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Isoperimetric inequalities are applied to a moving-boundary problem for doubly-
connected domains. This problem occurs for example in electrochemistry, in
which case the domains in question are the electrolyte of an electrolytic cell. The
two electrodes surrounding the electrolyte are assumed to grow or dissolve, at
different rates in general, by electrochemical reaction. We obtain optimal
estimates showing, for example, that the least change in volume of each electrode
always occurs in spherical symmetry.

1. Introduction
(a) The Mathematical Problem

WE consIDER domains @ in RY (N =2) of the kind @ = w,\@,, where w; (j =0, 1)
are bounded open sets with y;= dw; smooth (say of class C?) and satisfying
@, < wy. For such domains w the problem

O on YO)
1 on vy,

Au=0 in w, u={ (1.1)

has a unique solution u = u,, € C'(@). :

Let (ap, @) € R%, (aq, a1)# (0, 0). This paper is concerned with the following
moving-boundary problem for domains w(¢) of the above kind. Given w(0) find
w(¢) for ¢ in some time-interval [0, #;) such that

y;(t) moves with the velocity a;Vu(z) (=01 (1.2)

(we write u(t) instead of u,, for simplicity).

This problem has been considered by, for example, C. M. Elliott (1980) for
o= ~1, a;=0 and B. Gustafsson (1987) for oy = @&; = —1. In (Elliott, 1980)
existence and uniqueness of weak (variational inequality) solutions, global in
time, are proved. The method actually works whenever o <0, o; =0 or a, =0,
a; > 0. In (Gustafsson, 1987) existence for small time of weak solutions is proved
under the assumption that dw(0) is analytic (this assumption is necessary because
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the problem is ill-posed if a;<0 (or &y>0)). The method of proof works
whenever a, and &, have the same sign.

Here our aim is complementary: we use isoperimetric inequalities to compare a
general solution w(f) with a corresponding ‘symmetrized’ solution £(r). We
thereby obtain optimal estimates for the ‘stopping time’ (if any) for w(¢) and we
show that the variation of the measures m;(f) =|w;(t)| are slowest for the
symmetrized solution (for certain choices of a;), etc.

This paper develops and generalizes a previous note (Mossino, 1985). Some
more results of the same kind are found in (Mossino, 1986). (Sections 1 to 3 of
the present paper comprise essentially a revised and shortened version of
(Mossino, 1986).)

(b) Physical Applications

There are several conceivable physical interpretations of our problem. The first
comes from electrochemistry (‘electrochemical machining’) (see, for example, (de
Barr & Oliver, 1967; Elliott, 1980; FitzGerald & McGeough, 1969, 1970;
FitzGerald et al., 1969)). Then N =2 or 3 and the configuration w,, w,; represents
the cross-section of an electrolytic machine: the electrolyte occupies the domain
w(f) while y;(t) are the boundaries of the electrodes. The electric potential is
equal to some real constant times u(t) and the electric current is proportional to
Vu(r).

The physically most interesting case is that of a melting anode and a growing or
unchanging cathode. If for example yo(f) represents the anode surface and y,(¢)
the cathode surface then we have ay <0, a; <0, the values of &; depending on
the particular kinds of materials involved and on the constant of proportionality
relating u(¢) to the electric potential. The case in which &, = a; <0 corresponds
to a simple mass transfer between the electrodes, which occurs for example if the
electrodes are made of copper and the electrolyte is a solution of copper sulphate.
The case in which @, <0, a; =0 occurs in industrial processes called anodic
smoothing, anodic shaping etc. See (de Barr & Oliver, 1967; Elliott, 1980;
FitzGerald & McGeough, 1969, 1970; FitzGerald et al. 1969).

A second application (pointed out by J. Ockendon) concerns the flow of a
viscous incompressible fluid in the narrow region between two slightly separated
parallel surfaces, the so-called Hele Shaw flow (see, for example, (Elliott &
Ockendon, 1982; Richardson, 1972)). Then N =2 and w(¢) represents the region
occupied at time ¢ by the viscous fluid in question while w(¢) is a bubble of some
fluid of negligible viscosity, for example, air, and R*\w(¢) is a vacuum or possibly
air at a different pressure. In this application &= a;.

There is a related application, valid for N = 2 or 3 (with & = a;) in which R" is
a porous medium with @(f) occupied (and saturated) by some incompressible
viscous fluid. As in the Hele Shaw model w,(¢) is a bubble of, for example, air
and R™\w,(¢) is a vacuum or possibly air at a different pressure. See (Di Benedetto
& Friedman, 1986; Howison, 1986) in which the limiting case with wq(f) = R"
(‘exterior problem’) is treated.
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There may also be other interpretations of our problem, for example (as
pointed out by M. E. Gurtin) as a degenerate Stefan problem with three phases.

2. The starting (in)-equations; preliminaries

We shall consider ‘classical’ solutions w(f) on some interval [0,%) of the
problem described in Section 1. Thus w(f) = we(t)\w,(t), where w;(t) are
bounded open sets in R” satisfying @,(f) = wo(t) and with v,(f) = dw;(f) smooth.
Setting m;(t) = |w;(t)| = meas w;(t) we have

0< ml(t)v‘v< mo(t) (2.1)

for all te[0,f). As to the concept of classical solution we only need that
m; € C'[0, t5) and (2.3), (2.4) below hold. Thus one can simply take the equations
(2.3), (2.4) (with ¢ defined by (2.2)) as the starting point and there is no need to
give here a more detailed description of the solution concept.

With v the outward normal of w on dw we define

du Ju
c(t) = VulPdx=—-| —()dy= f — () dy, (2.2)
() () yott) OV 1@ OV

to be the capacity of w(t). Then the moving-boundary condition (1.2) yields

dmg J’ du
— = — d = — [’ 2.3
=) 5, 0dr=—ac 23)
dm, J du
— — —(t)dy=— 1. 2.4
i) 5,0d =6 2.4

In particular dm;/dt always has opposite sign to a; since c(¢) > 0.
If oy, oy #0, then (2.3), (2.4) give

1dm, 1dm,
ay dt - o, dt - C(_t)' @3)
Set ‘
0 0
=m0 _m0) 2.6)
&o (¢4}
Then, integrating (2.5), ,
t t
ﬁ=mo( ) mi(t) @.7)
%o oy

for all t€ [0, ty). In the particular case in which ay = o,

. m(t) = (0] = mo(t) = m(1)
remains constant.
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Now using rearrangement techniques as in (Bandle, 1980; Mossino, 1984;
Talenti, 1976) we get

N?pRY < c(O)[ @(mo(1)) — P(mi(1))], (2.8)
where py is the measure of the unit ball in R" and
D' (x) =x2, (2.9)

Equation (2.8) is our fundamental inequality and most results in this paper are (in
principle) elementary consequences of (2.3), (2.4), and (2.8).
When ay, o #0 equations (2.3), (2.4), (2.8) give

szz/N< 2 <15(m1(t)) % — = q;(mo( )) Q_f_n_o (2.10)

and, by integration,

T=1

N < [ Wom(0) = wlma(e) |

0

= 2V Om) = wa(®) = (3 W omO) ~ - vmeO)), - @11
where
Y'= . (2.12)
If one of «; is zero, say a; =0, ap# 0, then
m(t) = constant = m,(0) (2.13)

(replacing (2.7)). In place of (2.10) we have (using (2.3))

sz”~<1 (@0 () - D(mo(0)] 7 2.14)

and integration now gives

W= L [@mO)ma(e) ~ w1

- ;1(; (@(m1(0))mo(t) — Y(mo(t))) — —5; (@(m1(0))me(0) — w(me(0))).  (2.15)

Similarly, if aq =0, a; #0 then my(t) = constant = m(0),

szzwg it [@(ml([)) — @(my(0))] %

-

N2 Z’Nr<—1—[ (a2 = ma O ()

= ;—1 (Y (my(6)) = D(mo(0))m, (1)) - ;1 (Y (m1(0)) — D(mo(0))m,(0)).
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In order to interpret our inequalities we shall consider a ‘symmetrized’ version
of our problem, in which w(¢) is replaced by Q(¢) = Q,(£)\2,(¢), where £;(¢) are
the balls of appropriate radius in R”, centred at the origin and determined by the
initial condition

M(©0)=m(0)  (G=0,1) (2.16)

(where M;(t) =|Q;(¢)|) together with the condition that the boundaries Ij(r) =
3Q,(¢) move with velocities o;VU(¢) (j =0, 1), where

AU@)=0 in Q(r),

[0 on Ii(),
v = {1 on I3(¢).

It is obvious that local (small time) solutions of this form exist and that they are
uniquely determined by the previous conditions. In fact, (2.7) together with
(2.11)' (if &; #0) below are implicit formulae determining My(¢), M,(¢) and hence
Q(t). The solution Q(¢) exists in some time interval [0, T'), where either T = +o
or T is finite and determined by the breakdown of one of the inequalities in
0 < My(£) < My(t) <o

One should notice that £(¢) is not the ‘symmetrized” domain of w(¢), at any
time; that is, M;(t) = m;(¢t) is false for ¢ #0. However, for simplicity we shall call
Q(t) the ‘symmetrized solution’ instead of ‘the solution of the symmetrized
problem’. We shall use capital letters for quantities related to the symmetrized
problem while the corresponding quantities for the original problem are denoted
by small letters. Our aim is to compare these two kinds of quantities (1m;(¢) with
M;(2), c(t) with C(2), etc).

For the symmetrized problem equality is achieved in (2.8) (see (Mossino,
1984)). Thus

NP3 = COLPM(0) — D) .8
and, if oy, o #0,
N2 = D0 (0) gt~ 2= M) G, (2.10)
N3 = - v (0) | e.1y
If @, =0, ap#0 then
NP = [P(M(0) — P04 5" @14y

N = ai [ DM, (0)Mo(7) — 9 (Mo T4 @.15)
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and, if ¢y =0, ay#0,

N3 = [@(M(0)) ~ PO

z[

N?pNt = — [y(My(7)) — D(Mo(0))M, ()76

1
491

Explicitly the functions @ and y can be chosen to be

Log x if N=2,
PU)=Y__N__em1 yn> 2, (2.17)
N-2
x(Logx —1) if N=2,
—_ 2
VE=) N v ey, (2.18)
2(N-2)
For later use we set
& = CVQ/CYl (lf ¢ 4] #:O). (2.19)

3. Main results

Let w(t) be an arbitrary (classical) solution defined on [0, fy) and let Q(¢) be
the corresponding symmetrized solution satisfying (2.16). We shall estimate
stopping times for w(¢) (that is, give upper bounds for ¢,), compare m;(t) with
M;(t), c(¢) with C(¢r) and dm;/df with dM;/dt.

(a) Stopping Times, Comparison Between m;(t) and M;(t), etc.
By (2.1), (m(2), mo(t)) and (My(¢), My(t)) always move in the set
D = {(m;, mg) e R*:0 <m, <my}. (3.1
We first consider the case where a; # 0 (j =0, 1)‘ Define F:D—R by

Floms, mo) =N =203 () = 2= 9(omo) ~ 4), (.2)
where
A =zj—1w<ml<0)) —;1—0wm0(0>) (3.3)

and v is given by (2.18). Now (2.18) shows that F extends continuously to
D = {(mll mO) € RZZOS mi< mo}_

Observe that F also depends on (m,(0), m,(0)) but that changing (r1,(0), m(0))
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just affects F by an additive constant. (We always have F(m;(0), m(0))=0.)
Also recall (2.16).
In terms of F, equations (2.11) and (2.11)’ say that

t<F(my(1), mo(1)), 4 (3.4)
t=F(My(1), Mo(1)), (3.5)

for all =0 for which w(¢) and Q(f) (respectively) exist.
From (2.7) we see that (m,(t), mo(t)) actually moves along the straight line

m
{(ml, mo)e D : i’—j: ,8}. (3.6)

The same is true for (My(¢), My(t)) since (by (2.6)) the value of § only depends
on (m(0), mo(0)) = (Ms(0), Mo(0)). Moreover (my(1), mo(0)) and (My(0), M(1)
move in the same direction on [ (this direction being determined by the signs of
a;) and by (3.5) this is the direction in which F increases (strictly). It also follows
that F is monotone on 1. We shall call the direction on [ in which F increases (and
(my(£), mo(r)), (Mi(t), My(t)) move) the positive direction of I. Notice the
interpretation that (3.5) gives to F: for (my, my) located on I, after
(m1(0), my(0)), F(my, mo) simply tells at what time the symmetrized solution
reaches (m;, my).

An immediate consequence of F(M,(t), My(t)) <F (m 1(8), mo(t)) and the above
discussion is that for each t =0 (m,(t), my(t)) has always progressed further on /
than (M,(¢), My(?)) has. Therefore, for each j = (0, 1) and for # =0 such that both
w(t) and €(¢) exist,

sM;(t) if o;>0, (3.7
mf(t){ =M() if a;<0. (3.8)

It also follows that if (M,(¢), My(?)) reaches 3D or goes to infinity in a finite time
then, if the solution w(#) does not break down earlier for other reasons,
(m4(t), mo(2)) reaches 3D or goes to infinity in a shorter time. Actually, the latter
time is strictly shorter (if w(0) is not spherically symmetric) as the following
argument shows.

With © = F(m(t), mo(t)) =t we have (M,(7), My(7)) = (my(t), mo(t)) by (3.5)
and hence C(t)=<c(¢) by classical isoperimetric inequalities (Polya & Szegd,
1951). It follows from (2.3), (2.4) that

dM(7)
dr

< 1 dm;(¢) .

o (3.9)

Hence at any given point on I, (M,(t), My(r)) always moves more slowly than
(mi(), mo()). (Later we shall compare dM;(¢)/dt and dm;(¢)/dt.) Therefore the
time separation between the arrivals of (m,(f), m(t)) and M,(r), My(7)) at points
on I never decreases in the positive direction of /. From this the assertion above
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follows (since also we have strict inequality in, for example, (3.4) for ¢ >0 unless
w(0) is spherically symmetric).
By (3.5) the time needed for (M;(r), My(t)) to reach 3D or go to infinity is

T =supF. ) (3.10)
I

When T is finite it is the stopping time for the symmetrized solution (since this
solution exists as long as (M,(t), My(t)) € D). By the above discussion, if T <
and w(0) is not spherically symmetric the stopping time for the original solution
w(t) is strictly less than 7. (Generally w(f) breaks down before (m(t), my(t))
leaves D because of the development of singularities on dw(); y,(¢) (respectively
y,(¢)) will be unstable and tend to develop singularities if a,>0 (respectively
a;, <0). See also (Gustafsson, 1987).)
We now investigate the finiteness of 7. The equation for / can be written

mo = am; + aof3 (3.11)
(& = ay/ a1). From this we see that

(i) I is bounded if o <1,
(i) 7 is unbounded (in one direction) if o = 1.

Thus, if @ <1 we immediately obtain T < since F is continuous on I c D.
Moreover, it follows from (3.5) and the fact that dM,/d¢ has opposite sign to a;
that the supremum is attained on m; =0 if ;>0 and on the line m; =m, if
a1 < 0. This gives

F(0, &) if ;> 0,
T=
F(ﬁ@i,f_‘g/i) if o <0
l—a’'1—-uwo

(when o <1).

If =1 we have to distinguish between the cases in which ;>0 and «; <0.
When «; >0 (=0, 1), M;(¢) decreases with increasing ¢ and so it follows from
(3.5) that F attains its supremum on [ on 8D: Thus T < in this case. More
exactly we get ;

F(0, aop) it >0,
T=1p(oB B .
F(l—af’l—o) it f<0

(whena =1, o; >0).
When o =1 and ¢; <0 (j =0, 1), M;(t) increases with ¢ and (3.5) shows that F
increases in the unbounded direction of I. Using (3.10), (3.11) we see that

7 =N lim (- 9() ~ - p(ex -+ o)) - 4),
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The explicit expressions (2.18) for y(x) give

&1’1‘”(") —aiow(ax + aof)

1
—;—xLog(a-F%@)—,BLogx—ﬁLog(a+0{—0ﬁ>+ﬁ i N=2,
1 X
2 2IN 2/IN
ST |
2(N -2)o o x if N>2.

When o >1 (and a; <0) we see that

im (- 9() ~ - vlar + o)) =+

X oG

for all N=2. When o =1 (and o;<0), aof >0 (otherwise I would be empty)
and hence B <0. One then finds that

1 1 [+ ifN=2,
im (Z w(x)"E;"”(“H“"ﬁ)) _{0 ifN>2.

Thus, when o =1, a; <0,

{+°° ifa>1orN=2,
~ANp3N if a=1and N>2

(where A is given by (3.3)).

Suppose now that one of «; is zero, say a; =0, &, #0. In view of (2.15) F
should then be defined by

T =

-2 . —2/N

Foms, mo) = Fmo) = 22— [0(n,@)mo = p(m) = AL, (.12

where
A = &(my(0))m(0) — y(me(0)).

Then (3.4), (3.5) remain true, by (2.15), (2.15)".
The line I is now vertical and defined by (2.13), that is,

I={(my, mo) € D : m;=my(0)}.
The discussion after (3.6) remains the same, hence (3.7), (3.8) hold (j =0). As to
the stopping time T = sup, F, we have

if ay>0 (my(t) decreasing) while
N—2 —2/N
T= ~———£3’——{lim @ (m;(0))x — (x) —A] = +oo

1} xX—>0

if @y <0, as is seen from (2.17), (2.18).
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The case in which &, =0, a;#0 is treated similarly. With F defined by
N_ZPXIZ/N
@1
for A = ¢ (m,(0)) — DP(m(0))m,(0), and
I={(my, mg) € D : my=my(0)},
the stopping time T = sup; F becomes
_ {F (0, my(0)) if a;>0,
~ LF(mo(0), mo(0)) if oy <0;

F(my, mg) = F(m,) = [y (m1) — @(me(0))m; — A] (3.13)

this is finite in both cases.
We summarize in the following.

THEOREM 3.1. The solution S2(t) of the symmetrized problem exists for all time if
ap< o, <0 orif ay=0,<0 and N=2. In all other cases it has a finite stopping
time T, which is

T= F(O, mo(0) — g‘;’ m1(0)>

if >0, ap< oy mo(0)/m(0) (in this case T corresponds to M,(T) = 0);

T = F<w1m0(0) = aogmy(0) a;mg(0) — “oml(o))
& — @y ’ & — Gy

if ag>max {a;, a; me(0)/m(0)} (in this case T corresponds to M,(T) = M(T));
T = __AN—Zp;Z/N

if ag= <0, N>2 (in this case T corresponds to M,(T) =, My(T) = ).

Here, F is given by (3.2), (3.12), (3.13) and A by (3.3). When T <, also the
original problem has a finite stopping time, which is strictly less than T unless «(0)
is spherically symmetric. In all cases and for all t = 0 for which the original solution
exists we have

mO=M©) Fa=0,  m©=M) if g<0
(=0, 1).

Remark From the comparison results for m;(t) one immediately obtains com-
parison results for quantities such as g(t) = mq(t)/m,(¢t) and m(t) = my(t) — m,(¢).
In fact, the expressions m,/m, and m, - m, are monotone functions on every [ so
every order relation between (m;(r), my(t)) and (M(t), My(¢)) on I gives rise to
an order relation between ¢(¢) and Q(¢) and between m(¢) and M(1).

Consider for example the case when ay<a; <0, so that =1 and [ is
unbounded in its positive direction. Then o <q(¢)<Q(¢) and Q(t)| « if B <0,
a>q(t)= Q) and Q1) T« if >0 while q(t)=Q()=« if $=0. In all these
cases m(¢) and M(¢) are increasing and M(¢r) <m(¢).
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(b) Comparison Between c(t) and C(t), etc.

Next we want to compare c(¢) with C(¢) and dm;/dt with dM;/dt. From Polya &
Szegd (1951) we know that C(0) <c(0) with equality only if w(0) is spherically
symmetric. Therefore it is natural to ask whether

C@)=c(®) - (3.19)

for all t>0. Of course, (3.14) remains true in some short time-interval just by
continuity (c(¢) is continuous by (2.3), (2.4) and the smoothness assumption on
m;(t)). We shall prove that (3.14) holds in certain cases for all =0 (or for all
sufficiently large ¢) for which the original solution exists.

Whenever (3.14) holds we also have

dM(r) _dmy(r) .
LoE=LS i >0, (3.15)
am(e) _dmy(t)
PR if ;=<0 (3.16)

(=0, 1) by (2.3), (2.4). The inequalities (3.15), (3.16) can also be written as
IdM,-(t) < dm; (1)
dt dr |

Define
G(m,, my) = D(mg) — O(m;y)

on D. Then G is positive since @ is increasing by (2.9). From (2.8), (2.8)" we
have

COGMi(0), Mo(t)) < c(O)G (ma (1), mo(1)) 3.17)
for £ = 0. Suppose that we can prove that
G(My(2), Mo(1)) = G (my(2), mo(t)) (3.18)

for some ¢ = 0. Then (3.14) follows from (3.17) for that particular 7.
Now (3.18) holds if G decreases (in the non-strict sense) in the positive
direction of I between (M,(r), My(t)) and (m (¢}, my(2)), that is, if

d y
ar G(M, (1), My(7))<0 (3.19)

for t < 7 < F(m,(t), mo(t)). We shall prove that (3.19) holds for all v =t provided
it holds for 7 =1.
We have

d ) dM, dMm,
3z CA(T), M(7)) = @' (Mo(7)) == " (Mi(7)) =

= C(7)(ay My (7)®™M 72 — aeMy(7)*™M72)
My(7)*~ M _ My(7)>~@™

a a,

= C(v) o (My(2)My (1)) ) G20
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From (3.20) we see that (3.19) is always true if =0 and a; <0, and never true
if wp=0and a;=0.
In the remaining cases &oa; >0 and (3.19) holds if and only if

M, 2—(2/N) M 2—(2/N)
0(1:) _ I(T) go (321)

Fo 241
By (2.5) the derivative of this expression is
— (@2 = (2/N))C(2)(My(T)" ™ — My(7)'=@M),

which is always zero or less (and exactly zero if N =2). It follows that if (3.21), or
(3.19), holds for some 7 =t it holds for all 7= as claimed. To summarize, we
have the following result.

TueoreM 3.2 If &y =0, a; <0 then (3.14) (and hence (3.15), (3.16)) holds for all
t =0 for which the original solution exists. If aoey>0 and if

M 2—2/N
a1<—]£> <a (3.22)
for some (My, My) € I then (3.14) holds for all t = max {0, t} for which the original
solution exists, where T is determined by (Mi(7), My(7))= (My, My), that is
v=F(M;, My). In particular, if a;(Mo(0)/M(0))* *™ < &, then (3.14) holds for
all t =0 for which the original solution exists.

ExamMpLE When oo = o; <0 (3.22) always holds. Hence (3.14) to (3.16) hold in
this case whenever the original solution exists.

4. Generalizations
(a) Other Boundary Conditions for u

Some of the results in Section 3 remain valid, with minor changes in the proofs,
if the boundary conditions in (1.1) are replaced by the more general

— {O on YO(t);
f on Yl(t))

where f is constant on y,(f) but depends, directly or indirectly, on ¢. We shall
briefly indicate the changes needed, assuming for simplicity that f >0. (The case
in which f <0 may be handled by changing the signs of &, @;.)

The case when f = f(¢) is an explicit function of ¢ essentially corresponds to just
a (monotone) change of time-scale. Of the results in Section 3 only the formulae
for T will be affected, the new T being obtained by replacing (3.10) by

(4.1)

fo(t) dtzsep F.

The case when f is a function of my and m,, f=/f(m, mg), is a little more
interesting and may also be of some physical significance. In the Hele Shaw
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model or in the porous medium case one may think, for example, of having the
fluid in @,(¢) trapped there. Assuming that this fluid is a gas, the simplest model
(Boyles law) yields the pressure on y,(#) proportional to 1/m,, hence

f(my, mg)=——>b _ (4.2)

4
m,
(a >0, b =0 constants).

Now, for f = f(m,, m,) smooth and positive (the latter at least in a neighbour-
hood of (m;(0), me(0)) € D) the results of comparison between m;(¢t) and M;(¢) in
Theorem 3.1 are easily seen to remain true. In fact, (3.4) and (3.5) remain valid
with the definition (3.2) of F changed to

(mm) 1 () 1 o)
Fm,m)=N‘2p‘2’Nf — dx —— y
(s, o M o @umaoy @1 f (X, ¥) aof (x, )

(integration along I). With this F the stopping time T is still given by (3.10). Also,
the comparison result (Theorem 3.2) between

1 au
f(ml(t)r mO(t)) yi(8) v
and C(¢) remains true, the only change in the proof being that the positive factor
f(My(7), My(7)) will occur in (3.20).

As to the quantities dm;/df and dM;/dt, their couplings with ¢(¢) and C(¢) are
now given by

c(t)= (t)dy

dm;

= o (ma(®), mo(0)e(®)
(with a similar result for dM;/dr) instead of (2.3), (2.4); methods of Section 3 now
give that

] A0 | _ ‘ dm)| (4.3)

dt ok

provided the function (@(mg) — P(m,))/f(m, m,) is decreasing (in the non-strict
sense) in the positive direction of I from (M,(t), My(t)) onwards. Unfortunately,
the latter condition is not satisfied in some of the more interesting cases with
non-constant f, for example, when ay=a;= -1 and f is given by (4.2) with
b =0. (If we modify equation (4.2) to f(m,, mgy) =a/(m;+d), d >0, we do get
(4.3) for all t=0 for which the original solution exists if d/m=1(N=2),
d/m=(N-1)/N (N=3); here m=|w(0)|=my0)—m(0). Moreover, (4.3)
holds for all sufficiently large rif N=3 or if N=2 and d/m =1.)

(b) Exterior Domains

We finally consider the limiting case when wo(f) = R" for all ¢, that is, when
w(t) = R™\w,(¢) is the complement of a compact set. Thus dw(¢) just consists of
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y1(f) (assumed smooth). When N =3 we then define u harmonic in w(¢) by
u=1 on y(t) (4.4)
u(x)=0(x>™") as |x| > (4.5)

This problem has a unique solution. In fact, if say 0¢ w(¢) it reduces to an
ordinary Dirichlet problem in a bounded domain for v(x) = |x|*""u(x/|x|?), the
‘Kelvin transform’ of u, since the condition (4.5) means precisely that the
singularity of v at the origin is removable. Also, it is easy to check that the
solution of (4.4), (4.5) is identical to the limit or supremum of the solutions
u = ug of (1.1) with wy(t) = {x e R : |x| <R} (R— ).

What has been said above also applies when N =2, but then the solution of
(4.4), (4.5) will be identically one, which does not give rise to any interesting
moving-boundary problem. Thus, when N=2 we must allow u to have a
singularity at infinity. Since log |x| is the simplest one, the most natural candidate
for u when N =2 seems to be the harmonic function in w(¢) determined by

u=0 on yt), (4.6)
u(x)=—Log |x| + O(1) as |x|—> 4.7

(Observe that the choice of constant in (4.6) is immaterial, so we select zero.)

With u as above (N =2) we consider the moving-boundary problem in which
y1(t) moves with the velocity «,Vu, a; e R. Of course, it is enough to consider
just a; = £1. The physical applications of this problem are essentially the same as
in the doubly-connected case (with appropriate modifications). See also
(DiBenedetto & Friedman, 1986; Howison, 1986), where however the condition
(4.5) is replaced by one which keeps

ou
—d
y1(6) ov 4
fixed (as is the case when N =2 and u is given by (4.6), (4.7)).
Consider first the case in which N =3 (the case when N =2 turns out to be
trivial). As in (2.2) the capacity of w(¢) (or rather w,(t)) is given by

3
o= mupa=| Ztay,
o) iy OV
and the moving-boundary condition gives
dm;, f du
— —dy=— t). .
ar @y ) OV Y a;c(t) (4.8)

In place of (2.8) one now has
N?pRY < —c() D(my(1)) (4.9)
with @ given by (2.17). Thus by (4.8)

dm,

1
22N o
NpR= - @(my(1) g,

(4.10)
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and, by integration,
1
Npit < . (W(m(0) = ¥ (mi(0))) (4.11)
1

(with y given by (2.18)).
We also consider the symmetrized problem determined by
M;(0) = m,(0),

and for this we have equalities in (4.9) to (4.11). Thus we can write (4.11) as

t=F(M(5)) < F(my(1)), (4.12)
where o
Fom) =2 (y(om) =y (0).

As usual this gives

Mi(t)y=zmy(t) if a;>0,

M(6)=m,(t) if a, <0, (4.13)
for all ¢ = 0 for which the original solution exists. Observe by (4.12) that F is now

simply the inverse function of M,(¢).
From (4.12), (2.18) we see that

—~2/IN

: PN UN :
F =——m(0)"" < f a;>0, .
sup F = s Fm) = o — 2, O < e (4149
lim F(m,) = + . if a;<0.

my—x

Hence the solution of the symmetrized problem will have a stopping time
T =sup F given by (4.14) if o; > 0 while it exists for all time if a; <O0.

Going back to (4.9) and its counterpart for the symmetrized solution (and using
(2.17)) we get

COM()FM L < c(O)m,()FV-1, 4.15)
If @, <0 this gives, by (4.13),
CHy=c()
and hence, by (4.8),
dy _dmy
dt dt

for all =0 for which the original solution exists (for a; >0 we do not get
anything).

Let us briefly consider the case in which N =2 with u given by (4.6), (4.7). We
then still have the first part of (4.8), namely

d_"z__o,j o4
ds o ov "
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but now the right-hand member is constant (and equal to —2ma,) so we simply

obtain
M, (1) = my(t) = my(0) = 27wt

for all £=0. (The same is true (with other constants) for N =3 when u is defined
as in (DiBenedetto & Friedman, 1986; Howison, 1986).) Equation (4.7) can be
written

u(x)= —Log +0(x|™") as |jx|—>x,

()

where c¢(¢) is uniquely determined and called the capacity of w(¢) (or rather of
(). From M,(t) = my(t) one easily derives

Cit)y=c() (4.16)

for all £= 0 (whatever «; is). In fact, there is a conformal map of {z e C: |z| <1}
onto w(¢) U {e} of the form

f(z)-c(t)( +bo+byz +byz? + . )

and using Green’s formula one obtains

m) == waw=-=[ F@f (@) d

2i S 2 lz]=1
= me(?(1- 3 nlb ),
n=1
from which (4.16) follows (with equality only if b, = b, =... =0, that is, only if

w(t) is the exterior of a disc). Equation (4.16) can also be proved using
rearrangement techniques as in (Mossino, 1984).

ReMark It is proved in (DiBenedetto & Friedman, 1986; Howison, 1986) that,
when «; <0, RY is emptied (that is, (=, @(¢) =) by a solution w(t) of the
exterior problem if and only if w(0) is the complement of an ellipsoid (N =2)
(then also w(¢) are complements of ellipsoids for all ¢ > 0). It would be interesting
to have a result of this kind also in the doubly-connected case (when «y, ) are
both negative). One conjecture is that whenever w(0) is not a spherical-shell
domain the solution breaks down strictly before (mm,(¢), mo(t)) leaves D (3.1). In
general it seems hard to construct explicit solutions (besides the symmetrical
ones) in the doubly-connected case. One explicit solution, which breaks down in
finite time due to development of cusps on dw(t), is constructed in (Gustafsson,
1986). For the exterior problem several examples are given in (Howison, 1986).

5. Conclusion

We have applied isoperimetric inequalities to a moving-boundary problem
arising in electrochemistry, Hele Shaw flows, etc. Concerning the electrochemical
model, the two electrodes of an electrolytic cell are assumed to grow or dissolve
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(at different rates in general) by electrochemical reaction, and we have found for
example that the least change of volume of the electrodes and the electrolyte
always occurs in spherical symmetry. From this, also, optimal upper bounds for
the lifetime of a solution were obtained in certain cases, namely in those cases in
which the corresponding symmetrized solution breaks down in finite time.
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