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Abstract

We study the motion of point vortices in a two dimensional flow region of arbitrary geometry.
The fluid is supposed to be incompressible and non-viscous. The total kinetic energy of the flow
is infinite and no information can be derived from its conservation. Nevertheless it is possible to
divide it into an infinite core energy and a finite part, the renormalized kinetic energy. Conserva-
tion of the renormalized kinetic energy gives a great deal of information on the dynamics of the
vortex centers. The interaction of vortex pairs is given by the hydrodynamic Green’s function; the
interaction of each vortex with the boundary by the hydrodynamic Robin function. Our proof of
long time existence for vortex pairs involves a careful analysis of the boundary behaviour of these
functions. The difficult step is to exclude collisions of equally oriented vortices at the boundary.
The result is optimal in the sense that three vortices can collide in finite time. Finally we esti-
mate the energy exchange rate between large vortex clusters. This is a first step towards stability
estimates for vortex clusters; which is one of the outstanding question in vortex dynamics.
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1 Introduction

We ask the following questions concerning the dynamics of point vortices in two dimensional ideal
fluid dynamics.

1. What is the equation of motion for the vortex centers? )

2. What can be said about the qualitative behaviour of this dynamical system like existence of
periodic orbits, stationary constellations, possibility of collisions, behaviour of vortices near the
boundary?

3. How do we numerically solve the initial value problem for the vortex centers?

Regarding the first question we present two natural methods to derive the equation of motion for
vortex centers. The energy renormalization or core energy method is well known in physics but less
so amongst mathematicians. Roughly speaking it is a rescaling technique for dynamical systems of
infinite energy to obtain a finite conserved quantity. The idea is to separate the energy into two
parts each of which is conserved separately. The infinite part (the core energy) is the same for all
geometries, while the remaining part (the renormalized energy) is the interesting one that carries
geometrical information. The second derivation is a novel method based on the calculus of residues.
In the resulting equation of motion the interaction between different vortices is described by the
hydrodynamic Green’s function while the interaction of each vortex with the boundary is governed by
the hydrodynamic Robin function. A detailed analysis of the properties of the hydrodynamic Green’s
and Robin function provides information on the qualitative behaviour of isolated vortices and that of
vortex clusters. It turns out that a single vortex or a highly concentrated vortex patch moves along
the level lines of the hydrodynamic Robin function. In a simply connected domain these lines are
easily computed by solving Liouville’s equation. For multiply connected flow regions we present a
variant of the boundary element method.




FLUCHER, GUSTAFSSON: VORTEX MOTION 2

2 Planar hydrodynamics

The flow region is represented by a domain 2 C IR?2. We suppose that it is bounded and finitely
connected with Lipschitz boundary

K
o = UI‘k
k=1

which satisfies a uniform exterior ball condition. Each of the boundary components I'y is supposed

to be topologically equivalent to a circle. The exterior unit normal is denoted by v. The velocity of

the fluid at time 7 is denoted by v(7). First we investigate the time evolution of the scalar vorticity
w = curly = 8;v® — Gt

in the smooth case. The velocity field of an incompressible fluid in two dimensions admits a stream
function

v = JVy

where J denotes the symplectic matrix

S (5

corresponding to clockwise rotation by m/2. By definition of the vorticity the stream function is a
solution of the Poisson equation

—-AY = w in
O = 0 on 00

where 8y, denotes the tangential derivative. Each boundary component is a stream line. In particular
the stream function is defined globally. The basic equation of non-viscous fluid motion are the Euler
equations of ideal fluid dynamics

Vp

p
Here p denotes the pressure and p the (constant) density of the fluid. The cgnvection term can be
written as

(v-V)v = %V [v]? — wdv.

1) Orv+(v-V)v+ 0.

In the stationary irrotational case we obtain Bernoulli’s law
1,2, P
2 - = = const.
@ ghi+E
Taking another curl of the Euler equations yields the transport equation for the vorticity. Using the
incompressibility of the fluid one finds that the material derivative vanishes
(3) Dyw = Ow+((v-V)w = 0.

This means that the vorticity is convected along the flow. A particular consequence of this and
the incompressibility is that the vorticity distribution at an arbitrary instant 7 is an equimeasurable
rearrangement of the initial vorticity distribution, i.e. 9; |{z €Q : w(z,7) > A}| = 0 for every A.
Moreover the circulation

cx = /v-dz = O
Tk e

around each of the boundary components is conserved by

g = Orv-dz = —-/ V(%Iv{z—}—g)wlz-}-/ wlv-dz = 0.
Ty ' P ) %

This is Kelvin’s theorem (Figure 1).
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&)

r;
Figure 1: Flow region and point vortices.

Passing to the point vortex limit means to consider an initial vorticity distribution concentrated at
finitely many points represented by a collection of Dirac masses

P
w = prézp, zp € Q2.

r=1

The strength of the p’th vortex is w, and may be positive or negative according to its orientation.
Strictly speaking the product term wJwv is not defined for such vorticity distributions. Even the weak
form of the Euler equations is meaningless. Nevertheless wJv vanishes except at the vortex centers.
Thus the Euler equations simplify to

@4  8v = -V (%W-y%) in @\ {5 (M}
4

As a limit form of the equimeasurability property for smooth vortex distributions we postulate that
the vorticity at any time 7 > 0 remains of the form

(5) w(r) = Y wpbs,(n)- .
p

3 Hydrodynamic Green’s and Robin function

The properties of the stream function in the presence of point vortices suggests the definition of a
special Green’s function. It corresponds to the stream function of a single point vortex of unit strength.

Definition 1 (Hydrodynamic Green’s function) The hydrodynamic Green’s function with pert-
ods y1,...,vk subject to >, yx = —1 is defined as the solution G, of the problem

—-AG, = 4, in Q,

aJsz - 0 on 89,

&G, = -~ forevery k,
T
/ G.0.G; = 0 forevery z,{ €.
an

The hydrodynamic Green’s function is constant on each boundary component. Its values will be
denoted by g*¥ := Gzlrk. Strictly speaking the above definition only applies to smooth domains.
Nevertheless a general domain satisfying the assumptions of Section 2 is conformally equivalent to
a smooth domain. The hydrodynamic Green’s function, the circulations and the normalization are
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conformally invariant. This permits to define the hydrodynamic Green’s function for non-smooth do-
mains. The last requirement is a normalization condition. It selects a unique solution (Proposition 7).
The singularity at z represents a source of unit strength. Therefore necessarily 3, 4x = —1. The first,
second and third requirement specify G, up to an additive constant. The periods are independent
of the normalization. Furthermore the hydrodynamic Green’s function is symmetric. Integration by
parts yields

G.(¢) = /ﬂ G.(-AG;) = - /n VG, VG, + /a _G0,Ge

which is symmetric by the normalization. Uniqueness follows from the maximum principle. Indeed,
the difference of two solutions u = G, — G, is harmonic in Q. It is locally constant at the boundary
and the periods vanish. By the strong maximum principle maxu is attained on some I'y and either
u is constant in § or J,u > 0 on I'x. In the former case u = 0 by the normalization condition. In
the latter case the period fI‘k 9,u would be non-zero which is a contradiction. Details will be given in
Section 8.

In order to define the hydrodynamic Robin function we decompose the hydrodynamic Green’s
function into a radially symmetric singular and a regular part

G, = F,-H,.

The singular part is the fundamental solution

1
R = —5-loglt 4
while the regular part is harmonic in 2 with
H, = F, '—gf on [y,
8,H, = O F; — k.
Ty I

In particular we can evaluate the regular part at the singularity itself.

Definition 2 (Hydrodynamic Robin function) The value of the regular part of the hydrodynamic
Green’s function at the singularity

t(z) = H,(2)
1s called hydrodynamic Robin function.

This function is thus associated to the Laplacian acting on the class of functions which are locally
constant on the boundary with periods 4. Near the singularity the hydrodynamic Green’s function
can be expanded as

GQ) = —5-logle— 2~ t(z) + 0 (¢ ~ 2).

At the boundary the hydrodynamic Robin function tends to +oo {Proposition 8). This is essential
for long time existence of one and two vortices (Sections 9 and 10.1).

4 Point vortex model

Now we can formulate the equation of motion for the vortex centers. For Q = IR? it goes back
to the work of Kirchhoff in 1876. In the presence of solid boundaries an additional self interaction
term appears. This was observed by Routh in 1881. The renormalized kinetic energy is also called
Kirchhoff-Routh path function. Finally in 1943 C.C. Lin gave the equation of motion in the most
general case.
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THEOREM 3 (Kirchhoff [11], Routh [16], Lin [12]) Let Q be a domain satisfying the general
assumptions of Section 2 and suppose that the initial vorticity distribution is of the form w(0) =
Ep wpd;,(0) with total vorticity 3, wy # 0. Given the circulations c satisfying the consistency relation

>k ¢ + ), wp = 0 define the periods
ck
T o=
Zp Wy

and the corresponding hydrodynamic Green’s function G, and Robin function t as in the Definitions 1
and 2. Then:

1. The speed of the vortex centers is given by

(6) 4 = quJVG,q(zp)—%’iJVt(zp).

q#p

2. The renormalized kinetic energy

1
) E(z,...,zp) = E wWpweGz,(2p) — 3 E wlt(zp)
{r.q:¢>p} P

is an integral of motion.

8. The equations of motion (6) has a Hamiltonian structure with Hamiltonian E and symplectic
form dQ =3 wpdzpdy,. Le.

. 1
Zp = ;—; JV sz .
Proof. The stream function is given by
Y = prGzp.
P

By construction it has the prescribed circulations cx. Regarding the velocity field we single out the
contribution of the p’th vortex and decompose it into singular and regular part

»

v = wpJVF,, —wpJVH,, + Y wgJVG,,.
9#p

The term JVF;, describes a pure rotation around the center z, which does not contribute to the
motion of z, itself. Only the regular part contributes to its drift

8 Iy = Ureg(2p) = Z‘”qJVqu(Zp)—WPJVHZp(Zp)-
q#p

The equation of motion (6) follows from the relation Vi(z) = 2V H,(z) which holds by symmetry of
the hydrodynamic Green’s function. Conservation of F is a consequence of the equation of motion
and antisymmetry of the symplectic form. O

The argument of equation (8) is heuristic. In Section 7 we make up for this by giving a rigorous deriva-
tion of the point vortex model. Moreover the calculation proving conservation of the renormalized
kinetic energy is simple but lengthy and it does not explain how the expression for the renormalized
kinetic energy was found. In Section 5 it will be derived by means of the core energy method leading
to a short and natural derivation. Physical justifications of the point vortex model will be given in
Section 5. In fact it is the limit of several more realistic models.
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Example 4 For Q = IR? Theorem 3 does not apply directly. Nevertheless the conclusions hold under
rest conditions at infinity with G, = F, and t = 0. The equation of motion for two vortices in the
plane is

w2 22— 2 . w1 21— 22

Wiwo
L J— EF = -
2 IZ2-—2112, 2

.2—‘"' Izl — 2'2[2’ 2

2.'1 log ]z1 - 22] .

In particular the distance of the vortex centers remains constant and the center of mass wy2z; + wozg
is at rest. The motion of an arbitrary number of point vortices in the plane admits three independent
integrals which are in involution with respect to the symplectic form d2, namely

2

2
Z“’pzp ) Z“’p M
P P

The corresponding conserved quantities (symmetries) are energy (time shift), moment of inertia (trans-
lation) and angular momentum (rotation). Thus the motion of up to three vortices is integrable while
the motion of 4 and more vortices may be chaotic depending on the initial data (Aref and Pomphrey

[2], Arxef [1]).

E,

In the exceptional case of vanishing total vorticity ), wp = 0 Theorem 3 is modified as follows. Let
G, be the hydrodynamic Green’s function with periods < chosen arbitrarily. If all circulations cg
vanish the stream function is ¢ = 37 wpG;, and the theorem remains valid as it stands. Otherwise

¥ = wpGs, + o
p

where 1) is the stream function for a stationary circulating flow, i.e. g is harmonic in  and constant
on each T'y. These constants are chosen such that fI‘k 0,30 = cr which is possible since ), cx = 0.
In the law of motion (6) the additional term JV1(2,) appears on the right side. The renormalized
energy contains the additional term }°_ wpto(2p). With these modifications the theorem also covers
the case of vanishing total vorticity. In the same way unbounded domains with prescribed stationary
flow conditions at infinity are treated.

Example 5 For the upper half plane {z =  + ¢y : y > 0} one has .

(—z 1

> t = ——log(2y).

$2, 1) = —pnlop)

A single vortex moves parallel to the boundary. Also the motion of two vortices of opposite orientation
at equal distance from the boundary 23,2 = *z + iy can be computed easily. We suppose no flux
conditions at infinity. According to [3] the Robin function of the quarter plane {z + iy : z > 0, y > 0}

—1—10
2 J

G:(¢)

is t(z) = —4= log -fzﬂ;%; Reflection at the y-axis gives the renormalized energy
2 2,2
w 2x%y
E(z, = —log——.
(21, 22) 4 & z2 + y?

The vortex trajectories are of the form {z%y® = ¢? (z? + y*)} (Fig. 2). The parameter c gives the
asymptotic distance from both axes.
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Figure 2: Motion of two vortices of opposite orientation in a half plane.

5 Core energy method

The core energy method is a heuristic way of deriving a finite conserved quantity from an infinite
energy. The guess obtained in this way can be verified a posteriori using the equations of motion. For
simplicity we restrict ourselves to the case of a single vortex of unit strength, i.e. ¥ = G;. The kinetic
energy of the flow is

1
Fuin = -/pw - f/waztz = co.
2 Ja 2 Ja

The unbounded contribution comes from the core of the vortex. This suggests the excision of a small
ball B? around the center, dividing the kinetic energy into a finite and an infinite part. Since the fluid
is incompressible and circulates around the center only a small amount of kinetic energy can cross the
artificial boundary 0B? in finite time. This means that the energy diffusion between the finite and
the infinite part of the energy can be neglected in the limit as the radius of the ball tends to zero.
The finite part of the energy is

/ Ve[ = / ¢.06 = - [ coc
o\B2 o(@\B2) 252

—/ F,0,F, + F,0,H, + H,8,F, — H,0,H,
aB® aB® 8B% 8B~

1
= —orlog(p) +0-t() - [ VP
27!' Bf

1
= —5-log(p) ~t(z) + 0 (0*) -
The gradient of this is

v, / VG.|? = —Vi(z) -V, / |VH,|?
Q\B? Bf
= —Vt(z)—/ |VH,[*v —/ V. |VH,|
8B% B
= —Vi(z) +O0(p).

Thus the time derivative of fn\ B [VG,|? equals that of ¢(z) up to an error term which tends to zero

as p — 0. We conclude that F = -—%t is conserved along the flow. In the case of multiple vortices
the only difference is an additional contribution to the regular part due to the other vortices obtained
from the relation [, VG, - VG, = G;(¢).
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6 Regularizations of point vortices

Motion of point vortices can be seen as the limit of several more realistic moving boundary problems.
Each of them justifies the core energy method as a method for the derivation of the point vortex
model. A popular regularization of the point vortex model is obtained by smearing out the vorticity.
Turkington [18] and Marchioro and Pagani [13] (cf. also Marchioro and Pulvirenti [14]) have justified
this view by showing that the solution of the regularized problem converges to that of the point vortex
problem locally uniformly in time. In the stationary case a special type of vortex patches was studied
by Turkington [17]. He showed that for a simply connected domain and given @ > 0

sup{Ek,-,,(w) twe L®(Q), 0<w<Lw, /w:l}
Q

is achieved by a stationary vortex patch of constant vorticity @. Moreover as W — oo the vortex patch
concentrates at a minimum point of the Robin function. Existence of stationary vortex patches close
to stable constellations of point vortices (see Corollary 11) has been proved by Elcrat and Miller [7].

A further feasible regularization is to replace each vortex center 2, by a rigid particle Bt moving
freely with the fluid, i.e. fa pe PV = 0. However, the most realistic regularization of the point vortex

model is to replace each vortex center by a vortex core consisting of a small bubble of air. At the free
surface the pressure drop is proportional to the mean curvature A of the free interface. This yields
the free boundary condition for this problem which we call dynamic Bernoulli problem.

a,v+%v1v;2+% = 0 in Q\A(),
dive = 0 in Q\ A(r),
Pp—po = 20hondA(T)

where o > 0 denotes the surface tension and py the pressure of the air. Since {2 is fixed and |2 \ A(7)|
is constant so is the volume of the bubble. In the stationary case without surface tension the free
boundary condition is |v| = §,u = const. on JA. A complete discussion of this case can be found
in [8]. In the limit as the pressure of the air drops to —oo the free boundary shrinks to a point and
we expect convergence to the point vortex model. In this sense the study of the point vortex model
is a first step towards the solution of the dynamic Bernoulli problem. .

7 Complex derivation of the point vortex model

We present a novel derivation of the point vortex model using the calculus of residues. In terms of
the stream function Euler’s equation (1) can be written as

1
IV (0:9) +V (—2- Vol + %) AYVY = 0.
Using complex variable notation replacing V by 28z, J by —i, A by 48,85, AyV by 48, (854)® and
flz,r) = 20,909+ % — 8,9 |

Euler’s equation can be written as

&f = 20,(8:)%.

In particular f is analytic in regions without vorticity. This statement can be regarded as a generalized
form of Bernoulli’s law (2). Indeed, in the stationary case f is real valued and hence must be constant,
which is the same as saying that (2) holds. Another useful form of Euler’s equation is

d(fdz +2(3:)°dz) = o.
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Integration of one of these forms over an arbitrary subdomain ' C Q yields

2 —
©) /mlfdz—l-2/ml(8z—¢) &z = 0

by Stokes’ formula. This is a weak form of Euler’s equation that permits to pass to the point vortex
limit provided none of the vortices is on the boundary of €. To see this let

w
bar) = D wGam) = Y (—32loglr— 51 ~wpHsy (7)) -
? ?
LEMMA 6 For any ' C Q with no vortices on dS)' we have

fdz = prz'p,

aq! ZpERY
@:4)dz = —i Y 8,,F
@ zp€EQY

Proof. We have

o-y

Z “p (Z_P + — Z”_ + regular terms)
dr \z—2, 7Z—7

Zp
= (Z —~+— 4 regular analytic functlon)
2m 2 — 1z

By definition of f the function 8, is the real part of if. Therefore the expression in the last bracket
above is if up to an additive imaginary constant. The first claim follows from the residue theorem.

Moreover
w 1
z:‘-‘-’p@zc;zP = Z (‘—‘ZI:' 7 —wpasz,,)
P P

so that
(0:9)°

w? 1 w? 2
_ Z p__ _P 2 E
- P (16—15‘7 (z - Zp) * 2 6 e e (6 ) ! q#p “’P“’qaszva‘G%) |

Here only the second and the fourth term have non-zero residues. The residue at 2, is
2
w
H,, (2)+2 prwq (Reszp 5sz,,) 0:G2,(2p)
q#p

w? 1 1
= Zf? Bit(z) = o > wpwgd; G,y (5p) = —5- 0, F.
q9#p

Here we used that Res,, O G., = —231-; This proves the second claim. O

Lemma 6 inserted in (9) gives the equation of motion (6). Using the definition of f equation (9) can
be written as

z zd Z 2 2".7) = .
2/6“,6—1,061& z+2/{;nl(6—¢) dz+/z;n'(P i0;1 ) dz 0

If at any particular instant J€¥’ consists of streamlines, so that diy = 0 along 8§, then

10) [ oozt [ @ = [ ovay = o
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Hence

/ pridz = —p/ Orpdz
aq’ ay

in this case. Here the left side represents the total force on ¥’ exerted by the surrounding fluid. As a
special case, take ' = Q. Then

d
ddz=—p— Pdz = 0
/anp pd"‘ a0

since ¥ is constant (as a function of z) on each component of J2. Taking the complex conjugate
of (10) and combining it with Lemma 6 gives

&vPPdz = iy 0,.F
/1.9l > o,

zp€QY

provided 8 consists of streamlines. If Q' = Q then
(11) / o.uldz = i3 0, E.
1 7

In the case of a single vortex this is the formula for V¢ in Proposition 9.

8 Properties of hydrodynamic Green’s and Robin function

The capacity potential or harmonic measure of I'y with respect to the rest of the boundary is defined
by

Ay = 0 in Q,
ury = &k on Iy

These functions form a basis of the space of harmonic functions which are locally constant on the
boundary. They satisfy ) ux = 1. By the general assumptions on the domain each u; has bounded
gradient. We show that difference between the hydrodynamic Green’s function and the Dirichlet
Green’s function G? can be written in terms of these capacity potentials.

PROPOSITION 7 Under the general assumptions of Section 2 on  we have:

1. The hydrodynamic Green’s function ezists and is well defined if and only if the periods satisfy
the consistency relation

(12) o = -L
k

2. The hydrodynamic Green’s function is unique, symmetric and

13)  G:¢) = GO+ gMuk(2)m(C),

K,

where ¢* is a symmetric positive semi definite matriz with one-dimensional kernel spanned by
the vector (y1,...,7k).

Proof. Symmetry and uniqueness was already proved in Section 3. The necessity of (12) follows from

0 = AGZ = ZA 6VGZ_/aBpalle = 1+Z'yk
k k z k

O\Bf
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for p > 0 small enough. The difference between the two Green’s function
Gy, — GS = H 2 - H,

is harmonic and locally constant on the boundary. The values of the hydrodynamic Green’s function
on the respective boundary components are g¥. Then

G, -G} = nguk.
k

By symmetry of both Green’s functions
g = Y dMu(?)
l

with a symmetric matrix g*. Actually the symmetry is a consequence of the construction below. To
construct G, we take (13) as an ansatz and try to determine the matrix g*'. This will prove existence.
The first two properties of G, in Definition 1 are automatically satisfied. For the remaining properties
we need the following facts. The capacity coefficients

(14) Pkt = /&;Ul = / upbpu; = /Vuk-Vul
Y a0 Q

form a symmetric, positive semi definite matrix with one-dimensional kernel
(15) ker(p) = span(l,...,1)

because ), ux = 1. Moreover

(16)  wl(s) = - / wd, G0 = - [ 8,6
an Tk

Using (14) and (16) the circulation property of G, reduces to

v = oG, = /BVG2+Zgiju;(z)/ Oy u;
Ty jys i] Ty

~uk(z)+Zijyijui(2) = E Zpk,-gij—dk; ui(z).
iJ i

i
By linear independence of the u;’s and ) ; u; = 1 the term in bracket must be 7. Therefore

17 > opkig? = m+ b
J

for every 7 and k. For fixed ¢ this is a linear equation for the vector (g"j )j=1... % It is uniquely solvable
if and only if the vector on the right is orthogonal to the kernel of the capacity matrix (px;)

Sl(m+d) = 0,
P

i.e. if (12) holds. Moreover every solution is of the form (¢*/ + ¢;) We can adjust the constant

such that
dovid?d =0
J

for each i. This determines (¢*/) uniquely. The above equation is the normalization condition. The
symmetry of (g*/) follows from (17) and symmetry of (px):

7= Y (e +a) g = D pugitt.
k k,l

ji=1.K"




FLUCHER, GUSTAFSSON: VORTEX MOTION 12

Concerning the definiteness consider the quadratic form

Q) = Zgijfifj = Zpkz (Zgjkfj) (Zgufi).
i Py j i

By the properties of (px;) this form is positive and @ (§) = 0 if and only if 22 ¢7%¢; is a constant
independent of k. When this occurs (17) gives

Zpkzg’lfi = Z (+i)& = &+ E&',
il i ;

i.e. £x = cvyx. This means that the kernel of (g") is spanned by (11,...,vx). 0
In particular |G; — G2| < [lgl| where

llgll = sup {nglﬁk& DYl < 1}
kol %

which is finite by finite connectivity of 2. The Robin function associated to the Dirichlet Green’s
function is denoted by t°. This type of Robin function together with its applications in complex
analysis, geometry, and calculus of variations is extensively studied in [3]. The notation differs by a
factor 27. Denote by

d(z) = dist(z,09)
the distance of a point from the boundary.

PROPOSITION 8 IfQ satisfies the general assumptions of Section 2 and the exterior ball condition
with radius p then the hydrodynamic Robin function is bounded by

' —llgll <t <&
where

._——Iog (d(z) (2+ d(z))) < t%(z) < ——;;log(d(z)).
Therefore

1

o) = —o log(d(2) + 0 ()
uniformly as z tends to 0N2.
Proof. By (13)

z) = t°(z) = =) ulz)u(2).

kil

The first claim follows from positivity of the matrix g¥ and the definition of ||g|]. By the exterior

ball condition we can compare ¢° with the corresponding Robin function for the exterior of a ball
(Bé’ )¢ D Q. By monotonicity of t° with respect to the domain and [3, Table 2] we have

°z) > _él;log_—|z—C/[j—p2
_ __1_0 sl 2 St
- lg(u l-p =t )

> - Iog <d(z) (2 + d(z)»

if we choose ¢ such that |z — ¢| = d(2) + p. The upper bound for ¢°(z) follows similarly by comparison
with the Robin function of the ball BY®) c Q. o
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Next we derive a variational formula for the hydrodynamic Green’s function subject to a regular
variation of the domain and the circulations. Hadamard’s variational formula for the Dirichlet Green’s
function is a special case. A necessary condition for the existence of the perturbed Green’s function is
that the variation of the total circulation vanishes (Proposition 7). Recall that g* denotes the value
of G, on I'y.

PROPOSITION 9 Under a regular variation dv of 8 in exterior normal direction and variations
dvx of the circulations, satisfying 3§ = 0, the hydrodynamic Green’s and Robin functions change
according to

JG"» (C) = AQ 6uGzauG(JV + Z (g§ + g'(‘) (S’ﬁg,
k

5 = - [ 0GP =23 dhom.
an k

I

In particular

VGZ(C)+VGC(Z) = - 8UG361/GCV)
an

Vi(z) = / 10,2 v.
e
Proof. We apply Green’s identity to the harmonic function G, to obtain
8G:(¢) = f (G¢8,8G, — §G,8,G).
N

In the Dirichlet case the result follows from §G, = —8,G,0v on 8. For the hydrodynamic Green’s
function the normalization condition gives

8G:(¢) = 2945%—/ G30,G¢
E an

where G¢ = G, + 6G, denotes the perturbed Green’s function defined on the perturbed domain Q2°.
Using Green’s identity and the normalization condition for the perturbed Green’s function the second
integral can be written as

G2o,G; = / G#6,Gt / G30,G2 + / G20,3G,
ans N [e1Y

— & '] 2
= Jona VO VG ;gijfm +0 (ovl*).

an

Noting that G¢ is locally constant on Q7 and that the width of the strip Q% \ Q is dv the claim for the
Green’s function follows. As to the Robin function note that the singular part of the hydrodynamic
Green’s function does not change. Hence 6 H,(¢) = —0G.(€) and 8t(z) = 6 H,(z). o

9 Motion of isolated point vortices

In this section we discuss qualitative properties of the point vortex model that can be derived from
conservation of the renormalized kinetic energy. We adopt the general assumptions on the domain of
Section 2.

COROLLARY 10 (Motion of a single vortex) The center z of a single vorter of strength w be-
haves as follows.
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1. It moves along the level lines of the hydrodynamic Robin function at speed
;o= _-‘gJVt(z).

In particular almost all orbits are periodic.
2. Every critical point of the hydrodynamic Robin function is a rest point. There is at least one.

8. A vortex center close to a local minimum zg of the hydrodynamic Robin function circulates along
the boundary of a small “ellipse”. As the ellipse shrinks to a point the time of revolution tends
to

47

w+/det D?t(zp)

Proof. The first and second claim are immediate consequences of Theorem 3 and Proposition 8. For
the third one we normalize: 20 = 0, ¢(20) = 0 and (2) = 3 (t112? +t2223) + O(|z[?) as |z| = 0. For
small A > 0 the area of the “ellipse” is
27h
t<h} = —=+0(h).
{t < h}| e (#*)

By the co-area formula the corresponding time of revolution is

ds 2 / ds 2
—_— = = — = —0s|{t < h}.
/a{t<h} 2| W Ja{t<h} %1 w " i J

T =

]

Figure 3 in Section 11.1 shows some trajectories of a single vortex. The statement on rest points
compares to a result for a vector valued problem obtained by Bethuel, Brézis, Hélein [4]. They show
that stationary Ginzburg-Landau vortices tend to concentrate at the critical points of a certain Robin
function.

COROLLARY 11 (Motion of multiple vortices) The following types of collisions are excluded
as long as no other collisions occur simultaneously. '

1. Collision of two vortices in the interior of the domain.
2. Collision of a single vortexr with the boundary.

3. Collision of multiple vortices in the interior of the domain unless 3=, wywqlog|zp — 24| has a
finite limat.

4. The motion of two vortices of different orientation exists for all time and admits a stationary
constellation at max E(zy, z3).

5. If the total vorticity w := Y w, does not vanish then the speed of the center of vorticity

1
z = —-sz
w p%p

is given by

. w 2
z = —— | Jv.
2 /anI |

Proof. All claims follow from conservation of the renormalized kinetic energy and the boundary be-
haviour of the hydrodynamic Robin function. The last one follows from (11); in the case of a single
vortex also from Proposition 9. O
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Remarks

1. Several examples with two stationary point vortices in an unbounded flow region can be found
in the article of Elcrat and Miller [7].

2. At a collision the vortex model breaks down. The vector field is no longer Lipschitz. In particular
there is no unique continuation.

3. An example of a triple collision in JR? can be found in Kimura [10] and in the book of Marchioro
and Pulvirenti [15]. In this example the relative distances of the vortices are preserved and
wiws + waws + wawy = 0. Thus the singular contributions to the renormalized energy cancel at
the collision. The collision happens in finite time and the velocities of the vortex centers are
unbounded.

Much more can be said in the case of a single vortex moving in a simply connected domain. In this
case the normalization yields G, = 0 on 0%, i.e. G, = G and ¢ = t°. We invoke some results from [3].

COROLLARY 12 (Motion of a single vortex in a simply connected domain) Let Q be a sim-
ply connected domain. Then:

1. The Robin function is the mazimal solution of Liouville’s equation
At = —2—64’“ in Q.
T
2. Near a smooth boundary point z
1
t(z—sv) = o log (2s — hs®* +0(s%)) as s =0,

where h denotes the curvature of the boundary at z with respect to the exterior normal. In
particular a vortex center at a small distance s from the boundary stays within a distance s +
O (s?). Its speed is

R W
z = —RJV'*'O(].).

8. The Robin function of a conver domain is convez. .

4. The Robin function of a convex bounded domain has a unique minimum point z9. Its distance
from the boundary is at least

d(ZQ) > %B—Zﬂt(zo)'

10 Motion of vortex clusters

In this section we investigate the dynamics of vortex clusters. First we show that on a macroscopic
scale the motion of the cluster converges to that of a point vortex as the cluster shrinks to a point.
In Section 10.1 we will apply this result to the motion of vortex pairs. Then we study the dynamics
within a cluster.

Consider a cluster {2z, : p € C} of non-vanishing total vorticity w := 3

. P

vorticity
1
z = '&J‘ E WpZp.
p€EC

Let p denote the diameter of the cluster. Obviously z, € B* for a suitable factor §. We show that
the center of vorticity essentially moves like a single vortex of vorticity w. The dependence of the
error term on the distance from the boundary will be essential for our stability result for vortex pairs.
Theorem 13 does not apply to Example 5 where w = 0. In this case the motion is governed by higher
order derivatives of the Robin function.

ccWp with center of
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THEOREM 13 (Macroscopic cluster dynamics) Assume the general hypotheses of Section 2
on ) and that the vortex cluster {z, : p € C} of non-vanishing total vorticity has small diameter and
is well separated from the other vortices, i.e. |zp — zpr| < p for p,p' € C and |z, — 24| > R forp € C,
q & C where p K R and R is kept fired. Then its center of vorticity moves according to

2
z = prJVGzp(z)—%JVt(z)—i-O(d—();jg) as p—0.
PgC

Proof. By the equation of motion (6) the center of vorticity moves according to

wz = E WpZp

PEC
1
= Z EwpquVqu(zp) -3 Z w2 JVi(2p)
PeC q#p pEC
(18) = YD wpwgJVGs,(z) — Y, wpwy JVH; ,(2)
pE C ggC pp'€C

because VF, (2p) + VF;,(24) = 0 and Vi(z) = 2VH,(2). On the other hand the right side in
Theorem 13 multiplied with w is

(19) S0 wpwgd VG, (2) = D wpwp JVH,(2)
pECQEC pp'€eC
The difference between (18) and (19) is
Z Z wpwad (VG;,(2p) — VG, (2)) — Z wptwpr J (VHzp, (zp) — VHz(z)) .
pECQEC pp'€C
The first term is
Z Wq Z wpJ DGy, (2)(2p — 2) + O (p*) = O (p?)
g9¢C  peC

because 3 o wp(z — 2) = 0. The second term satisfies the same estimate. More precisely the total
error is of order

p* sup (Sup I1D°G2y (Il + sup lleHz(zp)lHllDaHz(C)ll)-
ceBir \9€C PeC

By Lemma 14 below this is of order O (;&%) a

For Q = IR* Marchioro and Pulvirenti [15] derived the asymptotic behaviour of the center of vorticity
of equally oriented vortices by estimating the growth of the moment of inertia

E wp |2p — Z]%.
PEC

We are left to prove the following estimates for the derivatives of the regular part of the hydrodynamic
Green’s function.

LEMMA 14 IfQ satisfies the assumptions of Section 2 then

ca (m,n)

|VPVZH ()| < A7

for every m+n > 1.
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Proof. Recall that the regular part is symmetric and harmonic in each variable. At the boundary

H, = Fz—ngjuj(z) on T%.
J
Thus
(20) H:(¢) = —E/F (Fz—ngjuj(z)) 8,GY.
k Tk i
Using
VP ()] = ——— < e for we R
W= rfw—2 = 2rd(z) or W

together with |Vu;| < ¢, =8,G¢> 0 and — [,,8,G2 = 1 we get
¢ ¢ 20 <

|V He(2)] = |VH:(Q)| < E(Ezj for every ¢ € 6Q.

By the maximum principle this yields the desired estimate for m+n = 1. If h is harmonic in B? then
1
[Vh(z)] < —sup|h|.
P aB?
Application of this estimate to h = VH¢ on B? C B2? C Q proves the lemma for m+n = 2. Similarly
we estimate higher order derivatives. m]

Next we analyze the dynamics within a vortex cluster normalized with respect to the center of vorticity.

THEOREM 15 (Microscopic vortex dynamics) Under the assumptions of Theorem 13 and d(2) >
p > 0 we have

(zp—2) = Z wp/JVFz,(zp)—}-O(d( )2) as p—=0
p'EC, p'é#p .

foreverype C.

Proof. By (6), Theorem 13 and Lemma 14 we have

(2p —2) = Z wqd (Vqu(zp) -VG,,(2) + Z wpr JV Gy, (2p)
qg C p'eC,p'#p

———JVt(z,,)+ JVt(z)+0< 2)

d(z)?
= Z wpr JVF;, (2p)

p'EC,p'#p
) e C-Z,;'#pwp’JVFz () +0 <d( )2>

Also this formula is second order accurate because the leading term is of order O (1/p).
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10.1 Stability of vortex pairs

In this section we prove long time existence for vortex pairs. They do not collide with each other nor
with the boundary and they stay close together if they are close initially. In particular there is no
recombination of vortex pairs of opposite strength. If further vortices are present the same holds as
long as no other collisions occur (see also Corollary 20).

Example 16 As an illustration consider the motion of two equally oriented vortices in the half-space
Q={zeR?:y> O}. The Hamiltonian is translation invariant in the z-direction, i.e.

o= En(av(2)m+(2))

Thus the linear momentum wyy; + weys is conserved:

= (s, + O,) E.

z=0

(wiys +wayr) = —05,E—0,,E = 0.
This is Noether’s theorem. Since wiwg > 0 the coordinates y; and y; cannot go to zero simultaneously.

THEOREM 17 The motion of two vortices in a domain satisfying the uniform exterior ball condition
ezists for all time. In particular they do not collide in finite time. In all cases |z1(7) — z2(7)| <
D |z1(0) — 22(0)| with a constant D depending only on Q.

1. If wiws < 0 then the motion stays away from the boundary of the phase space
{(21,2’2) CAXQ:xn# 2’2}

by a uniform distance.

2. If wyws > 0 and one of the vortices tends to the boundary then so does the other and

lo1 — 22| < Cd(z)**,

Ae~ BT (always),
() > .
(A+ Br)7% (w1 # wa) :
where
a = ————(wl —w2)2 > 0.
21wy -

for p=1, 2 and 7 > 0 with positive constants A, B, C.

8. Also in the presence of further vortices two vortices do not collide with each other nor with the
boundary as long as no other collisions occur simultaneously.

Proof. If wiws < 0 then each term in
1 1
E(21,22) = wiwaG, (22) — §w'ft (z1) — -2-w§t(z2)

is bounded above. By conservation of E they are also bounded below. From the asymptotics for the
Robin function at the boundary (Proposition 8) we get a lower bound d(z,) > § > 0. On the remaining
set boundedness of G, (z2) leads to a uniform lower bound for |z; — 22|. Energy conservation also
implies that

—loglzi(r) —z2(r)| = —log|1(0) — 22(0)| + f(r)

with a bounded function f whose bounds only depend on €.
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For equally oriented vortices energy conservation does not lead to a uniform distance from the
boundary of the phase space. However, we already know that the vortices do not collide in the
interior and that none of them tends to the boundary alone. Thus we can restrict our attention
to the case that they tend to the boundary simultaneously. We invoke Theorem 13 and adopt the
notation introduced thereby. Note that the total vorticity is nonzero. By energy conservation and the
Propositions 7 and 8 we have

B
wiws

0 (25) — 2140 (7,) — 240 -
(21) Gzl(ZZ) 2w2t (1) 2w1t (z22) 2 c.

Comparison with the Dirichlet Green’s function of the complement of a disk (Bf)® D Q yields

p (21 — z2)

p* = (22— (21 -0
Choosing ¢ such that |z2 — (| = d(z2) + p we can estimate

—l—lo
2 g

Z G21 (22).

[P~ (=0 @ =0 < =t =+l -0 G -)
< c(d(z) + |z — z2).

By Proposition 8 exponentiation of the energy inequality (21) yields

|21 — 23] _an g o g
_— 2 < CeT vz d(z1)%%2 d(29) 21
)t -l = (21)72 d(z2)

for p = 2. By symmetry also for p = 1. In particular

|21 — 22|
—= — 0 as 2z; or zy - 9%
d(zp)
and so
|21 — 22| —3r 21 w2
—= < (e w1w27d (z1)%2 d(z)%%2.
o (1) 5 d(z)

By the exterior ball condition also z € 2, d(z) — 0 and we can replace d(zp) by‘d(z) up to lower order
terms. This yields

(22) |21 — 22| < Cd(2)*** as 2z or z— 0Q

because 2—“‘"} + 5"(’-}; + 1 = 2+ a. For convex domains the same estimate extends to all of Q x 2.

According to Theorem 13 the center of vorticity moves with speed

. W |z1—22|2

which is orthogonal to V¢(z) up to an error which by (22) is of order O(d(z)'*2%). Therefore
O:t(z(1)) = Vi(z(r))-2(r) < Cd(2)**

by Lemma, 14. Proposition 8 together with elementary comparison arguments for ordinary differential
equations leads to the lower bound for d(z). O

Thus a pair of equally oriented vortices approaching the boundary rotates rapidly around their common
center of vorticity and slides along one of the boundary components at exponentially increasing speed.
Simple examples or inspection of the proof show that these estimates are sharp. The constants C and
B only depend on 2, w1, wa, and the energy level. The constant A also depends on the initial position
of the vortices. The third statement will be sharpened in Section 10.2.
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10.2 Local stability of vortex clusters

The dynamics in vortex cluster is essentially independent of the rest of the world”. In fact we show
that the energy exchange rate between the cluster and the other vortices is bounded whatever happens
outside the cluster. We introduce the cluster energy

1
Ec(z1,...,2p) = }: Ewpquzq (2p) — 3 Z wgt(zp).
PEC P PEC

Regarding E as a quadratic form in (wy,...,wp) the cluster energy consists of those terms for which
at least one of the vortices is in the cluster. In particular

(23) V:yBe = Vg, E forevery pe C.
THEOREM 18 If 9 is smooth and satisfies the assumptions of Section 2 and R > 0 then

< 0 <

l-(—id;Ec(zl,...,ZP)
as long as |zp — 24| > R for everype C, ¢ ¢ C.

Proof. By the equations of motion and (23) we have

gy = > Vi Ec i+ Y Vi Ec i

dr peC € C
= Y V,E- —l—JVsz
pEC “p

q¢ C \peC q9'#q

= D3> wpwgwe VG, (zg) - JVG: ,(7g)

pECQEC g'#q

1 .
-3 Z Z wpwZV G, (2g) JV(2g).
pECQEC

+ Z (Z wpquGzp(zq)) . (Z wprJVG; ,(2g) — %quVt(zq))

For the first term one immediately gets a uniform bound if ¢’ € C. The remaining terms can be
rearranged as

S Y wwe (V6 (2)  TVGs,(5) + VGay(zg) - VG, (21))
P€C q,9'¢C, 9<¢'

which is bounded by the first inequality in Lemma 19 below. Similarly, the boundedness of the last
term follows from the second estimate in Lemma 19. 0

LEMMA 19 Suppose 8% is smooth. Given p > 0 there is a constant C < oo such that

IVGa(z) - IVGe(2) + VGal(C) - IVG,(C)] < C,
IVGal(2) - IVH(2) + VGa(C) - IVH,(C)] < C

for everya e Q,z,{ € Q\ BL.

Proof. The function VG, is Lipschitz outside Bf with a Lipschitz constant independent of a. Since
VF(z) + VF;(¢) = 0 the difference between the two quantities to be estimated is

(VGa(2) - VGa(Q) - IV E(2)
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which is bounded by uniform Lipschitz continuity of VG, outside B%. Thus we only need to prove
one of the estimates, say the first one, which we write as

(JVGa(2) - Vs + JVGa(C) - V() G:(0)] < C.

For simplicity we only consider simply connected domains. In this case the vector field
1 JVG(2)
24 z ——
( ) g( ) I IVGG(Z)IZ

generates a one-parameter group of conformal automorphisms (¢°), er Of © having a as a common
fixed point. If Q@ = B} and @ = 0 it consists of the rotations

¢"(z) = e-i"Z with 6(2) = as¢8(z)l.;=0 = Ja

These special automorphisms can be transplanted to an arbitrary simply connected domain by means
of a conformal change of variables. The relation (24) is conformally equivariant. Now we decompose

(JVGa(2) Vi + IVG(C) - V) G4 (C)
‘zl; (IVGa()* + IVGa(O) (€(2) - V2 +£(0) - V) Ga(0)

1
~1= (VG - IVGalO)*) (€() - V= = £(0) - V) G=(0).
The first term vanishes because G,(() is conformally invariant and

0:Gpe()(#° (Dlszo = (€(2)- V2 +£(Q) - V) Go()-
We now show that the second term is bounded independently of a. By Lipschitz continuity of VGy,

VG = IVG(Q)F| < Clz=¢l.

The generating vector field £ is bounded since €2 is bounded. Finally

C
VG ()] £ ——.
This is obvious except when the arguments are close to each other and close to the boundary. Since
09 is smooth this case can be reduced to the following standard situation via a conformal change of
variables with locally bounded first and second derivatives. We assume that {2 is the upper half plane

and { = 0. Then

i

2 |VG.(] < 2n|VE:({) - VF(()

COROLLARY 20 (Collisions within a cluster) Under the assumptions of Theorem 13 the term
Z wpwp log |z, — zp1|
p.p'€C, p#p’
is locally bounded in time as long as d(z,) > do > 0 for every p € C. In particular a cluster of equally
oriented vortices never collapses.

Proof. The above expression is the only part of Ec which may become infinite. 0O

COROLLARY 21 Two vortices z1, zo can not collide as long as |z, — zq| > R forp = 1,2 and
g¢{1,2}

Proof. The proof of Theorem 17 was based on conservation of energy for the two vortex system. In
the presence of additional vortices E is replaced by E¢. The claim follows from Theorem 18. O

The evolution of a continuous vorticity distribution can be approximated by the evolution of vortex
clusters. This fact has been used by Christiansen [6] for numerical calculations in Q = RZ.
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11 Numerical approximation of point vortex dynamics

11.1 Solution of Liouville’s equation

On a simply connected domain the orbits of a single vortex center are easily obtained by solving
Liouville’s equation (Corollary 10 and 12). In order to avoid infinite boundary data we replace Q by

Qp = {ze€:d(z)>h}.

On this domain we solve Liouville’s equation with boundary values according to Corollary 12

2 .
At = =e'™ in Qp,
T

1
t = ——2;log(2h) on 0Q.

This can be done by Newton’s method. The approximation ¢(*+1) is computed from the preceding
one by solving the boundary value problem

(A48 ) (1040 i) = A Zpm® g,
1
tH) = —5—log(2h) on Q.

By convexity of the nonlinearity an initial supersolution leads to a pointwise decreasing sequence of
supersolutions. Details are given in [3, Section 3.3]. The level sets of ¢ are the desired trajectories

(Figure 3).

_ e »

Figure 3: Orbits of a single vortex in simply connected domains computed by Newton’s method [8].

11.2 Boundary element method

For multiply connected domains and multiple vortices we use a variant of the boundary element
method. This approach is based on harmonicity of the regular part H, of the hydrodynamic Green’s
function whose value and gradient is needed at P2 points. We use the single layer representation [3]:

H.((), CeqQ,
/ QZFC = _
oq HZ(C), ¢egr

with the harmonic function H{ defined by this relation. The density g, represents the jump of the
normal derivative

q: = aqu"‘auH;
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while H, = HS on 8Q. If |, aq 92 = 0 then HY is regular at infinity. This can be seen as follows. Let
h be the regular harmonic extension of H,|yq to Q°U {oo}. Then g := H¢ — h is harmonic in Q°,
vanishes at the boundary and lim¢—,o0g(¢) exists in JR. Thus g = AGo must be a constant multiple
of the Dirichlet Green’s function on ¢ with singularity —Fy at infinity. This implies A = 0 because

0 = / ¢ = / OH, — [ 0,(\Geo+h) = —A
a0 a0 To
where I'y denotes the exterior boundary component. In particular
/ & = | GH.-0,H) = [ 8.H,
Ty T T

for every k. Using the decomposition G, = F, — H, and V F¢(2) = —V,F(z) the definition of the
hydrodynamic Green’s function (Definition 1) translates into the subsequent scheme.

1. Discretize the boundary Q. On every boundary component choose an arbitrary point (; € I'x.
Fix a time step dr.

2. Suppose we know the position of the vortex centers at time 7. For 2 = z;,..., zp solve
(25) /a o 05, Fc = On)F:(C) (€ €89),
/ qz = aqu'_’Yk (k-_—'].,,K),
Ty | Y

1l

q ¥, F,
/an D wE,

for q, : Q2 — IR. By Proposition 7 this system has a unique solution. Then evaluate

tz) = j 0. F,
an
Vi(z) = -2 / ¢V F,. .
an

Z'YkF(k (2)
k

3. For( =2z21,...,2p—1, Zp41, - - ., Zp €valuate
3 y “p—1y “p+1, 1

G.(0) = FE(0)- /quFg,

VG.(O) = VE(O)+ /a _wVE.

4. Compute 2, according to the equation of motion (6) and use any standard method for ordinary
differential equations to update the vortex positions. In the case of a single vortex we only need
to follow a level line of the hydrodynamic Robin function. Since we know its gradient this can
be done at a uniform accuracy of order O (drz).

Note that (25) has some similarities with the Fredholm integral equation of the second kind used for
the classical double layer representation. In particular the kernel changes sign at the singularity. Thus
it would be interesting to know whether the condition number of (25) also remains bounded as the

mesh size tends to 0.
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