162 I is the unit normal to the hypersurface {r = r at the 
point x and pointing towards P~. 

Moreover 

g(x, a~ Vu~). v d7 = 1 ~ g(x, an Vu, ). Vu~ dx 
Ci, n - -  Ci - 1, no~ ' 

and 

] g(x, a~Vun).~d~, is independent of t e [0, 1]. 

5 

PROOF. - The proof is classical and we omit it. 

COROLLARY 3.2. - Assume that G is positively homogeneous of degree p with re- 
spect to ~, that is 

(3.2) a.e. x e O ,  V ~ e R  N, Y ~ e R + ,  G(x,)~)=~PG(x,~). 

Then 

= 1 f g(x, an Vun )" v d~ f l G ( x , a ~ V u ~ ) d x  -~ 
0 Ft 

PROOF. - Since G is positively homogeneous, we have G(x, ~) = (1/p)g(x, ~). ~. Ap- 
plying also Proposition 3.1, we get 

1 (Ci, n - - C i _ l , n )  g(x, anVu~).vd~'= -~ g(x,a, Vun)'vd'z. 
p "= 

F~, ~ Ft 
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REMARK 3.3. - Assume that G is positively homogeneous. We can make ( ~ )  ex- 
plicit in terms of the solution vi,~ of 

as follows: 

where 

div (g(x,a,  VVi, n)) = 0 in ~i,n, 
vi, ~ = 0 on P~_ 1, vi, n = 1 on /~i n 

Un-~ (Ci, n--Ci_I,~t)Vi, n+Ci_ l , n  on ~i ,n ,  

f l  1 G(x, a~ Vu~) gx = R---~ 

M~,n = f 1 G(x, as Vv~, ~) dx , 

[ n \p-1  

i 
ci, ~ = R ~  1/(p - 1) E Mj.~/(p- 1). 

j = l  

3b) Exp l i c i t  resolut ion o f  (t?). 

In the remark just  above, we gave an explicit resolution of (~.), in the case when 
(3.2) holds true. The explicit resolution of (2) is quite general and much simpler. It  is 
intuitively clear that  (2) is effectively a one dimensional problem. 

To be precise, consider the Carath~odory function G: ]0,1[• defined 

( G(x, Z re)  
(3.3) G(t, z) = J 

- - lye[  gY" 
5 

Then, _G(t, .) admits a gradient denoted by g(t, .) and 

g(t, z) = I g(x, z Vr ,~ d~,. 
5 

Clearly G is strictly convex as a function of z and G has the same properties as G in 
(1.2) and (1.3): 

(1._32 cl Izl ~ ~< ~ ( t ,  z) < ~ Jz? + c~ ( t ) ,  

(1.3) Ig_(t, z)i ~< c4 (1 + Izi p-  1), 

by 
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with 

f f cl=clMin IVr _cz=czMax IVr c3(t)= 
gt F~ Ft 

c8 � 9  the coarea theorem, c4 = c4max (mtax IFtl, max flvr t. 
Let us define \ r~ / 

1 Inf . ~G_(t, a_v ) dt; v �9 . 
0 

The problem ($) has a unique solution _u. 

T H E O R E M  3.4. - We have 

a) Inf ($) = Inf ($). 

b) The solution of (~) is u = u o r where u is the solution of (8"). 

PROOF. - By definition, u is solution of ($) if and only if u �9 K and 

fi fl Vv e K, ~ G(x, a Vu) dx <. -~ G(x, a Vv) dx, 
o D 

that is, by Lemma 2.2, the function u_ defined by ~,u_(t) = the trace of u on/'t" belongs 
to K and from the coarea formula, for every v_ e K, v = v o r 

1 1 

f ~ - ~  dr dt ~ IVr dr dt. 
o o 

Vv=_v'(r162 (resp. Vu=u ' ( r162 we get the necessary and sufficient Since 
condition 

u e K ,  
1 1 

Vv K, f 1 -~G(t, au )dt<. f 1 _ e . . . .  ~ G ( t ,  a_v_') dr, 
o o 

which gives that _ is the solution of (__). 

REMARK 3.5. - The solution u_u_ of (2) is characterized by the Euler equation 

~tt (g(t, an'))  = 0 in ]0, 1[, 

u_(O)=O, u O ) = l .  
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In general, this equation cannot be solved explicitly. 
However,  assume that  G is homogeneous, that  is verifies (3.2). Then the Euler  

equation of (cP) can be solved explicitly, and we get: 

t 

f_a(z) -1G(z, 1) -1/~~ 1) dr  
u(t) = o 
- -  1 

f a(z)-l_G(z, 1)-1/~o- 1)dr 
0 ( j ) 1 ,  

and Inf($) = _a(~)-lG(~,l)-l/~-l)d~ . 

3c) A particular case when the constraints do not play any role. 

In general, the problems ($~) do not reduce to one-dimensional problems (see e.g. 
Proposition 3.1), because the level surfaces of as and us do not necessarily coincide be- 
tween the I t ,  t �9 Ts. However this does occur in e.g. complete spherical symmetry ,  
or, more generally, in the situation described below. In this case the constraint 
v = constant on Ft can be dropped from (J's) and (~). In fact, we have the 

PROPOSITION 3.6. - Consider the minimization problem 

} (O) Inf  -~ G(x, a Vv) dx; v e W 1' p (t~), v = 0 on 17o, v = 1 on 1"1 �9 

Then the solution of ( ~  is constant on the level surfaces of  r that is ((9,) has the same 
solution and m i n i m u m  as ($), i f  and only i f  there exists k �9 L p (0, 1) such that 

1 

(C) ~_ dt = 1 and div g(x, ~ o r162 = 0 in ~ .  
o 

Actually k = au '  where u_ is the solution of (6'). 
The solution and m i n i m u m  are explicit: 

t 

- -  u = u _ o r  where u_(t)= ~_dr, 

0 

1 

f l  

~ 0 

PROOF. - The solution u of ( ~  is constant on the level surfaces of r if and only ff u 
is the solution of (~Y), which is equivalent (from Theorem 3.4) to u = u o r where u is 
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the solution of ($). In this case, from the Euler equation of (~ ,  we have 

div g(x, a Vu) = 0 

Hence (C) is verified with 
by 

in t~, that is div g(x, (_a o r  o r Vr = 0. 

k = au ' .  Conversely, assume (C). Let _u be defined 

, k 
u i n ] 0 , 1 [  

u(O) --0. 
1 

We have u ( 1 ) = f ( k / a ) d t = l  and d ivg(x , (aor162162 in ~, that is 
0 

div g(x, a Vu) = 0 in ~ where u = u o r Hence u is the solution of (~.  Notice that in 
this case the Euler equation of ($) can be solved explicitly. 

COROLLARY 3.7. - Assume G is homogeneous, that is verifies (3.2), and assume 
divg(x, re)  = 0 in t2. Then the solutions u,~ of (g'~) are 

Un = U~ o r 

t 1 

1 =Ild  
o o 

and the m in ima  of ($~) are 

1 

fl 
t2 0 

The proof is quite easy. 

REMARK 3.8. - The problems (]~) and (t?) do not depend on the particular choices 
of as, _a and r such that a~ = a~ o r a = _a o r That is (t?~) and ($) do not change if r is 
replaced by r162  _a by b=_aof -1, an by b~=a~of -1, T~ by f (T~) ,  where 
f :  [0,1]~ [0,1] is a C 1 strictly increasing function such that f (0 )=  0, f (1 )=  1. On the 
contrary, ($) depends on the particular choices of _a and r with the previous changes, 
(_$) becomes (_~ corresponding to _b and r (_~ has the same minimum as (~) (and (~)) 
and its solution is w = v of-1. A convenient choice of _a and r may simplify the resolu- 
tion of (_~), as well is the verification of the assumption (2.1). This will be illustrated in 
section 4. 

3d) Generalization to a~ ~asymptotically constant,  on the level surfaces of r 

Our main result of Theorem 2.1 is still valid if the a~ are only assumed to be 
,,asymptotically constant, (instead of being constant) on the level surfaces of r that is 
if we assume that 

(3.4) ][a~ - a_~ o r 0 when n--~ ~ ,  
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where 

dy 

(t) - ~ 
dr  

f a~lVr 
Ft 

(Note that,  by the coarea theorem, for 
~_~ e L ~ (0, 1)). 

The assumption (2.1) is then replaced by 

almost every t, 1/a~eLl(Ft)  and 

1 1 
a n a 

weakly* in L ~ (~), with a e L ~ (t~). 

We note that  this implies (with (3.4)) 

(3.5) a = ~_ o r 

(where ~ is defined as ~ with am replaced by a) that  is a is constant on the level sur- 
faces of r In fact 

ii I l jl as ~--n ~ r n ~ (~) as (~  o r  L ~ (~) 

which tends to zero when n tends to infinity. I t  is easy to prove (as in Lemma 2.1) 
that  

1 1 
~n 

which, by Lemma 2.1, is equivalent to 

1 1 
~ or ~or  

weakly * in L ~ (0, 1), 

weakly * in L ~ (t~). 

Since 1 / a ~  1/a weakly * in L ~ (t~), the previous inequality implies (3.5). 
With these new assumptions, we can adapt the proof of Lemma 2.4 as follows, ev- 

erything else being unchanged. We define v~ by 

t 1 

f 1 ~ v ' d s  where ~ =  - - v ' d s .  v~ ( t )=  ~ ~ -  , ~_~- 

0 0 

As previously, 8, ~ 1 and v~ = v~ o r v in L p (t~). Moreover 

_ 1  ~ - ~ 1 6 2  
Vv~ ~ ~_~ o r Vv ~ Vv weakly in L p (~r~)N. 
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On the contrary, a~Vvn---~ aVv strongly in LP(t)) N, as previously, since 

a~Vvn= 1 an aVv, ~n--~l, an - -  - - - .  1 in L ~ (t~) since 

{} a-n~162 1{ L'(o) = =__n=_~or ~ 1  ll=__n o r  O, as n---~ ~ .  

4. - A n  e x a m p l e .  

A typical situation (see e.g. [2], [3]) which the theory of homogenization is sup- 
posed to handle is that of having an object (the resistor in our case) composed of two 
different materials alternating with each other in thin layers. In our case, this could 
correspond to having the functions _an of the form 

(4.1) 
an=[a on [t~,~,ti+:,n] for even i,  

- l~ on [t~,n, ti+ :,n] for odd i,  

where a, ~>0 ,  ar 
The condition (2.2) is simple enough to understand, so let us t ry  to interprete (2.1) 

when the a~ are given by (4.1) and, for simplicity, when a is a constant. Set, for every 
interval I included in [0, 1], I~, n = {t e I, an (t) = a}, Is, ~ = {t e I, _as (t) = ~}. It is easy 
to check that condition (i) in Lemma 2.1 is equivalent to 

f dt f d t  -~ ~ for every interval I .  

I I 

It follows that, setting ~ = (1/_a-1/ f i ) (1 /~- l /a_)- : ,  (2.1) holds if and only if 
II~,n I/IIr I ~ ~ for every interval I included in [0, 1]. (Note that this is true indepen- 
dently of whether (2.2) is satisfied or not). 

If  t~,n = i /n,  then clearly II~,~ I/lI~,~ I-~ 1, so that we get the weak*-convergence of 

1/an to 

1 
(4.2) _a 2 

More generally, if t~,~ = i / n  for even values of i and ti,~ = (1/n)(i + (7 - 1)/(v + 1)) 
(for some V > O) for odd values of i <  n, then II~,~ I/lIz,~ I--~ ~, so that 1/an converges 

weakly* to 

1 1 
(4.3) _a ~ + ~  " 
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APPLICATION. - We give below the limit problems, for three simple given configu- 
rations of {/'i,.}. By convenient choices of r they all correspond to ti,~ = i / n .  

a) The volume of  t2i, ~ is independent of  i. Assume that the/'i, ~ are level surfaces 
of some smooth function ~ satisfying the usual assumption on r and assume that the 
volume of Qi,~ is independent of i. Then the distribution function of ~, ~(t)= I~b > t I 
is smooth, and the/'i, ~ have equation r = i / n  for the choice r = (Vo - v(x))/(vo - 
- vl ) where v0 = It20 I, vl = [t21 I, v(x) = vl + ~z(~(x)). For the limit problem, a is given by 
(4.2) and 

K = {v e WI'p(~); v = 0 on/ 'o ,  

v = 1 on/~1, v is constant on the level surfaces of ~}. 

b) The width of  t2i, ~ is independent of  i. Assume that Fo and 1"1 are parallel, at 
distance d from each other, and that the/'~,. are parallel and equidistant. By choosing 
r = (1 /d)d(x ,  Fo) where d(x,I" o) is the distance from x to Fo, we get, for the limit 
problem, a given by (4.2) and 

g = {v e WI'p(I2); v = 0 on/ 'o ,  

v = 1 on/"1, v is constant on all hypersurfaces parallel to Fo and/"1 }. 

c) Fi + 1, ~ is homothetic f r o m  Fi, ~ with ratio independent  of  i. Assume that F0, r l  
and I'~,~ are homothetic and such that 

FI=f iF 0 ( 0 < p <  1), / ' i + l , n = p 1 / n / ' i , n = p ( i + l ) / n I ' O  . 

Let us denote by p(x) the ratio of the homothecy which transforms/'o into the hyper- 
surface containing x. By choosing r = Log p(x)/Log ,~, we easily obtain that a is 
again given by (4.2) and 

K = {v e WI'P(t2); v = 0 on F0, v = 1 on 1"1, 

v is constant on all hypersurfaces homothetic to Fo and/ '1 }. 

Appendix. 

LEMMA. - 9 is Cl-diffeomorphic to [0, 1] x P0- 

PROOF. - Let D: 9--~ [0, 1] X/o,  D(x) = (r ,~(x)), where ~b: 9 -oF0  is defined as 
follows. Consider the smooth vector field Vr in 9. For each x e Q, there exists a 
unique integral curve to Vr which passes through x and this integral curve hits/'o at 
the point y = ~(x). 

If one wants to do the above more explicitly, one gets simpler formulas by using 
the vector field Vr162 2 (instead of Vr Then the integral curve through x e 9 is 
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given by  the solution z(t) = z(t, x) of the differential equation: 

tz ' ( t ) =  vr  

Ivr 2 

[ z ( r  = x .  

The solution z(t) reaches / 'o  for t = to such that  r = 0. We have 

r = Vr z'( t )  = 1 ,  

r = t .  

Thus to = 0, y = z(0, x) = ~(x). I t  is clear tha t  z: [0, 1] • ~ ~ is of class C 1. Hence 
4: 9--> Fo defined by ~(x) = z(0, x) belongs to C 1 (~). I t  is easy to prove tha t  D is one to 
one and D-1 (t, y) = z(t, y). 
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