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CRITICAL POINTS OF GREEN’S FUNCTION AND

GEOMETRIC FUNCTION THEORY

BJÖRN GUSTAFSSON AND AHMED SEBBAR

Abstract. We study questions related to critical points of the Green’s func-
tion of a bounded multiply connected domain in the complex plane. The
motion of critical points, their limiting positions as the pole approaches the
boundary and the differential geometry of the level lines of the Green’s func-
tion are main themes in the paper. A unifying role is played by various affine
and projective connections and corresponding Möbius invariant differential op-

erators. In the doubly connected case the three Eisenstein series E2, E4, E6

are used. A specific result is that a doubly connected domain is the disjoint
union of the set of critical points of the Green’s function, the set of zeros of
the Bergman kernel and the separating boundary limit positions for these. At
the end we consider the projective properties of the prepotential associated to
a second order differential operator depending canonically on the domain.
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1. Introduction

The results of this paper have their origin in attempts to understand trajectories
of critical points in a planar multiply connected domain. We start with study-
ing, for a given bounded multiply connected domain Ω in the complex plane, the
motion of critical points of the ordinary Green’s function G(z, ζ) of Ω as the pole
ζ moves around. If Ω has connectivity g + 1 and the critical points are denoted
z1(ζ), . . . , zg(ζ), we show first of all that the zj(ζ) stay within a compact subset K
of Ω (this result has also recently been obtain by A. Solynin [56]) and secondly that
the limiting positions of the zj(ζ) as ζ approaches the boundary coincide with the
corresponding limiting positions of the zeros of the Bergman kernel. In the doubly
connected case (g = 1) it even turns out that the domain is the disjoint union of
the set of critical points of the Green’s function and the set of zeros of the Bergman
kernel, plus the common boundary of these two sets.

The method developed to prove the existence of the compact set K is remarkably
related to (a new type of) Martin compactification and uses many properties of the
Bergman, Schiffer and Poisson kernels. All these functionals depend in one sense
or another on critical points of the Dirichlet Green’s function, and they moreover
extend in a natural way to sections of suitable bundles of the Schottky double of the
domain, which is a compact Riemann surface of genus g. An important role here is
played by the Schwarz function, which can be interpreted as being the coordinate
transition function between the front side and the back side of the Schottky double.

It is natural in this context to study the relationship between the hyperbolic
metric and level lines of the Green’s function. We show, for example, that the
average, taken on a level line of the Green’s function, of the Green’s potential Gµ

of any compactly supported measure µ is proportional to the total mass of µ. We
also study level lines of the Green’s function, and other harmonic functions, from
the point of view of hamiltonian mechanics and differential geometry. One main
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observation then is that such level lines are trajectories, as well as Hamilton-Jacobi
geodesics, for systems with the squared modulus of the gradient of the harmonic
function as hamiltonian.

Various other topics touched on are estimates of the Taylor coefficients of the reg-
ular part of the complex Green’s function in terms of the distance to the boundary,
and relationships between these coefficients and the Poincaré metric.

A major part of the paper is devoted to a detailed study of the doubly connected
case, modeled by the annulus. In this situation all calculations can be done explic-
itly because we have at our disposal the theory of modular forms (theta functions)
and elliptic functions. For example the dichotomy result mentioned in the begin-
ning is proved in this section. The Ramanujan formula for the derivatives of the
basic Eisenstein series E2, E4, E6 are fundamental.

Some of the mentioned Taylor coefficients and Eisenstein series transform under
coordinate changes as different kinds of connections. In the second half of the
paper we study affine and projective connections in quite some depth. In general,
projective connections play a unifying role in the paper, in fact almost all of our
work turns around projective connections, and to some extent affine connections.
One example is that they generate Möbius invariant differential operators, called
Bol operators and denoted Λm, for which boundary integral formulas, of Stokes
type but for higher order derivatives, can be proved. These are useful for studying
weighted Bergman spaces in general multiply connected domains. There is one
such Bergman space for each half-integer, and the elements of the space should be
thought of as differentials of this order (actually integrals if the order is negative).
The Bol operator then is an isometry Λm : Am(Ω) → Bm(Ω) from a Bergman type
space Am(Ω) of differentials of order 1−m

2 to a (weighted) Bergman space Bm(Ω)

consisting of differentials of order 1+m
2 . Also reproducing kernels for these, and

some other, spaces are studied.
Along with connections, several questions related to curvature of, for example,

level lines are discussed. The Study formula finds here its natural meaning. A
further aspect is that the operators Λm all turn out to be symmetric powers of a
single one, namely Λ2.

In the final section of the paper we try to clarify in our setting the meaning of a
certain prepotential for second order differential operators which has arisen in some
recent physics papers.

2. Generalities on function theory of finitely connected plane

domains

2.1. The Green’s function and the Schottky double. Let Ω ⊂ C be a bounded
domain of finite connectivity, each boundary component being nondegenerate (i.e.,
consisting of more than one point). The oriented boundary (having Ω on its left
hand side) is denoted ∂Ω = Γ = Γ0+Γ1+· · ·+Γg, where Γ0 is the outer component.
We shall in most of the paper discuss only conformally invariant questions, and
then we may assume that each boundary component Γj is a smooth analytic curve.
Alternatively, one may think of Ω as a plane bordered Riemann surface.

Much of the functions theory on Ω is conveniently described in terms of the
Schottky double Ω̂ of Ω. This is the compact Riemann surface of genus g obtained,

when Ω has analytic boundary, by welding Ω along ∂Ω, with an identical copy Ω̃.
Thus, as a point set Ω̂ = Ω ∪ ∂Ω ∪ Ω̃. The “backside” Ω̃ is provided with the
opposite conformal structure. This means that if z̃ ∈ Ω̃ denotes the point opposite
to z ∈ Ω then the map z̃ 7→ z̄ is a holomorphic coordinate on Ω̃. The construction
of the Schottky double generalizes to any bordered Riemann surface and the result
is always a symmetric Riemann surface, i.e., a Riemann surface provided with an
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antiholomorphic involution. In the Schottky double case this is the map J : Ω̂ → Ω̂
which exchanges z and z̃ and which keeps ∂Ω pointwise fixed.

The Schottky double of a plane domain Ω has a holomorphic atlas consisting
of only two charts: the corresponding coordinate functions are the identity map
φ1 : z 7→ z on Ω and the map φ2 : z̃ 7→ z̄ on Ω̃. When ∂Ω is analytic, as is

henceforth assumed, both these maps extend analytically across ∂Ω in Ω̂, hence
their domains of definitions overlap and the union covers all Ω̂. Let

(2.1) S = φ2 ◦ φ−1
1

be the coordinate transition function. It is analytic and defined in a neighbourhood
of ∂Ω in C, and on ∂Ω it satisfies

(2.2) S(z) = z̄ (z ∈ ∂Ω).

Thus it is the Schwarz function [10], [11], [54] of ∂Ω.
Differentiating (2.2) gives

(2.3) dz̄ = S′(z)dz along ∂Ω.

With s an arc-length parameter along ∂Ω such that Ω lies to the left as s increases,

(2.4) T (z) =
dz

ds

is the oriented unit tangent vector on ∂Ω. By (2.3) and since |T (z)| = 1,

S′(z) =
1

T (z)2
, z ∈ ∂Ω.

It follows that 1/T (z) extends analytically to a neighbourhood of ∂Ω and that it
gives a selection of a square-root of S′(z). This is an important observation because
it means that on the Schottky double of any plane domain there is a canonical
choice of square-root of the canonical bundle, i.e., there is canonical meaning of
the concept of a differential of order one-half, and hence of a differential of any
half-integer order.

A function f on Ω̂ is most conveniently described as a pair of functions f1, f2
on Ω, continuously extendable to ∂Ω, such that

f1(z) = f2(z) (z ∈ ∂Ω).

The formal relations to f in terms of the coordinates functions φ1 and φ2 above are
{

f1 = f ◦ φ−1
1 ,

f2 = c ◦ f ◦ φ−1
2 ◦ c,

where c denotes complex conjugation. It follows, for example, that f is meromorphic
if and only if f1 and f2 are meromorphic. With the same kind of identifications, a

differential of order m on Ω̂ is represented by a pair of functions f1, f2 on Ω such
that

f1(z)dz
m = f2(z)dzm along ∂Ω.

This is to be interpreted as f1(z)T (z)m = f2(z)T (z)m, or

(2.5) f1(z) = f2(z)T (z)2m (z ∈ ∂Ω).

Clearly this makes unambiguous sense for any m ∈ 1
2Z.

The Green’s function G(z, ζ) of Ω is, as a function of z for fixed ζ ∈ Ω, defined
by the properties

G(z, ζ) = − log |z − ζ| + harmonic z ∈ Ω,

G(z, ζ) = 0, z ∈ ∂Ω.
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It is symmetric in z and ζ, G(z, ζ) = G(ζ, z), and it extends to the Schottky double
as an“odd” function in each variable, for example, G(J(z), ζ) = −G(z, ζ).

The above extension of the Green’s function makes it a special case of a fun-
damental potential which exists on any compact Riemann surface, and which is a
suitable starting point for discussing the classical function and differentials: for any
three distinct points a, b, w on a compact Riemann surface M there exists a unique
function of the form

(2.6) V (z) = V (z, w; a, b) = − log |z − a| + log |z − b| + harmonic,

normalized by V (w,w; a, b) = 0. It has the symmetries

(2.7) V (z, w; a, b) = V (a, b; z, w) = −V (z, w; b, a)

and the transitivity property

(2.8) V (z, w; a, b) + V (z, w; b, c) = V (z, w; a, c).

See below for explanations, and also [52], Ch. 4. If The Riemann surface is sym-
metric, with involution J , then

(2.9) V (z, w; a, b) = V (J(z), J(w); J(a), J(b)).

Example 2.1. In the case of the Riemann sphere, M = P, we have

V (z, w; a, b) = − log |(z : w : a : b)| = − log
∣

∣

(z − a)(w − b)

(z − b)(w − a)

∣

∣,

(z : w : a : b) denoting the classical cross-ratio.

With M = Ω̂, the Green function is given in terms of V by

(2.10) G(z, ζ) =
1

2
V (z, J(z); ζ, J(ζ)) = V (z, w; ζ, J(ζ)),

where w is an arbitrary point on ∂Ω and where the second equality follows from
(2.7), (2.8), (2.9). Cf. also [18], p. 125f.

The existence of V (z, w; a, b) in general is immediate from classical potential
theory, see e.g. [52], [17] or, more generally, from Hodge theory. In fact, V solves
the Poisson equation −d∗dV = 2π(δa − δb) on M , where the star is the Hodge
star and the Dirac measures in the right member are to be considered as 2-form
currents; the solution exists because

∫

M
2π(δa − δb) = 0 and it is unique up to an

additive constant.
From V (z, w; a, b) much of the classical function theory on M can be built up.

For example,

(2.11) υa−b(z) = −2
∂V (z, w; a, b)

∂z
dz = −dV (z) − i∗dV (z)

=
dz

z − a
− dz

z − b
+ analytic

is the unique abelian differential of the third kind with poles of residues ±1 at
z = a, b and having purely imaginary periods. The subscript in υa−b should be
thought of as a divisor, and the definition extends to any divisor of degree zero.
Conversely, we retrieve V from υa−b by

(2.12) V (z, w; a, b) = −Re

∫ z

w

υa−b,

from which the symmetries (2.7) and transitivity property (2.8) of V follow, using
Riemann’s bilinear relations for one of the symmetries.

From V (z, w; a, b) one can also construct the 2g-dimensional space of harmonic
differentials on M by considering the conjugate periods. By (2.12), the harmonic
differentials dV = −Reυa−b and ∗dV = −Im υa−b do not depend on w. The first
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one is exact, while the second has certain periods, which depend on a, b: if γ is a
closed curve on M then the function

φγ(a, b) =
1

2π

∫

γ

∗dV (·, w; a, b)

is, away from γ, harmonic in a and b and makes a unit jump as a (or b) crosses γ.
It follows that, keeping b fixed, dφγ(·, b) extends to a harmonic differential on M
with periods given by

∫

σ

dφγ(·, b) = σ × γ,

where σ × γ denotes the intersection number of σ and γ. Choosing γ among the
curves in a canonical homology basis gives the standard harmonic differentials.

As a further aspect, the right member in (2.12) can be written as a Dirichlet
integral:

(2.13) V (z, w; a, b) = − 1

2π

∫

M

dV (·, c; z, w) ∧∗ dV (·, c; a, b)

=
1

4π
Im

∫

M

υz−w ∧ ῡa−b,

where c ∈ M is an arbitrary point. Thus V reproduces itself in a certain sense,
and the equation also expresses that V (z, w; a, b), besides being the potential of the
charge distribution δa − δb when considered as a function of merely z, also is the
mutual energy of the two charge distributions δa−δb and δz−δw. The first equality
in (2.13) follows by partial integration, and the second from the definition of υa−b.
For the Green’s function the corresponding equation is

G(z, ζ) =
1

2π

∫

Ω

dG(·, z) ∧∗ dG(·, ζ).

We recall that υa−b has 2g zeros (since it has 2 poles). With M = Ω̂ and
a = ζ, b = J(ζ), half of the zeros are on Ω, and by (2.10), (2.11) these are exactly
the critical points of G(z, ζ) (the points where the gradient vanishes). Hence the
Green’s function has exactly g critical points on Ω.

2.2. The Schottky-Klein prime function. The harmonic theory on a compact
Riemann surface is simple and intuitive, as indicated above. For the holomorphic
theory one usually prefers to work with abelian differentials of the third kind nor-
malized, not as υa−b, but so that, in terms of a canonical homology basis, half of
the periods vanish. Following [59] and [35] we shall, in the case of a Schottky double
of a planar domain Ω, choose a canonical homology basis {α1, . . . , αg, β1, . . . , βg}
such that αj goes from Γ0 to Γj on Ω and back to Γ0 along the same track on the

back-side Ω̃, and such that βj = Γj (j = 1, . . . , g). Thus the basis is symmetric
with respect to the involution J , more precisely J(αj) = −αj , J(βj) = βj .

We denote by ωa−b the abelian differential of the third kind with the same
singularities as υa−b but normalized so that the αj-periods vanish:

(2.14)

∫

αj

ωa−b = 0, j = 1, . . . , g.

This makes sense only for a, b /∈ αj , and with the αj being fixed curves. Hence
ωa−b is less canonical than υa−b but it has the advantage of depending analytically
on a, b, whereas for υa−b the dependence is only harmonic in general.

Remark 2.1. As to notation, the differential we denote by ωa−b is in Fay [18],
Schiffer-Spencer [52], Farkas-Kra [17] denoted, respectively, ωa−b, −dωab, τab. For
our υa−b the corresponding list is: Ωa−b, −dΩab, ωab. Also, Fay [18], and Hejhal [28]
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use a homology basis with switched roles between the αj and βj curves, but, as no-
ticed by A. Yamada [59], the present choice has certain advantages (see Lemma 2.1
below).

The integral
∫ z

w ωa−b, with unspecified path of integration, is locally holomorphic
in all variables, but multivalued. To cope with the 2πi indeterminacy coming from
the poles one may form the exponential. In the case of the Riemann sphere this
simply gives the cross-ratio between z, w, a, b:

exp

∫ z

w

ωa−b = (z : w : a : b).

For Riemann surfaces of genus g > 0, the exponential remains multivalued, with
multiplicative periods (cf. [17]), Ch.III.9). However, one can still write it as a kind
of cross-ratio if one is willing to accept further multivaluedness:

(2.15) exp

∫ z

w

ωa−b =
E(z, a)E(w, b)

E(z, b)E(w, a)
.

Here E(z, ζ) is the Schottky-Klein prime function (prime form), which should be
regarded as a differential of order − 1

2 in each of the variables, but as such still has
multiplicative periods. Near the diagonal it behaves like z−ζ. The exact definition
of E(z, ζ) is usually given in terms of theta functions on the Jacobi variety, see
[18], [28], [42] and below. For the Schottky doubles of a plane region there is also
a representation in terms of the Schottky uniformization of the domain, see for
example [9].

It should be remarked that, in the Schottky double case, the kind of differential
of order − 1

2 referred to for E(z, ζ) has no representation in the form (2.5) (with
m = −1). The bundle of half-order differentials defined by (2.5) is “even” and
does not allow any global holomorphic section, whereas the one needed for E(z, ζ)
should be “odd”, which does allow for a holomorphic section. The definition of
such a bundle requires a finer atlas than the one consisting of only Ω and Ω̃ for its
representation. Of the 22g bundles of half-order differentials, 2g−1(2g − 1) are odd
and 2g−1(2g + 1) are even, see [28].

Now, quite remarkably, in case the Riemann surface is the Schottky double of
a plane domain the two abelian differentials ωa−b and υa−b coincide when a and b
are symmetrically opposite points:

Lemma 2.1. For M = Ω̂ and with canonical homology basis chosen as above,

ωζ−J(ζ) = υζ−J(ζ).

Remark 2.2. The lemma does not hold if the homology basis is chosen in a different
way, for example with switched roles between the αj and βj curves. Note also that
even though ωa−b makes a jump by 2πi as a or b crosses αj , there is no such jump
for ωζ−J(ζ) because ζ and J(ζ) cross αj simultaneously and the two contributions
cancel.

Proof. One simply has to notice that υζ−J(ζ) satisfies the normalization (2.14) of
ωζ−J(ζ). Expressed in terms of V , since dV already is exact, the statement to be
proven becomes, for any w ∈ ∂Ω,

∫

αj

∗dV (·, w; ζ, J(ζ)) = 0, (j = 1, . . . , g).

That these periods vanish follows from the symmetry properties (2.13), (2.9) of V
with respect to J . �
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For a general Riemann surface, the differential ωa−b can be recovered from the
prime form as a logarithmic derivative of (2.15):

(2.16) ωa−b(z) = d log
E(z, a)

E(z, b)
.

From this one sees clearly that E(z, ζ) depends on the homology basis, since ωa−b

does. The Green’s function of a planar domain Ω is most directly related to υa−b

on Ω̂ as in (2.10), (2.11), but in view of Lemma 2.1 one can equally well use ωa−b.
Therefore, (2.16) gives the following expression of the Green’s function of Ω in terms

of the prime form on M = Ω̂.

G(z, ζ) = − log | E(z, ζ)

E(z, J(ζ))
| (z, ζ ∈ Ω).

See [59] for further details, and also [9], [35] for other aspects.
We introduce next the harmonic measures uj , j = 1, . . . , g, i.e., the harmonic

functions in Ω defined by having the boundary values uj = δkj on Γk. It is easy
to see that their differentials duj extend to the Schottky double as everywhere
harmonic differentials with

∫

αk

duj = 2δkj ,

∫

αk

∗duj = 0.

Here the second equation is a consequence of the symmetry of the extended dif-
ferential under J . Thus, the dUj = 1

2 (duj + i∗duj) (j = 1, . . . , g) constitute the
canonical basis of abelian differentials of the first kind (everywhere holomorphic
differentials), the period matrix with respect to the αk curves being the identity
matrix. For the βk-periods we have

∫

βk

duj = 0,

∫

βk

∗duj =

∫

∂Ω

uk
∗duj =

∫

Ω

duk ∧ ∗duj ,

where the latter make up a positive definite matrix. On setting

τkj =
1

2

∫

βk

duj + i ∗duj

we thus have Re τkj = 0 and that the matrix (Im τkj) is positive definite. With

Uj(z) =
∫ z 1

2 (duj +i∗duj) =
∫ z ∂uj

∂z dz denoting the corresponding abelian integrals
(multivalued), the map

z 7→ U(z) = (U1(z), . . .Ug(z))

defines, up to a shift, the Abel map into the Jacobi variety Cg/(Zg+τZg), τ = (τkj).
At this point we can make the definition of the Schottky-Klein prime function

slightly more precise. The first order theta function with (half-integer) character-

istics

[

δ
ǫ

]

, where δ, ǫ ∈ 1
2Zg are row vectors, is defined by

(2.17)

ϑ

[

δ
ǫ

]

(w) = ϑ

[

δ
ǫ

]

(w; τ) =
∑

m∈Zg

exp
[

iπ(m+ δ)τ(m + δ)t + 2πi(w + ǫ)(m+ δ)t
]

for w = (w1, . . . , wg) ∈ Cg. The superscript t denotes transposition of a matrix.
To define the prime form the characteristics should first of all be chosen to be
odd, i.e., so that 4δǫt is an odd number (e.g., δ = (1

2 , 0 . . . , 0), ǫ = (1
2 , 0 . . . , 0)).

For simplicity, set ϑ∗ = ϑ

[

δ
ǫ

]

whenever such a choice of δ, ǫ has been made, and

introduce

cj =
∂ϑ∗
∂wj

(0).
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The δ and ǫ should in addition be chosen to be non-singular, i.e., so that not all of
the constants cj vanish. This can always be done, see [18]. Then the Schottky-Klein

prime form is, when considered as defined on Ω̂,

E(z, ζ) =
ϑ∗(U(z) − U(ζ))

√

∑g

j=1 cjdUj(z)
√

∑g

j=1 cjdUj(ζ)
.

See [35] (Appendix) for further details using the present point of view.

3. Critical points of the Green’s function

3.1. The Bergman and Poisson kernels. The Bergman and Schiffer kernels [4],
[52], K(z, ζ) and L(z, ζ) respectively, will be discussed in some detail later on. For
the moment we just recall their representations in terms of the Green’s function
and the potential V (z, w; a, b) in (2.6):

(3.1) K(z, ζ) = − 2

π

∂2G

∂z∂ζ̄
(z, ζ) =

1

π

∂2V

∂z∂ζ̄
(z, J(z); ζ, J(ζ)),

(3.2) L(z, ζ) = − 2

π

∂2G

∂z∂ζ
(z, ζ) =

1

π

∂2V

∂z∂ζ
(z, J(z); ζ, J(ζ)).

By the symmetry of G(z, ζ) (or V ) we have L(z, ζ) = L(ζ, z) and K(z, ζ) = K(ζ, z).
Since G(z, ζ) = 0 for z ∈ ∂Ω, ζ ∈ Ω,

(3.3) L(z, ζ)dz +K(z, ζ)dz = 0

along ∂Ω (with respect to z). This means that, for any fixed ζ, the pair K(z, ζ)dz,

L(z, ζ)dz combines into a meromorphic differential on Ω̂. It has a pole of order two
residing in L(z, ζ):

(3.4) L(z, ζ) =
1

π

1

(z − ζ)2
− ℓ(z, ζ),

where ℓ(z, ζ) (the “ℓ-kernel”) is regular in both variables. Consequently, K(z, ζ)dz,
L(z, ζ)dz have altogether 2g zeros. For ζ ∈ ∂Ω the zeros are, by (3.3) with switched
roles between z and ζ, equally shared: g zeros for K(z, ζ)dz and L(z, ζ)dz at the
same points, and no zeros on ∂Ω as we shall see in the next section. A further
consequence of (3.3) is that when ∂Ω is analytic, the kernels K(z, ζ), L(z, ζ) have
analytic extensions across ∂Ω in C.

Using the symmetries of K(z, ζ) and L(z, ζ), and (3.3) one finds that the double
differentials K(z, ζ)dzdζ̄, L(z, ζ)dzdζ are “real” on the boundary:

L(z, ζ)dzdζ ∈ R, K(z, ζ)dzdζ̄ ∈ R (z, ζ ∈ ∂Ω).

The precise meaning of for example the first equation is that L(z, ζ)T (z)T (ζ) ∈ R,
where T (z) is the tangent vector at z ∈ ∂Ω (see (2.4)).

The Poisson kernel of Ω is the normal derivative of the Green function when one
of the variables is on the boundary:

P (z, ζ) = − 1

2π

∂G

∂nz
(z, ζ), z ∈ ∂Ω, ζ ∈ Ω.

Here ∂
∂nz

denotes the outward normal derivative at z ∈ ∂Ω. With ds = dsz denoting
arc-length with respect to z, the definition may also be written in differential form
in several ways, for example (with d = dz)

P (z, ζ)dsz = − 1

2π
∗dG(z, ζ) = − 1

π
Im

∂G

∂z
(z, ζ)dz

= − 1

2π
Im

∂V

∂z
(z, J(z); ζ, J(ζ))dz = − 1

2π
Im υζ−J(ζ)(z).
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3.2. Critical points. In this subsection and the next we show that, as the pole
moves around, the set of critical points of the Green’s function of Ω stay within
a compact subset of Ω, and that the limiting positions, as the pole tends to ∂Ω,
coincide with the zero set of the Bergman kernel in this boundary limit. The latter
result was the main motivation for the present work. Related results have been
obtained by S. Bell [3] (section 30) and A. Solynin [56].

For fixed z ∈ ∂Ω, the map ζ 7→ P (z, ζ) is harmonic and strictly positive in
Ω and vanishes on ∂Ω \ {z}. It extends, when ∂Ω is analytic, to a harmonic
function in a neighborhood (in C) of ∂Ω except for a pole at ζ = z. Since P (z, ·)
attains its minimum in Ω̄\{z} on ∂Ω, the Hopf maximum principle [47] shows that
∂P

∂nζ
(z, ζ) < 0 for all ζ ∈ ∂Ω \ {z}. Thus

(3.5)
∂2G

∂nz∂nζ
(z, ζ) > 0, z, ζ ∈ ∂Ω, z 6= ζ.

The fact that this double normal derivative is nonnegative can be more directly
understood by interpreting the left member of (3.5) as a double difference quotient:
with differences △z, △ζ pointing in the normal direction into Ω from z, ζ ∈ ∂Ω,
respectively, we have

∂2G(z, ζ)

∂nz∂nζ
=

= lim
|△z|,|△ζ|→0

G(z + △z, ζ + △ζ) −G(z + △z, ζ) −G(z, ζ + △ζ) +G(z, ζ)

|△z||△ζ| .

This is obviously nonnegative because all terms in the numerator vanish except the
first: G(z + △z, ζ + △ζ) > 0.

Complementary to (3.5) we have

∂2G

∂sζ∂sz
(z, ζ) =

∂2G

∂sζ∂nz
(z, ζ) =

∂2G

∂nζ∂sz
(z, ζ) = 0 (z, ζ ∈ ∂Ω, z 6= ζ).

It follows that, for z, ζ ∈ ∂Ω, z 6= ζ,

∂2G

∂z∂ζ
(z, ζ) 6= 0,

∂2G

∂z∂ζ̄
(z, ζ) 6= 0,

∂2G

∂z∂nζ
(z, ζ) 6= 0,

because these derivatives contain derivations in the normal direction in each of the
variables. In view of the singularity of type 1/(z − ζ)2 at z = ζ and of the continuity

of
∂2G

∂z∂ζ
and

∂2G

∂z∂ζ̄
as mappings from a neighborhood of ∂Ω × ∂Ω ⊂ C × C to the

Riemann sphere it is clear that the above inequalities persist to hold for z = ζ, and
also that the quantities are bounded away from zero:

(3.6)
∣

∣

∂2G

∂z ∂ζ

∣

∣ ≥ c > 0,
∣

∣

∂2G

∂z ∂ζ̄

∣

∣ ≥ c > 0

in a full neighborhood of ∂Ω×∂Ω and for some constant c > 0. Note that (3.6) says
that K(z, ζ), L(z, ζ) are bounded away from zero in a neighborhood of ∂Ω × ∂Ω
when ∂Ω is analytic. With z in a neighborhood of ∂Ω and ζ ∈ ∂Ω we also infer

(3.7)
∣

∣

∂2G

∂z ∂nζ

∣

∣ ≥ c > 0.

Since
∂G

∂z
(z, ζ) = 0 for ζ ∈ ∂Ω we obtain, on integrating (3.7) with respect to ζ

in the normal direction,

|∂G
∂z

(z, ζ)| ≥ c dist(ζ, ∂Ω)
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for z, ζ in a neighborhood of ∂Ω and for some c > 0. In particular there exists a
compact set K ⊂ Ω such that

(3.8)
∂G

∂z
(z, ζ) 6= 0

for all z, ζ ∈ Ω \ K. Now we are ready to conclude the following, also obtained
(using slightly different arguments) by A. Solynin [56].

Theorem 3.1. Let Ω ⊂ C be a bounded finitely connected domain such that each
component of C \ Ω consists of a least two points. Then there exists a compact set
K ⊂ Ω such that

∂G

∂z
(z, ζ) 6= 0, z ∈ Ω \K, ζ ∈ Ω,(3.9)

∂2G

∂z∂ζ
(z, ζ) 6= 0, z, ζ ∈ Ω \K,(3.10)

∂2G

∂z∂ζ̄
(z, ζ) 6= 0, z, ζ ∈ Ω \K.(3.11)

Proof. The statements are conformally invariant, so it is enough to prove them when
Ω has smooth analytic boundary. By (3.6), (3.7), (3.8) the desired inequalities are
valid for z, ζ ∈ Ω \K and it remains only to prove that, in the first inequality, we
can allow all ζ ∈ Ω by possibly enlarging the compact set K. If this were not true,
then there would exist a sequence {(zn, ζn)} with

∂G

∂z
(zn, ζn) = 0, zn → z ∈ ∂Ω, ζn → ζ ∈ Ω̄.

According to (3.8), ζ ∈ Ω. But then also
∂G

∂z
(z, ζ) = 0, which however cannot

be true because
∂G

∂z
(z, ζ) is a nonzero constant factor times the Poisson kernel

P (z, ζ), which is strictly positive for ζ ∈ Ω, z ∈ ∂Ω. This contradiction finishes the
proof. �

Remark 3.1. With slight modifications the proof also works in several real variables:
if Ω ⊂ Rn has real analytic boundary then there exists a compact set K ⊂ Ω such
that ∇xG(x, y) 6= 0 for all x ∈ Ω \K, y ∈ Ω. The crucial observation is that (3.5)

persists to hold, so that

n
∑

i,j=1

∂2G(x, y)

∂xi∂yj
ξiηj 6= 0 for x, y ∈ ∂Ω whenever ξ, η are

nontangential vectors at x and y respectively.

Example 3.1. The boundary behavior and the nature of the pole are illustrated by
the case of the unit disk: Ω = D = {z ∈ C : |z| < 1}. In this case Ω̂ = P =
C∪{∞} with involution J : z 7→ 1/z̄, and the Schwarz function is S(z) = 1/z. The
fundamental potential was given in Example 2.1, and the Green’s function is

G(z, ζ) = − log | z − ζ

1 − zζ̄
|.

It follows that
∂G(z, ζ)

∂z
= − 1 − |ζ|2

2(z − ζ)(1 − zζ̄)
,

∂2G

∂z ∂ζ
= −1

2

1

(z − ζ)2
,

∂2G

∂z ∂ζ̄
= −1

2

1

(1 − zζ̄)2
,

P (z, ζ) =
1 − |ζ|2
|z − ζ|2 .
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As for the estimates (3.6), (3.7) we note that |z − ζ| ≤ 2, |1 − zζ̄| ≤ 2 so that, for
z, ζ ∈ ∂D,

∣

∣

∂2G

∂z ∂ζ

∣

∣ ≥ 1

8
,

∣

∣

∂2G

∂z ∂ζ̄

∣

∣ ≥ 1

8
,

∣

∣

∂2G

∂z ∂nζ

∣

∣ ≥ 1

8
.

3.3. Critical points in the boundary limit. When ζ ∈ ∂Ω,
∂G

∂z
(z, ζ) = 0 for

all z ∈ Ω, but by “blow-up” one can still speak of a nontrivial limit of
∂G

∂z
(z, ζ)

as ζ → ∂Ω. In a certain sense
∂2G

∂z∂nζ
(z, ζ), and hence the Bergman and Schiffer

kernels, represents this limit, but there is also a representation in terms of a Martin
type construction, which we shall discuss in the next section. Throughout this
subsection we assume that ∂Ω is analytic.

Fix a point a ∈ Ω such that ∂zG(a, ζ) 6= 0 for all ζ ∈ Ω and K(a, ζ) 6= 0 for all
ζ ∈ ∂Ω. This is possible (with a close enough to the boundary) by Theorem 3.1
and what precedes it, viz. (3.6). Then define

F (z, ζ) =
∂zG(z, ζ)

∂zG(a, ζ)
, z, ζ ∈ Ω.(3.12)

As a function of z, F (z, ζ) is meromorphic in Ω with a pole at ζ. It is normalized so
that F (a, ζ) = 1, which prevents it from degeneration as ζ → ∂Ω. In Example 3.1,
for the unit disk, we see this from

F (z, ζ) =
(a− ζ)(1 − aζ̄)

(z − ζ)(1 − zζ̄)
=

(a− ζ)(a− 1/ζ̄)

(z − ζ)(z − 1/ζ̄)
.

As a comparison,
K(z, ζ)

K(a, ζ)
=

(1 − aζ̄)2

(1 − zζ̄)2
=

(a− 1/ζ̄)2

(z − 1/ζ̄)2
.

Since ζ = 1/ζ̄ on the boundary, it follows that F (z, ζ) and
K(z, ζ)

K(a, ζ)
coincide there.

The following theorem shows that the above is what happens in general.

Theorem 3.2. Assume ∂Ω is analytic and choose a ∈ Ω as above. Then the
function F (z, ζ), originally defined in Ω × Ω, extends continuously to Ω × Ω, and

on Ω× ∂Ω it agrees with
K(z, ζ)

K(a, ζ)
. Specifically, if (zn, ζn) ∈ Ω×Ω, (z, ζ) ∈ Ω× ∂Ω

and (zn, ζn) → (z, ζ) as n→ ∞, then

lim
n→∞

F (zn, ζn) =
K(z, ζ)

K(a, ζ)
.

Proof. Let (zn, ζn) → (z, ζ) as in the statement and let ηn ∈ ∂Ω be closest points
on the boundary to the ζn:

|ζn − ηn| = d(ζn) = d(ζn, ∂Ω).

With T (ηn) the tangent vector at ηn ∈ ∂Ω, we have

∂G

∂z
(zn, ηn) = 0,

∂2G

∂z∂ζ
(zn, ηn)T (ηn) +

∂2G

∂z∂ζ̄
(zn, ηn)T (ηn) = 0.

Therefore, Taylor expansion with respect to ζ of ∂G
∂z (zn, ζ) at ζ = ηn gives

∂G

∂z
(zn, ζn) =

∂2G

∂z∂ζ
(zn, ηn)(ζn − ηn) +

∂2G

∂z∂ζ̄
(zn, ηn)(ζ̄n − η̄n) + O(|ζn − ηn|2)
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= 2i
∂2G

∂z∂ζ
(zn, ηn)T (ηn)Im

ζn − ηn

T (ηn)
+ O(d(ζn)2)

= 2i
∂2G

∂z∂ζ
(zn, ηn)T (ηn)d(ζn) + O(d(ζn)2).

Note that Im ζn−ηn

T (ηn) = d(ζn). The remainder term O(d(ζn)2) in principle depends

on zn, but it is uniformly small as zn → z ∈ Ω.
We now obtain

F (zn, ζn) =
∂zG(z, ζn)

∂zG(a, ζn)
=

2i ∂2G
∂z∂ζ (zn, ηn)T (ηn)d(ζn) + O(d(ζn)2)

2i ∂2G
∂z∂ζ (a, ηn)T (ηn)d(ζn) + O(d(ζn)2)

=
K(zn, ηn) + O(d(ζn))

K(a, ηn) + O(d(ζn))
.

Since K(a, ζ) is bounded away from zero for ζ close to ∂Ω the statements of the
theorem follow. �

As a consequence we have

Corollary 3.3. The limit set of the set of critical points of G(z, ζ) as ζ → ∂Ω is
exactly the set of zeros of K(z, ζ) for ζ ∈ ∂Ω. More precisely, for z ∈ Ω, ζ ∈ ∂Ω,
the following statements are equivalent.

(i) K(z, ζ) = 0.
(ii) L(z, ζ) = 0.
(iii) There exist (zn, ζn) ∈ Ω × Ω, (n = 1, 2, · · · ) with ∂zG(zn, ζn) = 0 such that

(zn, ζn) → (z, ζ) as n→ ∞.
(iv) For each sequence {ζn}n≥1 ⊂ Ω such that ζn → ζ, there exist zn ∈ Ω with

zn → z such that ∂zG(zn, ζn) = 0.

Proof. By (3.3) (with switched roles of z and ζ), (i) and (ii) are equivalent, and
clearly (iv) implies (iii).

If ∂zG(zn, ζn) = 0, i.e., F (zn, ζn) = 0, then it is immediate from Theorem 3.2
that K(z, ζ) = 0. Thus (iv) implies (i). Conversely, assume for instance that
K(z, ζ) = 0, ∂

∂zK(z, ζ) 6= 0 and let ζn ∈ Ω, ζn → ζ. The functions F (·, ζn) and
K(·, ζ) have equally many poles and zeros (namely 2 poles and 2g zeros seen in
the Schottky double), and since F (·, ζn) tends to a constant times K(·, ζ), F (·, ζn)
must have a zero zn near the zero z of K(·, ζ). In fact, let γ = ∂D(z, ǫ) with ǫ > 0
small enough. Then, as n→ ∞,

1

2πi

∫

γ

d logF (·, ζn) → 1

2πi

∫

γ

d logK(·, ζ) = 1,

the last integral being de number of zeros of K(·, ζ) inside γ. Hence F (·, ζn) has
exactly one zero zn inside γ. Letting ǫ tend to 0 as n tends to ∞, we conclude that
there are zeros zn with zn → z. Thus (i) implies (iv), and the proof is complete. �

Remark 3.2. The following example illustrates the fact that critical points of Green’s
function are not necessarily simple. Let ω = e2πi/3, Dj = D(ωj , ρ), j = 1, 2, 3, and

0 < ρ <
√

3
2 . The Green’s function G(z) of Ω = C \ (D̄1 ∪ D̄2 ∪ D̄3) with pole

at infinity has two critical points (g = 2). Since Ω is invariant under z → ωz,
the two critical points must be a double point located at the origin. By means of
a Möbius transformation, one obtains an example of a 2-holed disk which has a
Green’s function with a multiple critical point.
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4. The Martin and gradient boundaries

4.1. The Martin compactification. In this section we shall give the preceding
considerations their right meaning. We adapt the construction of Martin compact-
ification as presented for instance in I.S. Gal [21]. Let us first recall a general
theorem of Constantinescu-Cornea (see [7], p. 97).

Theorem 4.1. Let Ω be a non-compact locally compact Hausdorff space and let Φ
be a family of continuous functions Ω → [−∞, +∞]. Then there exists a compact
topological space ΩM , unique up to homeomorphisms, such that

(i) Ω is an open and dense subset of ΩM .
(ii) Every f ∈ Φ can be extended to a continuous function fM on ΩM .
(iii) The functions fM separate points on ∂MΩ := ΩM \ Ω.

For example, when Ω is a multiply connected domain in the plane one may,

for a fixed a ∈ Ω, consider the family Φ of functions ζ 7→ M(z, ζ) =
G(z, ζ)

G(a, ζ)
,

parametrized by z ∈ Ω and with the convention that M(a, a) = 1. Each function
z 7→ M(z, ζ) is continuous, even at a. The space ΩM obtained by the theorem
of Constantinescu-Cornea is, up to a homeomorphism, independent of a. It is the
Martin compactification of Ω, and the Martin boundary is ∂MΩ = ΩM \ Ω.

As discovered by M. Brelot and I. S. Gal (see [21]), the Martin boundary can
also be introduced via uniform structures. For generalities on such, see [32]. Let
X be a nonempty set, let (Y,V) be a uniform space and let Φ be a family of
functions φ : X → Y . Then there is a weakest uniform structure on X making the
functions in Φ uniformly continuous. It is the uniformity U generated by all the
φ−1(V ) = {(x, y) ∈ X ×X : (φ(x), φ(y)) ∈ V }, for V ∈ V , φ ∈ Φ, as a subbase.

If V is precompact (totally bounded), so is U . Now the space Y = [−∞, +∞]
is compact, hence has a unique uniform structure, and this is precompact. With
Ω a multiply connected domain in the complex plane, and Φ the set of functions
M(z, ·) (z ∈ Ω) above, this gives a uniform structure the completion of which is
the Martin compactification. The same remark also applies, with Y = P, to the
family of functions of ζ 7→ F (z, ζ) = ∂zG(z, ζ)/∂zG(a, ζ) for z ∈ Ω, F (a, a) = 1.
This gives a uniform structure UG, which we call the gradient structure. Since P is
compact we have

Theorem 4.2. The gradient structure UG is precompact.

To make the link with the Constantinescu-Cornea theorem we recall that as
soon as a uniform structure is introduced on a set X , there automatically arises a
complete uniform space (X̄, Ū) and an injection map f : X → X̄ such that f(X)
is dense in X̄ and U = f−1

(

Ū
)

. The triple
(

f, X̄, Ū
)

is the completion of X with

respect to U . Moreover the space X̄ is compact if and only if the uniform structure
U is precompact. In our setting, with a multiply connected domain Ω ⊂ C, we can
therefore formulate Theorem 4.2 in a more precise way as follows.

Theorem 4.3. The completion of the space Ω with respect to its gradient structure
UG yields a compact space ΩG = Ω ∪ ∂GΩ, the gradient compactification of Ω.

In analogy with the Martin compactification, we call the set ∂GΩ = ΩG \ Ω the
gradient boundary. In Theorem 3.2 we showed that for multiply connected domains
with analytic boundary, the gradient boundary is identical with the Euclidian one.

4.2. An estimate of P. Levy. Thinking of the Martin boundary as a local concept
we may, in view of Example 3.1 and beginning of subsection 3.3, ask for local
approximation of the Green’s function of a general domain with sufficiently smooth
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boundary by the Green’s function of the upper half-plane. Sharp estimates in this
direction have been obtained by P. Levy [38]. Below we review Levy’s method.

Let z ∈ Ω, d(z) = dist (z, ∂Ω), c a point on ∂Ω on distance d(z) from z and let z′

be the symmetric point of z with respect to the boundary ∂Ω, so that c =
1

2
(z+z′).

We assume that z′ /∈ Ω̄, which is the case for instance if ∂Ω satisfies an exterior
ball condition (which we henceforth assume) and d(z) is sufficiently small. Let R
the radius of the largest circle in Ω which is tangent to ∂Ω at c and R′ the radius
of the largest circle outside Ω̄ which is tangent to ∂Ω at c. We denote by a, a′ the
centers of the respective circles, assuming that R′ < ∞; the case R′ = ∞ can be
easily covered by a limit argument. The points a, z, c, z′, a′ lie along a straight line.

Theorem 4.4. In the above notation,

log

(

1 − 2d

2R′ + d

)

< log |z
′ − ζ

z − ζ
| −G(z, ζ) < log

(

1 +
2d

2R− d

)

for every ζ ∈ Ω.

Proof. The function ζ 7→ log | z′−ζ
z−ζ |−G(z, ζ) is harmonic in Ω and equals log |z

′ − ζ

z − ζ
|

on ∂Ω. The level lines of the latter function are circles, namely Apollonius circles
with respect to the points z and z′. Recall that the Apollonius circles with centers
z and z′ are Γk = {ζ ∈ C : |z′ − ζ| = k|z − ζ|} for k > 0.

We conclude from the above that we get upper and lower bounds for log |z
′ − ζ

z − ζ
|

on ∂Ω by considering one Apollonius circle which lies entirely inside Ω and one
which lies entirely outside Ω. Optimal choices with respect to the given data are
those Apollonius circles which are tangent to the largest interior and exterior balls.
The points of tangency are denoted by b and b′. It is easily seen that

log |z
′ − b′

z − b′
| < log |z

′ − ζ

z − ζ
| < log |z

′ − b

z − b
|

for ζ ∈ ∂Ω. Since

|z′ − b| = 2R+ d, |z − b| = 2R− d,

|z′ − b′| = 2R′ − d, |z − b′| = 2R′ + d

we get, for ζ ∈ ∂Ω,

log

(

1 − 2d

2R′ + d

)

< log |z
′ − ζ

z − ζ
| < log

(

1 +
2d

2R− d

)

,

and hence

log

(

1 − 2d

2R′ + d

)

< log |z
′ − ζ

z − ζ
| −G(z, ζ) < log

(

1 +
2d

2R− d

)

.

Now the assertion of the theorem follows from the maximum principle. �

5. The Poincaré metric, Taylor coefficients and level lines

5.1. The Poincaré metric on level lines for the Green function. Here we
shall discuss some properties of level lines of Green’s function and in particular
their connections with the Poincaré metric. Later on we shall interpret these level
lines as geodesics for a different metric.

Consider a simply connected domain Ω, let dσz = ρ(z)|dz| be the Poincaré metric
and G(z, ζ) the Green’s function of Ω.
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Proposition 5.1. For every a ∈ Ω, the density ρ(z) of the Poincaré metric is

(5.1) ρ(z) =
|∂G

∂z (z, a)|
sinhG(z, a)

.

In particular, on each level line G(z, a) = c,

ρ(z) = − 1

2 sinh c

∂G

∂nz
(z, a),

i.e., ρ is proportional to the harmonic measure with respect to a, or equivalently to
the Poisson kernel of the enclosed domain.

Proof. The proof is classical and we recall it for the convenience of the reader. With
G(z, a) = G(z, a) + iG∗(z, a) an analytic completion of G(z, a) with respect to z,

the map z 7→ ζ = e−G(z,a) sends Ω onto the unit disk, for which the Poincaré metric
is

dσζ =
|dζ|

1 − |ζ|2 .

By conformal invariance

dσz = ρ(z)|dz| =
|d(e−G(z,a))|

1 − |e−G(z,a)|2

=
e−G(z,a) |2∂G

∂z (z, a)|
1 − e−2G(z,a)

|dz| =
|∂G

∂z (z, a)|
sinh (G(z, a))

|dz|,

which is the desired result. �

Remark 5.1. If Ω is multiply connected the above expression for the Poincaré metric
still holds if G(z, ζ) is interpreted as the Green’s function for the universal covering
surface of Ω. This is not single-valued in Ω, but the combination appearing in the
expression for ρ is single-valued.

As an application, we reprove a result due to T. Kubo [36]. With Ω simply
connected as above, let a ∈ Ω, let µ be a positive measure with compact support in Ω
and choose c > 0 so that the support of µ is contained in K = {z ∈ Ω : G(z, a) ≥ c}.
We define the Green’s potential Gµ of µ by

Gµ(z) =

∫

G(z, ζ) dµ(ζ).

The functions G, Gµ are both harmonic in Ω \K and vanish on ∂Ω. Hence, with
dσz the Poincaré metric as above,

∫

∂K

Gµ(z)dσz = − 1

2 sinh c

∫

∂K

Gµ(z)
∂G

∂n
(z, a)ds

=
1

2 sinh c

∫

∂(Ω\K)

Gµ(z)
∂G

∂n
(z, a)ds =

1

2 sinh c

∫

∂(Ω\K)

G(z, a)
∂Gµ

∂n
ds

= − c

2 sinh c

∫

∂K

∂Gµ

∂n
ds =

πc

sinh c
µ(K).

Thus, under the above assumptions,

Theorem 5.2. The average of the Green potential Gµ, with respect to the Poincaré
metric, on a level line G(·, a) = c equals a constant (independent of µ) times the
total mass of µ.
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For the Poincaré metric in a simply connected domain we have the estimates
(see, for example, [40])

(5.2)
1

4d(z)
≤ ρ(z) ≤ 1

d(z)
,

where the lower bound is a consequence of the Koebe one-quarter theorem. Com-
pare also (5.8) below. By (5.1) this gives the following estimate of the distance to
the boundary directly in terms of the Green function:

sinhG(z, a)

4|∂G
∂z (z, a)| ≤ d(z) ≤ sinhG(z, a)

|∂G
∂z (z, a)| .

See [40] for possible applications of such estimates to computer graphics.
Also the Bergman kernel can provide estimates for the distance to the boundary,

even in the multiply connected case. In fact, setting

K(m,n)(z, ζ) =
∂m+n

∂zm∂ζ̄n
K(z, ζ)

we have, according to P. Davis and H. Pollak [10], the Cauchy-Hadamard type
formula

(5.3)
1

d(z)
= lim sup

n→∞

e

n

(

K(n,n)(z, z)
)

1
2n

= lim sup
n→∞

(

1

(n!)2
K(n,n)(z, z)

)
1
2n

for any z ∈ Ω.
In the simply connected case, this gives an interesting formula for the distance

to the boundary. Let φ(ζ) = exp(−G(ζ, z)) = a1(ζ − z) + a2(ζ − z)2 + · · · , a1 > 0,
be the conformal map from Ω to the unit disk which takes a given point z to the
origin. Then

(5.4)
1

d(z)
= lim sup

n→∞







n
∑

k=0

(k + 1)

∣

∣

∣

∣

∣

∣

n
∑

j=k

(n− j + 1)

j!
an−j+1

dj

dζj

∣

∣

ζ=z
φ(ζ)k

∣

∣

∣

∣

∣

∣

2






1
2n

.

5.2. Taylor coefficients. Above we saw how the distance to the boundary controls
the Poincaré metric. Below we shall see more generally how this distance controls
the Taylor coefficients of the Green’s function, which in the simply connected case
embody the Poincaré metric. For any multiply connected domain Ω, let H(z, ζ) be
the regular part of the Green’s function, defined by

(5.5) G(z, ζ) = − log |z − ζ| +H(z, ζ),

and let G(z, ζ) and H(z, ζ) = H(z, ζ) + iH∗(z, ζ) denote analytic completions of
G(z, ζ) and H(z, ζ) with respect to z, for fixed ζ. Then G(z, ζ) is multivalued,
but H(z, ζ) is a perfectly well-defined analytic function (in z), uniquely determined
after the normalization ImH(ζ, ζ) = 0, henceforth assumed. Thus H(z, ζ) can be
expanded in a power series around z = ζ:

(5.6) H(z, ζ) = c0(ζ) + c1(ζ)(z − ζ) + c2(ζ)(z − ζ)2 + . . . ,

where c0 is real by the normalization chosen.
The first few of the coefficients cn(ζ) are domain function which have geometric

and physical relevance. The constant term, c0(ζ), is sometimes called the Robin
constant and e−c0(ζ) is a kind of capacity (if one allows ∞ ∈ Ω then c0(∞) is the
ordinary logarithmic capacity of C \ Ω), cf. [49].

As follows from (3.1), c0(z) is related to the Bergman kernel by

−∆c0(z) = 4πK(z, z).
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Under conformal mappings c0(z) transforms in such a way that

dσ = e−c0(z)|dz|
is a conformally invariant metric (see further Section 7). When Ω is simply con-
nected this metric coincides with the Poincaré metric and with the Bergman metric,
normalized to be dσ =

√

πK(z, z)|dz|, but for multiply connected domains none of
these metrics are the same. Note also that comparison with (5.1) shows that

c0(z) = − log
|∂G

∂z (z, a)|
sinhG(z, a)

for all z, a ∈ Ω when Ω is simply connected. In the multiply connected case we still
have that the limit, as z → a, of the right member equals c0(a).

In a simply connected domain any conformally invariant metric has constant
Gaussian curvature, because the curvature transforms as a scalar and the conformal
group acts transitively on a simply connected domain. For the above metrics the
constant curvature is negative: κGauss = −4. This means that c0 satisfies the
Liouville equation −∆c0 = 4e−2c0, and for the Bergman and Schiffer kernels it
means that

(5.7)
∂2 logK(z, ζ)

∂z∂ζ̄
= 2πK(z, ζ),

∂2 logL(z, ζ)

∂z∂ζ
= −2πL(z, ζ).

We emphasize that these relations only hold for simply connected domains. For
multiply connected domains there are counterparts of for example (5.7) involving
also the zeros of the Bergman kernel, see [51], [28], [29] and Remark 9.2 in the
present paper.

The function c0(z) can be estimated in terms of the distance d(z) = d(z, ∂Ω) to
the boundary by

(5.8) log d(z) ≤ c0(z) ≤ log d(z) +A

for some constant A. The lower bound is an elementary consequence of the maxi-
mum principle combined with monotonicity properties of c0(z) with respect to the
domain. The upper bound depends on the nature of the domain. If for example
the domain is convex, one can take A = log 2, and for a general simply connected
domain (5.8) is the same as (5.2), i.e., A = log 4 works. See [49], [1] for further
discussions.

For the higher coefficients we have the following estimates, one of which will be
used in Section 8.

Lemma 5.3. For n ≥ 1,

|cn(ζ)| ≤ 1

nd(ζ, ∂Ω)n
(z ∈ Ω).

Proof. The derivative of the Green’s function has the Taylor expansion, with respect
to z,

2
∂G(z, ζ)

∂z
= − 1

z − ζ
+

∞
∑

n=1

ncn(ζ)(z − ζ)n−1.

Thus, for any region D ⊂ Ω containing ζ,

ncn(ζ) =
1

2πi

∫

∂D

2
∂G(z, ζ)

∂z

dz

(z − ζ)n
=

1

2πi

∫

∂D

dG(z, ζ) + i∗dG(z, ζ)

(z − ζ)n

On taking D = {z ∈ Ω : G(z, ζ) > ǫ}, where ǫ > 0, we have dG(·, ζ) = 0 along ∂D,
while −∗dG(·, ζ) can be considered as a positive measure of total mass 2π on ∂D.
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By letting ǫ→ 0 this gives the desired estimates:

|ncn(ζ)| = | 1

2π

∫

∂Ω

∗dG(z, ζ)

(z − ζ)n
| ≤ 1

d(ζ, ∂Ω)n
.

�

5.3. The Green’s function by domain variations. The coefficient c1 in (5.6)
can be directly obtained via the formula

c1(ζ) =
i

2

∫

∂Ω

(
∂G(z, ζ)

∂z
)2dz =

1

2i

∫

∂Ω

|∂G(z, ζ)

∂n
|2dz̄,

which follows from the residue theorem. Instead of the residue theorem one may
use the fact that 2c̄1 is the gradient of c0, as is easily checked (see (7.23)), combined
with the Hadamard variational formula,

δGΩ(z, ζ) =
1

2π

∫

∂Ω

∂G(·, z)
∂n

∂G(·, ζ)
∂n

δn ds,

which gives the infinitesimal change of the Green function under an infinitesimal de-
formation δn of ∂Ω in the outward normal direction. Since δHΩ(z, ζ) = δGΩ(z, ζ),
one obtains δc0(ζ) by choosing z = ζ above, and then the gradient of c0 is obtained
by choosing δn suitably. See [19], Lemma 8.4, for further details.

Here we wish to expand slightly on another use of the Hadamard formula. To
avoid infinitesimals one may replace δ by δ

δt , where t is a time parameter, so that
δn
δt means the velocity of ∂Ω in the normal direction. Of special interest is to take
this normal velocity proportional to the normal derivative of the Green’s function
itself, say

δn

δt
= −∂G(·, a)

∂n
,

where a ∈ Ω is a fixed point. This is called Laplacian growth, or Hele-Shaw flow
with a point source (see, e.g., [25] for further information), and if ∇(a) = δ

δt denotes
the corresponding derivative, acting on domain functionals, the Hadamard formula
gives

∇(a)GΩ(b, c) = − 1

2π

∫

∂Ω

∂G(·, a)
∂n

∂G(·, b)
∂n

∂G(·, c)
∂n

ds,

hence that ∇(a)GΩ(b, c) is totally symmetric in a, b, c.
This remarkable fact appears in a series of articles by M. Mineev, P. Wiegmann,

A. Zabrodin, I. Krichever, A. Marshakov, L. Takhtajan, for example [41], [35], [57],
from a more general perspective to be a consequence of two things. The first is that
the regular part H(z, ζ) of the Green’s function is a double variational derivative
of an energy functional F = F (Ω), which can be identified with the logarithm of a
certain τ -function [34]. Precisely, HΩ(a, b) = ∇(a)∇(b)F (Ω), hence

GΩ(a, b) = − log |a− b| + ∇(a)∇(b)F (Ω),

where

F (Ω) =
1

8π2

∫

D(0,R)\Ω

∫

D(0,R)\Ω
log |z − ζ|dA(z)dA(ζ),

dA denoting area measure and where R is large enough, so that Ω ⊂ D(0, R). The
second ingredient is that the Dirchlet problem is “integrable” in the sense that

∇(a)∇(b) = ∇(b)∇(a).

Clearly these two facts embody the total symmetry of ∇(a)GΩ(b, c).
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5.4. Level lines of harmonic functions as geodesics and trajectories. Here
we shall interpret level lines of harmonic functions as geodesics in riemannian mani-
folds and trajectories of hamiltonian systems. Curvature of level lines and geodesics
will be discussed in Section 8.

Proposition 5.4. Let u be harmonic in some domain, u∗ a harmonic conjugate
of u and let ϕ > 0 be any smooth function in one real variable. Then, away from
critical points of u, the level lines of u are geodesics for the metric

dσ = ϕ(u∗)|∇u||dz|.

Proof. Let Φ be a primitive function of ϕ and let γ be a level line of u, with
∇u 6= 0 on γ. By the Cauchy-Riemann equations, this level line is simultaneously
an integral curve of ∇u∗, and |∇u| = |∇u∗|. Thus, if z0 and z1 denote the end
points of γ ordered so that u∗(z0) < u∗(z1),

∫

γ

dσ =

∫

γ

Φ′(u∗)|∇u∗||dz| =

∫

γ

Φ′(u∗)du∗ = Φ(u∗(z1)) − Φ(u∗(z0)).

Since, along a curve in general, |∇u∗||dz| ≥ du∗, integration of dσ along any curve
from z0 to z1 will give a value ≥ Φ(u∗(z1)) − Φ(u∗(z0)). Thus γ is a geodesic. �

As a simple remark on trajectories, the level lines of any (smooth) function u
in a domain Ω ⊂ C are trajectories of the hamiltonian system with phase space
Ω, symplectic form ω = dx ∧ dy and hamiltonian function u (see [2] for the ter-

minology). The Hamilton equations then are dx
dt = ∂u

∂y , dy
dt = −∂u

∂x or, in complex

form,

(5.9)
dz

dt
= −2i

∂u

∂z̄
.

Such a kind of hamiltonian system describes for example the motion of a point
vortex in a plane domain, see [37], [43] and Section 8 below.

The above equations guarantee that the motion is along the level lines of u.
Assume now that u is harmonic. Then (5.9) gives also

(5.10)
d2z

dt2
= −2i

∂2u

∂z̄2

dz̄

dt
= 4

∂2u

∂z̄2

∂u

∂z
= −2

∂V

∂z̄
,

where

V = −1

2
|∇u|2 = −2

∂u

∂z

∂u

∂z̄
.

Notice that V is real-valued and that the right-hand side of (5.10) is minus the
gradient of V . Therefore we can think of (5.10) as an ordinary newtonian system
for the motion of a unit point mass in the potential V . Thus

Proposition 5.5. The level lines of any harmonic function u are, away from crit-
ical points, trajectories for the newtonian system with potential energy − 1

2 |∇u|2.

Remark 5.2. The proposition generalizes to the case that ∆u = c, c constant, with
V changed to

V = −1

2
|∇u|2 + cu.

If we want to put Proposition 5.5 into a hamiltonian formulation, the domain
Ω takes the role of configuration space, while phase space is Ω × C. The kinetic
energy is T = 1

2 |dz
dt |2 and the hamiltonian

H = T + V,
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to be considered as a function of position q = z and momentum p = dz
dt . The

Hamilton equations, written in complex notation, are

(5.11)
dq

dt
= 2

∂H

∂p̄
,

dp

dt
= −2

∂H

∂q̄
.

Along a trajectory t 7→ (p(t), q(t)) in phase space, H(p, q) is constant, sayH = E,
where E is the total energy. Now, the principle of least action in the form of
Maurpertuis, Euler, Lagrange and Jacobi (see [2], [20]), states that the trace in
configuration space of a hamiltonian trajectory of constant energy E is a geodesic
for the Jacobi metric,

dρ =
√
Tds =

√

E − V (z)ds.

Here ds denotes the ordinary euclidean metric in Ω, hence arc-length along tra-
jectories; in a more general context it would be the metric in configuration space
induced by the kinetic energy.

In our case V = − 1
2 |∇u|2, and since we derived the motion from (5.9), T =

1
2 |∇u|2. Thus E = 0 and the Jacobi metric becomes

dρ =
1√
2
|∇u| |dz|,

i.e., the least action principle becomes an instance of Proposition 5.4.
The hamiltonian system (5.11) or (5.10) has of course many more trajectories

(in configuration space) than the level lines of u. In fact, through any point z there
is one trajectory starting out with any prescribed speed dz

dt . (Even if we ignore

the parametrization, the modulus |dz
dt | of the speed affects the trajectory as a point

set). Some of these other trajectories (one in each direction) can covered by the
above analysis by mixing u with its harmonic conjugate, as follows.

Let u∗ be a harmonic conjugate of u and let

w = f(z) = u+ iu∗,

so that f is conformal away from critical points of u. Then, for any θ ∈ R, |∇u| =
|2∂u

∂z | = |f ′(z)| = |eiθf ′(z)| = |∇(cos θ u − sin θ u∗)|, so that V remains unchanged
if u is replaced by cos θ u − sin θ u∗. Thus the level lines of all such functions are
also trajectories, and it is easily seen that they represent all trajectories with total
energy E = 0. In terms of f(z) we can express the conclusion as follows.

Proposition 5.6. The trace in configuration space Ω of the trajectories on the
energy surface E = 0 of the hamiltonian system (5.11) or (5.10) are exactly the
inverse images under the conformal map w = f(z) = u + iu∗ of the straight lines
in the w-plane.

As an application of the above we may take u to be the Green’s function of a
domain Ω ⊂ C: u(z) = G(z, a), a ∈ Ω fixed. With Ω′ = Ω\{z1(a), . . . , zg(a)}, where
z1(a), . . . , zg(a) are the critical points of G(z, a), we conclude from Proposition 5.4
that that level sets of G(z, a) are geodesics for

dσ1 = |∇G(z, a)||dz|,
and

dσ2 =
|∇G(z, a)|
G∗(z, a)

|dz|.

And, by changing the roles of G and G∗ we see that the level lines of the harmonic
conjugate G∗(z, a) are geodesics for

dσ3 =
|∇G(z, a)|
G(z, a)

|dz|
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(and for dσ1). In the image region under f(z) = G(z, a) + iG∗(z, a), the above
geodesics for dσ1 correspond to geodesics of the euclidean metric and the geodesics
for dσ3 correspond to geodesics for the Poincaré metric in the right half-plane.

6. Doubly connected domains

6.1. The general domain functions for an annulus. This example is funda-
mental, it reveals in many respect the essential ideas. Our exposition is based on
ideas which have been elaborated in [53], and previously in [39]. Since we shall
only discuss conformally invariant questions it will be enough work with annuli.
We shall use the notation

Aa,b = {z ∈ C : a < |z| < b},
0 < a < b, for an annulus centered at the origin. The conformal type is determined
by the quotient b/a (the modulus), so we can fix either a or b. Note also the
conformal symmetries of Aa,b: z 7→ eiθz for any θ ∈ R and z 7→ ab/z, the latter

being the conformal reflection about the symmetry line |z| =
√
ab, which exchanges

the outer and inner boundary components.
Choosing the annulus to be A1,R, whereR > 1, we can represent the main domain

functions in terms of elliptic functions. The multivalued function z 7→ t = log z
lifts the annulus to the strip {t ∈ C : 0 < Re t < logR}, which then represents the
universal covering surface of A1,R. The lift map extends to the Schottky double of
the annulus, which is a torus, and takes it onto the universal covering surface of the
torus, namely C. The covering transformations on C are generated by t 7→ t+2 logR
and t 7→ t+ 2πi, hence we have a period lattice with half-periods

(6.1)

{

ω1 = logR,

ω2 = iπ.

One fundamental domain, symmetric around the origin, is

F0 = {t ∈ C : − logR < Re t < logR, −π < Im t < π}.
Here the right half of this corresponds to the annulus A1,R itself, while the left
half corresponds to the copy of the annulus which makes up the back-side of the
Schottky double. The anti-holomorphic involution is the reflection in the imaginary
axis: J(t) = −t̄. A homology basis, as chosen in Section 2, can be taken to be
α1 = [− logR, logR], β1 = [−iπ, iπ], as point sets. The orientations of α1 and β1

will however be opposite to the ordinary orientations of the real and imaginary
axes.

Sometimes it is advantageous to work in a fundamental domain whose bound-
ary is made up of preimages of the curves in the homology basis chosen. Such a
fundamental domain is

(6.2) F1 = {t ∈ C : 0 < Re t < 2 logR, 0 < Im t < 2π}.
It is often convenient to scale the period lattice so that it is generated by 1 and τ ,
with Im τ > 0, in place of 2ω1, 2ω2. Then τ = ω2/ω2, and in our case we have

(6.3) τ =
iπ

logR
.

We recall the standard elliptic functions associated to the given period lattice.
The Weierstrass ℘-function is

℘(z) = ℘(z; 2ω1, 2ω2) =
1

z2
+

∑

ω 6=0

(

1

(z + ω)2
− 1

ω2

)

,
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and the ζ- and σ-functions are

ζ(z) =
1

z
+

∑

ω 6=0

(

1

z + ω
+

1

ω
+

z

ω2

)

,

σ(z) = z
∏

ω 6=0

(

1 − z

ω

)

exp

(

z

ω
+

z2

2ω2

)

,

where in all cases ω = 2m1ω1 + 2m2ω2 and summations and products are taken
over all (m1,m2) ∈ Z × Z \ (0, 0).

The above functions are related by

℘(z) = −ζ′(z), ζ(z) =
σ′(z)

σ(z)
,

℘(z) is doubly periodic, ζ(z) acquires constants along the periods,

ζ(z + 2ωj) = ζ(z) + 2ηj ,

and for σ(z) we have

σ(z + 2ωj) = −σ(z)e2ηj(z+ωj)

(j = 1, 2). The constants ηj are given by ηj = ζ(ωj) and they satisfy the Legendre
relation

η1ω2 − η2ω1 =
iπ

2
.

In our case η1 is real and positive, η2 is purely imaginary and the Legendre relation
becomes

η1
logR

− η2
iπ

=
1

2 logR
.

We record also the differential equation satisfied by ℘(z):

℘′(z)2 = 4℘3 − g2℘(z) − g3,

where

(6.4) g2 = 60
∑

ω 6=0

1

ω4
, g3 = 140

∑

ω 6=0

1

ω6
.

As a first step we shall make some of the functions and differentials appearing
in Section 2 explicit in the annulus case, and then (in a later subsection) we shall
study the critical points of the Green’s function in some detail. When we work
directly in the annulus, and with the Schottky double of it realized in the same
plane by reflection, we shall denote points by letters, z, w, a, b and similar. When
we work on the universal covering surface C, with its period lattice, we shall denote
the corresponding points t, s, u, v. Thus t = log z, s = logw, u = log a, v = log b.

The two versions of the abelian differentials of the third kind discussed in Sec-
tion 2 are, on the universal covering surface, given by

(6.5) υu−v(t) = (ζ(t− u) − ζ(t− v) +A)dt,

(6.6) ωu−v(t) = (ζ(t− u) − ζ(t− v) +B)dt,

where A and B are constants (depending on u, v) chosen so that υu−v, ωu−v get
the desired periods. This means that

∫ log R

− log R

(ζ(t − u) − ζ(t− v) +A)dt,

∫ πi

−πi

(ζ(t− u) − ζ(t − v) +A)dt

are both purely imaginary, and
∫ log R

− log R

(ζ(t − u) − ζ(t− v) +B)dt = 0.
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By straightforward calculations this gives

(6.7) A =
η1(u− v)

logR
+

Im (u− v)

2i logR
,

(6.8) B =
η1(u− v) + πim

logR
,

where the integer m depends on the location of u, v relative to the preimage of
α1 in the period lattice. With u, v ∈ F0, then m = 0 if u and v are in the same
component of F0 \ [− logR, logR], which is the case, for example, if Im (u− v) = 0.
Thus we see, in accordance with Lemma 2.1, that A = B when v = J(u). One
can also achieve m = 0 in more general situations by working in the fundamental
domain F1, where α1 is represented by [0, 2 logR], hence is part of the boundary.

Next we compute V (t, s;u, v) by integrating υu−v, see (2.12). The calculation is
straightforward and the result is

V (t, s;u, v) = − log
∣

∣

σ(t− u)σ(s− v)

σ(t− v)σ(s − u)

∣

∣

−η1Re ((t− s)(u− v))

logR
− Im (t− s)Im (u− v)

2 logR
.

Pulling this back to the plane of the annulus, i.e., on substituting t = log z etc., we
get

V (z, w; a, b) = − log
∣

∣

σ(log z
a )σ(log w

b )

σ(log z
b )σ(log w

a )

∣

∣ − η1Re (log z
w log a

b )

logR
− arg z

w arg a
b

2 logR
.

We record also the final expressions for υa−b and ωa−b in the plane of the annulus:

υa−b = (ζ(log
z

a
) − ζ(log

z

b
) +

η1 log a
b

logR
+

arg a
b

2i logR
)
dz

z
,

ωa−b = (ζ(log
z

a
) − ζ(log

z

b
) +

η1 log a
b + πim

logR
)
dz

z
.

The Green’s function is by (2.10) just a special case of V . Choosing s = J(t) =
−t̄, v = J(u) = −ū and using the first alternative in (2.10) gives, on the universal
covering surface,

G(t, u) = −1

2
log

∣

∣

σ(t− u)σ(−t̄+ ū)

σ(t+ ū)σ(−t̄− u

∣

∣ − η1Re tReu

logR
.

Hence, in the annulus (z, a ∈ A1,R),

G(z, a) = −1

2
log

∣

∣

σ(log z
a )σ(log ā

z̄ )

σ(log(zā))σ(log 1
z̄a)

∣

∣ − 2η1 log |z| log |a|
logR

.

Expanding the σ-function in an infinite product gives us what we would have ob-
tained by the method of images (automorphization). The result is

(6.9) G(z, a) = − log |R(z − a)

R2 − zā
| − log |

∞
∏

n=1

(R2n − z
a )(R2n − a

z )

(R2n − zā
R2n )(R2n − R2n

zā )
|,

see [8], [9].
The Bergman kernel is in general

K(z, ζ)dzdζ̄ =
1

π

∂ωζ−J(ζ)(z)

∂ζ̄
dζ̄.

Using (6.6), (6.8), this gives in the present case

(6.10) K(t, u) =
1

π
(℘(t+ ū) +

η1
logR

)
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for t, u ∈ C, and

(6.11) K(z, a) =
1

πzā
(℘(log(zā)) +

η1
logR

)

in the annulus (z, a ∈ A1,R). This agrees with expressions derived by Zarankiewicz
[60]. See also [18] (p.133) and [4].

Finally, we elaborate the Schottky-Klein prime function in terms of elliptic func-
tions (see [9] for representations in terms of Poincaré series). It is obtained by
combining (2.15) with (6.6) and (6.8). The result of that is

exp

∫ t

s

ωu−v =
σ(t− u)σ(s− v)

σ(t− v)σ(s − u)
exp

[

η1(t− s)(u − v)

logR
+

2πim(t− s)

logR

]

,

which is to be identified with
E(t, a)E(s, v)

E(t, v)E(s, u)
. Working in the fundamental domain

F1 in (6.2), which allows m = 0, this gives

E(t, u) = σ(t − u) exp

[

η1tu

logR

]

f(t)f(u),

for some one variable function f . To identify f(t) we differentiate with respect to
t at t = u:

∂E

∂t
|t=uE(t, u) = σ′(0) exp

[

η1u
2

logR

]

f(u)2.

Since E(t, u) is to behave like t−u at t = u the above derivative must be = 1. This

gives f(u) = ± exp

[

η1u
2

2 logR

]

. Therefore actually

E(t, u) = σ(t− u) exp

[

−η1(t− u)2

2 logR

]

,

and in the plane of the annulus,

E(z, a) = σ(log
z

a
) exp

[

− η1
2 logR

(log
z

a
)2

]

.

6.2. Eisenstein series. For further need we recall the following classical Eisenstein
series and other arithmetical functions [33].

(6.12) E2(τ) = 1 − 24
∞
∑

n=1

nqn

1 − qn
= 1 − 24

∞
∑

n=1

σ1(n)qn,

(6.13) E4(τ) = 1 + 240

∞
∑

n=1

n3qn

1 − qn
= 1 + 240

∞
∑

n=1

σ3(n)qn,

(6.14) E6(τ) = 1 − 504

∞
∑

n=1

n5qn

1 − qn
= 1 − 504

∞
∑

n=1

σ5(n)qn,

where

σk(n) =
∑

d|n
dk,

and the “nome” q always is related to τ by

q = e2πiτ .

Thus |q| < 1.
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It is well known that E4(τ) and E6(τ) are modular forms of weights 4 and 6 for
the modular group Γ = SL2(Z). This is a consequence of Lipschitz’ formula, which
asserts that for any integer k ≥ 2, and with B2k being the k:th Bernoulli number,

E2k(τ) = 1 − 2k

B2k

∞
∑

n=1

nk−1qn

1 − qn

= 1 − 2k

B2k

∞
∑

m,n=1

σk−1(n)qn = 1 − 2k

B2k

∞
∑

m,n=1

1

(mτ + n)2k
.

E2(τ) is not modular but

(6.15) E∗
2 (τ) = 1 − 24

∞
∑

n=1

nqn

1 − qn
− 3

πIm τ
q3 − 168q4 − · · ·

= 1 − 3

πIm τ
− 24q − 72q2 − 96

is a non-holomorphic Eisenstein series of weight 2 for Γ. Actually the series E2(τ)
satisfies

(6.16) E2(
aτ + b

cτ + d
) = E2(τ)(cτ + d)2 +

6c(cτ + d)

iπ

for every

(

a b
c d

)

in Γ. This is due to the fact that the series

∞
∑

m,n=1

1

(mτ + n)k
.

is not absolutely convergent for k = 2. To overcome that difficulty one considers,
following Hecke, the series, defined for s > 0,

E∗
2k(τ ; s) = 1 − 2k

B2k

∞
∑

m,n=1

1

(mτ + n)k|(mτ + n|s .

and takes the limit as s→ 0. For k = 1 this gives (6.15). We will use a similar idea
in subsection 6.4 to recover the Green’s function via an eigenvalue problem.

We recall the classical discriminant function ∆, defined as the infinite product

∆(τ) = q

∞
∏

n=1

(1 − qn)24 = q − 24q2 + 252q3 − 1472q4 + · · · .

It is a cusp form for Γ of weight 12 and is related to the Eisenstein series by

1728∆(τ) = E4(τ)
3 − E6(τ)

2.

Following Ramanujan [48] we also introduce the functions

Φrs(q) =

∞
∑

m=1

∞
∑

n=1

mrnsqmn.(6.17)

Then,

Φrs(q) = Φsr(q),

Φrs(q) =

(

q
d

dq

)r

Φ0,s−r(q).

We may consider Φrs(q) as a function of τ and write Φrs(τ). For this we have
an algebraic relation

Φrs(τ) =
∑

KlmnE2(τ)
lE4(τ)

mE6(τ)
n,
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for suitable coefficients Klmn, and where the sum is taken over all positive integers
l,m, n satisfying 2l + 4m+ 6n = r + s+ 1, l ≤ inf(r, s) + 1.

It is a fundamental fact [48] that every modular form on Γ is uniquely expressible
as a polynomial in E4 and E6 and that the extension C[E2, E4, E6] of C[E4, E6] is
closed under differentiation, with the following dynamical system of Ramanujan:



























E′
2 =

1

12
(E2

2 − E4),

E′
4 =

1

3
(E2E4 − E6),

E′
6 =

1

2
(E2E6 − E2

4 ),

(6.18)

where the prime means the differentiation
1

2πi

d

dτ
.

The identity (6.16) can be expressed by saying that, up to a constant factor, E2

defines an affine connection, and the first relation in (6.18) similarly says that E4

is the projective connection which is the curvature of the affine connection E2 (see
Section 7 for the terminology). Hence the Eisenstein series E2 defines a covariant
derivative sending weight k modular forms f into weight k + 2 modular forms

f ′ − k

12
E2f .

From the system (6.18) we obtain
{

E4 = E2
2 − 12E′

2,

E6 = E3
2 − 18E2E

′
2 + 36E′′

2 .
(6.19)

An important consequence is that the function E2 is a solution of the Chazy equa-
tion

(6.20) E′′′
2 = E2E

′′
2 − 3

2
E′

2
2
.

This means that we may use E2, E
′
2, E

′′
2 instead of E2, E4, E6 to express modular

forms, that is C[E2, E4, E6] = C[E2, E
′
2, E

′′
2 ]. We shall, in a later subsection, give

an illustration of this fact to determine the modulus of doubly connected domains.

6.3. Critical points of the Green’s function and zeros of the Bergman

kernel. The critical points of the Green’s function G(z, a) are by (2.10), (2.11)
exactly the zeros of υa−J(a). For the annulus there is exactly one critical point,
z = zG(a), and by symmetry this is located on the same diameter as a. For the
more detailed investigations one may pass to the universal covering, via t = log z,
u = log a, −ū = J(u) = log J(a). Then, by (6.5), (6.7),

(6.21) υu−J(u)(t) = (ζ(t − u) − ζ(t+ ū) +
2η1Reu

logR
)dt.

Thus the equation for the representation t = tG(u) of the critical point is

(6.22) ζ(tG(u) − u) − ζ(tG(u) + ū) = −2η1Reu

logR
,

where 0 < Reu < logR. In the plane of the annulus the corrseponding equation,
for z = zG(a), becomes

(6.23) ζ(log
zG(a)

a
) − ζ(log zG(a)ā) = −2η1 log |a|

logR
.

These equations have been analyzed by A. Maria [39], and the results are summa-
rized in Theorem 6.1 below.
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The zeros of the Bergman kernel can be treated fairly explicitly. By (6.10), the
zeros of K(t, u) on the universal covering surface are those points t = tK(u) for
which

(6.24) ℘(tK(u) + ū) = − η1
logR

.

Thus
tK(u) = s− ū,

where s solves

(6.25) ℘(s) = − η1
logR

.

This equation has two solutions in each period parallelogram. None of them are
real because ℘ is positive on the real axis, while the right member is negative. In
fact, it is easy to see that every solution has imaginary part π, modulo multiples of
2π.

Let s = s(R) denote that solution of (6.25) which satisfies 0 ≤ Re s < logR,
Im s = π. It depends on R or, equivalently, on τ via (6.3). Define also

(6.26) ρ = ρ(R) = eRe s = |es|.
According to [14], s can be explicitly computed to be

s(R) = iπ +
3 logR

2
+

3456
√

3π logR

5

∫ i∞

τ

Φ5,6(t) − ∆(t)

Φ2,3(t)
3
2

(t− τ)dt,

where the integration is vertically upwards starting at τ = iπ
log R .

The following theorem summarizes results in [39] and [53] and combines these
with our findings for the zeros of the Bergman kernel.

Theorem 6.1. With ρ defined by (6.26) we have

(i) 1 < ρ <
√
R.

(ii) The Green’s function G(z, a) of A1,R has, for any given a ∈ A1,R, a unique
critical point z = zG(a). This is located on the same diameter as a but on
the opposite side of the hole. More precisely,

zG(a) = −g(|a|) a|a| ,

where g : (1, R) → (1, R) is an increasing function which maps (1, R) onto
the relatively compact subinterval (ρ,R/ρ). It satisfies g(x)g(R/x) = R for

1 < x < R, in particular g(
√
R) =

√
R, and

lim
a→1

g′(a) = lim
a→R

g′(a) = 0.

(iii) When ρ ≤ |a| ≤ R/ρ the Bergman kernel K(z, a) has no zeros.
(iv) When 1 < |a| < ρ or R/ρ < |a| < R, K(z, a) has exactly one zero, z =

zK(a), and this is explicitly given by

zK(a) =

{

− ρ
ā when 1 < |a| < ρ,

−R2

ρā when R/ρ < |a| < R.

This theorem is special to the annulus but is effective. We do not know of any
such precise results in higher connectivity.

Note that the theorem confirms in a precise way the assertion of Corollary 3.3
that the limiting set for the critical points of the Green’s function is exactly the
zeros of the Bergman kernel when the parameter variable is on the boundary. In
fact, choosing a on the positive real axis (for simplicity of notation) the theorem
shows that

lim
a→1

zG(a) = lim
a→1

zK(a) = −ρ,
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lim
a→R

zG(a) = lim
a→R

zK(a) = −R
ρ
.

In addition we deduce from the theorem the following remarkable dichotomy result.

Corollary 6.2. The annulus A1,R is the disjoint union of the set of critical points
{zG(a)} of the Green’s function, the set of zeros {zK(a)} of the Bergman kernel
and the two circles {|z| = ρ} and {|z| = R

ρ }.

Proof. (of theorem)
By rotational symmetry we may assume that a is real and positive, namely

1 < a < R. It has been shown in [39] that

zG(a) = −g(a)
for some differentiable function g : (1, R) → (1, R), which is increasing, more pre-
cisely g′ > 0, and satisfies

0 < lim
a→1

g(a) < lim
a→R

g(a) < R,

(the latter follows also from [56] and from our Theorem 3.1) and

lim
a→1

g′(a) = lim
a→R

g′(a) = 0.

Slightly more explicitly we have g(eu) = ef(u), where the function f : (0, logR) →
(0, logR) is defined as the unique solution of

ζ(f(u) + iπ − u) − ζ(f(u) + iπ + u) = − 2η1u

logR
,

or

(6.27)
1

2u
ζ(f(u) + iπ − u) − ζ(f(u) + iπ + u) = − η1

logR
.

Since g′ > 0, and hence f ′ > 0, f(0) = limu→0 f(u) exists, and letting u→ 0 in
(6.27) gives (in view of ζ′ = −℘)

℘(f(0) + iπ) = − η1
logR

.

It follows that

f(0) + iπ = s(R)

(see (6.25)–(6.26)). In other words,

lim
a→1

g(a) = −eRe s(R) = −ρ(R).

Similarly,

lim
a→1

g(a) = −eRe s(R) = − R

ρ(R)
.

We conclude that ρ < R/ρ, i.e., that 1 < ρ <
√
R. By this parts (i)and (ii) of

the theorem are proven.
The assertions (iii) and (iv), about the Bergman zeros, are easy consequences of

the analysis made before the statement of the theorem. In fact, since ℘ is an even
function, the two solutions of (6.25) are ±s, modulo the period lattice. It follows
from (6.10) that, given u ∈ F0, the (possible) solutions t = tK(u) of K(t, u) = 0
are represented by

(6.28) tK(u) =

{

s− ū,

−s− ū,

modulo the period lattice. Both u and tK(u) shall correspond to points in A1,R, i.e.,
0 < Reu < logR and 0 < Re tK(u) < logR. This occurs if and only if 0 < Reu < s
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or logR − s < Reu < logR, and then we have the same inequalities for the zero
tK(u) itself: 0 < Re tK(u) < s and logR− s < Re tK(u) < logR, respectively.

In the plane of the annulus (6.28) becomes

zK(a) =

{

exp s
ā ,

exp(−s)
ā ,

and since this zK(a) is in A1,R if and only if 1 < |a| < ρ or R/ρ < |a| < R we have
now proved statements (iii) and (iv) in the theorem.

�

It follows from (i) and (ii) of Theorem 6.1 that the critical points of the Green’s
function for any annulus of modulus R > 1 are located in the annulus of modulus
R/ρ2 symmetrically centered in the original annulus. Since ρ = ρ(R) > 1 for all
R > 1 and ρ depends smoothly on R one easily concludes the following.

Corollary 6.3. Let R > 1. There exist a sequence {ρn}, 1 = ρ0 < ρ1 < ρ2 < · · · <√
R with limn→∞ ρn =

√
R such that, on setting An = {z ∈ C : ρn < |z| < R/ρn},

the critical points for the Green’s function of An are all contained in An+1.

One might ask what would be corresponding statement in higher connectivity.

6.4. Spectral point of view. The Green’s function can also be obtained via spec-
tral problems for the Laplace operator. This requires a choice of a metric, or at
least a volume form. For a metric dσ = ρ|dz|, the volume form is ρ2dxdy and

the invariant Laplacian is
1

ρ2
∆, where ∆ =

∂2

∂x2
+

∂2

∂y2
. Thus a natural spectral

problem in a domain Ω is
{

−∆u = λρ2u in Ω,

u = 0 on ∂Ω.

If λ1, λ2, . . . are the eigenvalues and u1, u2, . . . the eigenfunctions, normalized
by

∫

Ω

|un|2ρ2dxdy = 1,

then the Green’s function of Ω is given formally by

G(z, w) = 2π

∞
∑

n=1

un(z)un(w)

λn
,

where however the sum may converge only in a weak sense. See for example [8], [13].
(The factor 2π appears because we have no factor 1/2π in front of the singularity of
the Green’s function.) One way to cope with the convergence problem is to consider
the corresponding Dirichlet series

Gs(z, w) = 2π

∞
∑

n=1

un(z)un(w)

λs
n

,

which is an analytic function in s for Re s > 1. One then studies the behaviour
as s → 1. To continue analytically Gs(z, w) we shall use the second Kronecker
limit formula which is basically a connection between Epstein zeta functions and
Eisenstein series [55].

The eigenfunctions un form an orthonormal set both with respect to the L2-inner
product

∫

Ω uvρ
2dxdy and with respect to the Dirichlet inner product D(u, v) =

∫

Ω
∇u · ∇vdxdy. Note that the λn and un depend on ρ, but G(z, w) does not.
We shall elaborate the above approach to the Green’s function in the annulus

case, Ω = A1,R, and with metric coming from interpreting A1,R as a cylinder. This
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metric is equivalent to the natural flat metric on the universal covering surface of
A1,R. Thus we consider the lift map z 7→ t = log z, by which A1,R gets identified
with

CR = {t ∈ C : 0 < Re t < logR}/2πiZ.

This can be thought of as a cylinder, with boundary ∂CR represented by the vertical
lines {Re t = 0} and {Re t = logR} and provided with the euclidean metric dσ2 =
|dt|2.

On A1,R itself the metric is given by ρ(z) = 1/|z| (z ∈ A1,R). We shall keep
some previous notations, for example (6.3), and sometimes use τ as a parameter in
place of R. When working in CR directly, the eigenvalue problem becomes (since
ρ = 1 in CR)

{

−∆u = λu in CR,

u = 0 on ∂CR.

This problem can be solved by standard separation of variables techniques. The
eigenvalues then come with two indices, namely

λmn =
m2π2

(logR)2
+ n2 = n2 − τ2m2,

for m = 1, 2, . . . , n = 0, 1, 2, . . . . Using also negative values of n one can list the
eigenfunctions as follows (now deviating from a previous notational convention and
using the variables x, y, z = x+ iy on the universal covering surface).

umn(z) =































1√
π logR

sin
mπx

logR
, (m ≥ 1, n = 0),

2√
π logR

sin
mπx

logR
cosny, (m ≥ 1, n ≥ 1),

2√
π logR

sin
mπx

logR
sinny, (m ≥ 1, n ≤ −1).

On using exponentials in place of trigonometric functions the above gives, after
simplifications and still working on the universal covering surface.

Gs(z, w) = 2π

∞
∑

m≥1,n∈Z

umn(z)umn(w)

λs
mn

=
1

2 logR

∑

(m,n)∈Z2\{(0,0)}

(emτ(x−u) − emτ(x+u))ein(y−v)

(n2 −m2τ2)s
,

=
1

2 logR

∑

(m,n)∈Z2\{(0,0)}

(emτ(x−u) − emτ(x+u))ein(y−v)

|mτ + n|2s
,

where z = x + iy, w = u + iv. To go on further we shall need Kronecker’s second
limit formula, contained in the following lemma.

Lemma 6.4. Let τ ∈ C, Im τ > 0. Let u, v ∈ R\Z be fixed and define for Re s > 1
the zeta function

ζτ (s;u, v) =
∑

(m,n)∈Z2\{(0,0)}

(

Im τ

|mτ + n|2
)s

e2πi(mu+nv).

Then the analytic continuation at s = 1 of ζτ (s;u, v) is

ζτ (1;u, v) = 2π2v2Im τ − 2π log |ϑ1(u− vτ ; τ)

η(τ)
|,
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where the theta function ϑ1 is defined (cf. (2.17)) by

ϑ1(z) = ϑ1(z; τ) = ϑ

[

1/2
1/2

]

(z; τ) =
∑

n∈Z

eiπ(n+ 1
2
)2τ+2πi(n+ 1

2
)(z+ 1

2
)

= −2
∞
∑

n=0

(−1)nq
1
2
(n+ 1

2
)2 sin(2n+ 1)πz

= −2q
1
8 sinπz

∞
∏

n=1

(1 − qn)(1 − 2qn cos 2πz + q2n),

and where η is the Dedekind eta function,

η(τ) = q
1
24

∏

n≥1

(1 − qn) = ∆(τ)
1
24 .

We remark that for u, v ∈ Z, the function ζτ (1;u, v) reduces to the Epstein zeta
function

ζτ (s) =
∑

(m,n)∈Z2\{(0,0)}

(

Im τ

|m+ nτ |2
)s

,

which is no longer analytic at s = 1 but only meromorphic. Kronecker’s first limit
formula (below) gives the meromorphic continuation [55].

Lemma 6.5. The Epstein zeta function ζτ (s) has a meromorphic continuation to
all C with a simple pole at s = 1, given by

ζτ (s) =
π

s− 1
+ 2π

(

γ − ln(2
√

Im τ |η(τ)|2)
)

+ O(s− 1)

where γ is the Euler constant. In particular ζτ (0) = −1.

Continuing the computation of the Green’s function we have, using Lemma 6.4,

G(z, w) = lim
s→1

Gs(z, w)

= lim
s→1

Im τ

2π

∑

(m,n)∈Z2\{(0,0)}

(

e−(x−u)Im τein(y−v)

|mτ + n|2s
− e−(x+u)Im τein(y−v)

|mτ + n|2s

)

= lim
s→1

(Im τ)1−s

2π

(

ζτ (s;− (x− u)Im τ

2π
,
y − v

2π
) − ζτ (s;− (x+ u)Im τ

2π
,
y − v

2π
)

)

= − log |ϑ1(−
(x− u)Im τ

2π
− (y − v)τ

2π
)| + log |ϑ1(

−(x+ u)Im τ

2π
− (y − v)τ

2π
)|

= − log |ϑ1(
(z − w)τ

2πi
)| + log |ϑ1(

(z + w̄)τ

2πi
)|

= − log |ϑ1(
z − w

2 logR
)| + log |ϑ1(

z + w̄

2 logR
)|.

This was all on the universal covering. To get back to A1,R one simply substitutes
log z, logw for z, w:

G(z, w) = − log |ϑ1(
log z − logw

2 logR
)| + log |ϑ1(

log z + log w̄

2 logR
)|.

A similar formula is given in [8]. Compare also (6.9).
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6.5. A remark on the modulus of a doubly connected domain. The connec-
tion between the preceeding topics and the Ramanujan partial differential system
(6.18) or the Chazy equation (6.20) can be explored in other directions. To give an
example, we quote a result in [15] showing that the Bergman minimum integrals
[4] completely determines the modulus of a doubly connected domain.

In any domain Ω, consider the problem of minimizing ‖f‖2 =
∫

Ω |f |2dxdy among
functions satisfying

{

f(a) = · · · = f (n−1)(a) = 0,

f (n)(a) = 1,

where a ∈ Ω is a fixed point and n ≥ 1. Let fn = fn,a be the unique minimizer
and let λn = λn(a) = ‖fn,a‖2 be the minimum value. Then it is easy to see that
{fn/

√
λn : n = 0, 1, . . .} forms an orthonormal basis in the Bergman space, and

hence that

(6.29) K(z, w) =

∞
∑

n=0

fn(z)fn(w)

λn
.

Here the dependence on the point a ∈ Ω has disappeared, even though each indi-
vidual fn and λn depend on a.

Let dσ =
√

πK(z, z)|dz| be the Bergman metric of Ω. It has Gaussian curvature
κ = κGauss < 0, given in terms of the Bergman kernel and the Bergman minimum
integrals by

κ(z) = − 2

πK(z, z̄)

∂2logK(z, z̄)

∂z∂z̄
= −2

λ2
0(z)

λ1(z)
.

The last expression follows from (6.29) (see [15] for details). Set also

γ(z) =
1

πK(z, z̄)

∂2log(−κ(z))
∂z∂z̄

=
λ0(z)λ1(z)

λ2(z)
− 3

λ2
0(z)

λ1(z)
.

Both κ and γ are conformally invariant scalar functions.
Now we specialize to doubly connected domains. Taking in this subsection Ω =

Ar,1 (0 < r < 1) as a model, the conformal invariance implies that κ(z) and γ(z)
depend only on |z| and that they are constant on ∂Ar,1 (the same constant on both
boundary components). These constants, κr = κ|∂Ar,1

and γR = γ|∂Ar,1
, depend

on the modulus R. It is shown in [15] that

2
3γr + 2κr + 8

(−κr − 4)
3
2

=
6g3 − 14αg2 + 120α3

(g2 − 12α2)
3
2

,(6.30)

where

τ =
log r

iπ
, α = − 1

12
E2(τ),

g2 =
1

12
E4(τ), g3 = − 1

216
E6(τ).

The quantity on the right-hand side of (6.30) depends on r or, equivalently, on τ .
Denote it by f(τ):

f(τ) =
6g3 − 14αg2 + 120α3

(g2 − 12α2)
3
2

.
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It is shown in [15] that f(τ) is monotone as a function of r. Thus f(τ) determines the
modulus. By using (6.19) and Chazy equation, we also find the explicit expressions

f(τ) =
3E2

′′

+ 2E2E2
′

E′
2

3
2

,

f ′(τ) =
−9E′′

2
2

+ 4E2E2
′E2

′′ − 5E′
2
3

2E′
2

5
2

,

(6.31)

where the prime denotes differentiation
1

2πi

d

dτ
, as before.

Thus the Eisenstein series E2, which is an affine connection, is useful to study
the modulus of a doubly connected domain. In the next section we will study affine,
and projective, connections in more generality.

7. Projective and affine connections

7.1. Definitions. We shall review some aspects of the theory of affine and projec-
tive connections. General references here are [51], [22], [23].

Let z = f(t), where z, t are complex variables and f holomorphic. We introduce
the nonlinear differential operators

{z, t}0 = log
dz

dt
= −2 log

1√
f ′ ,

{z, t}1 =
d

dt
log

dz

dt
= −2

√

f ′ (
1√
f ′ )

′,

{z, t}2 =
d2

dt2
log

dz

dt
− 1

2
(
d

dt
log

dz

dt
)2 =

f ′′′

f ′ − 3

2
(
f ′′

f ′ )2 = −2
√

f ′ (
1√
f ′ )

′′.

The latter is the schwarzian derivative of f . For {z, t}0 there is an additive inde-
terminancy of 2πi, so actually only its real part is completely well-defined. With s
an intermediate complex variable, so that z = g(s), s = h(t) for some holomorphic
functions g and h, we have

(7.1) {z, t}k(dt)
k = {z, s}k(ds)

k + {s, t}k(dt)k (k = 0, 1, 2),

see [51]. In addition, one notes that

{z, t}0 = 0 iff z = t+ b (f is a translation),

{z, t}1 = 0 iff z = at+ b (f is an affine map),

(7.2) {z, t}2 = 0 iff z =
at+ b

ct+ d
(f is a Möbius transformation).

The above differential operators can also be obtained as limits of derivatives of
logarithms of difference quotients of the holomorphic function f . To be precise, let
z, w and t, u be related by z = f(t), w = f(u). Then

(7.3)











{z, t}0 = limu→t log w−z
u−t ,

{z, t}1 = 2 limu→t
∂
∂t log w−z

u−t ,

{z, t}2 = 6 limu→t
∂2

∂t∂u log w−z
u−t .

Alternatively, for the last case, one may introduce a polarized version of the Schwarzian
derivative by

[z, w; t, u] = 6
∂2

∂t∂u
log

w − z

u− t
.

Then

{z, t}2 = [z, z; t, t].
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Now, let M be a Riemann surface. An affine structure on M is a choice of
holomorphic atlas such that all transition functions between coordinates within
this atlas are affine maps, i.e., such that for any two coordinates z and z̃ for which
the domains of definition overlap, the relation {z̃, z}1 = 0 holds. This is a quite
demanding requirement, and not every Riemann surface admits an affine structure.
Of the compact Riemann surfaces only those of genus one do.

Less demanding is a projective structure. It is a choice of holomorphic atlas
on M such that all coordinate changes are Möbius transformations, i.e., such that
{z̃, z}2 = 0 whenever z and z̃ are coordinates with overlapping domains of defini-
tion. By the uniformization theorem every Riemann surface admits a projective
structure.

Let φ(z)(dz)m = φ̃(z̃)(dz̃)m be local expressions for a differential of order m
on M . Thus the coefficients transform under holomorphic change of coordinates
according to φ(z) = φ̃(z̃)(dz̃

dz )m. We shall allowm not only to be an integer, but also

a half-integer. This requires a consistent choice of signs in the multipliers (dz̃
dz )m,

i.e., requires a choice of a square root of the canonical bundle (which has transition
functions dz̃

dz ). Such a square root always exists, in fact there are in general several
inequivalent choices. We refer to [22], [26], [28] for details about this. Recall
however (Section 2) that in case M is the Schottky double of a plane domain then
there is a canonical choice of square root of the canonical bundle, namely obtained
by choosing the square root of the Schwarz function to be 1/T (z), where T (z) the
tangent vector of the oriented boundary. This is the choice of square root which
will be used in the sequel.

An affine connection on M is an object which is represented by local differentials
r(z)dz, r̃(z̃)dz̃,. . . (one in each coordinate variable) glued together according to the
rule

(7.4) r̃(z̃)dz̃ = r(z)dz − {z̃, z}1 dz.

In the presence of an affine connection it is possible to define, for every k ∈ 1
2Z, a

covariant derivative ∇k from k:th order differentials to (k+1):th order differentials
by φ(dz)k 7→ (∇kφ)(dz)k+1, where

(7.5) ∇kφ =
∂φ

∂z
− krφ.

The covariance means that if φ(dz)k = φ̃(dz̃)k then ∇kφ(dz)k+1 = ∇̃kφ̃(dz̃)k+1.
Similarly, a projective connection on M consists of local quadratic differentials

q(z)(dz)2, q̃(z̃)(dz̃)2, . . . , glued together according to

(7.6) q̃(z̃)(dz̃)2 = q(z)(dz)2 − {z̃, z}2 (dz)2.

From (7.1) it follows that this law (as well as (7.4)) is associative. In general, we
do not require r and q to be holomorphic, although our main interest is in the
holomorphic (or meromorphic) case.

In addition to the above one may consider also 0-connections, quantities defined
up to multiples of 2πi and which transform according to

(7.7) p̃(z̃) = p(z) − {z̃, z}0.

This means exactly that ep(z) is well-defined and transforms as differential of order
one.

A projective connection is less powerful than an affine one, but it still allows
for certain covariant derivatives: for each m = 0, 1, 2, . . . there is, in the presence
of a projective connection q, a well-defined linear differential operator Λm taking

differentials of order 1−m
2 to differentials of order 1+m

2 : φ(dz)
1−m

2 7→ (Λmφ)(dz)
1+m

2 .
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The first few look, in a local coordinate z,

Λ0(φ) = φ,

Λ1(φ) =
∂φ

∂z
,

Λ2(φ) =
∂2φ

∂z2
+

1

2
qφ,

Λ3(φ) =
∂3φ

∂z3
+ 2q

∂φ

∂z
+
∂q

∂z
φ,

Λ4(φ) =
∂4φ

∂z4
+ 10q

∂2φ

∂z2
+ 10

∂q

∂z

∂φ

∂z
+ (9q2 + 3

∂2q

∂z2
)φ.

The covariant derivative Λm will be called the m:th order Bol operator, for reasons
to be explained further on.

Any affine connection r gives rise to a projective connection q by

(7.8) q =
∂r

∂z
− 1

2
r2.

This q is sometimes called the “curvature” of r (cf. [12]). In fact, its definition is
analogous to that of the curvature form in ordinary differential geometry, see [20].
Slightly more generally than (7.8), any two affine connections rj(z)dz, j = 1, 2,
combine into a projective connection by

q =
1

2
(
∂r1
∂z

+
∂r2
∂z

− r1r2).

Not every projective connection is the curvature of an affine connection. In the
case that a projective connection comes from an affine connection, as in (7.8), the
corresponding covariant derivatives are related by

(7.9) Λ1 = ∇0, Λ2 = ∇ 1
2
∇− 1

2
, Λ3 = ∇1∇0∇−1, etc.

See [23] for the proof.
The difference between two projective connections is a quadratic differential, and

the difference between two affine connections is an ordinary differential. Hence, if
q(z)(dz)2 is one projective connection the most general one is q(z)(dz)2 plus a
quadratic differential. Similarly for affine connections.

Now, a central fact is that there is a one-to-one correspondence between holomor-
phic projective connections and projective structures: given a projective connection,
represented by a holomorphic function q(z) in a general coordinate z, a projective
coordinate t is obtained by solving the differential equation

(7.10) {t, z}2 = q(z).

It follows from (7.1), (7.2) that the set of coordinates obtained in this way are related
by Möbius transformations. In the other direction, given a projective structure,
a projective connection is obtained by simply setting q(t) = 0 in any projective
coordinate t.

One way to solve (7.10), when q(z) is holomorphic, is to consider the second
order linear differential equation

(7.11)
∂2u

∂z2
+

1

2
q(z)u = 0,

i.e., Λ2(u) = 0, for u considered as a differential of order minus one-half. The
solutions to (7.10) are exactly the functions

t(z) =
u2(z)

u1(z)
,

where u1, u2 are linearly independent solutions of (7.11).
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In terms of a projective structure, the meaning of the covariant derivatives Λm,
for holomorphic q, is that in any projective coordinate t corresponding to the con-

nection, Λm simply is the k:th order derivative with respect to t: Λm(φ(t)(dt)
1−m

2 ) =
∂mφ(t)

∂tm (dt)
1+m

2 . The fact that the right member here is covariant under Möbius
transformation is sometimes called “Bol’s lemma” [6], [23]. The precise statement
of this lemma is as follows.

Lemma 7.1. [6] Let z = f(t) = at+b
ct+d , ad − bc = 1, λ(t) = (ct + d)−1, so that

f ′(t) = λ(t)2. Then, for any smooth function F (z) and any positive integer m,

∂m

∂tm
(F (f(t))λ(t)1−m) =

∂mF

∂zm
(f(t))λ(t)1+m.

For m = 1 this is the ordinary chain rule, holding for any change of coordinate
f , whereas for m ≥ 2 the formula holds only for Möbius transformations.

In any projective coordinate t, a natural fundamental set (basis) of solutions of
the equation Λmu = 0 is {1, t, . . . , tm−1}. Considering these functions as 1−m

2 -forms

(namely (dt)
1−m

2 , t(dt)
1−m

2 etc.) and turning to a general coordinate z, this basis

transforms into {um−1
1 , um−2

1 u2, . . . , u
m−1
2 }, where u1 =

√

dz
dt , u2 = t

√

dz
dt are − 1

2 -

forms. The transformation property of Λm then shows that {um−1
1 , um−2

1 u2, . . . , u
m−1
2 }

is a fundamental solution set for Λmu = 0 when considered as a differential equa-
tion in the z variable. It follows that the operator Λm agrees with the (m− 1)-fold
symmetric product of Λ2: Λm = Sm−1(Λ2).

In summary, the Bol operators Λm, m ≥ 2, are all generated by Λ2, and their
solutions are generated by two solutions of Λ2u = 0. In the last section of the paper
we shall discuss a method, via a prepotential, of finding all solutions of Λ2u = 0
from a single one.

Turning to affine connections there are analogous statements as for projective
connections: there is a one-to-one correspondence between affine structures and
holomorphic affine connections, the correspondence between an affine (or “flat”)
coordinate τ and an affine connection r(z) given in a general coordinate z being

(7.12) {τ, z}1 = r(z).

This equation can be directly integrated as

τ(z) =

∫ z

exp(

∫ w

r(ζ)dζ)dw.

One may also think of (7.12) as

∇1∇0 τ = 0,

or ∇1(dτ) = 0, cf. [12]. With τ used as coordinate, ∇m(φ) = ∂φ
∂τ for any m-

differential φ(τ)(dτ)m .
Along with Λm and ∇m it is natural to introduce their conjugates L̄m and ∇m,

defined by replacing ∂
∂z by ∂

∂z̄ and q, r by q̄, r̄.
Even more powerful than an affine connection is a hermitean metric, which we

in the present section prefer to write in either of the following two ways:

(7.13) dσ =
|dz|
ω(z)

= ep(z)|dz|.

Here ω > 0 transforms as the coefficient of a form of bidegree (− 1
2 ,− 1

2 ) (i.e.,

ω(dz)−1/2(dz̄)−1/2 is invariant), whereas p(z) = − logω(z), in analogy with (7.4),
(7.6), transforms as the real part of a 0-connection:

(7.14) p̃(z̃) = p(z) − Re {z̃, z}0.
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Any hermitean metric gives rise to a, not necessarily holomorphic, affine connec-
tion by

(7.15) r = −2
∂

∂z
logω = 2

∂p

∂z
.

This relationship says that the covariant derivative of the metric vanishes: ∇ 1
2
(1/ω) =

∇ 1
2
(1/ω) = 0, or, which turns out to be the same,

(7.16) ∇− 1
2
ω = ∇− 1

2
ω = 0.

Clearly (7.9), (7.16) imply that

(7.17) Λ2ω = 0,

and also that Λ̄2ω = 0. Moreover, it is easy to check that Λmω
m−1 = Λ̄mω

m−1 = 0
for any m ≥ 2.

The Gaussian curvature of the metric (7.13) is

(7.18) κGauss = −e−2p∆p = 4(ω
∂2ω

∂z∂z̄
−

∣

∣

∂ω

∂z

∣

∣

2
),

which is a real and scalar quantity. In view of (7.15), it follows that r is holomorphic
if and only if κGauss = 0. The corresponding projective connection is

(7.19) q =
∂r

∂z
− 1

2
r2 = 2(

∂2p

∂z2
− (

∂p

∂z
)2) = −2

∂2ω/∂z2

ω
.

From (7.18), (7.19) follows ∂κ
∂z = −2ω2 ∂q

∂z̄ or, since κ is real,

dκGauss = −2ω2(
∂q

∂z̄
dz +

∂q̄

∂z
dz̄).

Cf. [23]. It follows that q is holomorphic if and only if the curvature κGauss is
constant. When this is the case there is a corresponding projective structure, and
working in any projective coordinate t, equation (7.17) and its conjugate can be
directly integrated to give ω(t) = att̄+ bt+ b̄t̄+ c, a, c real, b complex. The value
of the curvature comes out to be κGauss = 4(ac − |b|2). It also follows that if Ω is
complete for the metric, meaning roughly that ω = 0 on ∂Ω, then in any projective
coordinate ∂Ω is a circle or a straight line.

Being complete and having constant negative curvature characterizes the Poincaré
metric up to a constant factor. Starting from the domain, first the Poincaré metric
(normalized so that κGauss = −4), then the projective connection q(z) and finally
projective coordinates, can be obtained directly by solving differential equations
in Ω. In fact, p(z) satisfies by (7.18) a Liouville equation and blows up on the
boundary:

{

∆p = 4e2p in Ω,

p = +∞ on ∂Ω.

It can be shown that this boundary value problem, when properly formulated, has a
unique solution p (see, e.g., [1], Ch.1). From this solution, q is obtained via (7.19),
and finally projective coordinates t are gotten by solving (7.10), more precisely
by taking the quotient between two solutions of (7.11). The above indicates one
of the early attempts to solve the uniformization theorem. It was proposed by
H. A. Schwarz and later brought to an end by Picard, Poincaré and Bieberbach;
see [44], [5].

This approach has recently gained new interest in some versions of string theory,
in which the above Schwarzian derivative q(z) = {t, z}2 of the lift map t to the
universal covering surface takes the role of being the energy-momentum tensor,
which hence is a projective connection. See for example [45], [58].
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7.2. Examples of projective connections. If Ω is a plane domain bounded by
finitely many analytic curves, several projective structures and connections can be
naturally associated to Ω.

Example 7.1. The trivial one, q(z) = 0, i.e., with the coordinate variable z in C as
a projective coordinate.

Example 7.2. Let t : Ω → Ωcirc be a conformal map of Ω onto a domain Ωcirc

bounded by circles. This map is not uniquely determined, but any two such maps
are related by a Möbius transformation. Hence it defines a unique projective struc-
ture for which t is a projective coordinate. This projective structure on Ω extends
to a projective structure on the Schottky double Ω̂, as will be seen more exactly in
the next section. The associated connection coefficient is obtained from (7.10).

Example 7.3. The universal covering surface of Ω is conformally equivalent to the
unit disk. Let π : D → Ω be a universal covering map. The inverse of π is
multivalued, unless Ω is simply connected, but the different branches of π−1 are
related by Möbius transformations. Hence a unique projective structure on Ω is
obtained by using local branches of π−1 as projective coordinates. The connection
coefficients q(z) are related to the (branches of the) multivalued liftings π−1 by
(7.10), that is

{π−1(z), z}2 = q(z).

Example 7.4. Let Ω̂ be the Schottky double of Ω and let π : U → Ω̂ be a universal
covering map for Ω̂. This U can be taken to be either the Riemann sphere (if
Ω is simply connected), the complex plane (if Ω is doubly connected) or the unit

disk (if Ω has at least three boundary components). In any case, Ω̂, and hence
Ω, is provided with a unique projective structure by using local inverses of the
uniformization map as projective coordinates. If Ω is doubly connected, it even
gets an affine structure.

In general, the projective structures in the above examples are all different. For
example, if Ω is the annulus A1,R, then by straight-forward computations one finds
that the projective connections are given by

q(z) =
a

z2
,

where a = 0 in the cases 1) and 2) above, a = 1
4 in case 3) and a = 1

4 (1+ π2

(log R)2 ) in

case 4). If Ω is replaced by a noncircular doubly connected domain also the cases
1) and 2) will be unequal.

Example 7.5. Connections also come up from Taylor coefficients of regular parts
of certain domain functions. For example, for the Taylor coefficients of the regular
part of the complex Green’s function, see Section 5.2, we have the following.

Proposition 7.2. In the notation of Section 5.2, plus (3.4), the quantities

(7.20) p(ζ) = −c0(ζ),

(7.21) r(ζ) = −2c1(ζ) = 2
∂p

∂z
,

(7.22) q(ζ) = −6(
∂c1(ζ)

∂ζ
− 2c2(ζ)) = 6πℓ(ζ, ζ)

transform under conformal mapping as, respectively, the real part of a 0-connection,
an affine connection and a projective connection.
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Proof. The Green’s function transforms under conformal mappings f : Ω → Ω̃,
z̃ = f(z), as G(z, ζ) = G̃(z̃, ζ̃), hence

H(z, ζ) = − log
z̃ − ζ̃

z − ζ
+ H̃(z̃, ζ̃).

Now the assertions follow by easy computations, using the formulas (7.3):

c0(ζ) = H(ζ, ζ) = H(ζ, ζ),

(7.23) c1(ζ) =
∂H(z, ζ)

∂z

∣

∣

z=ζ
= 2

∂H(z, ζ)

∂z

∣

∣

z=ζ
=

∂

∂ζ
H(ζ, ζ) =

∂

∂ζ
c0(ζ),

∂c1(ζ)

∂ζ
− 2c2(ζ) =

∂2H(z, ζ)

∂z∂ζ

∣

∣

z=ζ
= 2

∂2H(z, ζ)

∂z∂ζ

∣

∣

z=ζ
= −πℓ(ζ, ζ).

�

We conclude from (7.22) that dσ = e−c0(ζ)|dζ| is a conformally invariant metric
and that r(z) is the associated affine connection. However, q(z) in (7.22) is in
general not the same as the projective connection associated to r(z) by the general
receipt (7.8), namely

Q(ζ) =
∂r(ζ)

∂ζ
− 1

2
r(ζ)2 = −2

∂c1(ζ)

∂ζ
− 2c1(ζ)

2.

In the multiply connected case Q(ζ) is not holomorphic, whereas q(ζ) in (7.22) is
always holomorphic.

Example 7.6. Coefficients of linear differential equation in Ω transform in compli-
cated ways under changes of coordinates, and in some cases exactly as connections.
For example, it is well-known that a second order equation always can be written
on the form (7.11), that is u′′ + 1

2Q(z)u = 0. Then Q(z) works as a projective
connection, and the corresponding projective structure uniformizes the equation.
This differential equation will be further discussed in Section 12.

Example 7.7. Let us spell out the relevant quantities for the unit disk and upper
half-plane provided with the Poincaré metric:

(i) Unit disk:

ω(z) = 1 − |z|2, r(z) =
2z̄

1 − |z|2 , q(z) = 0, κGauss = −4.

(ii) Upper half-plane:

ω(z) = 2y, r(z) =
i

y
, q(z) = 0, κGauss = −4.

Note that r(z) is singular on the boundary, while q(z) is not.

8. Connections on the Schottky double of a plane domain

8.1. Generalities. If the Riemann surface is the Schottky double of a plane do-
main Ω, then the connection coefficients can be described in terms of pairs of
functions on Ω, in analogy with the previous description (2.5) of differentials of
any half-integer order. Recall (2.1) that the transition function between the coor-

dinate z̃ = z̄ on the back-side Ω̃ and z on the front side Ω is given by the Schwarz
function. Writing the unit tangent vector as T (z) = dz

ds = eiθ, the curvature of ∂Ω

is κ = dθ
ds = −iT ′(z), where the prime denotes the complex derivative ∂

∂z for the
analytically extended T (z). Then, along ∂Ω,

{S(z), z}0 = −2 logT (z) = −2iθ,
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{S(z), z}1dz = −2
T ′(z)

T (z)
dz = −2idθ = −2iκds,

{S(z), z}2dz
2 = −2

T ′′(z)

T (z)
dz2 = −2i

dκ

ds
ds2.

Therefore, a 0-connection on Ω̂ can be described as a pair of functions, p1(z) (for
the front side) and p2(z) (for the backside), on Ω, satisfying on ∂Ω the matching
condition

p1(z) = p2(z) − 2iθ.

Similarly, an affine connection is represented by a pair r1(z), r2(z) satisfying the

matching condition r1(z)dz = r2(z)dz − 2iκds, or

(8.1) r1(z)T (z) = r2(z)T (z) − 2iκ on ∂Ω,

and a projective connection by a pair q1(z), q2(z) with

q1(z)T (z)2 = q2(z)T (z)2 − 2i
dκ

ds
on ∂Ω.

Note that if z and z̃ are both projective coordinates then q1 = q2 = 0 and it follows
that dκ

ds = 0 on ∂Ω, i.e., that Ω is a circular domain.
We may notice that (8.1) is consistent with the general fact [51] that the sum

of residues of a meromorphic affine connection on a compact Riemann surface of
genus g equals 2(g − 1) (our definition of connection differs from that in [51] by a
minus sign). In fact, in the case of the Schottky double the sum is, by (8.1),

1

2πi

∫

∂Ω

r1(z)dz +
1

2πi

∫

−∂Ω

r2(z)dz̄ = − 1

π

∫

∂Ω

κds = 2(g− 1)

since there is one outer component and g inner ones.
Naturally, one may be particularly interested in symmetric, or “real”, connec-

tions, namely those for which p1 = p2, r1 = r2 or q1 = q2 (respectively). The above
matching conditions then become, for the single representatives p(z), r(z), q(z) on
Ω,

Im p(z) = −θ on ∂Ω,

(8.2) Im (r(z)T (z)) = −κ on ∂Ω,

Im (q(z)T (z)2) = −dκ
ds

on ∂Ω.

8.2. Formulas for the curvature of a curve. The differential parameter {z, w}1

turns out to be a useful tool for summarizing various formulas for the curvature of
a curve in the complex plane.

The definition of {z, w}1, with z = f(w) analytic, can be written in differential
form as

{z, w}1dw = d log
dz

dw
= d(log dz − log dw).

Hence

Im ({z, w}1dw) = d arg dz − d arg dw = ∗d(log |dz| − log |dw|).
To interpret this formula one should let w run along a curve Γ, say with parametriza-
tion t 7→ w(t), t ∈ R. Then z(t) = f(w(t)) runs along f(Γ) and one just replaces
dz and dw by z′(t) and w′(t), respectively.

Denoting the curvature of Γ by κw and the curvature of f(Γ) by κz we thus have
the following formula.
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Proposition 8.1. Under a conformal mapping f : z 7→ w, the curvature of a curve
Γ and its image curve f(Γ) are related by

(8.3) Im ({z, w}1dw) = κzdsz − κwdsw.

Here dsz = |dz|, dsw = |dw|.

Example 8.1. (The curvature in terms of a real parameter.) With Γ = R and
z = f(w), so that z = f(t) with t = Rew parametrizes f(Γ), we have κw = 0,
which gives the well-known formula

κz = Im (
d

dw
(log

dz

dw
)
dw

dsz
) + κw

dsw

dsz

= Im (
f ′′(w)

f ′(w)

dw

|f ′(w)||dw| ) =
1

|f ′(t)| Im
f ′′(t)

f ′(t)
.

Example 8.2. (The curvature in terms of an angular parameter; essentially Study’s
formula [46], p.125.) With Γ = ∂D, w = eit, dw = iwdt we have,

κz = Im ({z, w}1
dw

dsz
) + κw

dsw

dsz
= Im (

f ′′(w)

f ′(w)

iwdt

|f ′(w)||dt| ) +
1

|f ′(w)|

=
1

|f ′(w)| (Re
wf ′′(w)

f ′(w)
+ 1).

Example 8.3. (The curvature of a curve given as a level line of a harmonic function.)
Let Γ be any level line of a harmonic function u in the z-plane. Assume that the
curve is nonsingular, so that ∇u 6= 0 on Γ. With v any harmonic conjugate of u,
w = u+ iv = g(z) maps Γ into a vertical line in the w-plane. Thus κw = 0 and the
curvature of Γ is obtained from

κzdsz = Im ({z, w}1dw) + κwdsw = −Im ({w, z}1dz)

= Im (
∂

∂z
(log

∂w

∂z
)dz) = Im (2

∂

∂z
log(|2∂u

∂z
|)dz)

= − ∂

∂x
log |∇u|dy +

∂

∂y
log |∇u|dx = − ∂

∂n
log |∇u|dsz.

We may may also extract from the above the formula (cf. [31])

κz = |g′(z)|Re
g′′(z)

g′(z)2
.

In summary, for a level curve Γ of a harmonic function u the curvature is given
by

(8.4) κz = − ∂

∂n
log |∇u| = − d

dn
log |du

dn
| = −d

2u

dn2
/
du

dn
.

In the last expressions we used d
dn in place of ∂

∂n because the latter becomes obscure

when applied twice ( ∂
∂n is not really a partial derivative since n is not a coordinate

of a coordinate system; d
dn should be interpreted as a directional derivative along

the straight line in the normal direction).
In higher dimensions, (8.4) gives the mean curvature of a hypersurface given as

the level surface of a harmonic function. This can easily be deduced from the more
general (and well-known, cf. [20]) formula κmean = div ∇u

|∇u| , for the mean curvature

of a level surface of any smooth function u.
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8.3. Geodesics. The equation for geodesic curves z = z(t) for the metric (7.13) is

(8.5)
d2z

dt2
+ r(z)(

dz

dt
)2 = 0,

where r(z) is the corresponding affine connection (7.15) and the parameter t mea-
sures arc-length with respect to the metric. This equation is the usual geodesic
equation in differential geometry [20], just written in complex analytic language.
The classical Christoffel symbols Γi

jk (i, j, k = 1, 2) turn out to coincide with the

components ±Re r(z),±Im r(z). An intuitive direct derivation of (8.5) goes as fol-
lows.

The tangent vector along the curve is dz
dt and the geodesic equation is supposed

to say that this propagates by parallel transport, i.e., has covariant derivative zero
along the curve. Since a vector in one complex variable can be thought of as
a differential of order minus one the relevant covariant derivative (7.5) will be
∇−1 = ∂

∂z + r(z). This is the covariant version of ∂
∂z , and the covariant version of

d
dt then is ∂

∂t + r(z)dz
dt . Applying this to dz

dt gives (8.5).
It is convenient to write (8.5) on the form

(8.6)
d

dt
log

dz

dt
+ r(z)

dz

dt
= 0

and to decompose it into real and imaginary parts. The real part just contains
internal information about how the curve is parametrized, namely saying that t
measures arc-length with respect to the metric. The information about the ge-
ometry of the curve (that it is a geodesic) is entirely contained in the imaginary
part,

(8.7)
d

dt
arg

dz

dt
+ Im (r(z)

dz

dt
) = 0.

In equation (8.7), t can be taken to be any parameter, for example euclidean
arc-length s. Then the first term equals the euclidean curvature of the geodesic
and dz

ds is the unit tangent vector. Thus we have

Proposition 8.2. The curvature κ = κ(z, dz
ds ) of the geodesic passing through a

point z and having direction dz
ds (a unit vector) is given by

(8.8) κ(z,
dz

ds
) = −Im (r(z)

dz

ds
) = −Im (2

∂p

∂z

dz

ds
) = − ∂p

∂n
,

where ∂p
∂n denotes the derivative in the rightward normal direction of the curve. In

particular, the sharp bound

(8.9) |κ(z, dz
ds

)| ≤ |r(z)|

holds for all geodesics passing through z, and equality is attained if and only dz
ds is

tangent to the level line of p at z.

The above estimate (8.9) can be combined with geometric estimates of r(z). For
example, for the coefficients of the Green’s function, as in Section 5 and Exam-
ple 7.5, we have by (7.20), (7.21) that r(z) = −2c1(z) is the affine connection for
the metric dσ = e−c0|dz|. For c1(z) we have the estimate in Lemma 5.3, so the
above proposition shows that

|r(z)| ≤ 2

d(z, ∂Ω)

for this connection. When Ω is simply connected the metric in question is the
Poincaré metric. Combining with (8.9) we therefore have the following.
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Corollary 8.3. For a simply connected domain Ω provided with its Poincaré met-
ric, the curvature for any geodesics through a point z is subject to the estimate

|κ(z, dz
ds

)| ≤ 2

d(z, ∂Ω)
.

It is allowed here that Ω ⊂ P contains the point of infinity, and at least in this
generality the corollary is sharp. Indeed, with Ω = P\D(0, ǫ), ǫ > 0 small, the circle
with center at any finite point c ∈ Ω, and having radius |c|, is almost a geodesic for
the Poincaré metric in Ω. The curvature for this circle is 1/|c|, hence the bound in
the corollary is essentially attained at the point 2c on the circle.

8.4. Some applications in physics. Projective and affine connections come up
naturally in both classical and modern physics. As to modern physics, e.g., con-
formal field theory and string theory, we have already mentioned the example with
the energy-momentum tensor as a projective connection. For further examples, see
[12], [58] and references therein.

For classical physics, we shall briefly mention one example from vortex dynamics.
Consider in Ω an incompressible inviscid fluid which is irrotational except for a point
vortex of unit strength at a point z0. If Ω is simply connected this makes the flow
uniquely determined. The stream function ψ will, at each instant of time, coincide
with the Green’s function, ψ(z) = G(z, z0). However, the flow will not be stationary
because the vortex will move with the speed obtained by subtracting off, from the
general flow, the rotationally symmetric singular part corresponding to − log |z−z0|
in the stream function. Thus in fact ψ = ψ(z, t) = G(z, z0(t)) and one deduces, in
the notation of Example 7.5, that the vortex moves along a level line of c0(z) and
that the velocity is given by

(8.10)
dz0(t)

dt
= −ic1(z0(t)) = −i

∂c0
∂z̄

(z0(t)).

This means that c0(z) is a kind of stream function for the vortex motion, called
the Routh stream function, [37], [43]. It also follows that the vortex motion is a
hamiltonian motion, determined by the symplectic form dx∧ dy (area 2-form) and
hamiltonian function H = 1

2c0. Note that (8.10) is a special case of (5.9).
If Ω is multiply connected one need to prescribe the circulations γj around the

holes to make the flow uniquely determined. These circulations will be preserved in
time (Kelvin’s theorem) and everything will be as in the simply connected case but
with the ordinary Green’s function replaced by the hydrodynamic Green’s function
Gγ(z, z0), to be discussed in Section 9.

A related physical application comes from electrostatics. Think of the comple-
ment K = C\Ω as a perfect conductor and let it be grounded, so that its potential
is zero. Then consider a unit charge located at z0 ∈ Ω. This will induce charges
of the opposite sign on ∂K, namely distributed so that the density with respect

to arc-length is given by the normal derivative ∂G(·,z0)
∂nz

. These charges will exert a
force on the charge at z0, and this force is

F (z0) = − 1

2π
c1(z0(t)).

If Ω is multiply connected and the components of K are not grounded to a common
zero, but are isolated from each other, then the hydrodynamic Green function shall
be used in place of the ordinary one, with the γj proportional to the respective
total charges isolated on the different components of K.
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9. On Neumann functions and the hydrodynamic Green’s function

9.1. Definitions. Recall that the Bergman kernel and the Schiffer kernel are given
in terms of the ordinary Green’s function by (3.1), (3.2). Decomposing the Green’s
function as in (5.5) we also have, for the “ℓ-kernel” (3.4),

ℓ(z, ζ) =
2

π

∂2H(z, ζ)

∂z∂ζ
.

The reduced Bergman kernel (see Proposition 9.2) and its adjoint have several
similar representations in terms of Neumann type functions and hydrodynamic
Green’s functions. Here we shall briefly review these matters. See [49], [51] for
more details.

By a Neumann function we mean a domain function Na(z, ζ) with a logarithmic
singularity at a given point ζ ∈ Ω and satisfying Neumann boundary data given by
a boundary function a subject to

(9.1)

∫

∂Ω

ads = 2π.

The requirements on Na(z, ζ) are, more exactly,

(9.2) Na(z, ζ) = − log |z − ζ| + harmonic in Ω,

(9.3) − ∂Na(·, ζ)
∂n

= a on ∂Ω,

(9.4)

∫

∂Ω

Na(·, ζ)ads = 0.

The final condition (9.4) can also be written
∫

∂Ω

Na(·, ζ)∗dNa(·, z) = 0,

and is a normalization which guarantees that Na is symmetric:

Na(z, ζ) = Na(ζ, z).

A hydrodynamic Green’s function (or “modified Green’s function”) [37], [19],
[9] is defined in terms of g + 1 prescribed circulations, γ0, . . . γg subject to the
consistency condition

(9.5) γ0 + · · · + γg = 2π.

Let γ = (γ0, . . . γg) denote the entire vector of periods. The defining properties of
the hydrodynamic Green function, denoted Gγ(z, ζ), are

(9.6) Gγ(z, ζ) = − log |z − ζ| + harmonic in Ω,

(9.7) Gγ(z, ζ) = bj(ζ) for z ∈ Γj ,

(9.8) −
∫

Γj

∂Gγ(z, ζ)

∂n
ds(z) = γj (j = 0, . . . , g),

(9.9)

g
∑

j=0

γjβj(ζ) = 0.

Here bj(ζ) denote “floating constants” (they cannot be preassigned), i.e., (9.7)
really means

dGγ(·, ζ) = 0 along ∂Ω.
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Condition (9.9) is a normalization which can be written
∫

∂Ω

Gγ(·, ζ) ∗dGγ(·, z) = 0

and which guarantees the symmetry,

Gγ(z, ζ) = Gγ(ζ, z).

The hydrodynamic Green’s function can be constructed from the ordinary Green’s
function by

Gγ(z, ζ) = G(z, ζ) +

g
∑

k,j=0

ckjuk(z)uj(ζ),

where uk, k = 0, . . . , g are the harmonic measures. With the above ‘Ansatz’,
the requirements (9.6) and (9.7) are automatically satisfied, and (9.8), (9.9) give
a system of equations which determine the coefficients ckj uniquely. The matrix
(ckj) is symmetric and positive semidefinite.

9.2. Reproducing kernels for Dirichlet and Bergman spaces. The Neumann
and (hydrodynamic) Green’s functions have logarithmic singularities, hence cannot
themselves be reproducing kernels for any Hilbert spaces of harmonic functions.
However, the singularities disappear when subtracting them, and also after appli-

cation of the the differential operator ∂2

∂z∂ζ̄
. In these cases we do obtain reproducing

kernels for important spaces. Below we elaborate on these matters, slightly extend-
ing the analysis in [4] and [51].

Let D(u, v) denote the Dirichlet inner product:

D(u, v) =

∫

Ω

∇u · ∇v dxdy =

∫

Ω

du ∧∗ dv,

let a be boundary data as above, satisfying (9.1), and define the period vector γ by

(9.10) γk =

∫

Γk

ads.

Then (9.5) holds, by (9.1). Define H(Ω) to be the Hilbert space of all harmonic
functions u in Ω which satisfy D(u, u) <∞ and

(9.11)

∫

∂Ω

u ads = 0,

and letHe(Ω) be the subspace consisting of those functions which in addition satisfy

(9.12)

∫

Γj

∂u

∂n
ds = 0 (j = 0, . . . , g).

Note that (9.11) just fixes the additive constant in u which the inner product leaves
free. Except for this additive constant H(Ω) does not depend on a. The following
is a slight extension of results in Ch.V:3 of [4].

Proposition 9.1. The reproducing kernels for H(Ω) and He(Ω) are, respectively,

k(z, ζ) =
1

2π
(Na(z, ζ) −G(z, ζ)),

ke(z, ζ) =
1

2π
(Na(z, ζ) −Gγ(z, ζ)).

In other words, k(·, ζ) ∈ H(Ω) and

(9.13) u(ζ) = D(u, k(·, ζ)) (u ∈ H(Ω)),

and similarly for ke(·, ζ).
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Proof. All verifications are straightforward. Let us just show, for example, that
(9.13) holds for ke(·, ζ) and u ∈ He(Ω)). We may assume that u is smooth up to
the boundary. The proof amounts to standard applications of Green’s formula to
functions with a singularity. For the Neumann function we get

D(u,Na(·, ζ)) =

∫

Ω

du ∧∗ dNa(·, ζ)

= lim
ǫ→0

∫

Ω\D(ζ,ǫ)

d(u ∧∗ dNa(·, ζ)) = −
∫

∂Ω

u ads+ 2πu(ζ) = 2πu(ζ),

and for the hydrodynamic Green’s function,

D(u,Gγ(·, ζ)) = D(Gγ(·, ζ), u) = lim
ǫ→0

∫

Ω\D(ζ,ǫ)

d(Gγ(·, ζ) ∧ ∗du)

=

g
∑

j=0

bj(ζ)

∫

Γj

∂u

∂n
ds− lim

ǫ→0

∫

∂D(ζ,ǫ)

Gγ(·, ζ)∂u
∂n

ds = 0.

Now (9.13) follows. �

By definition of He(Ω), all functions u ∈ He(Ω) have single-valued harmonic
conjugates. Thus we can form the space of analytic functions f = u + iu∗ with
u ∈ He(Ω) and with also u∗ normalized by (9.11). This is simply the ordinary
Dirichlet space with normalization (9.11), i.e., the Hilbert space A(Ω) of analytic
functions in Ω provided with the hermitean inner product

(f, g)−1 =

∫

Ω

f ′ḡ′ dxdy = − 1

2i

∫

Ω

df ∧ dḡ,

and subject to the normalization

(9.14)

∫

∂Ω

f ads = 0.

The reason for indexing the inner product by −1 is that A(Ω) shortly will be iden-
tified as one space in a sequence of weighted Bergman spaces with inner products
in general denoted (f, g)m, m ∈ Z. We note that, with u = Re f , v = Re g,

D(u, v) =

∫

Ω

du ∧ ∗dv = −Re
1

2i

∫

Ω

df ∧ dḡ = Re (f, g)−1.

The reproducing kernel for A(Ω) is the analytic completion K(z, ζ) of ke(z, ζ),
normalized by (9.14). In terms of the multivalued analytic completions Na(z, ζ),
Gγ(z, ζ) of Na(z, ζ) and Gγ(z, ζ) we therefore have

K(z, ζ) =
1

2π
(Na(z, ζ) − Gγ(z, ζ)).

An adjoint kernel may be introduced as

L(z, ζ) =
1

2π
(Na(z, ζ) + Gγ(z, ζ)).

Remark 9.1. Na(z, ζ), Gγ(z, ζ) are not symmetric with respect to z, ζ and are not
analytic or antianalytic with respect to ζ. However, K(z, ζ) is (of course) hermitean
symmetric and is antianalytic in ζ. The adjoint kernel, L(z, ζ) is multivalued ana-
lytic in both z and ζ. See [51] for more details.

Example 9.1. For the unit disk, Ω = D, with a = 1 and (necessarily) γ = (γ0) = (2π)
we have

Na(z, ζ) = − log |z − ζ| − log |1 − zζ̄|,
Gγ(z, ζ) = − log |z − ζ| + log |1 − zζ̄|,

k(z, ζ) = − 1

π
log |1 − zζ̄|,
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K(z, ζ) = − 1

π
log(1 − zζ̄),

L(z, ζ) = − 1

π
log(z − ζ)

Na(z, ζ) = − log(z − ζ) − log(1 − zζ̄),

Gγ(z, ζ) = − log(z − ζ) + log(1 − zζ̄),

Of course, Gγ(z, ζ) = G(z, ζ), Gγ(z, ζ) = G(z, ζ) in the simply connected case.

We shall denote the ordinary Bergman space by B(Ω). It is the the Hilbert space
of analytic functions in Ω with (f, f)1 <∞, where

(f, g)1 =

∫

Ω

f ḡdxdy

is the inner product. The exact Bergman space, Be(Ω), is the subspace consisting
of those functions of the form F ′, where F is (single-valued) analytic in Ω. The
Dirichlet space is related to the exact Bergman space by differentiation: Λ1 : f 7→ f ′

(or f 7→ df) is an isometric isomorphism Λ1 : A(Ω) → Be(Ω).

Proposition 9.2. The reduced Bergman kernel, i.e., the reproducing kernel for
Be(Ω), is given by

Ke(z, ζ) =
2

π

∂2Na(z, ζ)

∂z∂ζ̄
= − 2

π

∂2Gγ(z, ζ)

∂z∂ζ̄
=
∂2K(z, ζ)

∂z∂ζ̄

for any choices of a and γ as above. Similarly, the corresponding adjoint kernel is

Le(z, ζ) =
2

π

∂2Na(z, ζ)

∂z∂ζ
= − 2

π

∂2Gγ(z, ζ)

∂z∂ζ
=
∂2L(z, ζ)

∂z∂ζ
.

Proof. The proof is essentially well-known and straight-forward. Cf. [4], [52]. �

Remark 9.2. A beautiful argument, due to M. Schiffer [50], shows that the function

F (z) =

∫ z

Le(t, ζ)dt is univalent and maps Ω onto a domain D ⊂ P with ∞ ∈ D

and such that each component of P \D is convex. See [49] for further information
and several related issues.

A particular consequence is that Le(z, ζ) has no zeros in Ω, hence that Ke(z, ζ)
has 2g zeros, m1(ζ), . . . ,m2g(ζ), in Ω. In terms of these the following generalization
[51], [28] of (5.7) to the multiply connected case holds

(9.15)
∂2

∂z∂ζ
logKe(z, ζ) = 2πKe(z, ζ) + π

2g
∑

k=1

Le

(

z,mk(ζ)
)

m′
k(ζ).

For the full Bergman kernel K(z, ζ) there are similar results [29], but they are
slightly more complicated because the distribution of the 2g zeros between K(z, ζ)
and L(z, ζ) is less clear in this case. For example, Theorem 6.1 shows that the
number of zeros of K(z, ζ) in general depends on the location of ζ ∈ Ω.

9.3. Behavior of Neumann function under conformal mapping. To describe
how an object (e.g., the Green’s function) on a domain Ω transforms under confor-
mal mapping is equivalent to telling what kind of object it is (function, differential,
connection etc.) when the domain is considered as a Riemann surface. In fact,
a conformal map onto another domain can be considered simply as a change of
holomorphic coordinate on the Riemann surface. Many objects associated to a
domain actually extend to the Schottky double, and since this Riemann surface is
described by an atlas with two charts overlapping on the boundary of the domain,
complete information of the conformal behavior of the object then is contained in
the transition formula on the boundary.
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The ordinary Green’s function G(z, ζ) extends directly to the Schottky double
as an odd function in each variable, see (2.10), and its differential is the real part
of normalized abelian differentials of the third kind on the double. Precisely, by
(2.10), (2.11), Lemma 2.1,

(9.16) dG(·, ζ) = −Reυζ−J(ζ) = −Reωζ−J(ζ).

When trying to extend the hydrodynamic Green function as an odd function on
the double, there appear jumps (=2bj) on ∂Ω. However, the differential dGγ(·, ζ)
extends perfectly well, along with the conjugate differential ∗dGγ(·, ζ). Therefore
dGγ(·, ζ) + i ∗dGγ(·, ζ) is an abelian differential of the third kind with poles at ζ
and J(ζ). Computing the periods gives

∫

αj

(dGγ(z, ζ) + i ∗dGγ(z, ζ)) = 2(bj(ζ) − b0(ζ)),

∫

βj

(dGγ(z, ζ) + i ∗dGγ(z, ζ)) = iγj ,

j = 1, . . . , g.
If we in particular choose the period vector to be

γ = (2π, 0, . . . , 0)

we see that the βj-periods (j = 1, . . . , g) of dGγ(·, ζ)+i ∗dGγ(·, ζ) vanish. Therefore
(in this case)

dGγ(·, ζ) + i ∗dGγ(·, ζ) = −ω̃ζ−J(ζ),

where ω̃a−b in general denotes the abelian differential of the third kind with the
same singularities as ωa−b (and υa−b), but normalized so that the βj-periods vanish.
Thus, in analogy with (9.16) we have

dGγ(·, ζ) = −Re ω̃ζ−J(ζ)

for γ as above.
For the Neumann function the situation is slightly more complicated than for the

Green’s functions. We shall consider Na(z, ζ) and Na(z, ζ) = Na(z, ζ) + iN∗
a (z, ζ)

together with the meromorphic differential

Γa(z, ζ)dz = 2
∂Na(z, ζ)

∂z
dz =

∂Na(z, ζ)

∂z
dz.

Along the boundary (with respect to z),

Im (Γa(z, ζ)dz) = Im (dNa(z, ζ)dz) =∗ dNa(z, ζ) = −ads.
In order to discuss questions of conformal invariance the boundary function a

has to be linked to the domain Ω. The most naive choice, a = constant, turns
out not to give any good behavior under conformal mapping. More promising is
to relate a to the curvature κ of the boundary. If we simply take a = κ then (8.2)
shows that Γa(z, ζ)dz extends to the Schottky double as a symmetric meromorphic
affine connection. Moreover, on integrating we see that

ImNa(z, ζ) = −θ (+ local constant),

i.e., that the analytic completion of the Neumann function behaves essentially as a
symmetric 0-connection.

Unfortunately, the choice a = κ is allowed only for simply connected domains
because in the multiply connected case it violates (9.1). In fact,

∫

∂Ω

κds = 2π(1 − g).
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On the other hand, we are allowed to take a = κ
1−g

for any g 6= 1 and then

(1 − g)Γa(z, ζ)dz becomes a symmetric meromorphic affine connection on Ω̂:

(9.17) Im ((1 − g)Γa(z, ζ)dz) = −κds
along ∂Ω. Moreover, it is an affine connection with simplest possible pole structure:
simple poles with residue 1 − g at each of the points z = ζ and z = ζ̃. For the
Neumann function we get

(9.18) Im (1 − g)Na(z, ζ) = −θ (+ local constant)

on ∂Ω.
For the case g = 1 the situation is actually better, because in this case there

exists a holomorphic affine connection (in agreement with the fact that in the genus
one case the Riemann surface admits an affine structure). Just let v be the regular
harmonic function in Ω with Neumann boundary data ∂v

∂n = −κ. This is consistent

since
∫

∂Ω
κds = 0 when g = 1, and v is determined up to an additive constant.

Now, Γ(z) = 2∂v
∂z is the required holomorphic affine connection.

A slightly different point of view on Na(z, ζ) and Γa(z, ζ) is taken in [51], where
exterior domains are considered, i.e., domains Ω ⊂ P with ∞ ∈ Ω. In this case

∫

∂Ω

κds = −2π(1 + g)

and hence it is possible, for any g, to choose

a = − κ

1 + g

in the definition of the Neumann function. In place of (9.17), (9.18) one then gets

(9.19) Im ((1 + g)Γa(z, ζ)dz) = κds,

(9.20) Im (1 + g)Na(z, ζ) = θ (+ constant).

Thus, −(1 + g)Γa(z, ζ)dz is now a symmetric affine connection on Ω̂. (In [51]
this connection is denoted Γ(z, ζ)dz.) However, it has not simplest possible pole
structure. Besides the pole with residue 1 + g at z = ζ it has on Ω also a pole with

residue −2 at z = ∞. Similarly on the backside Ω̃.
To discover the pole at infinity one has to introduce a regular (holomorphic)

coordinate there, for example w = 1
z . Then

{w, z}1dz =
d

dz
log

dw

dz
dz = −2

dz

z
= 2

dw

w
.

By (7.4) the representative of −(1 + g)Γa(z, ζ)dz with respect to w is

−(1 + g)Γa(
1

w
, ζ)d(

1

w
) − 2

dw

w
,

which has residue −2 at w = 0 (the first term is regular at w = 0).
As an example, consider the exterior disk: Ω = {z ∈ C : |z| > 1} ∪ {∞}. For

this we have, with a = − κ
1+g

= 1,

Na(z, ζ) = − log |z − ζ| − log |1 − zζ̄| + 2 log |z| + 2 log |ζ|,
(1 < |z|, |ζ| <∞) which gives, for the affine connection −(1 + g)Γa(z, ζ)dz,

−Γa(z, ζ)dz =
dz

z − ζ
+

dz

z − 1
ζ̄

− 2
dz

z
.

In terms of w = 1
z the same connection is given by

−Γa(
1

w
, ζ)d(

1

w
) − 2

dw

w
=

dw

w − 1
ζ

+
dw

w − ζ̄
− 2

dw

w
,
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valid actually in all Ω (|w| < 1). Here one sees clearly the pole of residue −2 at
w = 0 (i.e., z = ∞), along with the pole with residue one at w = 1

ζ (i.e., z = ζ).

10. Weighted Bergman spaces

We have discussed so far the Dirichlet space A(Ω) and the Bergman spaces B(Ω)
and Be(Ω), and remarked that A(Ω) and Be(Ω) are connected via the simplest Bol
operator, namely Λ1 : F 7→ dF . In this section we shall extend the discussion to
a sequence of weighted Dirichlet spaces Am(Ω) and Bergman spaces Bm(Ω) and
Be,m(Ω).

Let

dσ =
|dz|
ω(z)

be the Poincaré metric of Ω, characterized by its constant curvature and being
complete:

{

κGauss = −4,

ω = 0 on ∂Ω.

As discussed previously it gives rise to a holomorphic projective connection q(z)
and a projective structure, namely that for which the projective coordinates are the
coordinate on the universal covering surface of Ω when this is taken to be a disk
or a half-plane. Let Λm be the corresponding Bol operator, given in a projective
coordinate t by Λm = ∂m

∂tm .
For α ∈ C with Reα > 0, and f , g analytic in Ω, smooth up to ∂Ω, define

(10.1) (f, g)α =

∫

Ω

f ḡωα−1dxdy.

When α > 0 is real this is an inner product on a space of analytic functions, a
weighted Bergman space (taken to be complete, hence a Hilbert space). We denote
this space Bα(Ω). It will mainly be used for α = m an integer. Clearly, B1(Ω)
is the ordinary Bergman space, and it is well-known that as α → 0 one gets the
Hardy space, with the Szegö inner product given by

lim
α→0

α(f, g)α =
1

π

∫

∂Ω

f ḡ|dz|

Remark 10.1. Our notations for weighted Bergman spaces deviate from some stan-
dard notations used in the case of the unit disk. In for example [27] the notation A2

α

is used for the Bergman space with weight α+1
π ωαdxdy, in place of our ωα−1dxdy,

in the definition (10.1) of the inner product. In the context of automorphic forms
the inner product (f, g)α is known as the Petersson inner product.

If F , G are analytic in a neighborhood of Ω and are kept fixed, then the inner
product, regarded as a function of α,

α 7→ (F,G)α,

is analytic for Reα > 0 and has a meromorphic extension to all C, with simple poles
at α = 0,−1,−2, . . . . The proof of this is implicit in the proof of Proposition 10.1
below. We shall then extend the inner product (F,G)α to such values of α by
setting

(F,G)−m = Res α=−m

∫

Ω

FḠωα−1dxdy,

m = 0, 1, 2, . . . . For example, for m = 0 we retrieve the Szegö inner product.
Now, the main issue is that, for anym = 0, 1, 2, . . . , (F,G)−m is an inner product

on a generalized Dirichlet space Am(Ω) of analytic functions and that the Bol
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operator is an isometric isomorphism of Am(Ω) onto the subspace Be,m(Ω) of ‘exact’
differentials in Bm(Ω)):

Λm : Am(Ω) → Be,m(Ω).

In order to elaborate the details of the above we need certain (in principle known)
integral formulas for the Λm.

Proposition 10.1. With F , G (regarded as 1−m
2 -forms) and g (regarded as a

1+m
2 -form) analytic in Ω, smooth up to ∂Ω, we have

(10.2)

∫

Ω

(ΛmF )ḡωm−1dzdz̄ = im−1(m− 1)!

∫

∂Ω

F ḡ(dz)
1−m

2 (dz̄)
1+m

2 ,

(10.3) Res α=−m

∫

Ω

FḠωα−1dzdz̄ =
(−i)m+1

m!

∫

∂Ω

FΛmG(dz)
1−m

2 (dz̄)
1+m

2 .

In other words,

(10.4) (ΛmF, g)m =
imm!

2

∫

∂Ω

F ḡ(dz)
1−m

2 (dz̄)
1+m

2 ,

(10.5) (F,G)−m =
(−i)m

2m!

∫

∂Ω

FΛmG(dz)
1−m

2 (dz̄)
1+m

2 .

Equation (10.2) is valid only for m = 1, 2, . . . , while (10.3), (10.4), (10.5) hold also
for m = 0 (with 0! = 1).

By choosing g = ΛmG in (10.4) we obtain

Corollary 10.2. For m = 0, 1, 2, . . . ,

(10.6) (F,G)−m = (ΛmF,ΛmG)m,

hence (F, F )−m ≥ 0 with equality if and only if ΛmF = 0.

Proof. The proof of the proposition is based on ideas of Jaak Peetre, and parts of
it have previously been outlined in [24].

Let {ϕj} be a smooth partition of unity (i.e.,
∑

j ϕj = 1) on Ω such that each
individual ϕj has support within the domain of definition of a projective coordinate
tj . In such a coordinate ω is of the form ωj = a|tj |2 +btj + b̄t̄j +c, with a, c real and
|b|2 = ac+1 (to have curvature κ = −4). After an additional Möbius transformation
we may even assume that ωj = 2 Im tj and that tj takes values in the closed upper
half plane. Note then that ∂Ω necessarily is mapped into the real line (since ω = 0
on ∂Ω).

In the coordinates tj , the coefficients F , G, g correspond to (say) Fj , Gj , gj (i.e.,

F (dz)
1−m

2 = Fj(dtj)
1−m

2 etc.) and Λm becomes ∂m

∂tm
j

. On setting ψj = ϕj ◦ t−1
j we

have
∫

Ω

ΛmF ḡω
m−1dzdz̄ =

∑

j

∫

Ω

ΛmFϕj ḡω
m−1dzdz̄

=
∑

j

∫

Im tj>0

∂mFj

∂tmj
ψj ḡj(2Im tj)

m−1dtjdt̄j .

After an m-fold partial integration this becomes
∑

j

(−1)m

∫

Fj
∂m

∂tmj
(ψj ḡj(2Im tj)

m−1)dtjdt̄j

+
∑

j

(−1)m
m−1
∑

k=0

(−1)k

∫

R

∂m−k−1Fj

∂tm−1−k

∂k

∂tkj
(ψj ḡj(2Im tj)

m−1)dtjdt̄j .
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Here all the boundary terms except the last one (with k = m − 1), and with
∂k

∂tk
j

= ∂m−1

∂tm−1

j

acting only on (2Im tj)
m−1, vanish because Im tj = 0 on R. Moving

back to the z-plane and taking covariance (Lemma 7.1) into account, the above
expression becomes
∑

j

(−1)m

∫

Ω

FΛm(ϕj ḡω
m−1)dzdz̄ + im−1(m− 1)!

∑

j

∫

∂Ω

Fϕj ḡ(dz)
1−m

2 (dz̄)
1+m

2

= (−1)m

∫

Ω

F ḡΛm(ωm−1)dzdz̄ + im−1(m− 1)!

∫

∂Ω

F ḡ(dz)
1−m

2 (dz̄)
1+m

2

= im−1(m− 1)!

∫

∂Ω

F ḡ(dz)
1−m

2 (dz̄)
1+m

2 .

This proves (10.2). A different proof is given in [23].
Now we turn to (10.3). In order to show that

∫

Ω FḠω
α−1dzdz̄ has a meromorphic

extension and to compute Res α=−m

∫

Ω FḠω
α−1dzdz̄ we first observe that, with

partition of unity and notations as above,

d(

m
∑

k=0

(−1)k ∂k

∂t̄j
k
(Fj(2Im tj)

α+m)
∂m−k

∂t̄j
m−k

(ψjḠj)dtj)

= Fj
∂m+1

∂t̄j
m+1 (ψḠj)(2Im tj)

α+mdt̄jdtj + (−1)m ∂m+1

∂t̄j
m+1 (Fj(2Im tj)

α+m)ψjḠjdt̄jdtj .

Therefore,
m

∑

k=0

(−1)k

∫

R

∂k

∂t̄k
(Fj(2Im tj)

α+m)
∂m−k

∂t̄m−k
(ψjḠj)dtj

=

∫

Im tj>0

Fj
∂m+1

∂t̄m+1
j

(ψjḠj)(2Im tj)
α+mdt̄jdtj

−(−i)m+1(α +m) · · · (α + 1)α

∫

Im tj>0

FjḠjψj(2Im tj)
α−1dt̄jdtj .

The boundary terms vanish whenever Reα > 0 and it follows that for such α,
∫

Im tj>0

FjḠjψj(2Im tj)
α−1dt̄jdtj

=
im+1

(α+m) · · · (α+ 1)α

∫

Im tj>0

Fj
∂m+1

∂t̄m+1
j

(ψjḠj)(2Im tj)
α+mdt̄jdtj .

Here the integral in the right member is an analytic function in α for Reα > −m−1,
hence the left member has a meromorphic extension to this range, with the residue
at α = −m given by

Res α=−m

∫

FjḠjψj(2Im tj)
α−1dt̄jdtj = − (−i)m+1

m!

∫

F
∂m+1

∂t̄m+1
j

(ψjḠj)dt̄jdtj .

Putting the pieces together it follows that also Res α=−m

∫

Ω
FḠωα−1dzdz̄ has a

meromorphic continuation to Reα > −m− 1 with residue at α = −m given by

Res α=−m

∫

Ω

FḠωα−1dzdz̄

= −
∑

j

Res α=−m

∫

Im tj>0

FjḠjψj(2Im tj)
α−1dt̄jdtj

=
(−i)m+1

m!

∑

j

∫

Im tj>0

Fj
∂m+1

∂t̄m+1
j

(ψjḠj)dt̄jdtj
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=
(−i)m+1

m!

∑

j

∫

Im tj>0

d(Fj
∂m

∂t̄mj
(ψjḠj)dtj)

=
(−i)m+1

m!

∑

j

∫

R

Fj
∂m

∂t̄mj
(ψjḠj)dtj

=
(−i)m+1

m!

∑

j

∫

R

Fj
∂m

∂t̄mj
(ψjḠj)(dtj)

1−m
2 (dt̄j)

1+m
2

=
(−i)m+1

m!

∑

j

∫

∂Ω

F Λ̄m(ϕjḠ)(dz)
1−m

2 (dz̄)
1+m

2

=
(−i)m+1

m!

∫

∂Ω

F Λ̄mḠ(dz)
1−m

2 (dz̄)
1+m

2 .

This finishes the proof of the proposition. �

The corollary shows that the hermitean form (F,G)−m is positive semidefinite.
Set

Am(Ω) = {F analytic in Ω : (F, F )−m <∞}.
The spaces Bm(Ω), with inner product (f, g)m, were defined after (10.1), and by
(10.6) the Bol operator Λm is an isometry

Λm : Am(Ω) → Bm(Ω).

However, this map is neither injective nor surjective when m > 0. We shall say
something both about its kernel and its cokernel.

As to the kernel, recall that Λm in terms of any projective coordinate t is simply

Λm = ∂m

∂tm . With F (z)(dz)
1−m

2 a holomorphic differential of order 1−m
2 , it follows

that ΛmF = 0 if and only if F becomes a polynomial of degree ≤ m − 1 when
expressed in any projective coordinate. Accordingly, we denote by

Pm(Ω) = {F ∈ Am(Ω) : F holomorphic in Ω, ΛmF = 0}
the kernel of Λm. The image of Λm is by definition

Bm,e(Ω) = {ΛmF ∈ Bm(Ω) : F ∈ Am(Ω)}.
Then we have the exact sequence

0 → Pm(Ω) → Am(Ω)
Λm→ Bm,e(Ω) → 0.

In other words,
Am(Ω)/Pm(Ω) ∼= Bm,e(Ω)

and (·, ·)−m is positive definite on the quotient space Am(Ω)/Pm(Ω).
Instead of having (·, ·)−m defined on a quotient space of Am(Ω) it might be

desirable to have it defined on a subspace of Am(Ω). One advantage then is that
the elements in the space become functions, hence it will be possible to discuss
reproducing kernels. There seems to be no canonical choice of such a subspace, but
in principle it is obtained by imposing normalization conditions. To this purpose,
choose a linear operator

a : Am(Ω) → C
m

which does not degenerate on Pm(Ω), i.e., such that a(Pm(Ω)) = Cm. Then we
define

Am(Ω) = {F ∈ Am(Ω) : a(F ) = 0}
(the dependence on a is suppressed in the notation). Then Am(Ω) ∼= Am(Ω)/Pm(Ω)
and Λm is an isometric isomorphism

Λm : Am(Ω) → Be,m(Ω),

as desired.
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In the special case m = 1 we may choose a on the form

a(F ) =

∫

∂Ω

F ads

for some boundary function a with
∫

∂Ω
ads 6= 0 and then we retrieve the previously

discussed (see after (9.14)) Dirichlet space, i.e., A1(Ω) = A(Ω).
The cokernel Bm(Ω)/Bm,e(Ω) of Λm can be identified with the orthogonal com-

plement of Bm,e(Ω) in Bm(Ω), which we write simply as Bm,e(Ω)⊥. And for this
finite dimensional space (see [24] for the dimension) we have the following descrip-
tion.

Proposition 10.3. Bm,e(Ω)⊥ consists of those elements in Bm(Ω) which extend

to the Schottky double Ω̂ as holomorphic differentials of order 1+m
2 .

Proof. By definition, g ∈ Bm,e(Ω)⊥ if and only if

(ΛmF, g)m = 0 for all F ∈ Am(Ω).

Using (10.4) this becomes
∫

∂Ω

F ḡ(dz)
1−m

2 (dz̄)
1+m

2 = 0

for all F ∈ Am(Ω). In terms of the function

(10.7) h(z) = g(z)(dz)
−1−m

2 (dz̄)
1+m

2 = g(z)T (z)−1−m,

defined on ∂Ω, this becomes
∫

∂Ω

Fhdz = 0

for all F ∈ Am(Ω), which implies that h has a holomorphic extension to Ω. This
proves the proposition because h represents the continuation of g to the back-side
of the Schottky double. Note that (10.7) is an instance of (2.5). �

Example 10.1. The case m = 1 is the well-known [52] fact that B1,e(Ω)⊥ consists
of the abelian differentials of the first kind.

11. Reproducing kernels

11.1. Reproducing kernels for weighted Bergman spaces. Each of the weighted
Bergman spaces Bm(Ω) and Bm,e(Ω), m ≥ 0, have reproducing kernels Km(z, ζ),
Km,e(z, ζ), which extend to the Schottky double as differentials of order 1−m

2 in
each variable. The continuations to the backside are represented by the adjoint
kernels Lm(z, ζ), Lm,e(z, ζ), which have singularities

Lm(z, ζ) =
(−i)m−1

π(z − ζ)m+1
+ less singular terms

(similarly for Lm,e(z, ζ)). See [24] for details and proofs. Recall also that K1(z, ζ)
is the ordinary Bergman kernel and K0(z, ζ) the Szegö kernel.

For the spaces Am(Ω) and Am(Ω) the situation is not quite that good. But
at least Am(Ω) is a Hilbert space of functions for which all point evaluations are
continuous linear functionals, and hence it has a reproducing kernel, which we
denote Km(z, ζ). This should be thought of as a differential of order 1−m

2 in each

of z and ζ̄, but its extension to the Schottky double is cumbersome because of
appearance of branch points and multi-valuedness on the backside, as have already
been observed in the case of Dirichlet space, m = −1, Example 9.1. Still it is
possible to define indirectly a kind of (multi-valued) adjoint kernel, which we denote
Lm(z, ζ). In fact, we simply define Lm(z, ζ) to be any solution of equation (11.2)
below.
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Theorem 11.1. Let Km(z, ζ) denote the reproducing kernel for Am(Ω) and Lm(z, ζ)
the adjoint kernel. Then,

(11.1) ΛmΛ̄mKm(z, ζ) = Km,e(z, ζ),

(11.2) ΛmΛmLm(z, ζ) = Lm,e(z, ζ),

where the first Λm acts on the z-variable and the second one on ζ. The leading
term in the singularity of Lm is given by

Lm(z, ζ) = − im−1

πm!(m− 1)!
(z − ζ)m−1 log(z − ζ) + less singular terms.

Proof. The formula (11.1) follows immediately by letting Λm act on both members,
as functions of ζ, in the defining equation (reproducing property)

F (ζ) = (F,Km(·, ζ))−m (F ∈ Am(Ω))

for Km(z, ζ) and then applying (10.6).
As (11.2) was simply taken as the definition of Lm(z, ζ) it just remains to prove

the form of the singularity. This is a matter of computation, which we omit. One
has to check that the claimed singularity for Lm(z, ζ) match with that of Lm,e(z, ζ)
(which is the same as that of Lm(z, ζ)) under (11.2). The computation may be
performed in a projective coordinate because the assertion only concerns the leading
term of the singularity, which is the same in any coordinate. �

Example 11.1. For the unit disk we have

Km(z, ζ̄) = − im−1

πm!(m− 1)!
(1 − zζ̄)m−1 log(1 − zζ) +

m−1
∑

k=0

ak(z)ζ̄k +

m−1
∑

k=0

ak(ζ)zk,

Lm(z, ζ) = − im−1

πm!(m− 1)!
(z − ζ)m−1 log(z − ζ) +

m−1
∑

k=0

ak(z)ζk +

m−1
∑

k=0

ak(ζ)zk,

where the analytic functions ak depend on the normalization chosen in the definition
of Am(Ω). If the normalization for example is that F (0) = · · · = Fm−1(0) = 0 for
F ∈ Am(Ω), then all the aj are zero and the kernels consist of just the first term.

11.2. The reproducing kernel as a resolvant. Interchanging the roles of F and
G in (10.5) gives, after conjugation,

(F,G)−m = − (−i)m

2m!

∫

∂Ω

(ΛmF )G(dz)
1+m

2 (dz̄)
1−m

2 .

With F ∈ Am(Ω) and G = Km(z, ζ) we get

(11.3) F (ζ) = − (−i)m

2m!

∫

∂Ω

ΛmF (z)Km(z, ζ)(dz)
1+m

2 (dz̄)
1−m

2 .

This formula says that Km represents the inverse, or resolvant, of Λm, in terms of
the boundary values. In the case m = 2, (11.3) becomes

(11.4) F (ζ) =
1

4

∫

∂Ω

Λ2F (z)K2(z, ζ)(dz)
3
2 (dz̄)−

1
2 (ζ ∈ Ω),

which resembles a formula of R. J. V. Jackson [30].

Example 11.2. For the unit disk (11.4) becomes

F (ζ) =
1

2πi

∫

∂D

F ′′(z)(1 − z̄ζ) log(1 − z̄ζ)zdz,

if A2(D) is normalized by F (0) = F ′(0) = 0, (i.e., a(F ) = (F (0), F ′(0))).
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Equation (11.4) is valid for ζ ∈ Ω. For ζ 6= Ω it does not make sense because, as is
seen clearly in Examples 9.1 and 11.1, even though the kernel extends analytically
across ∂Ω, the extended kernel is not single-valued in any neighborhood of Ω.
However, it is possible to let ζ ∈ Ω approach ∂Ω from inside and get a sensible
version of (11.4) for ζ ∈ ∂Ω. This is what Jackson [30] does. The equation (11.4)
then solely deals with objects defined on ∂Ω and it is appropriate to consider the
kernel K2(z, ζ) as a resolvent of Λ2. This kernel is not smooth on the boundary, as
is seen in the example of the unit disk, there is a discontinuity in the first derivative
caused by the jump in the imaginary part of log(1 − z̄ζ) as z passes ζ.

Remark 11.1. Since K2(z, ζ) is to be considered as a form of degree −1/2 in each of z

and ζ̄ it is natural to compare it with 1/K0(z, ζ), 1/
√

K1(z, ζ) and, on the diagonal,

compare all these with ω(z). Certainly, 1/πK0(z, z) = 1/
√

πK1(z, z) = ω(z) in
the simply connected case. However, K2(z, ζ) is of a different nature because its
continuation L2(z, ζ) to the back-side of the Schottky double is not single-valued.

Similar remarks as above apply to the equation (11.3) for all values of m.

12. The prepotential of a second order linear DE

12.1. The method of Faraggi and Matone. Here we shall discuss a further
topic related to projective structures. Consider a differential equation of the form
(7.11) in general. We write it as

(12.1) u′′ +
1

2
Q(z)u = 0,

where Q(z) is a holomorphic function, say in a neighborhood of z = 0. Note that
the Wronskian

(12.2) W = W (u1, u2) = u1u
′
2 − u′1u2

of any pair u1, u2 of solutions is constant. If u1(0) 6= 0, then any other solution u2

is obtained from u1 by

(12.3) u2(z) = u1(z)(

∫ z

0

Wdζ

u1(ζ)2
+ C)

for suitable constants W (which then becomes the Wronskian) and C.
An interesting approach to the problem of producing further solutions from a

given one has been considered for instance by A. E. Faraggi and M. Matone [16].
The authors introduce a “prepotential” F(u) = Fu1

(u), a function of a complex
variable u, which functionally depends also on the first solution u1 (alternatively,
depends on Q if initial conditions for u1 are specified), to the effect that a second
solution u2 is obtained by taking the derivative with respect to u:

(12.4) u2(z) =
dFu1

(u)

du

∣

∣

u=u1(z)
.

As noted in [16], F(u) is essentially a Legendre transform, namely of the indepen-
dent variable z considered as a function of any projective coordinate t associated to
the projective structure given by Q(z). We proceed to explain briefly these issues,
going slightly beyond [16].

Fixing a value W 6= 0 of the Wronskian, consider pairs u1 = u1(z), u2 = u2(z)
of solutions, holomorphic in a neighborhood of z = 0 and subject to (12.2), i.e.,

(12.5) u1du2 − u2du1 = Wdz.

We assume that u1(0) 6= 0 and set

(12.6) s = u2
1, t =

u2

u1
.
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Then
dt

dz
=
W

s
, {t, z}2 = Q(z),

and also, for example, {z, t}1 = 1
W

ds
dz . In terms of s and t, (12.5) becomes

(12.7) s dt = Wdz.

We note also that, in terms of s and t, the (m−1)-fold symmetric product Sm−1(L)

of the operator L = d2

dz2 + 1
2Q(z), mentioned briefly after Lemma 7.1, will have

solutions generated by s
m−1

2 tk, k = 0, 1, . . . ,m− 1.
In a neighborhood of z = 0 we can invert t = t(z) to consider z as a function of

t: z = z(t). Then dz
dt = s

W . Assuming for a moment that d2z
dt2 6= 0 we can form the

Legendre transform of Wz(t). It is

(12.8) L(s) = st−Wz(t) with t chosen so that s = W
dz(t)

dt
.

Note that the final equation assures that the variable t keeps its meaning as t = u2

u1

when s = u2
1.

By a direct computation, or by using that the Legendre transform is involutive,
one realizes that

dL(s)

ds
= t,

with s, t related to u1, u2 as above. This shows that

u2 = u1 · t =
1

2

ds

du1

dL(s)

ds
=

1

2

dL(u2
1)

du1
,

hence establishes the Legendre transform as essentially the desired prepotential:

F(u) =
1

2
L(u2).

An alternative and slightly more general approach, which makes sense also if
d2z
dt2 = 0, is to consider u1, u2 and z as independent variables, or coordinates, in
a three dimensional space. Then (12.6) is simply a coordinate transformation (in
two of the variables) and (12.5), (12.7) should be thought of as defining a contact
structure (see, e.g., [2], Appendix 4). With

(12.9) L = st−Wz = u1u2 −Wz,

now considered as a function in the three dimensional space, we have

dL = tds = 2u2du1

when the contact structure is taken into account. This gives again

t =
dL
ds

∣

∣

sdt=Wdz
, u2 =

1

2

dL
du1

∣

∣

u1du2−u2du1=Wdz
.

To derive explicit formulas for F(u) it is convenient to assume that the first
solution u1 is invertible near z = 0, i.e., to assume that u′1(0) 6= 0. Since the
independent variable u in F(u) will finally, in (12.4), be assigned to have the value
u1(z), it is natural to invert this relation to z = u−1

1 (u). Substituting into (12.3),
(12.9) and recalling that F is half of L one arrives at

(12.10) Fu1
(u) =

1

2
(u1u2 −Wz) =

1

2
(u2

∫ u−1

1
(u)

0

Wdζ

u1(ζ)2
+ Cu2 −Wu−1

1 (u)).

After a partial integration and a change of variable this gives the formula presented
in [16]:

(12.11) Fu1
(u) = u2(

∫ u

u1(0)

Wu−1
1 (η)dη

η3
+
C

2
) = Wu2

∫

u−1
1 (u)du

u3
.
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Here the final integral is an “indefinite integral”. One readily verifies that (12.4)
indeed holds.

As a final issue one may notice (as in [16]) that the prepotential satisfies a third
order differential equation. This is obtained by considering u2 as a function of u1

(in place of z). This renders (12.1) of the form

d2u2

du2
1

=
Q

2W 2
(u1

du2

du1
− u2)

3.

Replacing u1 by u and u2 by dF(u)
du gives

d3F(u)

du3
=

Q

2W 2
(u
d2F(u)

du2
− dF(u)

du
)3.

12.2. Example. Consider the differential equation

u′′ + u = 0,

i.e., (12.1) with Q = 2, and choose

u1(z) = cos z.

Then

u2(z) = cos z(

∫ z

0

Wdζ

cos2 ζ
+ C) = W sin z + C cos z.

Using (12.10) the prepotential becomes

Fu1
(u) =

1

2
(u2

∫ arccosu

0

Wdζ

cos2 ζ
+Cu2−W arccosu) =

W

2
(u

√

1 − u2−arccosu)+
C

2
u2.

Somewhat surprisingly perhaps, we start with a very simple differential equation
and arrive at a rather complicated prepotential. Note that u1(z) = cos z violates
the assumption of being invertible at z = 0. This causes Fu1

(u) to have a branch
point at u = u1(0) = 1.

13. Glossary of notations

• D(a, r) = {z ∈ C : |z − a| < r}, D = D(0, 1).
• P = C ∪ {∞}, the Riemann sphere.
• Ar,R = {z ∈ C : r < |z| < R}.
• Ω usually denotes a finitely connected domain in P, with boundary com-

ponents denoted Γ0, . . .Γg, g ≥ 0 (each Γj consisting of more than one
point).

• Ω̂ = Ω∪ ∂Ω∪ Ω̃, the Schottky double of Ω, a symmetric compact Riemann
surface of genus g.

• J : Ω̂ → Ω̂, the anticonformal involution on Ω̂.
• αj , βj (j = 1, . . . , g), canonical homology basis on a compact Riemann

surface of genus g.
• d(z,A) = dist (z,A), distance from a point z to a set A; d(z) = d(z, ∂Ω) if
z ∈ Ω.

• ∗ω, the Hodge star of a differential form ω, for example ∗(adx + bdy) =
−bdx + ady, ∗dz = −idz. If u is a harmonic function then ∗du = d(u∗)
where u∗ is a harmonic conjugate of u.

• V (z, w; a, b), a fundamental potential on a compact Riemann surface.
• E(z, ζ), the Schottky-Klein prime function.
• G(z, ζ), the Green’s function of a domain Ω ⊂ P.
• H(z, ζ), the regular part of the Green’s function
• G(z, ζ) = G(z, ζ)+iG∗(z, ζ), the analytic completion of G(z, ζ) with respect

to z. Similarly for H(z, ζ).
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• P (z, ζ) = −∂G(z,ζ)
∂nz

, the Poisson kernel ( ∂
∂n outward normal derivative).

• Gγ(z, ζ), the hydrodynamic Green function with circulations γ.
• Gγ(z, ζ), the analytic completion of Gγ(z, ζ) with respect to z.
• Na(z, ζ), the Neumann function with Neumann data −a on ∂Ω.
• Na(z, ζ), the analytic completion of Na(z, ζ) with respect to z
• υa−b, the abelian differential of the third kind with poles at a, b and having

purely imaginary periods.
• ωa−b, the abelian differential of the third kind with poles at a, b and with

vanishing αj-periods.
• ω̃a−b, the abelian differential of the third kind with poles at a, b and with

vanishing βj-periods.
• Am(Ω), A(Ω) = A1(Ω): spaces of analytic functions in Ω (m = 0, 1, 2, . . . ).

Essentially weighted Bergman spaces of negative index. A0(Ω) is Hardy
space.

• Am(Ω), A(Ω) = A1(Ω): subspace of Am(Ω) defined by a normalization (to
make the inner product positive definite). A(Ω) is Dirichlet space.

• Bm(Ω), B(Ω) = B1(Ω): Weighted Bergman spaces of positive index m =
1, 2, . . . . B(Ω) ordinary Bergman space.

• Be(Ω), Bm,e(Ω) (m = 1, 2, . . . ), the subspaces of B(Ω), Bm(Ω) consisting
of “exact” differentials with respect to Λm.

• Pm(Ω) = {F ∈ Am(Ω) : ΛmF = 0} = {F ∈ Am(Ω) : (f, f)−m = 0}, the
space of 1−m

2 :s order differentials in Ω which expressed in any projective
coordinate are polynomials of degree ≤ m− 1 (m = 1, 2, . . . ).

• H(Ω), He(Ω): spaces of harmonic functions.
• (f, g)m, the inner product on Bm(Ω) for m ≥ 1, on A−m(Ω) for m ≤ 0.
• D(f, g), Dirichlet inner product.
• Km(z, ζ), reproducing kernel for Am(Ω); K(z, ζ) = K1(z, ζ).
• Lm(z, ζ), adjoint kernel for Am(Ω); L(z, ζ) = L1(z, ζ).

• K(z, ζ) = − 2
π

∂2G(z,ζ)

∂z∂ζ̄
, the Bergman kernel, reproducing kernel for B(Ω).

• Ke(z, ζ) = − 2
π

∂2Gγ(z,ζ)

∂z∂ζ̄
, the reduced Bergman kernel, reproducing kernel

for Be(Ω).
• Km(z, ζ), the reproducing kernel for Bm(Ω).
• Km,e(z, ζ), the reproducing kernel for Bm,e(Ω).

• L(z, ζ) = 2
π

∂2G(z,ζ)
∂z∂ζ , the Schiffer kernel, or adjoint Bergman kernel. (Simi-

larly for Lm(z, ζ), Lm,e(z, ζ).)
• ℓ(z, ζ), the regular part of L(z, ζ).
• k(z, ζ), ke(z, ζ), reproducing kernels for H(Ω) and He(Ω) respectively.
• M(z, ζ), the ordinary Martin kernel.
• F (z, ζ), the Martin kernel for the gradient structure.
• ds, arc-length differental along a curve.
• κ, the curvature of a curve in the complex plane (and sometimes short for
κGauss).

• dσ = ρ(z)|dz| = |dz|
ω(z) = ep(z)|dz|, a hermitean metric, e.g., the Poincaré

metric.
• κGauss, the Gaussian curvature of a hermitean metric.
• S(z), the Schwarz function of an analytic curve (S(z) = z̄ on the curve,
S(z) analytic in a full neighborhood of the curve).

• T (z) = dz
ds , the unit tangent vector on a curve (and its analytic extension

to a neighborhood of the curve, if the curve is analytic).
• {z, t}k, a differential expression appearing in the definition of a k-connection

(k = 0, 1, 2). (The Schwarzian derivative if k = 2.)
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• ∇k, the covariant derivative for an affine connection, when acting on k:th
order differentials.

• Λm, the m:th order Bol operator, the covariant derivative for a projective
connection, acting on differentials of order 1−m

2 .
• ∇, the gradient.
• L, the Legendre transform.
• Sm, the m-fold symmetric product (of a differential operator).
• ∂ = ∂z = ∂

∂z , ∂̄ = ∂̄z = ∂
∂z̄ .
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