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Abstract

We study non-univalent solutions of the Polubarinova-Galin equa-
tion, describing the time evolution of the conformal map from the unit
disk onto a Hele-Shaw blob of fluid subject to injection at one point.
This moving boundary problem is also called Laplacian growth. In
particular, we tackle the difficulties arising when the map is not even
locally univalent, in which case one has to pass to weak solutions de-
veloping on a branched covering surface of the complex plane.

One major concern is the construction of this Riemann surface,
which is not given in advance but has to be constantly up-dated along
with the solution. Once the Riemann surface is constructed the weak
solution is automatically global in time, but we have had to leave open
the question whether the weak solution can be kept simply connected
all the time (as is necessary to connect to the Polubarinova-Galin
equation). A certain crucial statement, a kind of stability statement
for free boundaries, has therefore been left as a conjecture only.

Another major part of the paper concerns the structure of rational
solutions (as for the derivative of the mapping function). Here we have
fairly complete results on the dynamics. Several examples are given.

Keywords: Hele-Shaw flow, weighted Hele-Shaw flow, Laplacian growth,
Polubarinova-Galin equation, Löwner-Kufarev equation, Löwner chain, sub-
ordination, quadrature Riemann surface, Abelian domain, algebraic domain,
contractive zero divisor, partial balayage.
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1 Introduction

1.1 General

This paper is a continuation of [10], in which the motion of zeros and poles
associated to locally univalent solutions of the Polubarinova-Galin equation
was studied. This differential equation, in one real variable (time) and one
complex variable, describes the time evolution of a conformal map from the
unit disk onto a growing blob of a viscous fluid squeezed between two parallel
plates. The two-dimensional view of the fluid blob is modeled by a domain
in the complex plane, and its growth is assumed to be caused by a source
at the origin. The history of this problem goes back to an experiment and a
subsequent paper [20] by Henry Selby Hele-Shaw in 1898, and the literature
on it is by now quite considerable. A short selection is [6], [25], [42], [32], [28],
[38], [8], [40], [27], [21], [3], [23], [24], [19], [44], [16], [22], [1], [30], [15]. The
evolution process has many other physical interpretations, besides Hele-Shaw
flows, and one common name for it is Laplacian growth. For the history of
the subject we refer to [41].

In the present paper we try to extend previous results on univalent and
locally univalent solutions, in particular those in [10], to the setting of con-
formal maps which are not even locally univalent. Such mappings are then
considered as univalent maps onto subdomains of a suitable Riemann surface,
a branched covering surface of the complex plane.

The Polubarinova-Galin equation for a time dependent normalized con-
formal map f(·, t) : D → Ω(t), where Ω(t) is the fluid domain at time t,
reads

Re
[
ḟ(ζ, t)ζf ′(ζ, t)

]
= q(t) for ζ ∈ ∂D, (1.1)

where q(t) > 0 is the source strength and the normalization means that
f(0, t) = 0, f ′(0, t) > 0. The equation expresses more exactly that the
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speed of the boundary ∂Ω(t) in the outward normal direction equals 2πq(t)
times the harmonic measure (or normal derivative of Green’s function) with
respect to the origin (interpret the left member as |f ′| times the inner product
between ḟ and the unit normal vector ζf ′/|f ′|).

The classical case is that f is univalent, but in this paper we shall al-
low arbitrary functions f , analytic in some neighborhood of the closed unit
disk and subject to the above normalization. Then it turns out that it is
appropriate to add to (1.1) the requirement that

d

dt
f(ω(t), t) = 0 (1.2)

for every zero ω(t) of f ′(·, t) inside D. With this requirement, (1.1) and (1.2)
taken together become equivalent to an equation of Löwner-Kufarev type
(see (2.7), (2.8) below) and it follows that the family f(·, t) (for t in some
interval) becomes a subordination chain. This entails that there exists a
Riemann surfaceM such that the f(·, t) become univalent as mappings into
M. As such mappings we put a tilde on the names of functions and domains:

f̃(·, t) : D→M, Ω̃(t) = f̃(D, t).

Thus we obtain a Hele-Shaw evolution on a Riemann surface.
For (1.1), (1.2) we start with some given f(·, 0), as initial condition. Even

if this is taken to be univalent it may happen that zeros of f ′(·, t) reach ∂D
and try to enter D. This causes problems for (1.1) when q > 0, and one has
to pass to a weak solution in order to allow a zero to make the transition
into D. It turns out that the transition is indeed possible, but the solution
will then not be smooth in time.

A major case under consideration will be when f ′(ζ, 0) is a rational func-
tion. Then f ′(ζ, t) will remain a rational function for t > 0, but when a zero
of f ′ passes through ∂D it turns out the structure of this rational function
changes. In the simplest case it will acquire two new zeros and one pole of
order two. The behavior is quite interesting, and it connects to the theory
of contractive divisors on Bergman space [18].

So a considerable part of the paper deals with the structure of rational
solutions. Another part of the paper, which however is incomplete at present,
is the study of global in time solutions. The main assertion then is that,
given any f(·, 0), there exists a weak solution of (1.1), (1.2) defined for all
0 ≤ t < ∞. The proof of this requires the construction of the appropriate
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Riemann surfaceM. This is a not completely trivial task becauseM has to
be constructed along with the solution: every time a zero of f ′(·, t) reaches
∂D the Riemann surface has to be updated with a new branch point (as a
covering surface of the complex plane).

What we have at present is a complete proof, except for an isolated tech-
nical difficulty which still remains. More exactly, what we would need to
prove is the conjecture stated below. The prerequisits for the conjecture are
as follows.

Let g be a function analytic in a neighborhood of the closed unit disk.
From the theory of quadrature domains [33], [34], or the related theory of
partial balayage [13], [7], it follows that for every t > 0 sufficiently small
there exists a domain D(t) ⊃ D, uniquely determined up to a null-set and
compactly contained in the region of analyticity of g, such that (with dm =
dxdy) ∫

D(t)

h|g|2dm ≥
∫
D
h|g|2dm+ th(0)

for every function h which is subharmonic and integrable (with respect to
|g|2m) in D(t). What we will need is that this D(t) is simply connected if
t > 0 is sufficiently small. In a slightly stronger form this is our conjecture:

Conjecture 1.1. If t > 0 is sufficiently small, then D(t) is star-shaped with
respect to the origin, in particular simply connected.

If g 6= 0 on ∂D, so that |g|2 ≥ c > 0 in a neighborhood of ∂D, then Con-
jecture 1.1 holds, as a consequence of results on stability of free boundaries
in [2], [5], for example. However, we need to use Conjecture 1.1 exactly when
g has zeros on ∂D. Even in that case there are strong intuitive and analytic
support for Conjecture 1.1, but no rigorous proof that we are aware of. The
difficulty of proving a statement like Conjecture 1.1 was recognized already
by M. Sakai [35] (Section 5 there).

Despite the fact that we have not been able to settle the above conjecture
we believe that the remaining parts of the paper contains enough interest-
ing material to deserve publication, at least in preprint form. We consider
the study of rational solutions (general structure, motion of zeros and poles)
together with the general set-up for lifting non-univalent solutions to a Rie-
mann surface, which is not a priori given, as our our main achievements. In
addition, there are a number of enlightening examples.
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1.2 Contents of paper

A more detailed description of the contents of the paper goes as follows.
In Section 2 we review the set-up and terminology in the locally univalent
case, following essentially [10]. Section 3 discusses Löwner chains and sub-
ordination, based on corresponding material in [26], and also clarifies the
relationship between the Polubarinova-Galin equation and the correspond-
ing equation of Löwner-Kufarev type in the non-locally univalent case.

Since the global solutions we are looking for will not be smooth in general
we have to discuss weak solutions, of variational inequality type, which can
be formulated in terms of quadrature domains for subharmonic functions,
in the spirit of Sakai [33], or else in terms of partial balayage. These no-
tions are explained in some detail in Section 4, in the planar case, and the
corresponding Riemann surface versions are developed in Section 5.

Partial balayage can be considered as an orthogonal projection in a Hilbert
space, and when performing this on a covering surface the question arises to
what extent it commutes with the projection map which pushes, for exam-
ple, measures on the covering space down to measures on the base space. An
affirmative answer to this question is given in Section 6.

The main assertion concerning global in time weak solutions which stay
simply connected all the time is stated in Section 7, and is proved with
Conjecture 1.1 taken as an assumption. In Section 9 we elaborate in detail
three different solutions of the Polubarinova-Galin equation starting out from
an cardioid. Quite surprisingly, one of these solutions can be driven backward
in time, as a solution representing suction out of a cardioid. However, this is
at the price of allowing a pole inside the unit disk, so the interpretation of this
solution remains somewhat unclear. In Section 10 we still make an attempt
to explain this kind of matter in a more general setting. In Section 8, finally,
we expose the general structure of rational solutions (the derivative of the
mapping function being rational), and set up the motion of zeros and poles
as a dynamical system. Particular emphasis is given to how the structure
changes when a zero crosses the unit circle.

1.3 Dedication

We would like to dedicate this paper to the memory of Makoto Sakai, who
passed away in December 2013, at the age of 70. Sakai made original and
groundbreaking contributions in potential theory, highly relevant to the con-
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tents of the present paper. He was one of the creators of the theory of
quadrature domains, and his books [33], [37] on the subject will have a long-
standing impact on the development of the subject, and on potential theory
and its applications in general. His papers and books are not always easy to
read, but they are very sharp, and Sakai’s work is now receiving increasing
recognition in the general mathematical community.

The present paper is closely related to one of Sakai’s least known papers,
namely [35]. Sakai always wanted to obtain complete and sharp result, and
he was usually successful in this respect. However, in [35] he did not reach
that full perfection, he had to make a probably unnecessary assumption (that
a certain domain has no cusps on its boundary) in order to prove his main
result. Ironically, the authors of the present paper were stopped on essentially
the same mathematical difficulty, which we now have left as a conjecture.

1.4 Acknowledgements

The authors are grateful to Michiaki Onodera for important information and
discussions.

The authors also would like to thank the Isaac Newton Institute for
Mathematical Sciences, Cambridge, for support and hospitality during the
programme 2014-FRB: Free Boundary Problems and Related Topics, where
work on this paper was undertaken. This work was supported by EPSRC
grant no. EP/K032208/1.

2 Preparatory material

2.1 List of notations

We here list some notations which will be used, but not always further ex-
plained, in the paper.

• D = {ζ ∈ C : |ζ| < 1}, D(a, r) = {ζ ∈ C : |ζ − a| < r}.

• P = C ∪ {∞} = the Riemann sphere.

• Ωe = C\Ω, the exterior of a domain Ω in C, P , or in an ambient space
in general (depending on context).
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• dm = dm(z) = dx∧ dy = 1
2i
dz̄ ∧ dz (z = x+ iy), area measure in the z

plane.

• ω∗ = 1/ω, for ω ∈ C.

• h∗(ζ) = h(1/ζ̄) =
∑m

j=1 bjζ
−j, where h(ζ, t) =

∑m
j=1 bjζ

j.

(There is a slight ambiguity in this notation: we have ζ∗ = 1/ζ̄ if ζ is
considered as a point, whereas f ∗(ζ) = 1/ζ for the function f(ζ) = ζ.)

• ḟ(ζ, t) = ∂
∂t
f(ζ, t), f

′
(ζ, t) = ∂

∂ζ
f(ζ, t).

• With E ⊂ C any set which contains the origin,

O(E) ={f : f is analytic in some neighborhood of E},
Onorm(E) ={f ∈ O(E) : f(0) = 0, f ′(0) > 0},
Olocu(E) ={f ∈ Onorm(E) : f ′ 6= 0 on E},
Ouniv(E) ={f ∈ Olocu(E) : f is univalent (one-to-one) on E}.

• card = ‘number of elements in’.

• SL1(Ω, λ) denotes the set of subharmonic functions in Ω which are
integrable with respect to a measure λ.

• νf : counting function, see Definition 3.1.

• Bal (µ, λ): partial balayage, see Definition 4.2.

• supp ν: the closed support of a measure, or distribution, ν.

• χE: the characteristic function of a set E.

2.2 Basic set up in the univalent case

The Polubarinova-Galin equation is the dynamical equation for the con-
formal map from the unit disk onto a domain in the complex plane repre-
senting the two-dimensional view of a blob of a viscous fluid, which grows or
shrinks due to the presence of a source or sink at one point, chosen to be the
origin. The type of flow in question, actually incompressible potential flow
in the two dimensional picture, is traditionally called Hele-Shaw flow (see
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[41], [15] for historical accounts), and in recent time also Laplacian growth,
referring to the moving boundary problem.

A smooth map t 7→ f(·, t) ∈ Ouniv(D) is a (strong) solution of the
Polubarinova-Galin equation if it satisfies

Re
[
ḟ(ζ, t)ζf ′(ζ, t)

]
= q(t) for ζ ∈ ∂D. (2.1)

Here q(t) is a real-valued function, which is given in advance and which rep-
resents the strength of the source/sink. Typically q = ±1, which corresponds
to injection (plus sign) or suction (minus sign) at a rate 2π. Since the trans-
formation t 7→ −t changes q to −q in (2.1) it is enough to discuss one of the
cases q > 0 and q < 0. In general we shall take q > 0. To increase flexibility
we allow q to depend on time, and occasionally also to vanish. The meaning
of (2.1) in terms of the Green’s function of the domain is shown in equation
(5.8) below.

Equation (2.1) expresses that the image domains Ω(t) = f(D, t) evolve in
such a way that

d

dt

∫
Ω(t)

hdm = 2πq(t)h(0) (2.2)

for every function h which is harmonic in a neighborhood of Ω(t). This
means that the speed of the boundary ∂Ω(t) in the normal direction equals
q(t) times the normal derivative of the Green’s function of Ω(t) with a pole
at z = 0. The equivalence between (2.1) and (2.2) follows from the general
formula

d

dt

∫
Ω(t)

ϕdm =

∫
∂D
ϕ(f(ζ, t))Re

[
ḟ(ζ, t)ζf ′(ζ, t)

]
dθ (ζ = eiθ), (2.3)

valid for any smooth evolution t 7→ f(·, t) ∈ Ouniv(D) and for any smooth
test function ϕ in the complex plane. Cf. Lemma 4.1 below.

On choosing h(z) = zk, k = 0, 1, 2, . . . in (2.2) it follows that the harmonic
moments

Mk(t) =
1

π

∫
Ω(t)

zkdm(z) =
1

2πi

∫
∂D
f(ζ, t)kf ∗(ζ, t)f ′(ζ, t)dζ (2.4)

are conserved quantities, except for the first one, which by (2.2) is related to
q(t) by d

dt
M0(t) = 2q(t). Thus

M0(t) = M0(0) + 2Q(t), (2.5)
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where Q(t) is the accumulated source up to time t > 0:

Q(t) =

∫ t

0

q(s)ds. (2.6)

Occasionally we may use Q(t) also for t < 0, in which case it is negative (if
q > 0).

Within the class of smooth (or monotone) evolutions of simply connected
domains, Laplacian growth is characterized by the preservation of the mo-
ments M1,M2, . . . . This is a consequence of Theorem 10.13 and Corol-
lary 10.14 in [33]. See also Theorem 6.2 and Corollary 6.3 in [9].

One may consider the equation (2.1) on different levels of generality. It is
natural to keep the normalization f(0) = 0, f ′(0) > 0, in fact the coupling to
(2.2) depends on this, but (2.1) makes sense for any f ∈ Onorm(D), at least
as long one makes sure that q(t) = 0 whenever a zero of f ′ appears on ∂D.
In the locally univalent case, f ∈ Olocu(D), the mathematical treatment of
(2.1) is exactly the same as in the ‘physical’ case f ∈ Ouniv(D). We shall then
speak of a locally univalent solution of the Polubarinova-Galin equation.

When f ∈ Olocu(D), then ḟ/ζf
′ ∈ O(D) and equation (2.1) can be solved

for ḟ by dividing both sides with |ζf ′|2. The result is an equation which we
shall refer to as the Löwner-Kufarev equation, namely

ḟ(ζ, t) = ζf ′(ζ, t)P (ζ, t) (ζ ∈ D), (2.7)

where P (ζ, t) is the analytic function in D whose real part has boundary
value q(t)|f ′(ζ, t)|−2 and which is normalized by ImP (0, t) = 0. Explicitly
P (ζ, t) is given by

P (ζ, t) =
1

2πi

∫
∂D

q(t)

|f ′(z, t)|2
z + ζ

z − ζ
dz

z
(ζ ∈ D). (2.8)

When f ∈ Olocu(D) then P ∈ O(D), in fact the right member of (2.7) extends
analytically as far as f does (see [8]). We shall keep the notation P = P (ζ, t)
also for the analytic extension of the Poisson integral beyond D.

As a general notation throughout the paper, we set

g(ζ, t) = f ′(ζ, t). (2.9)

The function g in fact turns out to be more fundamental than f itself. Of
course, f can be recaptured from g by

f(z, t) =

∫ z

0

g(ζ, t)dζ. (2.10)
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Part of the paper will deal with the case that g is a rational function,
or perhaps better to say, g dζ is a rational differential, in other words an
Abelian differential on the Riemann sphere. If g has residues then f will
have logarithmic poles, besides ordinary poles. The terminology Abelian
domain for the image domain Ω = f(D) has been used [40] for this case.
Alternatively one may speak of Ω being a quadrature domain (see [14]
for the terminology and further references), which in the present case means
that a finite quadrature identity of the kind∫

Ω

h(z)dxdy =
r∑
j=1

cj

∫
γj

h(z)dz +
∑̀
j=0

nj−1∑
k=1

ajkh
(k−1)(zj) (2.11)

holds for integrable analytic functions h in Ω. Here the zj are fixed (i.e.,
independent of h) points in Ω, with specifically z0 = 0, the cj, ajk are fixed
coefficients, and the γj are arcs in Ω with end points among the zj. This
sort of structure is stable under Hele-Shaw flow because, as is seen from
(2.2), what happens under the evolution is only that the right member is
augmented by the term 2πQ(t)h(0), where Q(t) is the accumulated source
up to time t, see (2.6).

When g is rational we shall write it on the form

g(ζ, t) = b(t)

∏m
k=1(ζ − ωk(t))∏n
j=1(ζ − ζj(t))

= b(t)

∏m
i=1(ζ − ωi(t))∏`
j=1(ζ − ζj(t))nj

. (2.12)

Here m ≥ n =
∑`

j=1 nj, |ζj| > 1 and repetitions are allowed among the ωk,
ζj to account for multiple zeros and poles. Then, with the argument of b(t)
chosen so that g(0, t) > 0, f ∈ Olocu(D) if and only if |ωk| > 1, |ζj| > 1 for
all k and j. The assumption m ≥ n means that g dζ, as a differential, has
at least a double pole at infinity, which the Hele-Shaw evolution in any case
will force it to have because the source/sink at the origin creates a pole of f
at infinity.

The form (2.12) is stable in time, with the sole exception that when m = n
the pole of f at infinity may disappear at one moment of time (see [10], or
Proposition 8.1 below). The rightmost member of (2.12) will be used when
we need to be explicit about the orders of the poles. The convention then is
that ζ1, . . . , ζ` are distinct and nj ≥ 1. Thus n =

∑`
j=1 nj, and in the full

sequence ζ1, . . . , ζn, the tail ζ`+1, . . . , ζn will be repetitions of (some of) the
ζ1, . . . , ζ` according to their orders. In equations (2.11) and (2.12), ` and the
nj are the same.
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One can easily express the Löwner-Kufarev equation (2.7) directly in
terms of g. In fact, on writing Pg for the Poisson integral in (2.8), equation
(2.7) together with (2.10) is equivalent to

∂

∂t
log g(ζ, t) = ζPg(ζ, t)

∂

∂ζ
log g(ζ, t) +

∂

∂ζ
(ζPg(ζ, t)). (2.13)

When g is rational, as in (2.12), also Pg(ζ, t) will be a rational function (see
more precisely (8.9) in Section 8 below), and so will the derivatives of log g:
we have

log g(ζ, t) = log b(t) +
m∑
k=1

log(ζ − ωk(t))−
n∑
j=1

log(ζ − ζj(t)), (2.14)

∂

∂t
log g(ζ, t) =

ḃ(t)

b(t)
−

m∑
k=1

ω̇k(t)

ζ − ωk(t)
+

n∑
j=1

ζ̇j(t)

ζ − ζj(t)
, (2.15)

∂

∂ζ
log g(ζ, t) =

m∑
k=1

1

ζ − ωk(t)
−

n∑
j=1

1

ζ − ζj(t)
. (2.16)

Thus (2.13) becomes an identity between rational functions.

3 Dynamics and subordination

3.1 Generalities

In the non locally univalent case the Polubarinova-Galin and Löwner-Kufarev
equations are no longer equivalent. The Löwner-Kufarev equation is the
stronger one, and solutions to it can still be viewed as univalent mapping
functions, but then onto subdomains of a Riemann surface. The evolution of
these subdomains is monotone, which amounts to saying that the function
family is a subordination chain. Solutions to the more general Polubarinova-
Galin equation are not unique, but still satisfy a weaker form of monotonicity,
namely monotonicity of the counting function.

Definition 3.1. For any f ∈ O(D), the counting function, or mapping
degree, νf of f tells how many times a value z ∈ C is attained by f in D. It
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is an integer valued function defined almost everywhere in C (namely outside
f(∂D)) by

νf (z) = card {ζ ∈ D : f(ζ) = z} =
1

2πi

∫
∂D
d log (f(ζ)− z) . (3.1)

Clearly, f is univalent in D if and only if 0 ≤ νf ≤ 1.

Definition 3.2. Let f, g ∈ Onorm(D). We say that f is subordinate to g,
and write f ≺ g, if there exists a univalent function ϕ : D → D such that
f = g ◦ ϕ. Note that ϕ is automatically normalized, hence ϕ ∈ Ouniv(D).

Let I ⊂ [0,∞) be any interval. A map I 3 t 7→ f(·, t) ∈ Onorm(D) is
called a subordination chain on I if f(·, s) ≺ f(·, t) whenever s ≤ t.

The following lemma shows that by increasing the level of abstraction
(lifting the maps to a Riemann surface), subordination becomes nothing else
than ordinary monotonicity. The result is not new (see [26] for the classical
case of univalent f and g), but we give the proof because it will be a model
for how our specific Riemann surfaces needed for the Hele-Shaw problem will
be constructed.

Lemma 3.1. Let {f(·, t)}t∈I ⊂ Onorm(D), where I ⊂ [0,∞) is any interval.
Then the following are equivalent.

(i) {f(·, t)} is a subordination chain on I.

(ii) There exists a Riemann surface M, a nonconstant analytic function
p :M→ C (‘covering map’) and univalent analytic functions

f̃(·, t) : D→M (t ∈ I)

(‘liftings’ of the f(·, t)) such that

(a) f(ζ, t) = p(f̃(ζ, t));

(b) f̃(D, s) ⊂ f̃(D, t) for s ≤ t.

Proof. The proof that (ii) implies (i) is just a straight-forward verification,
with the subordination functions defined by

ϕ(ζ, s, t) = f̃−1(f̃(ζ, s), t) (3.2)
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for s ≤ t, and where f̃−1(ζ, t) denotes the inverse of f̃(ζ, t) with respect to
ζ.

To prove the opposite, assume (i). We have to construct the Riemann
surface M and the covering map p. For each t ∈ I, let Dt be a copy of D
and let Mt be Dt considered as an abstract Riemann surface (for which Dt

serves as coordinate space). We define a covering map

p(·, t) :Mt → C

by declaring that, in the coordinate space Dt, it shall be represented by

f(·, t) : Dt → C.

When s ≤ t we have the embedding ϕ(·, s, t) : Ds → Dt coming from the as-
sumed subordination, which we on the level of the abstract Riemann surfaces
consider as an inclusion map

Ms ⊂Mt. (3.3)

Note that these embeddings and inclusions commute with the covering maps
because of the subordination relations

f(ϕ(ζ, s, t), t) = f(ζ, s) (s ≤ t). (3.4)

In view of the inclusions (3.3) we may define

M = ∪t∈IMt.

This is a Riemann surface because each point belongs to someMt, and there
it has a neighborhood (e.g., all ofMt) which can be identified with an open
subset of the complex plane (Mt

∼= Dt
∼= D), and the coordinates on M

so obtained are related by invertible analytic functions (the ϕ(·, s, t)). The
covering map p : M → C is defined by declaring that on Mt it shall agree
with p(·, t). Again, this is consistent.

Finally, the map f(·, t) : D→ C lifts to

f̃(·, t) : D→Mt ⊂M

by declaring that on identifying Mt with Dt it shall simply be the identity
map: f̃(ζ, t) = ζ ∈ Dt for ζ ∈ D. Also this is consistent.
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In the last picture, the evolution maps f̃(ζ, t) become trivial, while the
covering maps are nontrivial (p(ζ, t) = f(ζ, t)):

D id−→ Dt
f(·,t)−→ C.

For visualization it may however be better to have the view

D f̃(·,t)−→Mt
proj−→ C

in which the evolution maps f̃(ζ, t) really are liftings of the f(ζ, t), while the
covering maps p(·, t) are trivial identifications (local identity maps, except at
branch points).

Now, whenM and p have been constructed the rest of the proof are easy
verifications (omitted).

Example 3.1. The functions

f(ζ, t) =
ζ(t3ζ − 2t2 + 1)

ζ − t

can be shown to make up a non-univalent subordination family on the interval
1 < t < ∞. The derivative f ′(ζ, t) vanishes at ζ = t−1 ∈ D. The Riemann
surface M appearing in Lemma 3.1 consists, when visualized as a covering
surface over C, of two copies of C joined by a branch point at f(t−1, t) = 1.
This example will be further discussed in Example 5.3, where also partial
proofs of the above statements can be found.

Lemma 3.2. For f, g ∈ Onorm(D), f ≺ g implies νf ≤ νg (almost every-
where).

Proof. This is immediate from a change of variable in the integral appearing
in νf : assuming f = g ◦ ϕ we have, using that ϕ is univalent,

νf (z) =
1

2πi

∫
∂D
d log (f(ζ)− z) =

1

2πi

∫
∂D
d log (g(ϕ(ζ))− z)

=
1

2πi

∫
ϕ(∂D)

d log (g(ζ)− z) ≤ 1

2πi

∫
∂D
d log (g(ζ)− z) = νg(z).
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3.2 The Polubarinova-Galin versus the Löwner-Kufarev
equation

The relationship between the Polubarinova-Galin and the Löwner-Kufarev
equations in the non-univalent case is the following.

Theorem 3.1. Let I 3 t 7→ f(·, t) ∈ Onorm(D) be smooth on some time
interval I and assume that f ′ 6= 0 on ∂D on this interval. Then for q(t) ≥ 0
the following are equivalent.

(i) f(ζ, t) solves the Löwner-Kufarev equation (2.7).

(ii) f(ζ, t) solves the Polubarinova-Galin equation (2.1) and ḟ(ω, t) = 0 for
every root ω ∈ D of f ′(ω, t) = 0.

(iii) f(ζ, t) solves the Polubarinova-Galin equation (2.1) and {f(·, t)} is a
subordination chain.

Remark 3.2. As a matter of terminology, if ω(t) ∈ D is a zero of f ′, then
f(ω(t), t) will be called a branch point of f , viewing f as a covering map.
In a related terminology, it is branch point of the then multivalued lifting
map f−1. Since d

dt
f(ω(t), t) = ḟ(ω(t), t) when f ′(ω(t), t) = 0, the second

condition in (ii) expresses that the branch points do not move.

Proof. The additional condition in (ii) means more precisely (taking multi-
plicities into account) that

ḟ(ζ, t)

ζf ′(ζ, t)
∈ O(D) (3.5)

After dividing both members in (2.1) by |ζf ′(ζ, t)|2 and using the defining
properties (2.8), (2.9) of P (ζ, t) this condition is seen to be exactly what is
needed to pass between (2.1) and (2.7). Thus (i) and (ii) are equivalent.

Assume next that (iii) holds. That {f(·, t)} is a subordination chain
means that for s ≤ t there exist univalent functions ϕ(·, s, t) : D → D such
that (3.4) holds. By differentiating (3.4) with respect to t it immediately
follows that (3.5) holds. Thus (iii) implies (ii).

We finally prove that (i) implies (iii). This is done exactly as in the
corresponding proof for Löwner chains of univalent functions in Chapter 6
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of [26]. To construct the subordination functions ϕ(·, s, t) one considers, for
given s ≥ 0 and ζ ∈ D, the initial value problem{

dw
dt

= −wP (w, t), t ≥ s,

w(s) = ζ.
(3.6)

It has a unique solution w = w(t) defined on the time interval on which f ,
and hence P , is defined. In terms of w(t) we then define, for s ≤ t,

ϕ(ζ, s, t) = w(t).

Since different trajectories for (3.6) never intersect ϕ(ζ, s, t) is a univalent
function of ζ in the unit disk, and using the chain rule and (2.7) one sees
that d

dt
f(ϕ(ζ, s, t), t) = 0. Thus f(ϕ(ζ, s, t), t) is constantly equal to its initial

value at t = s, which is f(ζ, s). This proves the subordination.

The Polubarinova-Galin equation itself is equivalent to a more general
version of the Löwner-Kufarev equation, as follows.

Theorem 3.2. Let I 3 t 7→ f(·, t) ∈ Onorm(D) be smooth on some time
interval I and assume that f ′ 6= 0 on ∂D on this time interval. Then f(ζ, t)
solves the Polubarinova-Galin equation (2.1) if and only if

ḟ(ζ, t) = ζf ′(ζ, t) (P (ζ, t) +R(ζ, t)) , (3.7)

where P is the Poisson integral (2.8) and where R(ζ, t) is any function of the
form

R(ζ, t) = −i Im
∑
ωj∈D

rj∑
k=1

2Bjk(t)

(−ωj(t))k
+
∑
ωj∈D

rj∑
k=1

(
2Bjk(t)

(ζ − ωj(t))k
− 2Bjk(t)ζ

k

(1− ωj(t)ζ)k

)
.

(3.8)
Here {ωj} are the zeros of f ′ in D (necessarily finitely many), rj is the order
of the zero at {ωj(t)}, and Bjk(t) are arbitrary smooth functions of t.

Proof. The proof of Theorem 3.2 is immediate since the additional term
R(ζ, t) satisfies

ReR(ζ, t) = 0, ζ ∈ ∂D, (3.9)

ImR(0, t) = 0
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and is allowed to contain exactly those kinds of singularities in D which will
be killed by the factor f ′ in front of it in (3.7). The first term in (3.8) is just
the normalization assuring that ImR(0, t) = 0, and the other terms exchange
polar parts between D and C \ D without changing the real part on ∂D.

Remark 3.3. The term R(ζ, t) primarily regulates the motion of the branch
points, but this means that it, indirectly, also affects the dynamics of the
boundary ∂Ω(t). If ωj ∈ D is a simple zero, for example, then it follows from
(3.7), (3.8) that Bj1 is proportional to the speed of the corresponding branch
point:

d

dt
f(ωj(t), t) = 2ωj(t)f

′′(ωj(t), t)Bj1(t).

As for the dynamics of the boundary, we first remark that when ζ ∈
∂D is kept fixed the point z = f(ζ, t) ∈ ∂Ω(t) generally does not move
perpendicular to the boundary. On decomposing the speed into normal and
tangential directions,

ḟ = ḟnormal + ḟtangential = Re(ḟ · ζf
′

|f ′|
)
ζf ′

|f ′|
+ Im(ḟ · ζf

′

|f ′|
)
iζf ′

|f ′|
,

one sees from (3.9) that, in the instantaneous picture, the term R(ζ, t) only
affects the tangential component ḟtangential. Still the dynamics of ∂Ω(t) is
influenced by R(ζ, t), as will be seen in examples in Section 9.

4 Weak solutions

4.1 Preliminaries and definition

Some of our main results will be formulated in terms of variational inequality
weak solutions, just called weak solutions for short, which are expressed
in terms of time independent test functions which are subharmonic in the
domains Ω(t). We shall also need general smooth test functions, like Φ below.
When such test functions are pulled back to the unit disk via the mapping
functions f they become time dependent, and the time and space derivatives
will be coupled. Indeed, if Φ(z) is any smooth function in C then, by the
chain rule, the composed function Ψ(ζ, t) = Φ(f(ζ, t)), defined for ζ ∈ D,
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satisfies

|f ′(ζ, t)|2∂Ψ

∂t
= ḟ(ζ, t)f ′(ζ, t)

∂Ψ

∂ζ
+ ḟ(ζ, t)f ′(ζ, t)

∂Ψ

∂ζ̄
. (4.1)

When working in D we shall need test functions Ψ which satisfy just (4.1) in
itself, without necessarily being of the form Φ ◦ f for some Φ.

Lemma 4.1. For any smooth evolution t 7→ f ∈ Onorm(D) and any smooth
function Ψ(ζ, t) which satisfies (4.1) we have

d

dt

∫
D

Ψ(ζ, t)|f ′(ζ, t)|2 dm(ζ) =

∫
∂D

Ψ(ζ, t)Re
[
ḟ(ζ, t)ζf ′(ζ, t)

]
dθ, (4.2)

where ζ = eiθ in the right member.

Proof. Differentiation under the integral sign gives, using (4.1),

d

dt

∫
D

Ψ(ζ, t)|f ′(ζ, t)|2 dm(ζ) =

∫
D
(ḟ f̄ ′

∂Ψ

∂ζ
+ ˙̄ff ′

∂Ψ

∂ζ̄
+ Ψḟ ′f̄ ′ + Ψf ′ ˙̄f ′) dm

=
1

2i

∫
D
(f̄ ′

∂

∂ζ
(ḟΨ) + f ′

∂

∂ζ̄
( ˙̄fΨ))dζ̄dζ =

1

2i

∫
∂D

Ψ( ˙̄ff ′dζ − ḟ f̄ ′dζ̄)

=

∫
∂D

Ψ(ζ, t)Re
[
ḟ(ζ, t)ζf ′(ζ, t)

]
dθ.

Corollary 4.2. For any smooth evolution t 7→ f(·, t) ∈ Onorm(D)) and any
smooth function Φ in C we have

d

dt

∫
C

Φ(z)νf(·,t)(z)dm(z) =

∫ 2π

0

Φ(f(ζ, t))Re
[
ḟ(ζ, t)ζf ′(ζ, t)

]
dθ. (4.3)

Proof. Pulling the left member back to the unit disk by means of f gives

d

dt

∫
C

Φ(z)νf(·,t)(z) dm(z) =
d

dt

∫
D

Φ(f(ζ, t))|f ′(ζ, t)|2 dm(ζ).

Since the composed function Ψ(ζ, t) = Φ(f(ζ, t)) satisfies (4.1) the corollary
follows immediately from Lemma 4.1.
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Note that Corollary 4.2 is strictly weaker than Lemma 4.1. If for example
νf(·,t) = 2 on some part of C then Lemma 4.1 allows the test function Ψ there
to take different values on the two sheets of f(D) lying above this part, which
is not possible for the Φ in Corollary 4.2.

When f(ζ, t) solves the Polubarinova-Galin equation (2.1) we get

d

dt

∫
C

Φ(z)νf(·,t)(z)dm(z) = q(t)

∫ 2π

0

Φ(f(eiθ, t))dθ.

In particular, applying this to arbitrary Φ ≥ 0:

Corollary 4.3. For any solution t 7→ f(·, t) ∈ Onorm(D) of the Polubarinova-
Galin equation (2.1) with q(t) ≥ 0, νf(·,t) is an increasing function of t.

Specializing (4.3), on the other hand, to subharmonic and harmonic test
functions (which we then denote h) we obtain, in view of the mean-value
properties satisfied by such functions:

Corollary 4.4. Let t 7→ f(·, t) ∈ Onorm(D) solve the Polubarinova-Galin
equation (2.1) with q(t) ≥ 0. Then

d

dt

∫
C
hνf(·,t)dm ≥ 2πq(t)h(0)

for any h which is subharmonic in a neighborhood of supp νf . If h is har-
monic, equality holds.

As a particular case we get the relevant version of moment conservation.
Keeping the rightmost member of (2.4) as definition of the harmonic moments
in the non-univalent case, so that

Mk(t) =
1

2πi

∫
D
f(ζ, t)k|f ′(ζ, t)|2dm(ζ) =

1

π

∫
C
zkνf(·,t)(z)dm(z),

we have
d

dt
Mk(t) = 0, k = 1, 2, 3, . . .

under the assumptions of Corollary 4.4.
By integrating the inequality in Corollary 4.4 with respect to t we next

obtain
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Corollary 4.5. Whenever s ≤ t and h is subharmonic in a neighborhood of
supp νf (·, t) we have, when f solves the Polubarinova-Galin equation (2.1),∫

C
hνf(·,t)dm−

∫
C
hνf(·,s)dm ≥ 2π(Q(t)−Q(s))h(0), (4.4)

where Q is the accumulated source (see (2.6)).

This corollary connects to a well-established notion of (variational in-
equality) weak solution for the Hele-Shaw problem with a source of strength
q(t) ≥ 0 at the origin. We formulate the definition first for domains (or open
sets) in C. It will later be extended to contexts of Riemann surfaces.

Definition 4.1. With I ⊂ R an interval (of any sort), a family of bounded
open sets {Ω(t) ⊂ C : t ∈ I} is a weak solution if for any s, t ∈ I with
s ≤ t, Ω(s) ⊂ Ω(t) and∫

Ω(t)

hdm−
∫

Ω(s)

hdm ≥ 2π(Q(t)−Q(s))h(0) (4.5)

holds for every h which is subharmonic and integrable in Ω(t). If the interval
I is of the form [0, T ) (or [0, T ]) then it is enough that (4.5) holds for s = 0
to have the full strength of (4.5).

Thus a solution of the Polubarinova-Galin equation is a weak solution as
long as it is univalent, i.e., 0 ≤ νf(·,t) ≤ 1. When νf(·,t) takes values ≥ 2 it
does not fit into the definition of a weak solution, but the exceeding parts
of νf(·,t) can still be swept out to produce a weak solution. This process, of
partial balayage, will shortly be discussed in some detail.

Given any initial bounded open set Ω(0), a weak solution in the sense of
Definition 4.1 always exists on the interval I = [0,∞), and it is unique up
to nullsets. If Ω(0) is connected and 0 ∈ Ω(0), then also Ω(t) is connected
for all t > 0. However, the domains Ω(t) need not be simply connected all
the time, hence may be out of reach for the Polubarinova-Galin equation,
although they do become simply connected for large enough Q(t). See [16],
[15] and references therein.

4.2 Weak solutions in terms of balayage

The weak solution can be seen as an instance of a sweeping process called
partial balayage, which under present circumstances results in quadrature
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domains for subharmonic functions. We formulate first this sweeping process
in C and then adapt it to Riemannian manifolds according to our needs.
Some general references are [13], [9], [39], [7], [29], [12].

The fixed data is a measure λ which (for the purpose of the present
article) has a bounded density with respect to Lebesgue measure, i.e., satisfies
λ ≤ Cm for some constant C, and on a sufficiently large set, say outside a
compact set, moreover is bounded from below:

λ ≥ cm (4.6)

for some c > 0.

Definition 4.2. With λ as above, let µ be a positive Radon measure with
compact support in C. Then partial balayage of µ to λ is defined as

Bal (µ, λ) = µ+ ∆u,

where u is the smallest non-negative locally integrable function satisfying

µ+ ∆u ≤ λ, (4.7)

with ∆u denoting the distributional Laplacian of u.

The assumption (4.6) guarantees that there exist functions u ≥ 0 with
compact support satisfying (4.7), and then it follows from general potential
theory that a smallest such u exists, and also that it can be taken to be lower
semicontinuous. See the above references. In particular, the result Bal (µ, λ)
of partial balayage will be a measure with compact support.

Assume for simplicity that also µ is absolutely continuous with respect
to Lebesgue measure, say dµ = ρ dm, and that λ = m. Then u is to be the
smallest of all functions which satisfy{

u ≥ 0,

∆u ≤ 1− ρ.
(4.8)

This statement constitutes an obstacle problem on ordinary form and it has
a unique solution. This solution can also be characterized by the requirement
that the two inequalities in (4.8) shall hold in the complementary sense

u(1− ρ−∆u) = 0. (4.9)
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In general, Bal (µ, λ) is squeezed between the two natural bounds,

min{µ, λ} ≤ Bal (µ, λ) ≤ λ,

and the more detailed structure is (under our assumptions) that

Bal (µ, λ) = λχΩ + µχC\Ω. (4.10)

Here Ω denotes the largest open set in which equality holds in (4.7), in other
words, Ω = C \ supp (λ− Bal (µ, λ)). It is called the saturated set, and it
contains the noncoincidence set for the obstacle problem:

{z ∈ C : u(z) > 0} ⊂ Ω.

The inclusion may be strict, but under mild conditions the difference set is
just a Lebesgue null-set.

In view of (4.10), the saturated set Ω contains all information of the result
of partial balayage. Another characterization of this set, directly in terms of
µ and λ, is as follows:

µ < λ on C \ Ω, (4.11)∫
Ω

h dµ ≤
∫

Ω

h dλ for all h ∈ SL1(Ω, λ). (4.12)

Here (4.11) shall be interpreted as saying that C \ Ω ⊂ supp ((λ − µ)+), in
other words that whenever µ ≥ λ in some open set U it follows that U ⊂ Ω.

Recall from Section 2.1 that SL1(Ω, λ) denotes the set of subharmonic
functions in Ω which are integrable with respect to λ. This class of test
functions can, in (4.12), be replaced by just all logarithmic kernels h(z) =
log |z − a| for a ∈ C together with all h(z) = − log |z − b| for b ∈ C \ Ω, see
[33], [34]. With these test functions, (4.12) reduces to the statement that
u ≥ 0 in C, u = 0 on C \ Ω, where u now denotes the logarithmic potential
of µχΩ − λχΩ (so that ∆u = λχΩ − µχΩ). The proof of the equivalence
between (4.10) and (4.11), (4.12) then becomes straight-forward, on noting
in particular that the above u will be identical with the function u appearing
in Definition 4.2.

We shall mostly consider Bal (µ, λ) in cases when there exists an open set
D ⊂ C such that µ ≥ λ on D, µ = 0 outside D. In such cases,

Bal (µ, λ) = λχΩ. (4.13)
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When λ = m, (4.12) then expresses that Ω is a quadrature domain for
subharmonic functions for µ. This means that µ = 0 outside Ω and that∫

Ω

hdµ ≤
∫

Ω

hdm (4.14)

holds for all SL1(Ω,m), see [33] for detailed information. In terms of partial
balayage the weak solution Ω(t) at time t is obtained by

Bal (2πQ(t)δ0 + χΩ(0)m,m) = χΩ(t)m (t > 0).

Generally speaking, partial balayage destroys information: in for example
(4.13), Ω is uniquely determined by µ, but many different measures µ give
the same Ω. Therefore the balayage point of view, or the formulation with
quadrature domains for subharmonic functions, embodies the fact that not
only does Hele-Shaw flow preserve harmonic moments, so that the mass dis-
tributions 2πQ(t)δ0 +χΩ(0)m and χΩ(t)m above are gravi-equivalent, but also
that there is a time direction saying that the first mass distribution contains
more information than the second. This reflects the fact that Laplacian
growth is well-posed in one time direction (increasing t when q > 0) but
ill-posed in the other, and also reminds of the role of entropy in statistical
mechanics, which singles out one time direction.

Example 4.1. To illustrate the use of partial balayage, we note that the
measure νf(·,t)m in (4.4) may be swept to a measure of the form χΩ(t)m:
Bal (νf(·,t)m,m) = χΩ(t)m. This is the same as saying that

∫
hνf(·,t)dm ≤∫

Ω(t)
hdm for h ∈ SL1(Ω(t),m), as in (4.14) above. Taking s = 0 as initial

time and assuming for simplicity that f(·, 0) is univalent, so that νf(·,0) =
χΩ(0) with Ω(0) = f(D, 0), the inequality (4.4) gives∫

Ω(t)

hdm−
∫

Ω(0)

hdm ≥ 2πQ(t)h(0)

for functions h subharmonic in Ω(t). In other words, {Ω(t) : t ≥ 0} is
the ordinary weak solution, possibly multiply connected, with initial domain
Ω(0).

The evolution of νf(·,t) can therefore be viewed as a refinement of the
ordinary weak solution, a refinement in the sense that it contains more infor-
mation. One can always pass from νf(·,t) to χΩ(t) by balayage, but there is
in general no way to recover νf(·,t) from χΩ(t). An even more refined version
of the evolution is obtained by lifting everything to a Riemann surface over
C, which we shall now discuss.
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5 Lifting strong and weak solutions to a Rie-

mann surface

5.1 Hele-Shaw flow on manifolds

Hele-Shaw flow makes sense on Riemannian manifolds (of any dimension).
The only difference compared to the Euclidean case then is that the measure
dm = dx∧dy in, for example, (2.2) and (4.5) shall be replaced by the intrinsic
volume form of the manifold. This also indicates how (4.5) changes under
variable transformations (dm = dx ∧ dy shall be treated as a 2-form). We
shall need to make these things precise in the case that the Riemannian
manifold is a branched covering Riemann surface over C, with the metric
inherited from the Euclidean metric on C via the covering map.

Let M be a Riemann surface and p : M → C a nonconstant analytic
function, thought of as a, possibly branched, covering map. If z̃ = x̃ + iỹ is
a local holomorphic coordinate on M and z = x + iy the usual coordinate
on C then the Riemannian metric onM is taken to be the Euclidean metric
|dz|2 = dx2 + dy2, which is lifted to M by p, i.e.,

ds̃2 = |dp|2 = |p′(z̃)|2(|dx̃|2 + |dỹ|2). (5.1)

The intrinsic area form on M is similarly the pull-back of dm = dx ∧ dy to
M, namely

dm̃ =
1

2i
dp̄ ∧ dp = |p′(z̃)|2dx̃ ∧ dỹ. (5.2)

In terms of the Hermitian bilinear form dp̄⊗dp one can write ds̃2 = Re dp̄⊗dp,
dm̃ = Im dp̄⊗ dp.

Assume now that 0 ∈ p(M) and let 0̃ ∈M be a point such that p(0̃) = 0.
Then we may consider Hele-Shaw evolution onM with injection (or suction)
at 0̃. In case of a simply connected evolution Ω̃(t), let

f̃(·, t) : D→ Ω̃(t) ⊂M

be conformal maps with f̃(0, t) = 0̃ and f ′(0, t) > 0, where f = p ◦ f̃ is the
projection of f̃ to C,

f(ζ, t) = p(f̃(ζ, t)).

The latter relationship gives

ḟ(ζ, t)

ζf ′(ζ, t)
=

˙̃f(ζ, t)

ζf̃ ′(ζ, t)
, (5.3)
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which expresses invariance of the Poisson integral (2.8) under changes of
coordinates. In particular it follows that the evolution of f̃ is described by

˙̃f(ζ, t) = ζf̃ ′(ζ, t)Pg(ζ, t), (5.4)

where Pg(ζ, t) = P (ζ, t) is the Poisson integral (2.8) defined, not in terms of
f̃ ′ but in terms of g = f ′. The relationship between f ′ and f̃ ′ is

f ′(ζ, t) = p′(f̃(ζ, t))f̃ ′(ζ, t). (5.5)

If p is thought of as just a local identity map (away from branch points) then
f ′ and f̃ ′ are the same.

It should be noted that f̃(·, t) by definition always is univalent in D, in
particular f̃ ′ 6= 0 in D. If f ′ = 0 at some point in D, then it is the factor
p′(f̃(ζ, t)) in (5.5) that vanishes there. When formulated as a Polubarinova-
Galin equation the evolution of f̃ is given by

Re [ ˙̃f(ζ, t)ζf̃ ′(ζ, t)] =
q(t)

|p′(f̃(ζ, t))|2
(ζ ∈ ∂D). (5.6)

This equation is an immediate consequence of (5.4), (5.5) and (2.8). It is
actually the general form of the Polubarinova-Galin equation on a manifold
with Riemannian metric given as in (5.1), even when the integral of p′ is not
interpreted as a covering map.

In general, ˙̃f and ζf̃ ′ should be interpreted as vectors in the tangent space

of M at z̃ = f̃(ζ, t). More precisely, ˙̃f is the speed of z̃ ∈ ∂Ω̃ when ζ ∈ ∂D
is kept fixed and ζf̃ ′ is a vector pointing in the outward normal direction of
∂Ω̃. Equation (5.6) expresses that

< ˙̃f, ζf̃ ′ >M= q on ∂D, (5.7)

where < ·, · >M denotes the (real) inner product on the tangent space ofM.
Alternatively, expressed in terms of the form dm̃ = 1

2i
dp̄∧ dp, (5.6) says that

dm̃( ˙̃f, iζf̃ ′) = q on ∂D,

which can be interpreted as a Poisson bracket relation. This has in some
mathematical physics literature, see for example [1], [43], [15], been formal-
ized under the name string equation.
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Let GΩ̃(z̃, 0̃) be the Green’s function of Ω̃, vanishing on the boundary and
with behavior

GΩ̃(z̃, 0̃) = − 1

2π
log |z̃|+ harmonic

at z̃ = 0̃. Then

GΩ̃(z̃, 0̃) = − 1

2π
log |ζ|,

where z̃ = f̃(ζ, t). Since 2 ∂
∂z̃

log |ζ| = ∂
∂z̃

log ζ = 1
ζf̃ ′(ζ,t)

, this shows that (5.7),

when written on the form

< ˙̃f,
ζf̃ ′

|ζf̃ ′|
>M=

q

|ζf̃ ′|
on ∂D,

expresses that
˙̃fnormal = 2πq|∇GΩ̃(z̃, 0̃)|, (5.8)

i.e., that the boundary moves in the outward normal direction with speed
proportional to the gradient of the Green’s function. This is the classical
description of Laplacian growth.

When f(·, t) solves the Löwner-Kufarev equation it is a subordination
chain by Theorem 3.1 and hence it can be lifted to a Riemann surfaceM by
Lemma 3.1. Most of the previous formulas have simple formulations on M,
for example (2.2) generalizes to

d

dt

∫
Ω̃(t)

h dm̃ = 2πq(t)h(0̃), (5.9)

for h harmonic in a neighborhood of Ω̃(t), and where Ω̃(t) = f̃(D, t), f =
p ◦ f̃ : D → M → C. For subharmonic h we have inequality ≥. Thus on
integrating (5.9) with respect to t we arrive at the natural notion of weak
solution on the Riemann surface M.

Definition 5.1. A family of open sets {Ω̃(t) ⊂ M : t ∈ I} with compact
closure in M is a weak solution on M if, for any s, t ∈ I with s < t,
Ω̃(s) ⊂ Ω̃(t) and∫

Ω̃(t)

hdm̃−
∫

Ω̃(s)

hdm̃ ≥ 2π(Q(t)−Q(s))h(0̃) (5.10)

holds for every h ∈ SL1(Ω̃(t), m̃).

27



In terms of partial balayage onM (which makes good sense) the property
of being a weak solution, i.e., (5.10) together with Ω̃(s) ⊂ Ω̃(t), translates
into

Bal (2π(Q(t)−Q(s))δ0̃ + χΩ̃(s)m̃, m̃) = χΩ̃(t)m̃ (s < t). (5.11)

5.2 Examples

Example 5.1. The purpose of this example is to prepare for the way the
definition of a weak solution is going to be used in the proof of Theorem 7.1.
For later clarity we spell out everything quite much in detail.

Choose s = 0 in Definition 5.1 and assume that the domain Ω̃(0) =
f̃(D, 0) = f̃(D) at time s = 0 is obtained by uniformization of some fixed
f ∈ Onorm(D), as in Section 3. Thus f = p ◦ f̃ , where p is the covering map
p : Ω̃(0)→ C which, in terms of the trivial decomposition

D id−→ D f−→ C,

is obtained by interpreting the second D as an abstract Riemann surface,
identified as Ω̃(0). The names of the mappings are then shifted to

D f̃−→ Ω̃(0)
p−→ C.

By assumption, f is analytic in some larger disk, say in D(0, ρ), ρ > 1.
Thus the two diagrams extend to

D(0, ρ)
id−→ D(0, ρ)

f−→ C, (5.12)

D(0, ρ)
f̃−→M p−→ C, (5.13)

respectively, which defines the Riemann surface M as being the conformal
image of D(0, ρ) under f̃ . In particular, Ω̃(0) ⊂ M, and for small enough
t > 0 the weak solution with initial domain Ω̃(0) will stay compactly in M.
The defining property of the solution domain Ω̃(t) ⊃ Ω̃(0) at time t > 0
is, when formulated in terms of the abstract Riemann surface notations of
(5.13), ∫

Ω̃(t)

h̃dm̃−
∫

Ω̃(0)

h̃dm̃ ≥ 2πQ(t)h̃(0̃). (5.14)
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This is to hold for all integrable (with respect to m̃) subharmonic functions
h̃ in Ω̃(t). When the same property is formulated by identifying M with
D(0, ρ) as in (5.12) it becomes∫

D(t)

h|g|2dm−
∫
D
h|g|2dm ≥ 2πQ(t)h(0), (5.15)

to hold for all subharmonic h in D(t), integrable with respect to the measure
|g|2dm. Here D(t) = f̃−1(Ω̃(t)) ⊂ D(0, ρ), g = f ′, and h = h̃ ◦ f̃ , which is
subharmonic if and only if h̃ is. Note that (by definition, (5.1)) dm̃ = p∗(dm)
in the picture (5.13), which becomes |g|2dm in the picture (5.12).

The domains Ω̃(t) and D(t) are not necessarily simply connected when
t > 0, as they are defined only in terms of a weak solution. Eventually,
however, we want to assert that they are simply connected if t > 0 is small
enough (Conjecture 7.3).

The only thing which can make a weak solution break down is that it runs
out of the manifold,M. Then the natural thing to do is to try to extendM
to a larger manifold. Weak solutions are unique (up to null-sets), but they of
course depend on the choice of M and p. If we take M to be, for example,
a disk D(0, a) ⊂ C then, assuming Q(t) → ∞ as t → ∞, any Hele-Shaw
evolution will eventually run out of M. The following example shows that
there are always many different ways of enlarging M, which then give rise
to different Hele-Shaw evolutions.

Example 5.2. Choose a point a > 0 on the positive real axis, to be used as
a stopping point and also as a branch point. Let M = D(0, a) be the disk
reaching out to a, and consider it as a Riemann surface with trivial projection
map p(z) = z to C. Then starting from empty space a Hele-Shaw flow
evolution on M with injection at the origin gives a family of growing disks,
say Ω(t) = D(0, at) on the time interval 0 < t < 1, as a weak (and strong)
solution for the source strength q(t) = a2t (so that Q(t) = 1

2π
m(D(0, at))).

At time t = 1 it runs out ofM, but it can be continued without any changes
on the trivially extended Riemann surface M1 = C, for 0 < t <∞.

However, it can also be continued in many other ways. Let for example
C1, C2 be two copies of C and consider

M2 = (C1 \ {a}) ∪ (C2 \ {a}) ∪ {a}

as a covering surface of C with a branch point at z = a. The covering map
p : M2 → C identifies any point on Cj (j = 1, 2) with the corresponding
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point on C. This is also true at z = a, but a more accurate description there
has to be given in terms of a local coordinate. We may for example choose
a local coordinate z̃ on M2 so that z̃ = 0 corresponds to z = a and, more
precisely, so that

p2(z̃) = z̃2 + a.

Thus, with z = p2(z̃), z̃ =
√
z − a. This coordinate z̃ is actually a global

coordinate onM2 and it makesM2 appear as the classical Riemann surface
of the multivalued function

√
z − a.

In terms of the above coordinate, the area form of M2 is

dm̃2 =
1

2i
dp̄2 ∧ dp2 = 4|z̃|2dx̃dỹ.

The source point is to be one of the two points ±
√
−a on M2 above 0 ∈ C,

let it be 0̃ = i
√
a,
√
a denoting the positive root. Now the definition of a

weak solution on M2 becomes, explicitly,

4

∫
Ω̃(t)

h(z̃)|z̃|2dx̃dỹ − 4

∫
Ω̃(s)

h(z̃)|z̃|2dx̃dỹ ≥ 2π(t− s)h(i
√
a),

to hold for all integrable (with respect to m̃2) subharmonic functions h in
Ω̃(t). Expressed in the coordinate z̃ it is thus a weighted Hele-Shaw flow,
as discussed in for example [19]. It exists for all 0 < t < ∞, but it is
certainly different from the solution Ω(t) on M1 = C. For t > 1, and when
viewed on M2, part of Ω̃(t) continues on the original (‘lower’) sheet, say
C1, while part goes to the ‘upper’ sheet C2. Hedenmalm and Shimorin [19]
use the terminology ‘wrapped Hele-shaw flow’ when the solution goes up on
a Riemann covering surface, at least in the case when there are no branch
points.

Example 5.3. This example can be viewed as a continuation of Example 5.2
(and also of Example 3.1), but from a different point of view. It is based on
an example of Sakai [35], and it appears also, from a different point of view,
in [17]. Let

f(ζ, t) = b(t)
ζ(ζ − 2t−1 + t−3)

ζ − t
,

where 1 < t <∞ and b(t) ∈ R are parameters. The derivative is

g(ζ, t) = b(t)
(ζ − t−1)(ζ − 2t+ t−1)

(ζ − t)2
. (5.16)
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We see that g has two zeros, ω1(t) = t−1 ∈ D and ω2(t) = 2t−t−1 ∈ C\D, and
that g(ζ, t)dζ, as a differential, has double poles at ζ1(t) = t = 1

2
(ω1(t)+ω2(t))

and at infinity. The data of g are special in two ways: first of all ω1 and ζ1

are reflections of each other with respect to the unit circle, and secondly ω2

is chosen so that gdζ has no residues (which is immediately clear since f has
no logarithmic poles).

Since ω1(t) ∈ D, f(·, t) is not locally univalent in D, but it generates the
same moments as a disk: all moments (defined by the rightmost member in
(2.4)) vanish, except the first one which is

M0(t) = b(t)2 2t2 − 1

t4
.

More generally, the corresponding quadrature identity is

1

π

∫
D
h(ζ)|g(ζ, t)|2dm(ζ) = b(t)2 2t2 − 1

t4
h(0), (5.17)

holding for h analytic and integrable in D. This formula also shows that, for
the special choice b(t) = t2√

2t2−1
, g(ζ, t) is a contractive (inner) zero divisor

in the sense of Hedenmalm [17], [18].
Despite (5.17), f(ζ, t) in general does not solve the Polubarinova-Galin

equation (2.1). Only for one particular choice of b(t) it does. This choice
is determined by the requirement that f(ω1(t), t) shall be time independent.
Since

f(ω1(t), t) = f(t−1, t) =
b(t)

t3

this condition gives
b(t) = at3, (5.18)

where a is a constant. A calculation shows that for this particular choice of
b(t), the Polubarinova-Galin equation indeed holds with q(t) = a2t(4t2 − 1):

Re
[
ḟ(ζ, t)ζf ′(ζ, t)

]
= a2t(4t2 − 1) for ζ ∈ ∂D.

Note that q(t) > 0. Also the Löwner-Kufarev equation holds, because
f(ω1(t), t) = a is fixed (cf. Theorem 3.1).

Now we shall see that, taking a > 0, the above solution, namely

f(ζ, t) =
aζ(t3ζ − 2t2 + 1)

ζ − t
,
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is exactly the projection under p2 of the evolution on M2 in Example 5.2.
In fact, since f(·, t) maps the zero ω1(t) ∈ D of g(ζ, t) onto the fixed point
a, f(·, t) lifts to a map f̃(·, t) into the surface M2. Inverting p2(z̃) = z̃2 + a
gives the explicit expression

f̃(ζ, t) =
√
f(ζ, t)− a =

√
at(tζ − 1)2

ζ − t
.

This function, for any fixed t > 1, is univalent, f̃(·, t) : D→ Ω̃(t) ⊂M2, and
as a function of t it represents, in the coordinate z̃, the Hele-Shaw evolution
on M2. Indeed, it satisfies the Polubarinova-Galin equation on M2:

Re
[

˙̃f(ζ, t)ζf̃ ′(ζ, t)
]

=
q(t)

4|f̃(ζ, t)|2
for ζ ∈ ∂D.

This is an instance of (5.6), as p′2(z̃) = 2z̃.
As a summary, we write up in coordinates, z and z̃, and 0 < t <∞, the

complete evolution in Example 5.2, namely the growing disk which at the
point a climbs up to the Riemann surface M2:

(i) In terms of z, solving the ordinary Löwner-Kufarev equation (2.7),
(2.8),

f(ζ, t) =

{
atζ (0 < t < 1),
aζ(t3ζ−2t2+1)

ζ−t (1 < t <∞).
(5.19)

Notice that both of the expressions above are (real) analytic in t, even across
the junction value t = 0. Thus the combined function f(ζ, t) is piecewise real
analytic with respect to t.

(ii) In terms of z̃, for which we have (5.4) and (5.6) when t 6= 1, and for
which the entire solution (across t = 1) is a weak solution on M2,

f̃(ζ, t) =

{√
a(tζ − 1) (0 < t < 1),√
at(tζ−t)2
ζ−t (1 < t <∞).

The source strength is

q(t) =

{
a2t (0 < t < 1),

a2t(4t2 − 1) (1 < t <∞).
(5.20)
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Here we can see a discontinuity of q(t) at t = 1. However this is harmless,
and can be avoided by using another time parametrization. For example one
could define f(ζ, t) = at3ζ, f̃(ζ, t) =

√
a(t3ζ − 1) for 0 < t < 1, which gives

the same family of domains, just traversed with a different speed. This would
give q(t) = 3a2t5 for 0 < t < 1, making q(t) continuous across t = 1.

5.3 The Riemann surface solution pulled back to the
unit disk

For a function h(ζ, t) which is holomorphic in ζ, the requirement (4.1), with
Ψ = h, reduces to the simpler statement

ḣ(ζ, t)f ′(ζ, t) = ḟ(ζ, t)h′(ζ, t). (5.21)

This can be viewed as the vanishing of a functional determinant and can
alternatively be written as

ḣ(ζ, t)

ζh′(ζ, t)
=

ḟ(ζ, t)

ζf ′(ζ, t)
, (5.22)

where (on dividing by ζ) we also have used that f(0, t) = 0 for all t. When f
solves the Löwner-Kufarev equation (2.7) the right member is holomorphic
in D and equals P (ζ, t). Then (5.22) means that h solves the same Löwner-
Kufarev equation as f . This can be interpreted as saying that ‘h flows with
f ’, and it also follows that the h(ζ, t) are subordinated by the same functions
as f(ζ, t):

h(ϕ(ζ, s, t), t) = h(ζ, s) (s ≤ t). (5.23)

Here ϕ(ζ, s, t) are the subordination functions in (3.4). Note that (5.23), or
(5.21), implies that h(0, t) = h(0, s) (or ḣ(0, t) = 0).

We can now assert

Proposition 5.1. Let t 7→ f(·, t) ∈ Onorm(D) be a smooth evolution on some
time interval and assume that f ′ 6= 0 on ∂D on this time interval. Then
f(·, t) solves the Polubarinova-Galin equation (2.1) if and only if

d

dt

∫
D
h(ζ, t)|f ′(ζ, t)|2 dm(ζ) = 2πq(t)h(0, t). (5.24)

for every function h(·, t) ∈ O(D) which satisfies (5.21) (equivalently, (4.1)
or (5.23)), and it solves the Löwner-Kufarev equation (2.7) if and only if
moreover (3.5) holds (equivalently, f(·, t) is a subordination chain).
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Proof. The proposition follows immediately from Lemma 4.1 and Theorem 3.1
since Reh|∂D and Imh|∂D range over a dense set of functions in (5.24).

Also the Riemann surface weak formulation (5.10) can, in case relevant
domains are simply connected, be pulled back to the unit disk in various
ways. In Example 5.1 this was done by pulling the initial domain back to D,
which works well for discussing solutions on a short time interval 0 ≤ t < ε.
However, to discuss global solutions it is better to fix a final time t = T
under consideration, and then pull back the domain Ω̃(T ) ⊂M at that time
to D, assuming that Ω̃(T ) is simply connected. Then all previous domains
become subdomains of D.

Thus fixing T and identifying Ω̃(T ) with D via f̃(·, T ), equation (5.10)
becomes, for s < t ≤ T and on setting g = f ′ as usual,∫

D(t,T )

h(z)|g(z, T )|2 dm(z)−
∫
D(s,T )

h(z)|g(z, T )|2 dm(z) (5.25)

≥ 2π(Q(t)−Q(s))h(0),

to hold for h ∈ SL1(D(t, T ),m). Here the domains D(s, T ) = f̃−1(Ω̃(s), T ),
D(t, T ) = f̃−1(Ω̃(t), T ), satisfying D(s, T ) ⊂ D(t, T ) ⊂ D, need not be
simply connected. Choosing t = T = 0 with s < 0 gives∫

D
h(z)|g(z, 0)|2 dm(z)−

∫
D(s)

h(z)|g(z, 0)|2 dm(z) ≥ −2πQ(s)h(0), (5.26)

where D(s) = D(s, 0) ⊂ D and Q(s) < 0. This is a counterpart of (5.15)
for negative times. It also connects to the theory of finite contractive zero
divisors: starting, as in Example 5.2, a Hele-Shaw evolution on a Riemann
surfaceM from empty space, we have D(s) = ∅ at the initial time s < 0, and
then (5.26) can be identified with the definition of an inner divisor (namely
g(z, 0) in the above equation), as in [17], [18].

The weak solution can be coupled to the Löwner-Kufarev equation only
if the domains Ω̃(t), or D(t, T ), are simply connected. When this is the
case we have D(t, T ) = ϕ(D, t, T ), where ϕ(ζ, s, t) are the subordination
functions associated to the conformal maps f(·, t) : D → Ω̃(t). In such a
case, and returning to (5.25), choosing T = t there and making the variable
transformation z = ϕ(ζ, s, t) in the last integral, one gets∫

D
h(z)|g(z, t)|2 dm(z)−

∫
D
h(ϕ(ζ, s, t))|g(ζ, s)|2 dm(ζ) (5.27)
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≥ 2π(Q(t)−Q(s))h(0),

to hold for h subharmonic and integrable in D. For harmonic h we have
equalities in the above inequalities because both of ±h are then subharmonic.
The relation (5.27) can also be obtained directly by integrating (5.24) and
using (5.23). Note that for time dependent test functions, h(z, t), which
satisfy (5.23), the relation (5.27) takes the simpler form∫

D
h(z, t)|g(z, t)|2 dm(z)−

∫
D
h(z, s)|g(z, s)|2 dm(z) ≥ (5.28)

≥ 2π(Q(t)−Q(s))h(0, t).

As for the right member, h(0, t) is actually independent of t by (5.23).
We summarize:

Proposition 5.2. A family {f(·, t) ∈ Onorm(D) : 0 ≤ t ≤ T} represents
a weak solution as in Definition 5.1 (with I = [0, T ]) if an only if it is a
subordination chain as in Definition 3.2 and (5.27) holds for 0 ≤ s < t ≤ T .

6 Compatibility between balayage and cover-

ing maps

The family of branched covering surfaces over C form a partially ordered set
in a natural way. Within in each of the surfaces one can perform partial
balayage, sweeping to the area form lifted from C. Thus we have two kinds
of projection maps, reducing refined objects to cruder objects containing less
information:

(i) The first is the balayage operator taking, for example, an initial do-
main Ω(0) to the domain at a later time Ω(t) by sweeping out the accumu-
lated source:

Bal (2πQ(t)δ0̃ + χΩ(s)m̃, m̃) = χΩ(t)m̃.

This map is really an orthogonal projection in a Hilbert space (e.g., the
Sobolev spaceH1

0 (M) = W 1,2
0 (M) if the Dirac measures are suitably smoothed

out). It is a ‘horizontal’ projection, within each covering surface.
(ii) The second is the branched covering map between two Riemann sur-

faces, by which a measure on the higher surface can be pushed down to a
measure on the lower surface. One may think of this as a ‘vertical’ projection.
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The aim of the present section is to show that these two projections
commute in an appropriate sense. Let p : M → C be a branched covering
map, i.e., p is a nonconstant analytic function. By p∗ we denoted the push-
forward map, which can be applied to measures on M, to (parametrized)
chains for integration (simply by composition), etc. Similarly, p∗ denotes the
pull-back map, which can be applied to functions and differential forms on
C. If for example Ω̃ is a domain in M, thought of as the oriented 2-chain
parametrized by some f̃ : D → M (Ω̃ = f̃(D)), then p∗Ω̃ is the 2-chain
parametrized by f = p ◦ f̃ : D → C, which can be thought of as Ω = f(D)
with appropriate multiplicities. In other words, p∗ takes the measure χΩ̃m̃,
on M, where dm̃ = p∗dm = d(p ◦ x) ∧ d(p ◦ y), to νfm on C, νf being the
counting function, Definition 3.1.

Note that p∗ and p∗ are linear maps on suitable vector spaces and that
they, in some formal sense, are each others adjoints. For example, for mea-
sures µ with compact support on M and continuous functions ϕ on C we
have ∫

C
ϕd(p∗µ) =

∫
M

(ϕ ◦ p) dµ =

∫
M

(p∗ϕ) dµ.

The first identity here can be used as a definition of p∗ when it acts on
measures, and p∗(ϕ) is simply defined as ϕ ◦ p. See further Section 4.1.7 in
[4].

In order to be able to use systematic notations we now denote the complex
plane byM, and we call the covering surface M̃. This makes the proposition
below look like a quite general result (which it in fact is, but we shall only
prove it under the stated assumptions).

Proposition 6.1. With p : M̃ →M a nonconstant proper analytic map be-
tween two Riemann surfaces, whereM = C, let µ̃ be a measure with compact
support in M̃, λ a measure on M, absolutely continuous with respect to m
and satisfying (4.6), and let λ̃ be a measure on M̃ satisfying λ̃ ≥ p∗λ. Then

Bal (p∗Bal (µ̃, λ̃), λ) = Bal (p∗µ̃, λ).

Proof. Since M = C and p is proper, M̃ will be large enough for Bal (µ̃, λ̃)
to exist and have compact support in M̃. Set then

ν̃ = Bal (µ̃, λ̃),

ν ′ = Bal (p∗ν̃, λ),
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µ = p∗µ̃,

ν = Bal (µ, λ)

and we shall show that ν ′ = ν.
By the general structure of partial balayage (4.10) we have

ν̃ = λ̃χΩ̃ + µ̃χM̃\Ω̃, (6.1)

where Ω̃ ⊂ M̃ is the maximal open set in which ν̃ = λ̃. Recall (4.11), (4.12)
that this Ω̃ can also be characterized by{

µ̃ < λ̃ on M̃ \ Ω̃,∫
Ω̃
ψ dµ̃ ≤

∫
Ω̃
ψ dλ̃ for all ψ ∈ SL1(Ω̃, λ̃).

(6.2)

Here SL1(Ω̃, λ̃) may be replaced by a smaller test class, as discussed after
(4.11), (4.12), to avoid some possible integrability problems below.

Similarly to the above we have

ν ′ = λχΩ′ + (p∗ν̃)χM\Ω′ (6.3)

where Ω′ ⊂M is characterized by{
p∗ν̃ < λ on M\ Ω′,∫

Ω′
ϕd(p∗ν̃) ≤

∫
Ω′
ϕdλ (ϕ ∈ SL1(Ω′, λ)),

(6.4)

and
ν = λχΩ + µχM\Ω, (6.5)

with Ω ⊂M characterized by{
µ < λ on M\ Ω,∫

Ω
ϕdµ ≤

∫
Ω
ϕdλ (ϕ ∈ SL1(Ω, λ)).

Since p∗ is a linear operator (6.1) gives

p∗ν̃ = p∗(λ̃χΩ̃) + p∗(µ̃χM̃\Ω̃). (6.6)

By the assumption λ̃ ≥ p∗(λ) we have p∗(χΩ̃λ̃) ≥ λχp(Ω̃). Thus (6.6) shows

that p∗ν̃ ≥ λ in p(Ω̃). It follows that ν ′ ≥ λ in p(Ω̃), hence

p(Ω̃) ⊂ Ω′. (6.7)
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By definition of p∗ν̃, the second part of (6.4) spells out to∫
p−1(Ω′)

(ϕ ◦ p) dν̃ ≤
∫

Ω′
ϕdλ (ϕ ∈ SL1(Ω′, λ)),

which in view of (6.1) gives that∫
p−1(Ω′)∩Ω̃

(ϕ ◦ p) dλ̃+

∫
p−1(Ω′)\Ω̃

(ϕ ◦ p) dµ̃ ≤
∫

Ω′
ϕdλ (ϕ ∈ SL1(Ω′, λ)).

Next we take ψ = p∗ϕ = ϕ ◦ p in (6.2). This gives∫
Ω̃

(ϕ ◦ p) dµ̃ ≤
∫

Ω̃

(ϕ ◦ p) dλ̃ (ϕ ∈ SL1(Ω′, λ)).

Combining with the previous inequality, and using that p−1(Ω′) ⊃ Ω̃ by (6.7),
gives, for ϕ ∈ SL1(Ω′, λ),∫

Ω′
ϕdµ =

∫
p−1(Ω′)

(ϕ ◦ p) dµ̃ =

∫
Ω̃

(ϕ ◦ p) dµ̃+

∫
p−1(Ω′)\Ω̃

(ϕ ◦ p) dµ̃

≤
∫

Ω̃

(ϕ ◦ p) dλ̃+

∫
p−1(Ω′)\Ω̃

(ϕ ◦ p) dµ̃ ≤
∫

Ω′
ϕdλ (ϕ ∈ SL1(Ω′, λ)).

In summary, ∫
Ω′
ϕdµ ≤

∫
Ω′
ϕdλ (ϕ ∈ SL1(Ω′, λ)). (6.8)

We also have, by (6.1), (6.4) and, respectively, (6.7),

p∗(µ̃χM̃\Ω̃) ≤ p∗ν̃ < λ on M\ Ω′,

p∗(µ̃χΩ̃) = 0 in M\ Ω′.

Therefore µ = p∗µ̃ < λ on M\ Ω′. In combination with (6.8) this gives

ν = λχΩ′ + µχM\Ω′ .

Now (6.3), (6.6), (6.7) finally give

ν ′ = λχΩ′ + (p∗ν̃)χM\Ω′ = λχΩ′ + (p∗(λ̃χΩ̃) + p∗(µ̃χM̃\Ω̃))χM\Ω′

= λχΩ′ + (p∗µ̃)χM\Ω′ = λχΩ′ + µχM\Ω′ = ν,

as desired.
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7 Global simply connected weak solutions

As already mentioned, given p : M → C as in Section 5 and any initial
domain Ω̃(0) ⊂M with 0̃ ∈ Ω(0), a unique global weak solution {Ω̃(t) : 0 ≤
t <∞}, in the sense of Definition 5.1, exists if justM is large enough. And
if M is not large enough from outset it may always be extended, in many
ways (cf. Example 5.2), to allow for such a global weak solution. However,
even if the initial domain Ω̃(0) is simply connected the weak solution will in
general not remain simply connected all the time.

Now, our main statement, Theorem 7.1, asserts that if Ω̃(0) is simply
connected and has analytic boundary, then it is indeed always possible to
choose M⊃ Ω̃(0) so that the solution Ω̃(t) in M remains simply connected
all the time. Without referring to any Riemann surface the assertion may
be formulated simply as saying that there exists a global weak solution of
the Löwner-Kufarev equation, for any given f(·, 0) ∈ Onorm(D). The solution
cannot not always be smooth in t, because if zeros of g = f ′ reach the unit
circle then it is in most cases necessary to change the structure of g in order to
make the solution go on. The Riemann surfaces involved are needed mainly
to make the appropriate notion of a weak solution precise (Definition 5.1).

The difficulty in constructing M lies in the fact that it cannot be con-
structed right away, but has to be created along with the solution. It has
to be updated every time a zero of g for the corresponding Löwner-Kufarev
equation reaches the unit circle. Unfortunately, as we have not been able
to settle Conjecture 1.1 stated in the introduction, we have to include the
validity of this conjecture among the assumptions in the theorem below. The
precise formulation is as follows.

Theorem 7.1. Let f(·, 0) ∈ Onorm(D) be given, together with q(t) ≥ 0 (0 ≤
t < ∞) such that Q(t) → ∞ as t → ∞. Then, under the assumption that
Conjecture 1.1 (or Conjecture 7.3 below) is true, there exists a Riemann
surface M, a nonconstant holomorphic function p : M → C and a point
0̃ ∈M with p(0̃) = 0 such that the following assertions hold.

(i) f(·, 0) factorizes overM, i.e., there exists a univalent function f̃(·, 0) :
D→M with f̃(0, 0) = 0̃ such that f(·, 0) = p(f̃(·, 0)).

(ii) On setting Ω̃(0) = f̃(D, 0), the weak Hele-Shaw evolution {Ω̃(t)} onM
with initial domain Ω̃(0) exists for all 0 ≤ t < ∞ and Ω̃(t) is simply
connected for each t.
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(iii) Let νf(·,t) denote the counting function of f(·, t) = p(f̃(·, t)) and let Ω(t)
denote the domain obtained by partial balayage of νf(·,t)m onto Lebesgue
measure m:

Bal (νf(·,t)m,m) = χΩ(t)m.

Then the family {Ω(t)} is a weak solution in the ordinary sense on C,
with the domains Ω(t) possibly multiply connected.

For the proof of Theorem 7.1 we shall need a few auxiliary results, stated
below.

Lemma 7.1. Let f ∈ Onorm(D) and let 0 < r < 1. Then the following are
equivalent.

(i) f extends to be meromorphic in D(0, 1
r
) with poles only at the reflected

(in ∂D) zeros of g, more precisely so that fg∗ ∈ O(D(0, 1
r
) \ D).

(ii) For every number ρ with r < ρ < 1 there exists a constant Cρ such that

|
∫
D
h|g|2dm| ≤ Cρ sup

D(0,ρ)

|h| (h ∈ O(D)). (7.1)

(iii) For every number ρ with r < ρ < 1 there exists a (signed) measure σ
with suppσ ⊂ D(0, ρ) such that∫

D
h|g|2dm =

∫
hdσ (h ∈ O(D)). (7.2)

Proof. Assume (i). Then for every r < ρ < 1 we have∫
D
h|g|2dm =

1

2i

∫
∂D
hf̄df =

1

2i

∫
∂D
hf ∗gdζ =

1

2i

∫
∂D(0,ρ)

hf ∗gdζ,

where we used that f ∗g = (fg∗)∗ ∈ O(D \D(0, r)), by assumption. Now (ii)
follows with Cρ = 1

2

∫
∂D(0,ρ)

|f ∗g||dζ|.
That (ii) implies (iii) follows from general functional analysis (the Hahn-

Banach theorem and the Riesz representation theorem for functionals on
C(D(0, ρ)), see [31]).
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Assume now (iii) and we shall prove (i). Consider the Cauchy transforms
of σ and, |g|2χD, defined by

σ̂(z) =
1

π

∫
D

dσ(ζ)

z − ζ
,

G(z) =
1

π

∫
D

|g(ζ)|2dm(ζ)

z − ζ
, (7.3)

respectively. Here G is defined and continuous in all C and satisfies, in the
sense of distributions,

∂G

∂z̄
= ggχD.

Thus, in D,
G = f̄ g +H

for some H ∈ O(D). This equality also defines H on ∂D, by which it becomes
continuous on D.

On the other hand, (7.2) shows that σ̂ = G outside D, and by continuity
this also holds on ∂D. Hence

f ∗g = f̄ g = G−H = σ̂ −H

on ∂D, and since the right member is holomorphic in D \D(0, ρ) the desired
meromorphic extension of f follows.

If f(·, t) ∈ Ouniv(D) is a univalent weak solution then it is known [11],
[16] that the radius of analyticity of f is an increasing function of time. In
the non-univalent case this is no longer true, but there is a related radius
(essentially 1/r in the previous lemma) which is stable in time (actually
increases), and this will be a good enough statement for our needs.

Lemma 7.2. Let Ω̃(·, t) = f̃(D, t) be a simply connected weak solution on a
Riemann surface M with projection p :M→ C and let f(ζ, t) = p(f̃(ζ, t)).
Assume q(t) ≥ 0 and that for a certain 0 < r < 1 the equivalent conditions
in Lemma 7.1 hold for f = f(·, 0). Then they hold with the same r for all
f(·, t), t > 0.
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Proof. If f(·, t) ∈ Onorm(D) is a weak solution on M starting at t = 0 then,
by (5.27),∫

D
h(z)|g(z, t)|2 dm(z) =

∫
D
h(ϕ(ζ, 0, t))|g(ζ, 0)|2 dm(ζ) + 2πQ(t)h(0)

for all h ∈ O(D). Assume now that condition (ii) of Lemma 7.1 holds at
t = 0 for some 0 < r < 1. Since |ϕ(ζ, 0, t)| ≤ |ζ| by Schwarz’ lemma we then
get, for an arbitrary ρ with r < ρ < 1,

|
∫
D
h(ϕ(ζ, 0, t))|g(ζ, 0)|2dm(ζ)| ≤ Cρ sup

ζ∈D(0,ρ)

|h(ϕ(ζ, 0, t))| ≤ Cρ sup
z∈D(0,ρ)

|h(z)|,

hence

|
∫
D
h(z)|g(z, t)|2 dm(z)| ≤ (Cρ + 2πQ(t)) sup

z∈D(0,ρ)

|h(z)|.

This shows that (ii) of Lemma 7.1 holds also at any time t > 0, with the
same r as for t = 0, which is what we needed to prove.

The final auxiliary result is a conjecture, which is very likely to be true but
for which we have no complete proof at present. It was therefore was listed
among the assumptions in Theorem 7.1. It concerns the issue of keeping Ω̃(t)
simply connected all the time. With the weak solution pulled back to D, as
in Example 5.1, the crucial statement becomes the following, formulated in
terms of (5.15).

Conjecture 7.3. Let g ∈ O(D) be fixed (independent of t) and denote by
{D(t) : 0 ≤ t < ε} the weak solution for the weight |g|2 and initial domain
D(0) = D, with ε > 0 is so small that all domains D(t) are compactly
contained in the region of analyticity of g. In other words,∫

D(t)

h|g|2dm ≥
∫
D
h|g|2dm+ 2πQ(t)h(0)

for every h ∈ SL1(D(t), |g|2m), and 0 ≤ t ≤ ε. Then, if ε > 0 is suffi-
ciently small, the domains D(t) are star-shaped with respect to the origin, in
particular simply connected.
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In terms of partial balayage, D(t) ⊃ D is given by

Bal (2πQ(t)δ0, |g|2χG\Dm) = |g|2χD(t)\Dm,

where G ⊃ D is the domain of analyticity of g. If g has no zeros on ∂D, then
Conjecture 7.3 indeed holds, by virtue of stability results for free boundaries
[2], [5], or else by existence of classical solutions [3]. But we need Conjec-
ture 7.3 exactly in the case when g has zeros on ∂D.

Some steps towards a proof of Conjecture 7.3. In terms of the function
u = u(z, t) appearing in Definition 4.2 for the choice µ = 2πQ(t)δ0, λ =
|g|2χG\Dm, the weak solution {D(t) : 0 ≤ t < ε} is given by

D(t) = {z ∈ C : u(z, t) > 0}

with u satisfying (and determined by)
u ≥ 0 in C,
∆u = |g|2χD(t)\D − 2πQ(t)δ0 in C,
u = |∇u| = 0 outside D(t).

These properties follow in a standard manner from the complementarity sys-
tem (of type (4.8), (4.9)) satisfied by u.

Now write, in terms of polar coordinates z = reiθ,

v = r
∂u

∂r
.

This function is continuous in C \ {0} because the elliptic partial differential
equation which u satisfies (in the sense of distributions) shows that u is
continuously differentiable, even across ∂D(t). In order to show that D(t)
is star-shaped it is enough to show that u decreases in each radial direction,
i.e., that v ≤ 0. This is what one hopes to show, for t > 0 small enough.

In the region D(t) \ D we have ∆u = |g|2, and easy computations show
that this translates into the equation

∆v = 2|g|2 Re(1 +
zg′

g
), z ∈ D(t) \ D, (7.4)

for v. As to boundary conditions we have

v = 0 on ∂D(t),
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since u vanishes together with its first derivative there. Inside D, u(z) =
−Q(t) log |z| + harmonic, and except for the logarithmic singularity at the
origin, u is continuously differentiable in all D(t). It follows that v is har-
monic in D with v(0) = −Q(t) and that v is continuous in all D(t). (On ∂D
there is a jump in the first derivatives.)

Unfortunately we cannot be sure of the sign of the right member of (7.4).
If we knew that it was nonnegative, then the desired conclusion v ≤ 0 would
follow immediately from the maximum principle. To clarify the situation we
make a local analysis around a point on ∂D at which g vanishes. We may
assume that this point is z = 1, and then we can write

g(z) = (z − 1)dh(z),

where d is the order of the zero and h is analytic with h(1) 6= 0. We compute
the right member of (7.4) as

2|g(z)|2 Re(1 +
zg′(z)

g(z)
) = 2|z − 1|2d|h(z)|2 Re(1 +

dz

z − 1
+
zh′(z)

h(z)
)

= 2|z−1|2d Re(zh′(z)h(z))+2|z−1|2(d−1)|h(z)|2 Re((z−1)(z̄−1)+d·z(z̄−1))

= 2|z−1|2(d−1)|h(z)|2
(
|z − 1|2 Re

zh′(z)

h(z)
+ (d+ 1)(|z − d+ 2

2d+ 2
|2 − (

d

2d+ 2
)2

)
.

Here the second term inside the bracket is positive outside the circle with
center d+2

2d+2
and radius d

2d+2
, in particular outside D, while the first term may

have any sign.
Thus, the right member in (7.4) is positive in major parts of neighbor-

hoods (outside D) of points on ∂D where g vanishes. In some examples, like
if h is constant, which will be the case in the example in Section 9.3 below,
it follows that the right member in (7.4) is positive in all D(t) \ D, and the
star-shapedness can be inferred. Close to other points on ∂D one can per-
form an analysis based on known stability behavior of free boundaries [2],
[5]. This gives at least that, outside any fixed neighborhood of z = 1, D(t)
does not have any holes if t > 0 is small enough.

Proof. (of theorem)
To get started, observe that we can findM so that (i) holds. It is just to

take M = D, f̃(ζ, 0) = ζ and p = f(·, 0). Compare the proof of Lemma 3.1.
The remaining part of the proof consists of extending the Riemann surface
M so that (ii) remains valid; (i) will automatically remain valid.
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So assume that we have constructed M so that (ii) holds on a time
interval [0, T ], where T ≥ 0 (T = 0 not excluded). We shall show how to
extend M (if necessary) and the solution, to some interval [0, T + ε], ε > 0.

We have Ω̃(t) = f̃(D, t), where f̃(·, t) : D → M, f(·, t) = p ◦ f̃(·, t) ∈
Onorm(D), f(·, t) is a subordination chain and f(·, t) is meromorphic in a disk
D(0, 1

r
), with 0 < r < 1 independent of t by Lemma 7.2.

Set MT = Ω̃(T ) ⊂ M. This is the only part of M which is needed up
to time T , and it can be identified with DT = D via f̃(·, T ). Now choose
1 < ρ < 1

r
(with r as in Lemma 7.2) so that f ′(ζ, T ) has no zeros for

1 < |ζ| < ρ (but may have it for |ζ| = 1). Viewing D(0, ρ) ⊃ D as a Riemann
surface over C with covering map f(·, T ) we get, on the level of abstract
Riemann surfaces, an extensionM′ ⊃M ofM. OnM′ we can continue the
weak solution to some time interval [0, T +ε], ε > 0. Compare the discussion
in Example 5.1. For ε > 0 small enough this solution Ω̃(t) remains simply
connected, assuming Conjecture 7.3. Then set MT+ε = Ω̃(T + ε).

Thus we can always extend a weak solution defined on a closed time
interval to a larger interval. We also have to show that whenever we have
a solution on a half-open interval [0, T ) (with T > 0) it can be extended to
the closure [0, T ]. However, this is fairly immediate because we can simply
define Ω̃(T ) = MT = ∪0≤t<TMt (cf. proof of Lemma 3.1). This surface
is easily seen to be simply connected (because any closed curve in MT will
lie entirely in Mt for some t < T ). Moreover, the defining property (5.10)
of a weak solution will hold on all [0, T ], and since the radius of analyticity
of f(·, T ) : D → Ω̃(T ) is larger than one (Lemma 7.2), Ω̃(T ) ∼= D will
have compact closure in a larger Riemann surface M ⊃ MT , on which the
evolution may continue.

The above arguments show that there is no finite stopping time for the
construction of M and a simply connected weak solution in M. Therefore
part (ii) of the theorem follows.

Assertion (iii) of the theorem is an easy consequence of Proposition 6.1.

8 General structure of rational solutions

In this section we shall prove that the property of g = f ′ being a ratio-
nal function is preserved in time for weak solutions as long as they remain
simply connected. In other words, it is preserved by the Löwner-Kufarev
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equation, even under transition of zeros of g through ∂D. However, g ac-
quires additional zeros and poles under such an event, and the transition will
not be smooth. We shall also show that for certain other solutions of the
Polubarinova-Galin equation rationality is also preserved.

We shall give two avenues to the question of rationality: first a direct
approach, just making an ‘Ansatz’ of a rational g in a suitable version of the
Polubarinova-Galin equation, and secondly via quadrature identities, which
are related to the concept of a weak solution and which can incorporate
transitions of zeros through ∂D.

8.1 Direct approach

We assume that g rational of the form (2.12), and we address the question to
which extent this form is preserved in time for solutions of the Polubarinova-
Galin or Löwner-Kufarev equations when g is allowed to have zeros in D.

Recall (Theorem 3.2) that the Polubarinova-Galin equation is equivalent
to a relaxed version of the Löwner-Kufarev equation,

ḟ(ζ, t) = ζf ′(ζ, t) (P (ζ, t) +R(ζ, t)) , (8.1)

where P (ζ, t) is the Poisson integral (2.8) and where R(ζ, t) is any function
of the form (3.8). We shall here assume, for simplicity, that the zeros ωj of
g are simple, and then (3.8) becomes

R(ζ, t) = i Im
∑
ωj∈D

2Bj(t)

ωj(t)
+
∑
ωj∈D

(
2Bj(t)

ζ − ωj(t)
− 2Bj(t)ζ

1− ωj(t)ζ

)
. (8.2)

The interpretation of the free constants Bj(t) here is that they determine the
speed of the branch points f(ωj(t), t). Using (8.2) we have

d

dt
f(ωj(t), t) = 2ωj(t)f

′′(ωj(t)), t)Bj(t).

The equation (8.1) for f is equivalent to the equation, generalizing (2.13),

∂

∂t
(log g) = ζ(P +R)

∂

∂ζ
(log g) +

∂

∂ζ
(ζ(P +R)) (8.3)

for g. Here the derivatives of log g are obtained from (2.15), (2.16), and it
only remains to evaluate the Poisson integral P (ζ, t). This can be done by
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a simple residue calculus in (2.8), using that |g(ζ, t)|2 = g(ζ, t)g∗(ζ, t) when
ζ ∈ ∂D, where the right member is a rational function in ζ. However, the
calculation becomes more transparent if everything is done at an algebraic
level, by which it essentially reduces to an expansion in partial fractions.

Recall that, by definitions of P and R,

P (ζ, t) + P ∗(ζ, t) =
2q(t)

g(ζ, t)g∗(ζ, t)
, (8.4)

R(ζ, t) +R∗(ζ, t) = 0.

The rational function q(t)/g(ζ, t)g∗(ζ, t) has poles at the zeros of g and g∗,
i.e., at ω1, . . . , ωm, ω

∗
1, . . . , ω

∗
m. At infinity it has the behavior (by (2.12))

lim
ζ→∞

q(t)

g(ζ, t)g∗(ζ, t)
= A∞ =

{
q
∏n

j=1 ζ̄j

|b|2
∏m

j=1 ω̄j
if m = n,

0 if m > n.
(8.5)

We shall assume, in addition to the zeros ωk being simple, that no two zeros
are reflections of each other with respect to the unit circle, i.e., we assume
that ωk 6= ω∗j for all k, j and, in particular (k = j), that there are no zeros
on the unit circle. These assumptions are necessary in order to expect the
existence of a smooth solution of the Polubarinova-Galin equation (2.1), and
even more so for the Löwner-Kufarev equation. Indeed, spelling out (2.1) as

ḟ(ζ, t) · ζ−1g∗(ζ, t) + ḟ ∗(ζ, t) · ζg(ζ, t) = 2q(t) (8.6)

we see that if, for some particular value of t, g and g∗ have a common zero,
with ḟ and ḟ ∗ finite, then q(t) must be zero.

It will be seen shortly (equation (8.9)) that P is a rational function when-
ever g is rational, hence, by (8.1), also ḟ is rational. So (8.6) is an identity
between rational functions, and so is valid throughout the Riemann sphere.

With the above assumptions in force we can write

q(t)

g(ζ, t)g∗(ζ, t)
= A∞ +

m∑
k=1

Ak
ωk

+
m∑
k=1

[
Ak

ζ − ωk
+

Akζ

1− ωkζ

]
, (8.7)

where the coefficients Ak = Ak(t, b, ω1, . . . , ωm, ζ1, . . . , ζn) are given by

Ak =
q(t)

g′(ωk, t)g∗(ωk, t)
=

q

|b|2
·
∏

j(ωk − ζj)
∏

j (ω∗k − ζj)∏
j 6=k(ωk − ωj)

∏
j (ω∗k − ωj)

(8.8)
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for 1 ≤ k ≤ m. Notice that some of the Ak may vanish: if ωk ∈ D and ω∗k
coincides with one of the poles ζj, then Ak = 0.

Now, P (ζ, t) is to be that holomorphic function in D whose real part has
boundary values q(t)/g(ζ, t)g∗(ζ, t) and whose imaginary part vanishes at the
origin. The function (8.7) itself certainly has the right boundary behaviour
on ∂D, but it is not holomorphic in D. On the other hand, the two types of
polar parts occurring in (8.7) have the same real parts on the boundary:

Re
Ak

ζ − ωk
= Re

Akζ

1− ωkζ
on ∂D.

Therefore, without changing the real part on the boundary we can make
the function (8.7) holomorphic in D by a simple exchange of polar parts.
In addition, one can add a purely imaginary constant to account for the
normalization of P at the origin. This gives

P (ζ, t) = A0 +
∑

ωj∈C\D

2Aj
ζ − ωj

+
∑
ωj∈D

2Ajζ

1− ωjζ
, (8.9)

with the Aj = Aj(t) given by (8.8) for 1 ≤ j ≤ m. For A0 we have

ReA0 = ReA∞ + Re
m∑
k=1

Ak
ωk
,

ImA0 = Im
∑

ωj∈C\D

2Aj
ωj

,

so that the real part of (8.7) remains unaffected in the passage to (8.9), and
so that the normalization ImP (0, t) = 0 is achieved. Note that Re(P (ζ, t) +
R(ζ, t)) ≥ 0 in D if and only if R = 0 (because R has poles in D if R 6= 0).

Thus
P (ζ, t) +R(ζ, t) =

= A0 + i Im
∑
ωj∈D

2Bj

ωj
+
∑

ωj∈C\D

2Aj
ζ − ωj

+
∑
ωj∈D

2Bj

ζ − ωj
+
∑
ωj∈D

2(Aj −Bj)ζ

1− ωjζ
,

= C +
∑

ωj∈C\D

2Aj
ζ − ωj

+
∑
ωj∈D

2Bj

ζ − ωj
−
∑
ωj∈D

2(Aj −Bj)(ω
∗
j )

2

ζ − ω∗j
,
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where

C = A0 + i Im
∑
ωj∈D

2Bj

ωj
−
∑
ωj∈D

2(Aj −Bj)ω
∗
j .

Also,
ζ(P (ζ, t) +R(ζ, t)) =

= Cζ +D +
∑

ωj∈C\D

2Ajωj
ζ − ωj

+
∑
ωj∈D

2Bjωj
ζ − ωj

−
∑
ωj∈D

2(Aj −Bj)(ω
∗
j )

3

ζ − ω∗j
,

with
D =

∑
ωj∈C\D

2Aj +
∑
ωj∈D

2Bj −
∑
ωj∈D

2(Aj −Bj)(ω
∗
j )

2.

In view of (2.15), (2.16) the dynamical law (8.3) becomes

ḃ

b
−

m∑
k=1

ω̇k
ζ − ωk

+
n∑
j=1

ζ̇j
ζ − ζj

= (8.10)

=
(
Cζ +D +

∑
ωj∈C\D

2Ajωj
ζ − ωj

+
∑
ωj∈D

2Bjωj
ζ − ωj

−
∑
ωj∈D

2(Aj −Bj)(ω
∗
j )

3

ζ − ω∗j

)
·
( m∑
k=1

1

ζ − ωk
−

n∑
j=1

1

ζ − ζj
)
+

+C −
∑

ωj∈C\D

2Ajωj
(ζ − ωj)2

−
∑
ωj∈D

2Bjωj
(ζ − ωj)2

+
∑
ωj∈D

2(Aj −Bj)(ω
∗
j )

3

(ζ − ω∗j )2
.

The derivatives ḃ, ω̇k, ζ̇j to be determined appear as coefficients in the
constant term and poles of order one. Therefore (8.10) can be satisfied only
if all terms with poles of higher order cancel out. This automatically occurs
for the terms of the form

2Ajωj

(ζ−ωj)2
(ωj ∈ C \ D) and

2Bjωj

(ζ−ωj)2
(ωj ∈ D).

In order that the remaining terms
∑

ωj∈D
2(Aj−Bj)(ω∗j )3

(ζ−ω∗j )2
with poles of the

second order shall disappear we must have, for each j with ωj ∈ D, that

Aj = Bj. (8.11)

These second order poles cannot cancel in any other way. In order to allow
the rational form (2.12) to be stable in time we therefore assume from now
on that (8.11) holds.
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Note that R under this assumption becomes uniquely determined. When
(8.11) holds,

C = A0 + i Im
∑
ωj∈D

2Aj
ωj

= ReA∞ + Re
m∑
k=1

Ak
ωk

+ i Im
m∑
j=1

2Aj
ωj

, (8.12)

D =
m∑
j=1

2Aj (8.13)

and P +R takes the simpler form

P (ζ, t) +R(ζ, t) = C +
m∑
j=1

2Aj
ζ − ωj

.

The dynamical law (8.10) now becomes

ḃ

b
−

m∑
k=1

ω̇k
ζ − ωk

+
n∑
j=1

ζ̇j
ζ − ζj

= (8.14)

=
(
Cζ +D +

m∑
j=1

2Ajωj
ζ − ωj

)
·
( m∑
k=1

1

ζ − ωk
−

n∑
j=1

1

ζ − ζj
)

+ C −
m∑
j=1

2Ajωj
(ζ − ωj)2

.

Therefore (8.10) results in the following system of ordinary differential equa-
tions for ωk, ζj, b.

Theorem 8.1. Under the assumption that g has only simple zeros, that g
and g∗ have no common zeros (in particular g has no zero on ∂D), and that in
addition (8.11) holds, the Polubarinova-Galin equation (2.1), or (8.3), gives
the following rational dynamics for g:

d

dt
logωk = −C − 2Ak

ωk
−

m∑
j=1, j 6=k

2(Ak + Aj)

ωk − ωj
+

n∑
j=1

2Ak
ωk − ζj

= P ∗(ωk) +R∗(ωk)−
2Ak
ωk

(1 +
m∑
j=1

1

1− ωjωk
−

n∑
j=1

1

1− ζjωk
), (8.15)

d

dt
log ζj = −C −

m∑
k=1

2Ak
ζj − ωk

= P ∗(ζj) +R∗(ζj), (8.16)
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d

dt
log b = (m− n+ 1)C. (8.17)

Here the coefficients Aj, C are given by (8.5), (8.8), (8.12).

Since the Bj(t) are completely free functions we can simply define them
by (8.11). Then (8.15)–(8.17) is a regular system of ordinary differential
equations, having a unique solution as long as the stated conditions on the
zeros of g and g∗ hold.

The above unique rational solution of the Polubariova-Galin equation
solves the Löwner-Kufarev equation if and only if R = 0. By (8.11) this
requires that Ak = 0 for each k with ωk ∈ D. Looking at (8.8) we see that, if
q 6= 0, the only way that Ak can vanish at a given instant is that ω∗k = ζj for
some j. However, it will be seen in Example 8.3 below that Ak may vanish
for some particular value of t without vanishing for all t. Therefore we also
need that

ω̇∗k = ζ̇j,

so that the condition Ak = 0 persists in time. We shall show that this is the
case if and only if ω∗k is a pole of g of order at least two (more generally, of
strictly higher order than that of the zero).

Assume that at one particular moment, say t = 0, ω∗k = ζj for some pair
k, j. Then Ak = 0 at that moment so that (8.15), (8.16) (with R = 0)
become {

d
dt

logωk = P ∗(ωk),
d
dt

log ζj = P ∗(ζj).
(8.18)

This can also be written {
d
dt

logω∗k = −P (ω∗k),
d
dt

log ζj = P ∗(ω∗k).

Thus we see that d
dt

logω∗k = d
dt

log ζj holds if and only if P (ω∗k)+P ∗(ω∗k) = 0,
which, recalling (8.4), happens if and only if gg∗ has a pole at ω∗k = ζj.
Looking at the expression (2.12) for g one sees that this occurs if and only if
the pole of g at ζj is of higher order than the zero of g at ωk.

Finally, an informal remark about multiple zeros (a situation which is not
covered by the above analysis). If a zero ωk ∈ C \ D is of order ≥ 2 then
P will have a pole at ωk of the same order, and it is easy to see that this
pole will never cancel out in the dynamical equation (8.10). For this reason
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multiple zeros outside D can never survive, even though collisions may occur.
The solution will remain smooth over a collision because if two roots, ω1 and
ω2, collide the equations still will be regular when reformulated in terms of
the combinations ω1 + ω2 and ω1ω2.

On the other hand, if g has a multiple zero ωk in D this will not cause
any higher order pole of P if g has a pole of at least the same order at ω∗k,
and if the order of the pole is of strictly higher order then the same situation
will persist in time. Therefore a solution will be obtained as before.

By now we have proved the following theorem on local behavior of solu-
tions of (8.1), or (8.3).

Theorem 8.2. Given g(ζ, 0) of the form (2.12) such that no two zeros of
g(ζ, 0) are related by ωk = ω∗j , then for exactly one choice of R(ζ, t), namely
that defined by (8.11), there exists a solution g(ζ, t) of (8.3) which remains
on the original rational form (2.12).

Necessary and sufficient condition for this rational solution to also solve
the Löwner-Kufarev equation (2.7) is that R(ζ, t) = 0. This occurs precisely
under the condition that whenever g(ζ, t) has a zero ωk in D, the reflected
point ω∗k is a pole of g(ζ, t) of order strictly greater than that of the zero. This
property is conserved in time.

Every pole ζj of g moves out from the origin, and every zero ωk inside
the unit disk moves towards the origin, as time increases.

The last statement follows from (8.18) together with the fact that P is
positive in D, negative outside, and the opposite for P ∗.

Remark 8.1. A particular consequence of Theorem 8.2 is that the there are
no polynomial solutions of the Löwner-Kufarev equation with zeros of g in
the unit disk.

Example 8.2. Consider g being of the form

g(ζ, t) = b(t)(ζ − ω1(t)),

with ω1(t) > 0 and b(t) real. In the notations of (2.12) and Theorem 8.1
we have m = 1, n = 0, A∞ = 0, A1 = qω1

b2(1−|ω1|2)
, C = A1

ω1
. This gives the

dynamical system {
ω̇1 = − 3qω1

b2(1−ω2
1)
,

ḃ = 2q
b(1−ω2

1)
,

(8.19)
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expressing the necessary and sufficient conditions for (8.1) or (8.3), i.e., the
Polubarinova-Galin equation (2.1), to hold.

Starting with b(0) = −1, ω1(0) = 1, and choosing q(t) = e2t− e−4t, which
is positive for t > 0, one verifies that ω1(t) = e3t, b(t) = −e−2t is a solution
of (8.19). The corresponding mapping function f(ζ, t) is then univalent, and
starts out from f(ζ, 0) = ζ − 1

2
ζ2, which maps D onto a cardioid with a cusp

on the boundary. To be more precise, the system (8.19) seems to be singular
for the initial location ω1 = 1 of the zero of g. However, the data above are
chosen so that q vanishes at the same time. Indeed, q(t)

1−ω2
1(t)

= −e−4t, which

is smooth for all t ∈ R. It follows that the given solution actually satisfies
(8.19) for all t ∈ R. This solution will be further discussed in Section 9.2.

For t < 0 we have q(t) < 0 and 0 < ω1(t) < 1. It follows that if one
lets t run backwards, from t = 0 to t = −∞, then one will still be in the
injection (source) case, but with the mapping function f(ζ, t) non-univalent.
See Section 9.2 for some more discussion of this solution (then with t replaced
by −t).

When 0 < ω1 < 1 the above polynomial solution of the Polubarinova-
Galin equation does not satisfy the Löwner-Kufarev equation because the
‘branch point’ f(ω1(t), t) moves: f(e3t, t) = 1

2
e4t. However, the Löwner-

Kufarev equation must also have a solution (at least a weak one). This will
have a different structure, namely

g(ζ, t) = b(t)
(ζ − ω1(t))(ζ − ω2(t))(ζ − ω3(t))

(ζ − ζ1(t))2
,

with ζ1 = 1/ω1. Here 0 < ω1 < 1, while ω2,3 ∈ De may be nonreal. In the
notation of (2.12) and Theorem 8.1 we now have m = 3, n = 2 and

A∞ = 0,

A1 = 0,

A2 = qω2(1−ω1ω2)(ω2−ω1)

b2ω4
1(ω2−ω3)(1−|ω2|2)(1−ω2ω̄3)

,

A3 = qω3(1−ω1ω3)(ω3−ω1)

b2ω4
1(ω3−ω2)(1−|ω3|2)(1−ω3ω̄2)

,

A0 = C = A2

ω2
+ A3

ω3
+ i Im(A2

ω2
+ A3

ω3
).

By insertion into (8.15), (8.16), (8.17) one gets a dynamical system for the
data ω1, ω2, ω3, ζ1, b (with ζ1 = 1/ω1 given from outset). Despite this
system looking quite complicated, the solution can, for a suitable choice of
q(t), be spelled out in full detail, using different tools. This will be done in
Section 9.3.
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Example 8.3. Let g initially be given by

g(ζ, 0) = b(0)
ζ − ω1(0)

ζ − ζ1(0)

for some 0 < ω1(0) < 1, ζ1(0) > 1, b(0) > 0. Then, first of all, there exists a
unique solution of the Polubarinova-Galin equation of the same form

g(ζ, t) = b(t)
ζ − ω1(t)

ζ − ζ1(t)
(8.20)

with 0 < ω1(t) < 1, ζ1(t) > 1, b(t) > 0. The system of ordinary differential
equations in Theorem 8.1 for ω1(t), ζ1(t), b(t) explicitly becomes

ω̇1 = − qζ1
b2
− 3A1 + 2A1ω1

ω1−ζ1 ,

ζ̇1 = − qζ21
b2ω1
− A1ζ1

ω1
+ 2A1ζ1

ω1−ζ1 ,

ḃ = qζ1
bω1

+ A1b
ω1
,

where

A1 =
q(ω1 − ζ1)(1− ω1ζ1)

b2(1− |ω1|2)
,

and we have taken into account that all quantities are real. It is seen imme-
diately that the solution will go on as long as ω1(t), ζ1(t), b(t) stay in the
above specified intervals. However, the so obtained solution cannot solve the
Löwner-Kufarev equation because, by Theorem 8.2, that equation requires
that g has a pole of order at least two at the reflected point of ω1(t).

The Löwner-Kufarev equation also has a solution. This represents an evo-
lution on a Riemann surfaceM above C with a branch point over f(ω1(t), t),
which has to be a fixed (time-independent) point. If ζ1(0) 6= ω∗1(0) this solu-
tion (it will be unique after the Riemann surface M has been fixed) will be
of the form

g(ζ, t) = b(t)
(ζ − ω1(t))(ζ − ω2(t))(ζ − ω3(t))

(ζ − ζ1(t))(ζ − ζ2(t))2
,

where ζ2(t) = ω1(t)∗ and ω2(0) = ω3(0) = ζ2(0). If ζ1(0) = ω∗1(0) it will be of
the slightly simpler form

g(ζ, t) = b(t)
(ζ − ω1(t))(ζ − ω2(t))

(ζ − ζ1(t))2
,

with ζ1(t) = ω1(t)∗ and ω2(0) = ζ1(0). One then obtains the evolution in
Example 5.3, where ζ1 was used as time parameter. Thus, by (5.16), (5.18),
ω2(t) = 2tζ1(t)− ζ1(t)−1, b(t) = b(0)ζ1(0)−3ζ1(t)3.
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8.2 Approach via quadrature identities

This approach to rational solutions has the advantage that it can incorporate
transitions of zeros through ∂D, even when q 6= 0.

In the previous subsection we saw that structural properties such as hav-
ing an identity of the kind (7.2), or an estimate (7.1), holding are preserved
in time when f = f(·, t) represents a weak solution. The same type of
argument also shows that the property of g being a rational function is pre-
served, because such property is equivalent to an identity (7.2) holding with
σ of a particularly simple form. We start by elaborating a lemma making
this statement precise.

When g is rational the computation in the beginning of the proof of
Lemma 7.1 can be made more explicit and ends up with a quadrature formula
for h ∈ O(D). Specifically we get

1

π

∫
D
h|g|2dm =

1

2πi

∫
∂D
hf ∗df =

∑
Res
D

(hf ∗gdζ) +
∑
j

cj

∫
γj

hgdζ. (8.21)

Here the γj are arcs in D connecting the points where f ∗ has logarithmic
poles. The above computation actually does not require h to be holomorphic
in D, it is enough that hg is holomorphic. Thus one can allow h to have a
pole at any zero of g in D.

Equation (8.21) is a Riemann surface version, pulled back to D, of (2.11).
In the terminology of [35] the corresponding domain Ω̃ = f̃(D) (f̃ being
the lift of f , as in Section 3)), then is a quadrature Riemann surface.
The formula (8.21) may alternatively be presented without line integrals by
expressing the right member in terms of an integral of h, namely

H(z) =

∫ z

0

h(ζ)g(ζ)dζ.

The quadrature identity then becomes

1

π

∫
D
h|g|2dm = − 1

2πi

∫
D
dH∧df̄ = −

∑
Res
D

(Hdf ∗) =
∑

Res
D

H(ζ)g∗(ζ)dζ

ζ2
.

By spelling out the results of the residue calculations, and taking into
account the other direction we have the following.
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Proposition 8.1. Let f ∈ Onorm(D). Then g = f ′ is a rational function if
and only if there exist αj, γj, akj, cj, r, `, nj so that the quadrature identity

1

π

∫
D
h|g|2dm =

r∑
j=1

cj

∫
γj

hgdζ +
∑̀
j=0

nj−1∑
k=1

ajkh
(k−1)(αj) (8.22)

holds for all h ∈ O(D). Here we have used the same numbering as in (2.11).
In particular, α0 = 0. The end points of the γj are the logarithmic poles of
f ∗ and the αj are the ordinary poles of f ∗g in D. In other words, with g of
the form (2.12), these points are from the set {ζ∗0 , ζ∗1 , . . . , ζ∗` }, ζ0 =∞.

In addition, if I 3 t 7→ f(·, t) ∈ Onorm(D) represents a weak solution of
the evolution problem in Definition 5.1 and Proposition 5.2, then the form
(8.22) is stable over time, assuming that it holds initially. However, the data
depend on time: ajk = ajk(t), αj = αj(t), γj = γj(t), with the qualification
that α0 = 0 is fixed and that for a01 we have the precise behavior a01(t) =
a01(0) + 2Q(t). (Thus a01(t) may become zero at one moment of time.)

Remark 8.4. The time dependence of the data, for the evolution problem,
is caused by the chain rule, and disappears on using test functions of the form
h(f(ζ, t)), or more generally time dependent test functions h(ζ, t) satisfying
(5.21) or (5.23).

The weak solution concept is based on the Löwner-Kufarev equation, but
(8.22) is actually stable in time also for solutions of the Polubarinova-Galin
equation. This follows from Proposition 5.1.

Proof. For the first statement in the proposition, the ‘only if’ part follows
by evaluating the residues in the previous formulas, the ζj being the poles
of f ∗g in D. Note that a zero ω of g in D will allow f ∗ to have a pole at
the same point, and of the same order, hence g to have a pole of one order
higher at the reflected point ω∗, without causing a contribution in the right
member of (8.22). Alternatively, one may allow the test function h to have
a pole at ω.

To prove the ‘if’ part we use in (8.22) the test functions

h(ζ) =
1

z − ζ
(ζ ∈ D),

with z /∈ D. Then the left member of (8.22) becomes the previously used (see
(7.3)) Cauchy transform G of |g|2χD while the right hand side takes the form
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R(z) +Q(z), where R(z) is a rational function and Q(z) is the contribution
from the line integrals:

Q(z) =
∑
j

cj

∫
γj

g(ζ)dζ

z − ζ
.

Reasoning as in the proof of Lemma 7.1 we first get G = f̄ g + H on D
for some H ∈ O(D) which is continuous up to ∂D, and then the identity

f̄ g +H = R +Q

on ∂D. The latter relation can also be written as

f ∗(z) =
R(z)

g(z)
− H(z)

g(z)
+
Q(z)

g(z)
(z ∈ ∂D). (8.23)

The integrals appearing in the definition of Q(z) make jumps of magnitude
±2πig(z) as z crosses γj from one side to the other. It follows that the first
two terms in the right member of (8.23) are meromorphic functions in D while
the last term is holomorphic except for constant (= 2πicj) jumps across the
arcs γj. These jumps disappear when differentiating (8.23). The conclusion
is that df(z) = g(z)dz is a rational (Abelian) differential (or f an Abelian
integral), because the right member gives the appropriate extension of f to
the Riemann sphere. Thus g is a rational function, as claimed. Note that
(8.23) then holds identically in C.

The second statement in the proposition, about weak solutions, is an easy
consequence of (5.27).

Example 8.5. With

g(ζ) = b
(ζ − ω1)(ζ − ω2)

(ζ − ζ1)2

the quadrature identity is in general of the form

1

π

∫
D
h|g|2dm = a0h(0) + a1h(ζ∗1 ) + c

∫ ζ∗1

0

hgdζ.

However, if ζ∗1 = ω1 (or ζ∗1 = ω2) then a1 = 0 and if ζ1 = 1
2
(ω1 +ω2) (implying

that g has no residues) then c = 0. Both of this occurred in Example 5.3.
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Taking the full Hele-Shaw evolution, as in Examples 5.2 and 5.3, into ac-
count we therefore see that one can achieve a quadrature identity description
of the evolution on the unified form

1

π

∫
D
h(ζ)|g(ζ, t)|2dm(ζ) = 2Q(t)h(0)

for 0 < t < ∞, despite the fact that f(ζ, t) changes behavior as in (5.19)
when the zero of g passes through the unit circle.

Example 8.6. Similarly, with

g(ζ) = b
(ζ − ω1)(ζ − ω2)(ζ − ω3)

(ζ − ζ1)2

one gets in general a quadrature identity of the form

1

π

∫
D
h|g|2dm = a01h(0) + a02h

′(0) + a11h(ζ∗1 ) + c

∫ ζ∗1

0

hgdζ.

If g has no residues and ζ∗1 = ω1 then the constants a11 and c vanish and we
get just

1

π

∫
D
h|g|2dm = a01h(0) + a02h

′(0).

This case will be discussed in Section 9.3.

9 Examples: several evolutions of a cardioid

In order to illustrate Theorem 7.1, as well as the structure theory in Section 8,
we shall consider several different Hele-Shaw evolutions which all start out
from the cardioid Ω(0) = f(D, 0), where

f(ζ, 0) = ζ − 1

2
ζ2. (9.1)

Thus g(ζ, 0) = 1− ζ, having the root ω1(0) = 1, which maps onto a cusp on
∂Ω(0) at f(1, 0) = 1

2
. It is a major open problem to find some natural way

to make Hele-Shaw suction (q < 0) starting from the above cardioid, and
we shall briefly discuss this problem in Sections 9.4 and 10. We shall first
construct three solutions which correspond to injection (q > 0), one of them
(in Section 9.3) imitating the proof of Theorem 7.1.
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9.1 The univalent solution

This is the ordinary univalent Hele-Shaw evolution f(·, t) ∈ Ouniv(D), which
by conservation of M1 = a2

1ā2 = −1
2

is given by

f(ζ, t) = a1(t)ζ + a2(t)ζ2 = a1(t)ζ − 1

2a1(t)2
ζ2.

Adapting q(t) so that a1(t) = et (0 ≤ t <∞), for example, gives

f(ζ, t) = etζ − 1

2
e−2tζ2, q(t) = e2t − e−4t.

Note that ω1(t) = e3t starts out with finite speed, despite the cusp. This is
possible because q(0) = 0. For t > 0, q(t) > 0.

The solution domains Ω(t) = f(D, t) (0 ≤ t < ∞) enjoy the quadrature
identities

1

π

∫
Ω(t)

hdm = (2Q(t) +
3

2
)h(0)− 1

2
h′(0), (9.2)

holding for any h ∈ O(Ω(t)).

9.2 A non-univalent solution of the Polubarinova-Galin
equation

In the univalent solution, the coefficient a1 ranges over the interval 1 ≤ a1 <
∞, and the moment M0 = a2

1 + 2|a2|2 = a2
1 + 1

2
a−4

1 is an increasing function
of a1. But, as a function of a1, M0 is strictly convex on the entire interval
0 < a1 <∞, and it has a minimum for a1 = 1. Thus M0 increases also as a1

decreases from 1 to 0. Choosing then a1 = e−t, 0 ≤ t <∞, gives our second
solution

f(ζ, t) = e−tζ − 1

2
e2tζ2, q(t) = e4t − e−2t.

This is not even locally univalent, but it does solve the Polubarinova-Galin
equation. The zero of g(ζ, t), ω1(t) = e−3t, moves from the unit circle towards
the origin, and its image point, f(e−3t, t) = 1

2
e−4t also moves. Therefore the

solution cannot be lifted to a fixed Riemann surface, and f(ζ, t) does not
solve the Löwner-Kufarev equation (see Theorem 3.1).

A quadrature identity similar to (9.2) still holds. Considering first h to
be defined in the image domain, it can be pulled back to D or be expressed
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in terms of the counting function (3.1). Exhibiting both we have

1

π

∫
D
h(f(ζ, t))|g(ζ, t)|2dm(ζ) =

1

π

∫
C
hνf(·,t)dm =

= (2Q(t) +
3

2
)h(0)− 1

2
h′(0).

A slightly stronger form is obtained by using a time dependent test function,
h(ζ, t), defined in D and such that (5.21) or (5.23) holds. Using (5.28) with
s = 0 then gives

1

π

∫
D
h(ζ, t)|g(ζ, t)|2dm(ζ) = (2Q(t) +

3

2
)h(0, 0)− 1

2
h′(0, 0). (9.3)

Choosing instead h to be independent of time, the coefficients become time
dependent:

1

π

∫
D
h(ζ)|g(ζ, t)|2dm(ζ) = (2Q(t) +

3

2
)h(0)− et

2
h′(0). (9.4)

9.3 A non-univalent solution of the Löwner-Kufarev
equation

Even though the univalent solution in Section 9.1 is perfectly good in all
respects, the solution which is constructed in the proof of Theorem 7.1 is
a different one, namely one which goes up on a Riemann surface with two
sheets. This is because the solution in the proof is constructed in such a
way that at any time, say t = t0, at which a zero of g(ζ, t) reaches ∂D,
the continued solution propagates on the Riemann surface which uniformizes
f−1(ζ, t0) in a neighborhood of D. This is a necessary step in most cases, but
occasionally (as in the present example, with t0 = 0) it turns out that the
original Riemann surface itself was actually good enough.

Below we calculate that solution which the proof of Theorem 7.1 would
have given us. This has the additional advantage of giving a reference solu-
tion which can be used as comparison in order to obtain estimates for other
solutions. The idea (cf. Example 8.2) is that the initial g, which we write as

g(ζ, 0) = −(ζ − 1) · (ζ − 1)(ζ − 1)

(ζ − 1)2
, (9.5)
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continues as

g(ζ, t) = b(t)(ζ − ω1(t)) · (ζ − ω2(t))(ζ − ω3(t))

(ζ − ζ1(t))2
,

where one of the zeros, say ω1(t), moves into D, ζ1(t) = ω∗1(t) and where ω2(t),
ω3(t) in addition are chosen so that g(ζ, t) has no residues. This means that
f(ζ, t) will be of the form

f(ζ, t) = −b1ζ + b2ζ
2 + b3ζ

3

ζ − ζ1

(9.6)

with b1 = b1(t), b2 = b2(t), b3 = b3(t) and ζ1 = ζ(t) all real. The parameters
b1 and ζ1 will turn out to be positive and strictly increasing in time. At time
t = 0 we have 

b(0) = −1,

b1(0) = 1,

b2(0) = −3
2
,

b3(0) = 1
2
,

ω1(0) = ω2(0) = ω3(0) = ζ1(0) = 1.

(9.7)

From (9.6) we obtain

g(ζ, t) =
b1ζ1 + 2b2ζ1ζ + (3b3ζ1 − b2)ζ2 − 2b3ζ

3

(ζ − ζ1)2
, (9.8)

f ∗(ζ, t) =
b1ζ

2 + b2ζ + b3

ζ2(ζ1ζ − 1)
.

The coefficients bj = bj(t) and the pole ζ1 = ζ1(t) are to be determined
according to the following principles:

• The reflected point of ζ1(t) is to be a zero of g:

g(1/ζ1(t), t) = 0.

• f(·, t) shall map the above point 1/ζ1(t) to a point which does not
move:

f(1/ζ1(t), t) = constant = f(1, 0) =
1

2
.
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• The moment M1(t) is conserved in time:

M1(t) = Res
ζ=0

(ff ∗gdζ) = M1(0) = −1

2
.

• M0(t) evolves according to

M0(t) = Res
ζ=0

(f ∗gdζ) = M0(0) + 2Q(t) =
3

2
+ 2Q(t).

The constant values ±1
2

and 3
2

above are obtained from the initial data
(9.7). Spelling out, the above equations become

b1ζ
4
1 + 2b2ζ

3
1 + (3b3ζ1 − b2)ζ1 − 2b3 = 0,

b1ζ
2
1 + b2ζ1 + b3 + 1

2
ζ2

1 (1− ζ2
1 ) = 0,

b2
1b3 − 1

2
ζ2

1 = 0,

b1b2ζ1 + 2b2b3ζ1 + b1b3(ζ2
1 + 2) + (3

2
+ 2Q)ζ2

1 = 0.

(9.9)

Here we have four equations for the five time dependent parameters b1, b2, b3,
ζ1 and Q. It turns out that it is possible to solve this system by expressing
all paramenters in terms of b1:

ζ1 = +
√

1
2
(1 + 2b1 − 1

b21
),

b2 = − ζ1
4

(1 + 2b1 + 3
b21

),

b3 =
2b31+b21−1

4b41
,

Q = 1
16b61

(4b8
1 + 2b7

1 − 12b6
1 + b4

1 + 6b3
1 + 2b2

1 − 3).

The range for ζ1 = ζ(t) is 1 ≤ ζ1 < ∞. At time t = 0 we shall have ζ1 = 1.
Then also b1 = 1, and since one easily checks that dζ1

db1
> 0 it is appropriate

to fix the time scale by setting

b1(t) = et.

By this all parameters b1, b2, b3, ζ1, Q become explicit functions of t. Includ-
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ing expansions for small t > 0 we have

ζ1(t) =
√

1
2
(1 + 2et − e−2t) = 1 + t− 3

4
t2 +O(t3),

b1(t) = et = 1 + t+ 1
2
t2 +O(t2),

b2(t) = − 1
4
√

2
(1 + 2et + 3e−2t)

√
1 + 2et − e−2t = −3

2
− 1

2
t+ 3

8
t2 +O(t3),

b3(t) = 1
4
(2e−t + e−2t − e−4t) = 1

2
− 5

4
t2 +O(t3),

Q(t) = 1
16

(4e2t + 2et − 12 + e−2t + 6e−3t + 2e−4t − 3e−6t) = 4t3 +O(t4).

(9.10)
This gives

q(t) =
1

8
(4e2t + et − e−2t − 9e−3t − 4e−4t + 9e−6t) = 12t2 +O(t3), (9.11)

f(ζ, t) = −2(1 + t)ζ − (3 + t)ζ2 + ζ3 +O(t2)

2(ζ − 1− t+O(t2))
.

Thus q(0) = q̇(0) = 0, while for t > 0, q(t) > 0, so the evolution is very slow
in the beginning, in fact so slow that it is not at all singular at t = 0.

As for g(ζ, t), we already know (by construction) that one of its zeros is
ω1(t) = 1/ζ1(t). By dividing out this zero in (9.8) one gets g on the form

g(ζ, t) = −2b3(t)
(ζ − 1/ζ1(t))(ζ2 − 1

2
(b1(t)2 + 3)ζ1(t) ζ + b1(t)3)

(ζ − ζ1(t))2
,

and the remaining two zeros ω2(t), ω3(t) are the zeros of the second degree
polynomial in the numerator. One easily checks that the discriminant of
that polynomial is negative on some interval 0 < t < ε, hence ω2(t), ω3(t)
are non-real (a complex conjugate pair) for those values of t. For large t they
are however real (the discriminant is positive). From

ω2(t) + ω3(t) =
1

2
(b1(t)2 + 3)ζ1(t), ω2(t)ω3(t) = b1(t)3

one also realizes that the real parts of the two roots are increasing functions
of t, for all 0 < t <∞. For small t, (9.10) gives the expansions{

ω1(t) = 1− t+O(t2),

ω2,3(t) = 1 + (3
2
± i

√
7

2
)t+O(t2).

(9.12)

The solution f(ζ, t) represents an evolution of the cardioid which is non-
univalent regarded as a map into C but which can be viewed as a univalent
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map f̃(ζ, t) into a two-sheeted Riemann surface over C (actually over the
whole Riemann sphere P). It is that solution which comes out of the construc-
tion in the proof of Theorem 7.1. This means that, with f(ζ, 0) = ζ − 1

2
ζ2,

one initially considers M0 = f(D, 0) = f̃(D, 0) as a Riemann surface over C
and then gradually extends it, first for ε > 0 small, toMε = f̃(D(0, 1+ε), 0),
which simply is a copy of D(0, 1 + ε). In the present case one can go on with
this same procedure for arbitrary ε > 0, which eventually gives the two-
sheeted covering surface M = f̃(P, 0) of the Riemann sphere. It has branch
points over z = 1/2 (by construction) and over z =∞.

Conjecture 7.3 now concerns the solution pulled back to the unit disk by
f(ζ, 0) = ζ− 1

2
ζ2. Thus the function g in that conjecture is g(ζ) = f ′(ζ, 0) =

1− ζ. The inverse of f(ζ, 0) = f̃(ζ, 0) is f̃−1(z, 0) = 1−
√

1− 2z, hence one
gets the function

Φ(ζ, t, 0) = f−1(f(ζ, t), 0) = 1−

√
1 +

2

ζ − ζ1(t)
(b1(t)ζ + b2(t)ζ2 + b3(t)ζ3),

which, for 0 < t < ε say, maps D conformally onto the slightly larger domain
D(t) (in the notation of Conjecture 7.3). Because of the square root it is
not entirely trivial that Φ(ζ, t, 0) is single-valued in D. The pole at ζ = ζ1(t)
causes no problem in this respect since ζ1(t) /∈ D, but since 1 ∈ D(t) =
Φ(D, t, 0) there must be a point in D for which the expression under the square
root vanishes. However, despite this the square root does in fact resolve into
a single-valued function in D. In terms of the notations in Lemma 3.1 and
Section 5 we have Φ(ζ, t, 0) = f̃(ζ, t), f(ζ, 0) = p(ζ), g(ζ) = p′(ζ).

The function Φ(ζ, t, 0) is similar to the subordination functions ϕ(ζ, s, t)
(for s < t) in (3.2), but it goes the other way. It ‘superordinates’ a function
f(ζ, t) at a time t > 0 in terms of an earlier function f(ζ, 0):

f(ζ, t) = f(Φ(ζ, t, 0), 0). (9.13)

The inverses of the superordination functions are defined in domains D(t) ⊃
D, and their restrictions to the unit disk are simply the subordination func-
tions:

ϕ(ζ, 0, t) = Φ−1(ζ, t, 0) for ζ ∈ D, t > 0.

The construction of f(ζ, t) is made in such a way that quadrature iden-
tities like (9.2), (9.4) remain valid. With a time dependent test function
h(ζ, t), defined in D and satisfying (5.21) or (5.23), we have exactly the same
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identity (9.3) as in Section 9.2 (which is also valid for the example in Sec-
tion 9.1). With h independent of time we get, as in (9.4), coefficients which
depend on time, however now in a different way:

1

π

∫
D
h(ζ)|g(ζ, t)|2dm = (2Q(t) +

3

2
)h(0)− 1

2

√
2et√

1 + 2et − e−2t
h′(0).

This formula follows by a straightforward calculation using (9.9). The addi-
tional time dependent factor in the last term is simply 1/g(0, t) (so also in
(9.4)).

We may also write the quadrature identity in a form which connects to
Conjecture 7.3 and in the proof of Theorem 7.1: using the fixed transition
function z = f(ζ, 0) between the parameter space and the image space one
finds, in terms of D(t) = Φ(D, t, 0),

1

π

∫
D(t)

h(ζ)|g(ζ, 0)|2dm = (2Q(t) +
3

2
)h(0)− 1

2
h′(0). (9.14)

This is in agreement with (5.14), and it thereby essentially confirms that the
somewhat ad hoc attempt, starting with (9.5), for construction of a solu-
tion which uniformizes the cusp in fact gives exactly that solution which is
produced in the proof of Theorem 7.1.

As for the geometry, the domains D(t) are star-shaped with respect to
the origin, hence the solution exists for all 0 < t < ∞, cf. [11]. Indeed,
the star-shapedness follows from equation (7.4) in the proof of Theorem 7.1,
which in the present context becomes

∆v = 4(|z − 3

4
|2 − 1

16
), z ∈ D(t) \ D.

Here, the right member is non-negative, and as ∆v = 0 in D, v is continuous
in D(t) and v = 0 on ∂D, the required inequality v ≤ 0 in D(t) follows from
the maximum principle.
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9.4 A solution for the suction case

An interesting aspect is that the now fully explicit solution f(ζ, t), defined
for 0 < t < ∞ by (9.6), (9.10), is not only smooth at t = 0, it even has
a real analytic continuation across t = 0. This extended solution, defined
for −ε < t < ∞ (say), has the drawback that it has a pole inside D, but
q(t) remains positive for t < 0, as can be seen from (9.11). This means that
the solution represents suction out of the cardioid as t decreases to negative
values.

A closer look at f(ζ, t) for t < 0 shows that (keeping the notation from
Section 9.3) the zero ω1(t) is now outside the unit disk, while the two complex
conjugate zeros ω2(t), ω3(t) are inside, as well as the pole ζ1(t). Since f(ζ, t)
is no longer holomorphic in D we are strictly speaking outside the scope of
the previously developed theory, but it is easy to see that the Polubarinova-
Galin equation (2.1) still makes sense. Because of the real analyticity of all
data, the fact that (2.1) holds on the interval 0 < t < ∞ implies that it
automatically holds on −ε < t < ∞. Of course, this can also be verified
by a direct (but quite tedious) calculation. The boundary curve f(∂D, t) is
for each t < 0 a smooth closed loop contained in Ω(0), and it recedes as t
decreases.

To get a clear picture of the situation, note first that, for t 6= 0, f(ζ, t) is
a rational function of order three, hence it maps the Riemann sphere P onto
the sphere covered thrice. Viewed as a covering map, f has branch points
over βj = f(ωj(t), t), j = 1, 2, 3, and β4 =∞. Obviously, β4 does not depend
on t, and the same is actually true also for β1, by the construction of f in
Section 9.3. In fact, β = 1/2 = the cusp point of ∂Ω(0). As in previous
situations we shall write f̃ when we think of f as a univalent map into a
Riemann surface.

To make it perfectly clear, we first have a trivial decomposition of f as

P id−→ P f(·,t)−→ P.

Then the idea is to consider the middle P as an abstract Riemann surface,
denoted F(t), and think of the last map as a covering projection. The first
map will then be called f̃(·, t):

P f̃(·,t)−→ F(t)
proj−→ P.

Because of the covering projection, F(t) is more than an abstract Riemann
surface, it inherits a Riemannian metric from P. And as a Riemannian man-
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ifold it really depends on t. Using the variable ζ in z̃ = f̃(ζ, t) (where
z̃ ∈ F(t)) as a coordinate, the metric on F(t) is given by

ds2 = |f ′(ζ, t)|2|dζ|2. (9.15)

The branch points, together with appropriate ‘cuts’ between them, define
an exact division of F(t) into sheets P(j) (copies of P) such that the pre-image
f̃−1(a, t) of any point a ∈ P has one point on each sheet. If a is a branch
point, two or more of these pre-images are common to some sheets. We may
write the above as

F(t) = (P(1) ∪ P(2) ∪ P(3))/{1

2
, β2(t), β3(t),∞}. (9.16)

We have assumed that t 6= 0, and we choose the numbering so that P(1) and
P(2) are connected by the branch points at β1 = 1/2 and ∞, and P(1), P(3)

are connected at β2(t) and β3(t). To be precise about the cuts one may, for
example, have one cut along the positive real axis, from 1/2 to ∞, which
serves as a passage from P(1) and P(2), and another cut, disjoint from the
previous, between β2(t) and β3(t), serving as a passage between P(1) and
P(3). The pre-images of these cuts under f−1(·, t) are closed curves which
divide P into three pieces, thereby they also divide F(t) into three pieces,
which then become P(1), P(2), P(3).

When t = 0 there are only two copies of P, say

M = f̃(P, 0) = (P(1) ∪ P(2))/{1

2
,∞},

since f(ζ, 0) = ζ − 1
2
ζ2 has order two. The notation M for this surface

was introduced in Section 9.3. Thus the geometric meaning of changing
g(ζ, 0) = 1 − ζ to the form (9.5) is that one adds a new Riemann sphere
P(3), which for t = 0 is disconnected from P(1) and P(2), but which gets
attached via the branch points β2(t), β3(t) when t moves away from t = 0.
For t = 0 it is convenient to define F(0) to be the disconnected Riemann
surface corresponding to (9.5):

F(0) =M∪ P(3).

For 0 < t < ε, Ω̃(t) = f̃(D, t) lies mainly in P(1) (choosing the numbering
this way), but also go up with a small piece, around β1 = 1/2, to P(2).
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For example, for the counting function (3.1) we have νf(·,t) = 2 in a certain
neighborhood of z = 1/2, while νf(·,t) = 1 in the remaining part of Ω(t) =
f(D, t).

Even though the Riemannian manifold F(t) as a whole depends on t,
there is, when 0 < t < ε, a certain neighborhood, say Mε, of the closure
of Ω̃(t) = f̃(D, t) which does not. This is because the branch points β2(t),
β3(t), which are responsible for the time dependence, are outside Mε. A
more precise argument for the time independence can be given in terms of
superordination: instead of using, as in (9.15, ζ as a local variable we can in
Mε use z = Φ(ζ, t, 0). This gives, by (9.13),

f ′(ζ, t)dζ = f ′(Φ(ζ, t, 0), 0)Φ′(ζ, t, 0)dζ = f ′(z, 0)dz,

which brings the metric in Mε on the time independent form

ds2 = |f ′(z, 0)|2|dz|2.

When −ε < t < 0, on the other hand, ω2(t), ω3(t) ∈ D while ω1(t) ∈ De,
and it can be seen (by an argument to be given in Section 10) that

Ω̃(t) = (Ω(1)(t) ∪ P(3))/{β2(t), β3(t)}, (9.17)

where Ω(1)(t) ⊂ P(1) is a simply connected subdomain of Ω(0) which connects
to P(3) via β2(t), β3(t) ∈ Ω(1)(t). Thus

Ω̃e(t) = ((P(1) \ Ω(1)(t)) ∪ P(2))/{1

2
,∞},

and since the branch points here are fixed there is a neighborhood, say Nε,
of Ω̃e(t) in F(t) on which the short time evolution takes place and can be
generated by partial balayage.

A consequence of the above is that, when −ε < t < 0, ∂Ω̃(t) = ∂Ω(1)(t)
is a simple closed curve which lies entirely in Ω(0). Forgetting about P(3) in
(9.17), it is tempting to view Ω(1)(t) as a result of suction from Ω(0). How-
ever, since the surrounding Riemann surface is time dependent, as one sees
from (9.17), this will be only a rather relaxed form of suction, satisfying the
Polubarinova-Galin, but not the Löwner-Kufarev, equation. From a classical
perspective it is always impossible to suck from a domain having that type
of cusp Ω(0) has (cf. [36]), but allowing extra sheets and movable branch
points makes the situation more flexible. We shall discuss these matters in
some generality in the next section.

68



10 Injection versus suction in a Riemann sur-

face setting

Recall the meaning of the Polubarinova-Galin equation (2.1), or (5.7), in
terms of the Green’s function for the Riemann surface domain Ω̃(t) = f̃(D, t),
as spelled out in (5.8):

˙̃fnormal(z̃, t) = 2πq(t)|∇GΩ̃(t)(z̃, 0̃)|, z̃ ∈ ∂Ω̃(t). (10.1)

The Green’s function is simply obtained from that of the unit disk, by con-
formal invariance:

GΩ̃(t)(z̃, 0̃) = − 1

2π
log |ζ|, (10.2)

where z̃ = f̃(ζ, t).
Now assume that f is a rational function, of order r say. So we assume

that g = f ′ is a rational function free of residues. In terms of the structure
(2.12) this means that the number m there lies in the interval r − 1 ≤ m ≤
2(r−1), where the extreme cases correspond to f having a single pole of order
r (then f must be polynomial of degree r), respectively f having r distinct
simple poles. When we consider f as a conformal map into a Riemann
surface, and denote it by f̃ instead, then it maps P onto an r-fold covering
surface F(t) of P. As explained in the previous section, after a choice of
cuts we can think of F(t) as consisting of r copies of P connected by branch
points:

f̃(·, t) : P→ F(t) = (P(1) ∪ · · · ∪ P(r))/{branch points}.

Now Ω̃(t) = f̃(D, t) ⊂ F(t). Let Ω̃e(t) = f̃(De, t) be the complementary
domain in F(t). Since the Green’s function for De with pole at infinity is
1

2π
log |ζ| it follows that

GΩ̃e(t)(z̃, ∞̃) =
1

2π
log |ζ|,

with z̃ = f̃(ζ, t) as before, and ∞̃ = f̃(∞, t) ∈ F(t). Thus, comparing with
(10.2), GΩ̃e(z̃, ∞̃) is after a sign change simply the harmonic continuation of
GΩ̃(z̃, 0̃). In particular it follows that, on the common boundary ∂Ω̃(t) =
∂Ω̃e(t),

|∇GΩ̃e(z̃, ∞̃)| = |∇GΩ̃(z̃, 0̃)|.
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Returning to (10.1) this means that we also have

˙̃fnormal(z̃, t) = 2πq(t)|∇GΩ̃e(t)(z̃, ∞̃)|, z̃ ∈ ∂Ω̃e(t). (10.3)

The left member here is the same as in (10.1), but in relation to Ω̃e(t) it is
an inward pointing normal vector.

Thus the equation which describes injection at 0̃ in Ω̃(t) at the same time
describes suction at ∞̃ from Ω̃e(t), and conversely. So the two problems
are in the present setting equivalent, which might seem remarkable since the
suction problem is known in general to be highly unstable and ill-posed, while
injection always is stable and well-posed. The explanation is that we have
lifted everything to a Riemann covering surface F(t), which has branch points
allowed to move, and which is conformally equivalent to the Riemann sphere
in such a way that Ω̃(t) and Ω̃e(t) correspond to D and De, respectively. With
movable branch points in Ω̃(t) the solution of (10.1) is not unique, as follows
from Theorem 3.2. Similarly for Ω̃e(t) and (10.3). And some branch points
must be allowed to move because F(t) as a whole is time dependent.

Thus lifting to a Riemann surface with movable branch points can be
viewed as a kind of relaxation, opening up for more suction solutions. Indeed,
if we can arrange that the branch points in Ω̃e(t) are fixed, then we may
perform injection at ∞̃ = f̃(∞, t) ∈ Ω̃e(t) by partial balayage, and this will
correspond, in some sense, to suction at 0̃ from Ω̃(t).

As an example, we can explain the suction from Ω(0) obtained at the
end of Section 9.4. We identify this initial domain, which has a cusp at
z = 1/2, with Ω̃(0) ⊂ F(0), which lies entirely in P(1), in the notation of
Section 9.4. The complementary domain in F(0) then is Ω̃e(0) = ((P(1) \
Ω̃(0)) ∪ P(2))/{1/2,∞} ∪ P(3).

Now, each of P(1), P(2) and P(3) has its own point of infinity, denote them
by ∞̃(1), ∞̃(2), ∞̃(3), respectively, and we much choose from which of these
to inject. But there is actually no choice, it is impossible to inject at ∞̃(3)

because P(3) is isolated (at this initial stage t = 0), and the other two points
are actually the same point in F(0) since they represent the branch point
β4 for f(ζ, 0). In fact, ∞̃(1) = ∞̃(2) = f̃(∞, 0), which is the correct source
point.

In terms of partial balayage on M = F(0), the desired evolution Ω̃e(t),
with initial domain Ω̃e(0) and source ∞̃(1) = ∞̃(2) = f̃(∞, 0), in principle
becomes

Bal(2πQ(−t)δ∞̃(1) + χΩ̃e(0)m̃, m̃) = χΩ̃e(t)m̃. (10.4)
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Here we are using the same time variable as in Section 9.4, which means that
−ε < t < 0 and Q(−t) > 0.

Unfortunately, (10.4) does not really make sense because the measure
we are sweeping has infinite mass. But it is easy to remedy the situation
by subtracting χΩ̃e(0)m̃ from both sides. Using that ∂Ω̃(0) is a nullset with
respect to m̃ this gives

Bal(2πQ(−t)δ∞̃(1) , χΩ̃(0)m̃) = χΩ̃(0)\Ω̃(t)m̃, (10.5)

where then Ω̃(t) is the result of the suction out of Ω̃(0). Equation (10.5)
makes perfectly good sense for −ε < t < 0, where ε > 0 is chosen so that
2πQ(ε) = m̃(Ω̃(0)), and it is the correct formula for the describing the evo-
lution of Ω̃(t) (or Ω̃e(t)). Of course, everything can be pulled back from M
to P by using ζ in z̃ = f̃(ζ, 0) as global variable on M. Then one gets

Bal(2πQ(−t)δ∞, |g|2χD) = |g|2χD\D̂(t) (−ε < t < 0),

where g(ζ) = g(ζ, 0) = 1− ζ and D̂(t) = f̃−1(Ω̃(t), 0).
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Figure 9.1: Solution described in Section 9.3
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Figure 9.2: The same solution enlarged
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Figure 9.3: Solution described in Section 9.4
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Figure 9.4: The same solution enlarged
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