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ON EXACT QUADRATURE FORMULAS
FOR HARMONIC FUNCTIONS ON POLYHEDRA

BJÖRN GUSTAFSSON AND MIHAI PUTINAR

(Communicated by David R. Larson)

Abstract. A classical quadrature result for analytic functions of a complex
variable due to Motzkin and Schoenberg is extended to higher dimensions.
A general scheme for integrating on polyhedra solutions of partial differential
equations is discussed.

1. Introduction

A formula due to Motzkin-Schoenberg and later refined by Davis [1] asserts that
the area integral on a triangle of the second derivative of an analytic function is a
linear combination of its values at the vertices of the triangle. This fact was recently
used in inverting the shape of a planar polygon from a finite sequence of its moments
(see [2] and [3]). This note collects a few simple remarks which represent possible
generalizations of the Motzkin-Schoenberg-Davis formula in higher dimensions.

The basis of all these formulas is of course Stokes’ theorem. Our main result
states that the integral of any three derivatives of a harmonic function on a polyhe-
dron in Rn can be evaluated, with the loss of two derivatives, on the codimension-2
skeleton. This phenomenon is actually more general, and it persists for solutions of
homogeneous partial differential operators of order two, for instance as long as the
faces of the polyhedron are not characteristic. A better situation, when iterated
integration is possible and the result can be pushed down to the 0-th skeleton, is in
the case of pluriharmonic functions in Cn integated on cartesian products of planar
polyhedra.

A variety of other remarkable quadrature formulas for harmonic functions inte-
grated on polyhedra are known. However, in general the support of the representing
measure is not contained in any level of the skeleton of the polyhedron (see [4] and
[7]).

Notation. Below we denote by Pn a bounded open polyhedron in Rn, n ≥ 2, by
Pk its k-dimensional skeleton, and by dxk the k-dimensional linear measure on Pk
induced from the (oriented) volume n-measure in Rn, 0 ≤ k ≤ n. The partial
derivatives will be denoted as ∂j = ∂

∂xj
, 1 ≤ j ≤ n. The dual L∗ of a differential

operator L is always considered with respect to the bilinear pairing between smooth
functions of compact support and distributions.
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2. Main results

To start with, we present a general formula for harmonic functions of n variables.

Theorem 1. Let Pn be a bounded polyhedron in Rn and let L3 be a third order
homogeneous partial differential operator with constant coefficients.

Then for each codimension-2 face Pn−2
i of Pn, i ∈ I, there exists a linear, first

order, homogeneous differential operator with constant coefficients L1
i, such that:∫

Pn

L3(u)dxn =
∑
i∈I

∫
Pn−2

i

L1
i(u)dxn−2(1)

for every harmonic function u defined in a neighbourhood of Pn.

Note that, since in case n = 2 an analytic function is the gradient of a harmonic
function, the above formula is equivalent (at least for simply connected polygons)
to the Motzkin-Schoenberg-Davis formula; see [1] and [2].

A simple example shows that Theorem 1 is not valid for the skeleton of codi-
mension 3. Indeed, take the standard simplex in R3:

P3 = {(x, y, z);x+ y + z ≤ 1, x ≥ 0, y ≥ 0, z ≥ 0}

and the harmonic function u(x, y, z) = xyz. Then the gradient of u vanishes on all
vertices of P3, but ∫

P3

∂3u(x, y, z)
∂x∂y∂z

dxdydz 6= 0.

Formula (1) can be improved at least in two ways: by adapting the differential
equation satisfied by u to the polyhedron Pn, or by using direct products of polygons
and a more restrictive class of functions.

In the first case, we state the following result.

Theorem 2. Let Pn be a bounded polyhedron in Rn, let Lm be an m-th order
homogeneous partial differential operator with constant coefficients and let u be a
smooth function defined in a neighbourhood of Pn.

Assume that for each face F of Pn at least one of the following two conditions
is satisfied:

(i) F is characteristic for Lm;
(ii) u satisfies in a neighbourhood of F an equation Qm−1(u) = 0, and F is non-

characteristic for Qm−1, a homogeneous linear partial differential operator with
constant coefficients of order m− 1, which may depend on the face F .

Then for each codimension-2 face Pn−2
i of Pn, i ∈ I, there exists a homogeneous

partial differential operator Lm−2
i, of order m− 2, with constant coefficients, such

that: ∫
Pn

Lm(u)dxn =
∑
i∈I

∫
Pn−2

i

Lm−2
i(u)dxn−2.

The Lm−2
i depend only on Pn, Lm and the Qm−1.

For instance the Laplacian in Theorem 1 can be replaced by the wave operator,
as long as Pn is in general position with respect to the characteristic cone. A related
general observation, well known for the wave equation, is contained in the following
direct consequence of Stokes’ theorem.
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Let u be a smooth function defined in a neighbourhood of the unit cube Cn =
{x ∈ Rn; 0 ≤ xj ≤ 1, 1 ≤ j ≤ n} and let C0 = {vk; 1 ≤ k ≤ 2n} be its vertices.
Then: ∫

Cn

∂1∂2 . . . ∂n(u) =
2n∑
k=1

εku(vk),(2)

where εk = ±1, 1 ≤ k ≤ 2n.
Denoting by χF the characteristic function of a set F , the above result can

equivalently be written in the sense of distributions:

(−1)n∂1∂2 . . . ∂nχCn =
∑
k

εkδvk .

More generally, returning to an arbitrary polyhedron, we can restate Theorem 1
(with ∆ replaced by a general second order operator Q2) as follows.

Proposition 3. Let L3, Q2 be linear partial differential operators with constant
coefficients of order 3, respectively 2. Then, for solutions u of the equation Q2(u) =
0 in a neighbourhood of Pn, the integral

∫
Pn
L3(u)dxn can be pushed down to the

(n − 2)-skeleton Pn−2 of Pn if and only if there are distributions σ, τ ∈ E ′(Rn)
satisfying:

L3
∗χPn = σ +Q2

∗τ,(3)

with
supp(σ) ⊂ Pn−2, supp(τ) ⊂ Pn.

Moreover, the structure of the distribution τ above turns out to be simple. More
specifically, if Fi, i ∈ I, are the codimension-1 faces of Pn, then, up to functions in
the kernel of Q∗2, τ =

∑
i∈I aiδFi , with some constants ai.

Indeed, assuming that the face Fi is given by the equation xn = 0 we infer that
in a neighbourhood of Fi:

L3
∗χPn(x) = C∂3

nH(xn) = Cδ′′(xn)

for some constant C, and where H is the Heaviside function and δ the Dirac mea-
sure. Thus, locally on the face Fi, we have τ(x) = cδ(xn), with c a constant.

The next result is somewhat analogous to example (2), but with the ordinary
cube in Rn replaced by a “polycube” (or rather “poly-polygon”) in Cn. We denote
z = (z1, . . . , zn) ∈ Cn, and zj = xj +

√
(−1)yj , 1 ≤ j ≤ n.

Theorem 4. Let P2n ⊂ Cn be a product of polygons in C, and let Ln = ∂/∂z1 . . .
∂/∂zn. Then there exist constants γv ∈ C, where v ∈ P0, so that for every analytic
function f defined in a neighbourhood of P2n:∫

P2n

Ln
2(f)dx2n =

∑
v∈P0

γvf(v).(4)

The real valued version of Theorem 4 reads then as follows.

Corollary 5. In the conditions of Theorem 4, let L3
j be homogeneous, constant

coefficients, partial differential operators of order three in xj , yj , 1 ≤ j ≤ n. Then
there are vectors γv with 2n components such that for every pluriharmonic function
defined in a neighbourhood of P2n:∫

P2n

L3
1L3

2 . . . L3
n(u)dx2n =

∑
v∈P0

γv · ∇(x1,y1)∇(x2,y2) . . .∇(xn,yn)(u)|v.
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Pluriharmonic functions in Cn are functions which are harmonic when restricted
to any complex linear subspace. They arise as real parts of complex analytic func-
tions (see [5] and the references cited there for details).

3. Proofs

Proof of Theorem 1. Although Theorem 1 is a consequence of Theorem 2, we in-
clude below a separate simple proof for better illustrating the main idea.

We shall first push the integral in the left member of (1) out to ∂Pn and then
further push the contribution from any given (n−1)-face F ⊂ ∂Pn to ∂F . We may
assume that the face F is contained in the hyperplane xn = 0. The operator L3 is a
sum of monomials, so we can assume that L3 = ∂i∂j∂k, with i, j, k ∈ {1, 2, . . . , n},
not necessarily distinct.

By using Stokes’ theorem we are led to evaluate, up to a sign:∫
∂Pn

∂i∂j(u)dx1 ∧ . . . ∧ ˆdxk ∧ . . . ∧ dxn.

The contribution from the face F vanishes if k 6= n (because dxn = 0 along F ) and
equals ∫

F

∂i∂j(u)dx1 ∧ . . . ∧ dxn−1

if k = n.
In the case i = j = n we can use Laplace’s equation and write:

∂n
2(u) = −

n−1∑
k=1

∂k
2(u).

Therefore, we can assume that at least one of the indices i, j, say j, is different from
n. Consequently, by Stokes’ theorem again, the integral over F reduces to (up to a
sign): ∫

∂F

∂i(u)dx1 ∧ . . . ∧ ˆdxj ∧ . . . ∧ dxn−1,

and this proves Theorem 1.

Proof of Theorem 2. We have, for arbitrary smooth functions u,

Lm(u)dx1 ∧ . . . ∧ dxn = dω,

where

ω =
n∑
k=1

Lm−1
k(u)dx1 ∧ . . . ∧ ˆdxk ∧ . . . ∧ dxn,

for suitable (m− 1)-th order operators Lm−1
k satisfying:

n∑
k=1

(−1)k−1Lm−1
k(∂ku) = Lm(u).(5)

Hence ∫
Pn

Lm(u)dxn =
∫
∂Pn

ω.

Consider a face F ⊂ ∂Pn. We may assume that it is given by the equation xn = 0.
Then ∫

F

ω =
∫
F

Lm−1
n(u)dx1 ∧ . . . ∧ dxn−1.(6)
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Case 1. Assume that F is characteristic for Lm. This means that Lm(u) does
not contain the derivative ∂mn u. By relation (5), Lm−1

n(u) then does not contain
∂m−1
n u. Thus every term of Lmn contains a derivative ∂j with j 6= n. Hence the

integrand in (6) is exact and the integral can be pushed to ∂F (with no assumption
on u).

Case 2. Assume that Qm−1(u) = 0 and F is non-characteristic for Qm−1. The
latter means that Qm−1(u) contains ∂m−1

n u. Thus, if ∂m−1
n u occurs in Lm−1

n(u),
then it can be removed, and we can continue as in case 1.

This finishes the proof of Theorem 2.

Proof of Proposition 3. If formula (3) holds, then for u satisfying Q2(u) = 0 in a
neighbourhood of Pn we have:

〈χPn , L3u〉 = 〈L3
∗χPn , u〉 = 〈σ, u〉+ 〈Q2

∗τ, u〉
= 〈σ, u〉+ 〈τ,Q2u〉 = 〈σ, u〉,

i.e., the integral of L3u over Pn is pushed to the (n− 2)-skeleton.
Conversely, suppose that

〈χPn , L3u〉 = 〈σ, u〉,
for all u satisfying Q2(u) = 0 in a neighbourhood of Pn, with supp(σ) ⊂ Pn−2.
Then the linear map

Q2(u) −→ 〈χPn , L3u〉 − 〈σ, u〉
is well defined and continuous in the topology of E(Rn). So, by Hahn-Banach
Theorem, there exists a distribution τ with supp(τ) ⊂ Pn, satisfying

〈τ,Q2(u)〉 = 〈χPn , L3(u)〉 − 〈σ, u〉,
or

〈Q2
∗τ, u〉 = 〈L3

∗χPn , u〉 − 〈σ, u〉,
for all smooth functions u defined in a neighbourhood of Pn.

Proof of Theorem 4. Let P2n = ∆1 × . . . × ∆n be a product of planar polygons,
and let f(z1, z2, . . . , zn) be an analytic function in a neighbourhood of P2n. Fix
the variables zj = aj ∈ ∆j , 2 ≤ j ≤ n. Then the function g(z1) = f(z1, a2, . . . , an)
is analytic in a neighbourhood of ∆1. By the Motzkin-Schoenberg-Davis theorem
there are constants cv ∈ C, depending only on ∆1 and labelled by the vertices v of
∆1, so that: ∫

∆1

∂2(g)
∂z1

2
dz1 ∧ dz1 =

∑
v∈(∆1)0

cvg(v).

An iterated integration then finishes the proof. The proof of Corollary 5 is
entirely similar.
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