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Existence and geometric properties of Solutions
of a free boundary problem in potential theory

By Bj rn Gustafsson and Henrik Shahgholian at Stockholm

Notation

C a generic constant,
IMI (Ji;2)1/2, L2-normofi;,
H\D] {ueL2(D) : VueL2(D)} (D c R", N^ 2),
//o1 (D) the closure of C0°° (D) in H l (/>),
J4fs s-dimensional Hausdorff measure,
& N jV-dimensional Lebesgue measure,
K {ueHl(RN):u^O},
u* the radially Symmetrie decreasing rearrangement of M,
K* { w e K : w = w*},
XD the characteristic function of the set D,
Dc RN \D, the complement of Z),
5 the closure of Z),
Α(χ,ρ) {^eR N : | j -x |< },
Ββ(χ) Β(χ,ρ),
5red reduced boundary of Ω, see before Theorem 2.13,
dm&sQ measure theoretic boundary of Ω, see before Theorem 2.13,
a>N area of the unit sphere in RN,
μ, ν, σ Radon measures,
supp^ support of μ,
υμ the Newtonian potential of μ,
| D | 7V-dimensional volume of D c R*
5(x) distance function, see Corollary 2.6,
5x Dirac measure at χ e IRN,

; Α, g) quadrature domain, see Definition 4.1,

^ udtf"'^ the average of w over 55r(x0),
aer
μL·D the restriction of μ to the set D.
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138 Gustafsson and Shahgholian, Solutions ofafree boundary problem

0. Introduction

This paper deals with a free boundary problem which arises in many areas of physics
(free streamlines, jets, Hele-show flows, electromagnetic shaping, gravitational problems
etc.) but for which we take, s the title indicates, a somewhat potential theoretic point of
view. From this point of view the problem can be stated s follows.

Let two nonnegative density functions, h and g, in RN (N ̂  2) be given. For any
positive measure μ with compact support in RN we ask for a bounded domain (or open
set) Ω containing supp μ such that, outside Ω, the Newtonian potential υμ of μ agrees
with that of the measure

here ^NL·Ω denotes Lebesgue measure restricted to Ω and 34fN~1L·^Ω denotes (7V— 1)-
dimensional Hausdorff measures on <3Ω.

One may view this problem s a kind of balayage problem (or search for "quadrature
domains"). In particular, if h = 0 then it is intimately connected with classical balayage
(Poincare sweeping) but with one major difference: we prescribe the density g of the swept
out measure v and ask for the domain Ω, whereas classically Ω is given and one asks for g.

In concrete terms our problem comes down to finding a domain Ω containing supp μ
such that there exists a solution u of the overdetermined boundary value problem

(0.1) -ΔΜ = μ -Α in Ω,

(0.2) u = 0 οη<3Ω,

(0.3) |Vt i |=g οη οΩ.

The relation with the previous formulation is that u = υμ — Uv in (RN if u is extended by
zero outside Ω.

The aim of the paper is, first, to prove existence of Solutions of the problem when
natural conditions are satisfied and, second, to study the geometry, and partly regularity,
of Solutions. Simple examples show that Solutions cannot be expected to exist unless g is
continuous, at least one of h and g is bounded away from zero outside a compact set and
μ is "concentrated" enough, e.g. has a sufficiently high density with respect to (N — 1)-
dimensional Hausdorff measure on its support.

On the other band, we prove, and this is our main result, that good Solutions indeed
exist when such conditions are fulfilled. By "good" we mean that the free boundary d Ω
is reasonably regul r. As to the geometry, we prove e.g. that if h and g are constant and
if Ω is one of our constructed Solutions, then for any χ e δ Ω the inward normal ray of δ Ω
at χ (if it exists) intersects the closed convex h ll of μ. (Thus Ω cannot have "fingers" not
containing part of μ.)
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Gustaf sson and Shahgholian, Solutions ofafree boundary prob lern 139

We know of at least two general methods for proving existence of Solutions of our
problem. One is to first construct a kind of subsolution and then take the infimum of all
supersolutions majorizing this. This idea goes back to A. Beurling [8] (for a related problem)
and has recently been generalized and adapted to our problem by A. Henrot [25]. In this
way Henrot is able to find Solutions of (0.1)-(0.3) with (0.3) holding in some weak sense.
It is not proved in [25] that 8Ω is regul r and that (0.3) holds in the sense we require it
(e.g. that (0.5) below holds).

The other method, which is the one we use, goes back to K. Friedrichs [19], or even
to T.Carleman [11], and was considerably developed and deepened by H.W. Alt and L. A.
Caffarelli [4]. Our work relies heavily on the methods and results in [4]. The method
consists (in our case) of minimizing the functional

(0.4) J( )= j (\Vu\2-2f

over all 0 ̂  ue H1^). Here f = f i — h, where μ is a mollified version of μ. If u mini-
mizes (0.4) then Ω = {u > 0} solves our problem, provided supp^ c Ω. In [4] they have
/= 0 but instead nonzero Dirichlet boundary conditions, working in a subdomain of RN.
Using the method in this original form the second author obtained Solutions of our problem
in the case that μ is a finite sum of point masses [44].

Free boundary problems similar to (0.1)-(0.3) have been intensively studied for
several decades now, and there is an enormous amount of literature. If g = 0 then
(0.1)-(0.3) is equivalent to a variational inequality (of the same type s what occurs for
the obstacle problem, the dam problem etc.) provided we moreover require that u ̂  0.
General references here are [29], [17], [35] and special references, for our type of questions
e.g. [36], [37], [23], [33]. The emphasis of the paper is however on the case when g > 0
on at least part of R*. Here we may refer to [17] for an overview up to the year 1982
and (selection) [19], [8], [43], [45], [32], [42], [20], [27], [16] (uniqueness, sym-
metry, convexity) [28], [10], [4], [49] (existence, regularity), [25], [26], [50], [45] (qua-
drature surfaces).

In addition to the above literature there are papers treating the two-dimensional case
with complex variable methods. We mention [2], [6], [48], [22], [47].

The paper is organized s follows. In section l we show that the functional (0.4) is
bounded from below and that its infimum is attained for at least one u. One ingredient
in the proof (and in several later proofs) is a simple but useful rearrangement lemma
(Lemma 1.1) which makes it possible to compare Solutions with explicit Solutions in a
spherically Symmetrie case (Example 1.5) and in this way obtain estimates.

In section 2 we prove that minima (minimizers), or more generally local minima, of
/ solve (0.1)-(0.3) (with μ - h replaced by /) in an appropriate sense. Indeed, we show
that any local minimum u is Lipschitz continuous in all IR* (assuming/e L00 (RN)) and that

(0.5) A
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140 Gustafsson and Shahgholian, Solutions ofafree boundary problem

where Ω = [u > 0} (Theorem 2.13). Moreover, it is shown that du is regul r, at least at
most points (e.g. 3ΓβάΩ is regul r when g > 0).

Continuous functions u ̂  0 satisfying (0.5) are called weak Solutions (for the problem
of minimizing /). In section 3 we study questions of geometry of Ω = {u > 0} when u is
a weak solution. We show e.g. (Corollary 3.8) that if g is constant and if Ω is convex and
contains supp/+ then {v > 0} c: Ω for any other weak solution v. This partly generalizes
a corresponding result in [45]. We also prove (for local minima) the previously mentioned
result on inward normal rays of 3 Ω (Corollary 3.11).

That (0.5) holds for local minima does not automatically mean that the original
problem is solved: we also need to make sure that supp^ <= Ω. This can be done if μ is
sufficiently concentrated, and in section 4 we establish two results (Theorem 4.7 and 4.8)
in this direction. These can be regarded s our main results.

It turns out that the original formulation of our problem is quite weak, indeed so
weak that it (if g > 0) admits an abundance of "bad" Solutions with irregul r boundaries
("non-Smirnov" domains when 7V = 2). These can easily be ruled out by imposing additional
conditions, but in principle there remains the question what is a really good formulation of
our problem. The above matters are briefly discussed in Remark 4.2 and Example 4.3.

Acknowledgements. The authors are grateful to Harold S. Shapiro and Michel Zins-
meister for stimulating discussions on non-Smirnov domains. The first author has been
partially supported by the Swedish Natural Science Research Council (NFR).

1. Existence of minimizers

Throughout this paper N ^.2. Most of the paper (section 1-3) is devoted to studying
a minimization problem. The data for this problem are two functions / and g in RN satis-
fying Condition A below.

Condition A.

(AI) /,geZ/»(RN),

(A 2) supp /+ is compact,

(A3) g^O,

(A4) at least one of
/^ const. <0,
g ̂  const. > 0
holds outside a compact set.

Let K = {u e H^R"): u ̂  0} and set
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Gustaf sson and Shahgholian, Solutions ofafree boundary problem 141

/(«) = 7/»= J (\Vu\2-2fu + g2
X(u>0})dx.

R"

Then / is well defined on K, taking values in (- oo, 4- oo]. We shall consider the problem:

Minimize J(u) for u e K .

The following lemma turns out to be very useful. Similar results have previously been
used by Friedman and Philips [18].

Lemma 1.1. Lei Jk = Jfktgk, wheref^ ^ /2, gi^g2andk = l, 2. For ul9 u2eK define
v = min(w1? u2) and w = max(u1, u2). Then v,weK and

Ji(v) + J2M^Ji(u1) + J2(u2).

In particular, if u1 minimizes J^ then J2(w)^J2(u2) and if u2 minimizes J2 then
J1(v) ^ /i(wi)· If uk minimizes Jkfor k = l, 2 then v minimizes Jl and w minimizes J2.

Proof. In general, if Φ (t) is a nondecreasing function of t e R and hl^h2 then, s
is easily seen,

Applying this with hj =fj9 Φ (t) = i we find that

and choosing hj = —gf, Φ (t) = 0 for t ̂  Ο, Φ (i) = l for / > 0 we find

i (gl X{Ul > 0} + £2 X{«2 > ο}) ̂  ί (£1 X{, > 0} + Sl X{w > o}) ·

Since also J d V w J 2 + | Vw 2 | 2 ) = f (|Vi?|2 + | Vw|2) the proof is finished. D

In order to get comparison Solutions we shall first prove the existence of Solutions
(minimizers) in a special case.

Lemma 1.2. Letf= αχΒ(0,Κ} - b and g = QRNNB(O. I )» W £Ti? a' *» c' R and Ri are

nonnegative constants with a>b and b + c>Q. Then J has at least one minimum (mini-
mizer) u in K. Any minimizing u is radially Symmetrie, radially nonincreasing and vanishes
outside a compact sei. Moreover the minima form a nested family and there is a largest
minimum s well s a smallest one.

Proof. For any u in K let w* denote its radially Symmetrie decreasing rearrangement
(for background, see [34]). Then u* e K and

here the first inequality follows from a classical theorem of Polya and Szeg (see [34],
Theorem 4.1) and the last two inequalities use the fact that / is nonincreasing and g is
nondecreasing s functions ofr = \x\.It follows that J(u*) ^ J(u) and hence that we only
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142 Gustafsson and Shahgholian, Solutions ofafree boundary problem

need to look for minima in IK* = {we K : u* = u}. It should be observed also that
/(M*) < J( ) unless w* = u.

From now on we assume that c > 0, because if c = 0 then / is convex and it is
well-known that there exists a unique minimizer u in IK. This u has compact support with

radius of support ρ = - R. (Note that b > 0 when c = 0.) Cf. Example 1.5 below.
W

Thus the lemma holds if c = 0.

We first prove that / is bounded from below on IK* (and hence on IK). For M in IK*
there is a unique ρ in [0, oo] depending on u such that u(x) > 0 for |.x| < ρ and u(x) = 0
for \x\ ^ ρ. Set Ω = {u > 0} = 5(0, ρ). Regarding/, g and w s functions of r = \ x\ we have

— /(M) = } (u'(r)}2rN-ldr - 2 J fur^'^dr + — max(Q
N - Λ?, 0) .

ωΝ Ο 0 ^

Since J(w) = + o o i f ρ = +oowe need only to consider u with ρ < oo. Set

Q \ l /2 Λ
-

o

If Φ 0 then there is an r0 > 0 such that Φ(Γ) ^ 0 for 0 < r < r0, </>(r) ̂  0 for r > r0, and
since u' :g 0 we then get

(1.1) J
o

Ao \ l / 2
where ^4 = I J φ2τ^~^ dr I is a constant independent of u. Thus

\o /

l c2

(1.2) — /(w) ̂  A2 - 2^A + — max(ρΛr - f, 0) ^ -^i2 .

If b = 0 then 0 ̂  0(r) ̂  const. < oo for r > 0 and (1.1), (1.2) hold with

ο

Since c > 0 we still see from the first inequality in (1.2) that / is bounded from below
(provided N ̂  2).

Thus / is always bounded from below. Let [un] c IK* be a minimizing sequence, ρπ
Qn |

the radius of support of un and λ2 = J (u^)2rN~ldr = —j= || Vun\\. Then it follows from
(1.2) that ° Vm"
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Gustaf sson and Shahgholian, Solutions ofafree boundary problem 143

(1-3) Qn <s const. < oo ,

(1.4) 4^ const. < oo .

Now from (1.3) and (l .4) the existence of a minimum for J follows by Standard arguments.
In fact, (1.3) shows that we may work in Kr\H^(B) for some fixed ball B and (1.4) then
shows that the minimizing sequence {un} is precompact in w- ^OB) (i.e. H£(B) pro-
vided with the weak topology). As J is easily checked to be lower semicontinuous in
W-HQ(B) the existence of a minimum follows.

If c > 0 and a is not too large there may be several Solutions u (cf. Example 1.5
below). However any solution is uniquely determined by its radius of support ρ (e.g.
because u will satisfy -AM =/ in = (|jc| < ρ}, w = 0 on du, s will be proved later
(Lemma 2.2) independently of the present proof), and a larger ρ will correspond to a
larger solution u. Therefore the Solutions form a nested family and it follows that there
is a largest solution (note that any family of Solutions at the same time is a minimizing
sequence). D

Remark 1.3. When 7V = l, J(u) is not always bounded from below. Take e.g.

α = 2, 6 = 0, c = l, Λ =1 and consider u(x) = -(ρ — |x|) for |jc| < ρ and u(x) = 0 for
2 3

\x\ > ρ, where ρ > l is a parameter. Then J( ) = 2 — -ρ, which obviously goes to — oo
s ρ -*· +oo.

When 7V = 2, J( ) is not bounded from below if b = c = 0 (and a > 0, R > 0), while,
s is seen from the proof, J( ) is bounded from below when N ^ 3 even if b = c = 0.

However the (unique) minimizer does not have compact support then.

It is also worth mentioning that the Condition A is not optimal. However g and /_
are not allowed to tend to zero too fast at infinity.

We now turn to the general case.

Theorem 1.4. If f and g satisfy Condition A then J is bounded from below and its
infimum is attainedfor at least one u in K. All minimizers have support in a fixed compact
sei (which depends only onfandg) and the sei of minimizer s is compact in the weak topology

Proof. Let /= αχΒ(^Κ) ~b,g = cxR„\B(0ttti} with a, b, c, R, ̂  £ 0, a > b, b + c> 0
chosen so that /^/, g ̂  g and set J = Jftd. By Lemma 1.2 there is a largest minimizer u
in K of J. Clearly

(1.5) J(u)^J(u) for all H e (K

and also, by Lemma 1.1,

(1.6) /(min(w,w))^ J( ).

Brought to you by | Kungliga Tekniska Hogskola (Kungliga Tekniska Hogskola)
Authenticated | 172.16.1.226

Download Date | 3/1/12 3:39 PM



144 Gustafsson and Shahgholian, Solutions ofafree boundary problem

Thus J( ) decreases if u is replaced by min(w, ti). Choose an open ball B such that
suppw c B. (1.5) together with Lemma 1.2 shows that / is bounded from below and (1.6)
shows that if {un} is a minimizing sequence then so is {min(ww, w)}. Thus there exists a
minimizing sequence {u„} with suppunc:B. By Poincare's lemma then \\un\\ ̂  C||VwJ|,
so that

Thus / is bounded from below, || VwJ| ̂  C and the existence of a minimizer follows s in
Lemma 1.2.

If now we IK denotes any minimizer of / then Lemma 1.1 shows that max(w, u) ̂  M,
since is the largest minimizer of /, hence that u ̂  . This shows that u has compact
support in a fixed compact set. If a > b + Nc/R and R^ = 0 we in fact have supp u <= 5(0, ρ),
where by Example 1.5 below ρ can be taken to be

b) if b Φ 0,

aRN'

(If α ̂  6 + Nc/R then ρ = R works.) It moreover follows s above that

C independent of M, and therefore that the set of minimizers is compact in w-/^1 (RN). α

Example 1.5. Assume that / and g are radially Symmetrie with / nonincreasing and
g ̂  0 nondecreasing s functions of r = | x|. As was noticed in the proof of Lemma 1.2
any minimum u in IK of / is itself radially Symmetrie and nonincreasing s function of
r = | jc|, i.e. u e IK*. Moreover u has compact support. It will be proved later (without using
the results of this example) that a necessary condition that a function u e IK* is a minimum
(or local minimum, Definition 2.1) is that it is a weak solution, i.e. u satisfies

-Aw=/ in fl = {w>0},

M = 0, |V« |=g, on 6Ω.

We shall now discuss weak Solutions belonging to IK* and compare J( ) for these.
So let we IK* be a weak solution. Since/, g and u only depend on r and u is nonincreasing
there is a unique ρ in [0, oo) such that Ω = 5(0, ρ) and the equations above become

(1.7) -M^^zlw'=/(r), 0 < Γ < ρ ,

(1.8)

(1-9)
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Gustaf sson and Shahgholian, Solutions ofafree boundary problem 145

By (1.7) we have (r*-1«')' = -r"-lf(r) and by (1.9)

(1.10) rN-lu'(r)=-eN

As r -> 0 we shall have rN~ 1 u' (r] -> 0 (otherwise we get a distributional contribution
to Au at the origin). Thus

This is a condition for ρ. Once ρ is determined u is obtained by integrating (1.10) and
using (1.8). Explicitly

for 0 < r < ρ. Set

for ρ ̂  0 so that (1.11) becomes F^) = 0. Thus the weak Solutions in K* are in bijective
correspondence to the zeros of F.

Let us now specialize to the case f ( r ) = αχ[0 R) — b and g (r) = c, where a, 6, c, jj> 0
are constants with Λ > Α , 6 + c>0, /?>0. F becomes

Note that ^'(ρ) ̂  const. < 0 for ρ ̂  R. It follows from the equations for a weak
solution that $\Vu\2dx = \fudx. Therefore

(1.12) /(«) = ca

if M is the weak solution corresponding to Q. By (1.10)

(1.13) r"-V(

for 0 < r < ρ if 0 < ρ < R, while

(1.14) r J V~1M'(r)= -CQ1
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146 Gustafsson and Shahgholian, Solutions of afree boundary problem

for 0 < r < Q if ρ > R. Inserting this into (1.12) gives

(1.15) -
ON N J

0 N

if 0 < ρ < R and

(1.16) —J(u) = ζρΝ

ωΝ Ν

ifρ>R (recall that Ρ(ρ) = 0).

We shall now determine all zeros ρ = ρη of F and compare J(un) for the corres-
ponding weak Solutions un e K* (n = 0, l, . . .). Observe first that ρ = ρ0 = 0 is always a
zero of F, corresponding to w0 = 0 with J(uQ) = 0. Next we divide into cases.

Case 1: c = 0. Then / is convex and there is, besides ρ0, exactly one more zero of
fa\ilN

F, namely ρι = τ R> R.Itis easily seen from (1.16) that J(u^ < 0. Thus ul is the
W

only minimum of / and there are no other local minima.

NcCase 2: O 0 and b < a < b 4- — . In this case Ffe) < 0 for all ρ > 0. Hence MO = 0
/v

is the only weak solution (in K*) and it is the global minimum of /. In particular J(u) ^ 0
for all u e K.

NcCase 3: c > 0 and a = b H -- . Here ρ0 = 0 and ρ1 = R, are the zeros of F. EquationR
(1.16) gives that J(u^) > 0. Thus «0 is the only minimizer and / ̂  0.

NcCase 4: c > 0 and a > b -h — . In this case F(R) > 0 and it follows that F hasR ArNc
exactly three zeros: ρ0 = 0 < ρ2 < R < ρ^ We have ρ2 = - - and from (1.15) one finds
that J(u2) > 0 always. As to ρΐ9 it is determined by

(1.17) aRN = bρ^ + Ncρ^-1
9

and /(wj) is then obtained by inserting this into (1.16). It is clear from (1.17) that when
Nc

a increases from b + — - to +00 (with b, c and R kept fixed), then ρ1 increases from R
R
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Gustaf sson and Shahgholian, Solutions ofafree boundary problem 147

to -f oo. Moreover /(z^) at the same time decreases monotonically to — oo from its positive
Nc d

value when a = b + — -. This can be seen e.g. by estimating the derivative — J(u.) or
d R Nc da

-—J(ui). It follows that there exists a critical value aQ > b + — such that we have thedQt ° R
following three subcases.

NcSubcase 4a: c > 0 and 6 + — - <a<a0. Then J(w0) = 0, / ( w j ) > 0 , J(u2) > 0.R
Thus MO is the only minimizer and / ̂  0. However ul can be shown to be a local minimizer
in this case. Indeed, it is not hard to see that u1 is a local minimizer among other functions
in K*, and when moving out from (K* (into K\K*) the functional / increases s was
observed in the proof of Lemma 1.2.

Subcase 4b: c > 0 and a = a . Then /(w0) = J(uY) = 0, J(u2) > 0. Thus we have
two minima, and / ̂  0.

Subcase 4c: c > 0 and a > a0. Then /(w0) = 0, /(i^) < 0, J(u2) > 0 so that ui is
the only minimizer. By the same argument s in subcase 4 a, w0 is a local minimizer.

Finally in this example we need (for later use) an estimate of a0. We claim the
following: if

(1.18)

then J(u^ < 0 and

(1.19) Ql>3R.

( Nc\
b+ — 3N.3R/

That ρι > 3 R when (1.18) holds follows immediately from (1.17). Observe next that
(1.17) also implies

(1-20) Q

(and ρ! ̂  (a/b)NR). Using (1.20) and (1.18) in (1.16) gives by a little computation that
already the two first terms make /(MJ) negative when N S£ 3. When Λ^ = 2 one also has to
take the last term into account and the calculation becomes a little more tedious. (In the
last term (the integral) one may replace ρ by 3 R and b by 3~2a according to (1.19) and
(1.18).)

rSubexample. If N = 2 and b = 0 then a0 can easily be calculated to be a0 = — ye.

As a corollary of Example 1.5 and Lemma 1.1 we have
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148 Gustafsson and Shahgholian, Solutions ofafree boundary problem

Proposition 1.6. Let /, g satisfy Condition A and sei a = sup/, c = inf g and let R
be the radius of the smallest closed ball containing supp/+. If aR ^ Nc then J = Jft9 ^ 0

Ncand u = 0 is the only minimizer. There even exists a number a0 = a (N, R, c) > — such
that the same conclusion holds whenever a < a0.

Proof. We have /^ αχΒκ — b, g ̂  c with b = 0. Then combine Example 1.5 with
Lemma 1.1. n

Proposition 1.7. Let /, g satisfy Condition A and let u be a minimizer of J. Assume
that u = 0 on dBR, where BR is a ball such that R sup/+ ^ N inf g. Then u = 0 in BR.

BR BR

Proof. Set v = u in BR and v = 0 outside BR. Clearly υ minimizes J = Jj~g where
/= (f+)xBR>g = g%BR + (infg)xRNXBR. Now apply Proposition 1.6 to J. D

BR

Proposition 1.8. If u and v are minima of J then also min (M, t;) and max(w, v) are
minima. Also, if {un} are minima and u1 ̂  u2 ̂  ... then u = sup un is a minimum. Similarly,
z/Wj ^ w2 = · · · then inf un is a minimum. Finally there is a largest minimizer of J, and also
a smallest one.

Proof. The first Statement follows immediately from Lemma 1.1 and the second
(and the third) from the compactness assertion of Theorem 1.4.

To prove the last assertion, first note that since Hl(RN) is separable there is a finite
or infinite sequence {vn} of minima which is dense in the set of all minima. Define ul = vi
and, inductively for n ̂ 2, un = sup(un_i,vn), so that u1 ̂  u2 ̂  As shown above
u = sup un is also a minimizer and it is readily verified that v ̂  u for every minimizer v. D

2. Local minima

In this section we deduce basic properties of minima, or more generally of local
minima, of /. The data / and g will generally be assumed to satisfy Condition A. The
main result of this section is Theorem 2.13, saying that any local minimum u solves the
appropriate free boundary problem in a potential theoretically satisfactory sense, provided
g is continuous. This means that the distributional Laplacian Δ« can be expressed in terms
of purely geometric quantities related to the open set Ω = {u > 0}, more precisely that

Continuous functions u e K satisfying this equation will be called weak Solutions (Defini-
tion 3.1).

It should be told that this section is very much based on the methods and results of
the pioneering paper of Alt-Caffarelli [4] (see also [5] and [17]). Many of our proofs are
modifications of corresponding proofs in [4].
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Gustaf sson and Shahgholian, Solutions ofafree boundary problem 149

Definition 2.1. A function u e K is a local minimum of / if, for some ε > 0, J(v) ^ J( )
for every υ e K with

(2.1)

Lemma 2.2. If u is a local minimum then

(2.2) Δ κ + / + ^ 0 m (R",

(2.3) A w + / = 0 m = { w > 0 } ,

(2.4) A w + / ^ 0 i/t RN \supp g.

Remark. It follows from (2.2) that u has an upper semicontinuous representative,
which is the one we will refer to in the sequel, and it will be proved later that this u actually
is continuous. For the present proof of (2.3), Ω should strictly speaking be defined s the
set of points χ ε RN such that there exists Ο ^ φ e C°° (RN) with φ (χ) > 0 and u ;> φ every-
where.

Proof. Take Ο ^ φ E Q° (IRN) and define, for ε > Ο, νε = (u - εφ)+ . Then

Set Ζ)ε = {u ^ ε0} = {re = 0}. Clearly \DEr\Q\ -+ 0 s ε -» 0. Since ι;ε - w = -u in Z)£,
VE-U= -εφ outside £>ε it follows that e -> w in /i^R^) and that

Since M is a local minimum we conclude that /(M) 5Ξ J(t;E) for ε > 0 small enough.

Next we estimate

= f |V(M-6«/>)|2- J \Vu\2 + 2E$f<l> + 2$fu- J

f ΛΦ- f V w - V + 2 e J V M - V 0 - f e 2 f \νφ\2.
RW R^ / Den D£

Dividing both sides by ε and letting ε -> 0 we obtain
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150 Gustafsson and Shahgholian, Solutions ofafree boundary problem

0 ^ - J V H - V < £ + J / + < / >

for all Ο ^ φ e C£(RN\ and hence that Aw + /+ ^ 0 in RN.

If supp φ G Ω we can take ν = η±εφ€Κΐοτε>0 small enough (and Ο ^ φ e C£> (RN)
and this readily gives that Au +/= 0 in Ω.

Finally, taking t>£ = w -h εφ where supp 0 n supp g = 0 gives that

Aw- f / ^0 in RN \suppg. D

Theorem 2.3. Lei be a local minimum and assume g2 e Η1Λ(^Ν). Then

lim J (\Vu\2-g2)η

/or ererj η€€ο (RN, RN). (v denotes the outward normal vector of d{u> ε}.)

The proof is similar to that of Theorem 2.5 in [4] and therefore omitted.

Lemma 2.4 ("Harnack"). Assume u e Hl(Br), u ̂  0 on dB, (Br = 5(0, r)) and let
M^O.

(a) Ifku-^M in Br then

"-1

for χ e Br.

(b) 7 /Aw^ -M in B r then

xeBr.

(c) 7 / |Aw|^ M /n

Ν

(d)
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Gustaf sson and Shahgholian, Solutions ofafree boundary problem 151

Note that, by Lemma 2.2, (b) is always applicable (with M = supp/+) if u is a local
minimum, while (a), (c) and (d) are applicable if Br c Ω. Br

The proof consists of straightforward applications of the Poisson formula combined
Mwith super- and subharmonicity properties of functions u(x)± — (r2-|*l2)· (Details

are omitted.) 2N

Lemma 2.5. Suppose u is a local minimizer of J. Then there is an r0 > 0 such that
for any Br with 0 < r < r0 we have

- -f u > 2N ( — sup /_ + sup g } => u > 0 and is continuous in Br.
Γ dBr \N Br Br J

Note. The reason that r has to be small is simply that u is assumed only to be a
local minimizer. For a global minimum the implication is true for all r > 0.

Proof. We may assume that Br is centered at the origin. Define v e H1 (RN) by v = u
on RN\Br (in particular on dBr) and — Δι; =/ in Br. Note that v is continuous in Br.
Then, s in [4], 3.2, one gets

(2.5) J(u)-J(O)£ J |V(w-t;) |2-supg2 |{W = 0}nfi r | .
Br *r

On the other hand (a) of Lemma 2.4 (applied to t?) shows that

2*-*

for χ e Br. Here M = sup /_ . Thus whenever
Br

\ , 2NM
(2-6) -s i u*—,

Γ dBr ^ν

we have

2 " - "·

As in [4], 3.2, one derives from (2.7) the estimate

\{u=0}nB,\(- i w y^2 2 »J |V( W - t ; ) | 2 .
\r dBr / Br

When (2.6) holds v > 0 in Br by (2.7) so that v e K, and if r > 0 is small υ is more-
over close to u in the metric (2.1). Thus, since M is a local minimum, J( ) £ J(v), i.e. by
(2.5)

Br
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152 Gustafsson and Shahgholian, Solutions ofafree boundary problem

Hence

(2.8) |{M = C

whenever (2.6) holds.

This proves the lemma, for if

l Λ

then (2.6) does hold, and (2.8) leads to a contradiction unless |{w = 0}r\Br\ = 0. In the
latter case we have J | V (u — v)\2 = 0 and hence u = v > 0 in Br s desired. D

Br

Corollary 2.6. Any local minimum u is Lipschitz continuous. Moreover near 8Ω we
have the estimates

sup
B(x,2 (x»

(2.9) | VM(JC)| ^ N2N ( sup g + Μδ(χ)\ ,
\B(x,2*(x)) /

= sup |/|, Ω = {u> 0} and δ(χ) denotes the distance from χ to Qc. Thus
u(x) ^ C6(x) always, and if χ approaches a point of dQ where g vanishes we have a better
estimate (e.g. u(x) ^ €δ1 + Λ(χ) if g is a-H lder continuous).

The corollary follows by combining Lemma 2.5 with (d) of Lemma 2.4 (for xeQ
close to 3Ω). The details are virtually the same s in [4], 3.3, and hence omitted.

Remark 2.7 (On homogeneity). For / > 0 and φ(χ) any function of xe(R N , set
cpt(x) = φ(χ/ί). Then a straightforward computation shows that for any real number α we
have

/ /*a + 2 ,. \ /N + 2α + 2 r /,Λ
/«/t.i«*1^^ u t ) - t Jf,g(u)'

Lemma 2.8. Lei be a local minimum. If g ̂  const. > 0 in an open set D c: 0$N ίΑ^π
iA^re £y α constant C > 0 sttcA that for any sufficiently small ball Brc: D we have

(2.10) - f t/ ̂  C => w = 0 in Br/4 .
Τ dBr

More precisely, C depends only on inf g, r sup/+ and N and is positive whenever inf g > 0
n n D

and r sup /+ is sufficiently small. r ' r

Br

Remark. The lemma holds with BKr in place of Br/4 for any 0 < κ < 1; C then also
depends on κ.
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Gustafsson and Shahgholian, Solutions ofafree boundary problem 153

Proof. For u a local minimizer of /, (b) of Lemma 2.4 always applies and gives,
for some constants Ci and C2 only depending on N, that

(2.11) u^C.i W + C2r2sup/+
dBr

 ßr

in Br/2. For notational convenience we assume that Br = 5r(0).

Set m = inf g, M = sup/+ and define
Br Br

As in Lemma 1.1 we have

(2.12) / r(min(w1,M2))-f/ r(max(w1,M2)) :£ .^(w^-f 7 r(w2),

for any ul9u2 eHi(Br/2).

Given a constant > 0 consider the problem of minimizing Jr(v) over

u ^ o = — 41? 6E ji (.o / i ) 11? ^ü U. v =— D on öD / - » i .p \ < r/2,' — ' * r/2.)

We claim that the largest (in fact unique) minimizer vß of Jr vanishes on Br/4 provided r
and jS are small enough. For r we choose the interval 0 < r/2 < N m/ M so that Propo-
sitions 1.6 and 1.7 can be applied.

To prove the claim we shall argue by contradiction. Suppose that, for arbitrarily
small > , 0 on Br/4. Since vß necessarily is radially Symmetrie, either vß does not
vanish at all in Br(2 or vß vanishes on a whole sphere \x\ = const. In the latter case it
follows from Proposition 1.7 that, for some 0 < < r/4, vß = 0 in all BQ, vß > 0 in Br/2\BQ.

As \ 0 we have vß -* t?0 weakly in H*(Br/2) for some v0 e Hj(Br/2)9 at least for
running through a suitable sequence. Hence

lim Jr(vß) ^ Jr(vo) -

Since vß > 0 in Br/2\Br/4 we have - ^ = AMhere (by (2.3)). If M> 0 it follows that
i>0 0 and hence, using Proposition 1.6, that Jr(v0) > 0. If M = 0, then

J r(^)^m2 |5 r / 2\fi r / 4 |>0.

Thus in any case
inf Jr = Jr(Vß) ^ const. > 0

for some sequence \ 0.
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154 Gustafsson and Shahgholian, Solutions ofafree boundary problem

This is our desired contradiction because it is easy to construct wß e Kß such that
Jr(wß) -» 0 äs \ 0. Indeed, just take wß(x) = 0 for 0 ̂  |x| ̂  r/2 - /m and

for r/2 - fm < |*| < r/2 and we get Jr(wß) ^ 2m2\Br/2\Br/2_ß/m\.

Conclusion: the largest minimizer vß of Jr over Kß does vanish on Br/4 if

0<r/2<Nm/M

and if > 0 is small enough, say 0 < ^ ß0.

No w /?0 depends on r, m and M. Indeed, it is easily seen (cf. Remark 2.7) that if r
is scaled to tr (t > 0) then the minimizer v(x) of Jr will be scaled to t v ( x / t ) provided m,
M and /?, are scaled to, respectively, m, M/ 1 and f/?. In other words,

ß0 (tr, m, M/ i) = tß0 (r, m, M)

for f >0 or, with / = l/r,

(2.13) 00 (r, m, M) = rjS0(l, m, rM) .

For M = 0 estimates for / 0 were computed in [4], 2.6. One has that /?0(1, m, 0) > 0
for m > 0 and is an increasing function of m. Moreover, jS0(l, m, M) is decreasing äs a
function of M and can be taken to depend continuously on (m, M) in a neighbourhood
of Af = 0.

It follows from (2.11) and (2.13) that we can achieve

(2.14) w<j? 0(r ,m,M)

on dBr/2 by letting

C1- j- w + C2rM<00(l ,w,rM).
r dBr

Since ß0(l,m, 0) > 0 this shows that (2.14) holds if an estimate of the form (2.10) holds
(and r M is sufficiently small).

Now it only remains to show that (2.14) implies that u = 0 in Br/4. Let v = vß be the
largest minimizer of Jr for = ß0 and let w denote the function which equals min(w, t;) in
Br/2 and equals u outside Br/2. When (2.14) holds then w e K, and if r > 0 is small enough
then w will be so close to u in the metric (2.1) that Jr(u) ^ /r(n>), u being a local mini-
mizer of /. We also have Jr(v) ^ Jr(max(w, t;)). But these two inequalities contradict (2.12)
unless we have equality everywhere. Since v was the largest minimizer of Jr it follows that
v = max(w, t;), i.e. that u ̂  v. Hence u vanishes in Br/4. D

Corollary 2.9. If g ̂  const. > 0 in a neighbourhood of a point x0 e 8 then
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Gustaf sson and Shahgholian, Solutions ofafree boundary problem 155

near χ0(δ(χ) = dist(x, c)).

Proof. With Q the constant in (2.10) we have by (a) of Lemma 2.4 and (2.10) (for
χ e Ω close to *0, r = (5(x), JSr = 5Γ(χ, r)),

D

Lemma 2.10. Lei be a local minimum, Ω = {M > 0} awrf assume t hat g ^ const. > 0
in a neighbourhood of a point x0 e 6Ω. Then there are constants cl and c2 such that

for small r>0(Br = B(x0, r)).

The proof is similar to that of Lemma 3.7 in [4] and therefore omitted (Lemma 2.5
and 2.8 have to be used).

Remark 2.11. In addition to Lemma 2.8 the following lemma, due to Caffarelli, is
useful:

Assume 0 ̂  u e Hl(B(Q, R}\ Δ u ̂  c> 0 in Ω = {u > 0}, 0 6 . Then, for any

er2

sup u^— .
8Br(o) 2 N

(See [9] for the simple proof.) If u is a local minimum (or weak solution) for our pro-
blem, then this lemma shows that

r2

(2.15) sup w ^ — inf/_
dBr(x) 2N Br(X)

for any χ e Ω.

Proposition 2.12. Any local minimizer u of J has compact support.

Proof. By (2.2) u is subharmonic outside supp/+. Therefore

„WS_L_ i „ s ' ( Ί .Ύ"ί«ϊΐ.
for Λ: a distance r away from supp/+. Thus

(2.16) u(x)

for | χ | large.
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156 Gustafsson and Shahgholian, Solutions ofafree boundary problem

By Condition A either g ̂  c > 0 or /_ ^ c > 0 (or both) far away. In the first case
we conclude that u(x) = 0 for large |jc| by combining (2.16) with Lemma 2.8. In the second
case the same conclusion follows from (2.16) combined with (2.15). D

In order to prepare for the main result in this section we need to recall a few facts
about functions of bounded Variation and sets of finite perimeter. [21], [15], eh. 5, are
good references for this.

Let E c RN be a Lebesgue measurable set. The measure theoretic boundary dmes E of
E is defined to be the set of points χ e RN such that both E and Ec have positive (upper)
Lebesgue density at x. Thus dmesEcdE (the topological boundary). E is said to have
locally finite perimeter if VXE is a vector-valued Radon measure. This means that there
exists a positive Radon measure μ = μΕ in RN and a μ-measurable function

(the direction factor) such that — Υχ£ = μΙ_ν£, i.e.

J ά\\φάχ = J φ · νΕάμ for all φ e C£ (R*, IRN)
£

(the left member being equal to < — V#£, </>». The measure μ will occasionally be denoted
\VxE\. It can be shown ([15], 5.11) that a measurable set E has locally finite perimeter if
and only if JlfN~1(Kndme8E) < oo, for each compact set

Assuming that E has locally finite perimeter, the reduced boundary 3red E of E can

be defined s the set of points χ e RN for which the density lim —τ~τ, — T f VE άμ exists

and has modulus one. It is convenient to work with that representative of VE which equals
this limit on dred E and is zero elsewhere, and VE then is the measure theoretic outward unit
normal vector of E on 3red E. Clearly dred E c 5mes E and it is not hard to show that
tfN~l(dm„E\drtAE) = 0 ([15], eh. 5.8). A basic structure theorem says that μ = | VXE\
actually agrees with (N— l)-dimensional Hausdorff measure restricted to

Thus also VXE = -vE^N~l\-d^aE.

All the above definitions and results carry over to the case with an open subset
G c= IRN in place of IRN. One then speaks of sets having locally finite perimeter in G etc.

Theorem 2.13. Assume that /, g satisfy Condition A, that g is continuous and set
G = [x e KN : g(x) > 0}. If d G φ 0 assume moreover that for some 0 < α ̂  l g is ^-Holder
continuous near dG and that J^N~1 + ct(dG) = 0. Then, if u is a local minimizer ofJ = Jfg,
then Ω = (u > 0} has locally finite perimeter in G,

(2.17) 3eN-l((dQ\d„aO)nG) = 0
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Gustaf sson and Shahgholian, Solutions ofafree boundary problem 1 57

and

(2.18)

Here the right members shall be interpreted s zero outside G.

Remark 2.14. Ω need not have locally finite perimeter outside G. To see this, take
e.g. g = 0, f=axD-l where D is a bounded domain such that dD has positive N-

dimensional Lebesgue measure \dD\, and l < a< l -f - - - is a parameter. By (2.4),

A w ̂  l - αχΌ < 0 in D showing that D c Ω. Also, D c Ω. Next (2.18) yields

by which | | = a\D\. Thus

i.e. 5Ω even has positive W-dimensional Lebesgue measure.

Corollary 2.15 (to Lemma 2.10). With assumptions s in Theorem 2.13,

Remark. mes Ω may be strictly smaller than d Ω outside G. Indeed, in the case g = 0
there are examples with d Ω having singular points (e.g. inward cusps and double points,
when W = 2) at which Ω has density one.

For the proof of Theorem 2.13 we need the following observation.

Lemma 2.16. Assume u §; 0 is a continuous function such that Aw is a signed Radon
measure. Then AM ̂  0 on {u = 0}.

The proof of Lemma 2.16 is quite straightforward and therefore omitted (cf. [4], 4.2).

Proof of Theorem 2.13. (2.2) shows that Aw is a Radon measure and (2.3) and
Lemma 2.16 then show that Aw +/χβ = A, where λ is a positive Radon measure on <3Ω.

For any x e IRN, | Vu\ is integrable on dBr(x) for almost every r > 0 and for these r

(2.19) | j A w | ^ \Vu\dJif - C r - sup
Br(X) Br(x) dBr(x)

But | V« | ^ C by (2.9), hence (2.19) shows that AM, and also A, is absolutely continuous
with respect to 3?N~l.

lixedQ\G then (2.9), (2.19) even yield that | f Awl^Cr* ' 1 * ' for r > 0 small,
Br(x)

hence that A w and λ are absolutely continuous with respect to tf N~l+a on δΩ\ο. From

11 Journal f r Mathematik. Band 473
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158 Gustafsson and Shahgholian, Solutions of afree boundary problem

this it follows that λ = 0 on dQ\G. Indeed, on dQndG we have λ = 0 since by assumption
J>ifN~1 + a(dG) = 0. Outside G we have AweL 0 0 by Lemma 2.2, and then Standard argu-
ments ([28], II, Lemma A. 4) show that λ = ΔΜ = 0 a.e. on

For χ e nG one also gets, using Lemma 2.8 and Lipshitz continuity of M, an
estimate

f Aw^Cr" - 1

Br(x)

for small r > 0 and with C > 0 depending on inf g. Details for this are given in [4], p. 1 17.
Br(x)

Since the Radon measure Δ M has finite total mass it follows by covering compact subsets
of d r\G with small balls that Ω has locally finite perimeter in G. Hence (2.17) follows
from Corollary 2.15 together with general properties of 3red&.

By the above we see that Au +/χΩ = h3ΊfN~1L·^redΩ for some Borel function h ̂  0
on red nG. It just remains to identify h with g, i.e. to prove that

(2.20) h(x)=g(x) for Jf^-a.e. xedredQnG.

We shall merely give an outline of the proof of (2.20). The details are virtually the same
s in [4], 4.7-5.5.

It is enough to prove (2.20) for those xedredQr\G which satisfy

„^ r- 9 4(2.21) hm - - ̂  l ,
r -» oo OJ - '

(2.22) Um f \h-h
r~*° d nB(x.r)

since the remaining set has j>ifN~i measure zero (see [15], Theorem 2, 2.3 for (2.21)). So
fix such an x e n G. For simplicity of notation we assume that x = 0 and that

v (0) = *N= (Ο , . , . , Ο ,Ι) .

Define the blow-up sequences

Note that u, /and g are scaled in the right way according to Remark 2.7 (with α = — 1).
Let B = 5(0, 1), Br = B(0, r), H={xN< 0}.

By general properties of the reduced boundary ([15], 5.7.2)

(2.23) \(ΩηΑΗ)ηΒ\ -> 0, s n -» oo
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Gustaf sson and Shahgholian, Solutions ofafree boundary problem 159

where Δ means the Symmetrie difference between the sets. From/eL00, continuity of g
and (2.22) we see that fn -» 0 uniformly,

->0 , J \
B 8ΩηηΒ

as n -> oo.

As to w„ we know (Corollary 2.6 and 2.9) that | Vw| <; C and H(JC) ̂  C<5(*)· Thus
| VwJ ^ C, w„(X) ̂  C n(x) where (5n(.x) = dist(;t, Ω<) = ηδ(χ/η). It follows that there exists
a Lipschitz continuous limit function w0 ̂  0 such that, for a subsequence,

w„ -> w0 uniformly in 5 ,

Vw„ -> Vw0 w* -L00 (5).

Setting Ω0 = {w0 > 0} it also follows, using nondegeneracy (un ^ C n) and that

in „, that w0 is harmonic in Ω0, that Ωηη5-> Ω0η5 in Hausdorif distance and in
measure. By the last property combined with (2.23) |O0 Δ//| = 0 and hence (since Ω0 is

Next one proves, and this is more technical [4], 4.8, that actually Ω0 = H (for this
(2.21) has to be used) and that, due to (2.22),

(2.24) "o (*) = * (0) (-**)+·

The final step consists of proving that w0 is (global) minimum of

among all Ο ^ υ e H1 (B) with v = w0 on dB ([4], 5.4). This is intuitively reasonable since
by scaling (Remark 2.7) un is seen to be a minimum of

(among O^veH^B) with v = u„ on dB) if n is large.

Now it follows from Theorem 2.3 (adapted to the unit ball B) that the function (2.24)
can be a minimizer of J0 only if A(0) = g(0). This was the desired conclusion and the proof
is finished. D

As to regularity of the free boundary 5 Ω we have

Theorem 2.17 ([4], [9]). Assume that f and g satisfy Condition A and that u is a
local minimum ofJ. Lei Br = Br(x0) be a small ball
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160 Gustafsson and Shahgholian, Solutions ofafree boundary problem

(a) If g is Holder continuous and satisfies g S> const. > 0 in Br then for some α > 0
3red isaC1** surface locally in Br. If N - 2 then this even holdsfor ΘΩ (i.e. red = 3Ω
in Br).

(b) Ifg = 0, / is Holder continuous and < 0 in Br and ifmoreover c satisfies the mini-
mal thickness condition of Caffarelli at XQ (see [9], [17]) then <9Ω is a C1 surface near XQ.
This thickness condition is satisfiede.g. ifQc contains a nondegenerate cone in Br with vertex
at x0.

(c) Ifg = 0 andf^ 0 in Br then dQr\Br = 0.

Proof. (a) is proved in [4], 6-8, in the case /= 0. When /Φ Ο basically the same
proof works. The modifications needed are listed in Appendix, section 5.

(b) is proved in [9].

As to (c), (2.4) shows that Aw ̂  0 in Br, hence either u > 0 in Br or u = 0 in Br. D

Note. This theorem covers all cases except some limiting ones. However, in these
limiting cases not much can be said in general. See e.g. Remark 2.14, where g — 0 and for
any *0 e dD n δ Ω / takes both positive and negative values in every neighbourhood of x0.
We may even redefineg to be any positive function outside Ω (e.g. g(x) = dist(x, Ω), which
is Lipschitz continuous) and we will still have the same irregul r solution. See Remark 3.6.

As to higher regularity we just mention that if / and g are real analytic in Br then,
in Theorem 2.17, the conclusions C1'* (in (a)) and C1 (in (b)) can both be replaced by
"real analytic" (see again [4], [9]). If / and g are real analytic and moreover N= 2 the
regularity theory seems in fact to be almost complete: If g > 0 in Br then δ Ω is real ana-
lytic by the above and if g = 0 and /< 0 in Br then it is shown in Sakai [38], [39], that
δ Ω is analytic in Br except possibly for a few types of singular points which really may
occur [41], [17]. These are certain types of inwards cusps, double points (including the
case of a real analytic are with Ω on both sides) and isolated points of δΩ.

3. Geometry of local minima and weak Solutions

In this section we derive some results on the geometry of Ω = {u > 0} when M is a
local minimum. In some cases we really do not need the f ll strenght of u being a local
minimum, just that u satisfies equation (2.18) in Theorem 2.13. We call such a function a
weak solution. Our notion of weak solution is weaker than that of [4].

Definition 3.1. Assume that / and g satisfy Condition A and that g moreover is
continuous. Then by a weak solution for Jf 9 we mean a continuous function u ̂  0 with
compact support satisfying

(3.1) Δ

where = {w>0}.

Remark 3.2. (a) u = 0 is always a weak solution.
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Gustaf sson and Shahgholian, Solutions ofafree boundary problem 161

(b) A priori, gJ^N~iL·^Ω is a (positive) Borel measure whereas the left member of
(3.1) is a distribution. The equation (3.1) is to be interpreted s saying, first of all, that
gJ^N * 1_δΩ also is a distribution, hence a Radon measure, and, secondly, that equality
holds in the sense of distributions. Thus it is a consequence of (3.1) that Δ Μ is a (signed)
Radon measure and also that Ω has locally finite perimeter in G = {g > 0}.

(c) It follows, s in L_4], 4.2, that any weak solution u is in K. Indeed, this readily
follows from the estimate

J |Vw|2 = J V w - V ( W - e ) + =

Also, by Theorem 2.13, if g satisfies the Holder condition there (or g > 0 everywhere), any
local minimum is a weak solution.

(d) If some portion Fc: G of 5 Ω bounds Ω from two sides (which is impossible for
local minima by Lemma 2.10) then (3.1) is perhaps not the most natural definition: either
u should be forced to have the normal derivative g in both directions from Γ (which would
give 2gJ^N~iL·^Ω on Γ in (3.1)) or Γ should be neglected, which is accomplished by
replacing the right member of (3.1) by gjfN~1Ldmt9Q or gjf Ν~^δΓβ£ΐΩ. However, for
simplicity we shall stick to (3.1).

We begin with some miscellaneous comparison results for minima and local minima.

Proposition 3.3 (Cf. [18]). Assume f± <g/2, gl ^g2, let M;€ K be a minimizer of
Jj = Jfj9gj and let Ωj = {Uj > 0} (j = l, 2).

(a) In each component D1 of Ω1 one of the following holds:

(1) u1 < u2 in D^

(2) u1 = u2 andfi = f2 in Dl ;

(3) H! > u2 andfi = f2 in Dl .

(b) ///! ̂  0 in Ω! ηΩ2 then J^O and ΩνΓ\Ω2 = 0.

(c) Iffi ^ 0 in a component Dl of Ωί then Di ηΩ2 = 0.

(d) ///! ̂  0 in a component D2 ofΩ2 then Ωι η/)2 = 0.

Proof. Let v = min(M1? w2) and w = max(M l5 w2). Then, by Lemma 1.1, υ minimizes
! and w minimizes J2.

Next, to prove (a), Aw = -/2 in {w > 0} = Ω^Ω2 by Lemma 2.2. Thus

Δ^-κΟ^-Λ+Λ^Ο ίηΩ1 and A(w- «2) = -/2 + /2 = 0 in Ω2.

Moreover w — M7- ̂  0 (j = l, 2).
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1 62 G us tafsson and Shahgholian, Solutions of a free boundary problem

Let D1 be a connected component of Ω^ By the maximum principle, either w — u1 = 0
in D19 in which case fv =/2 there, or w — ui > 0 in D^ In the latter case u1 < u2 in D19
which is case (1) in the proposition. In the first case u1 ̂  u2 in D1? and it just remains to
prove that either ui > u2 or wx = w2 holds in all D^.

Since ui — u2 = w — w2 ^ 0 is harmonic in Ω2 we have, in each component of D! n Ω2,
either u1 > u2 or ui = u2. Assume that ui = u2 holds in one component D of Ζ>1ηΩ2.
Then ui = u2 also on 5Z). It follows that 3DnZ)1 = 0 (because if xedDr\Di then
w2 (je) = MJ (x) > 0 so that χ e Z^ n Ω2, contradicting χ e dD). Since D a D± and D! is con-
nected this shows that D = Dv i.e. u^ = u2 in all D1 (case (2)).

If u1 = w2 on no component of Di n Ω2 then u^ > u2 in each component, and since
trivially ul > u2 in Ζ)1\Ω2 we get ui > u2 in all D1 (case (3)). This completes the proof of (a).

Since v minimizes J± we have Δι; + (/i)+ ^ 0 in RN by (2.2). Thus if D is an open
set such that /j ^ 0 in Z) and t? = 0 on d£> then v = 0 in D by the maximum principle.

In (b) the above is assumed to hold for D = Ω1 ηΩ2 = {v > 0}. Thus v = 0 in Z>,
hence v = 0 everywhere, Ω1 π Ω2 = 0 and Jx ̂  J± (v) = 0.

In (c) we choose D = Di (v = 0 on dD± since ui = 0 on dD^ c= δΩ^ and we conclude
that v = 0 in D19 i.e. Ζ)1ηΩ2 = 0. (d) is proved similarly. α

Corollary 3.4. Let ueK be a minimizer of Jft9 and let f± = (l — χβ)/+ — /_ where
Ω = {u > 0}. Then Jf g ^ 0 0/2^ Ωχ η Ω = 0 wA^r^ i2t = {ι/j > 0} / r any minimizer u^ of

Proof. Apply (b) of Proposition 3.3 with/2 =/and/1 s in the Statement. Note
that Λ ̂  0 in Ω (Ω = Ω2). D

Corollary 3.5. Let u e K be a minimizer ofJftff, let Ω1 be a component of = {u > 0}
and set f± = χβι/+ — /-, MI = νχΩι, Ω2 = Ω\Ω1. Then u1 minimizes J± = Jfit9 and for any
minimizer v of J1 we have {v > 0} n Ω2 = 0.

Proof. Apply (d) of Proposition 3.3 with /2 =/ and /x s in the Statement (of the
corollary). Note that Ω2 is a union of components of Ω and that /j ^ 0 in Ω2. It follows
that {t; > 0} n Ω2 = 0 for any minimizer v of Ji9 and hence also that u± minimizes Jv (for
otherwise J± could be made smaller by changing u in Ω1 to a minimizer of /J. D

Note that if/^ 0 then Corollary 3.4 roughly says that if minimization of / does not
produce a domain Ω covering / then another minimization, for the uncovered part, does
not help. Similarly, Corollary 3.5 says (when/^ 0) that if Ω turns out to be disconnected,
then separate minimizations for the parts of / in each component of Ω always produces
domains which do not meet each other.

Remark 3.6. Assume that u e K is a (local) minimizer of / = Jft9 and let /=/, g ̂  g
in Ω = {u > O},/^/, g ̂  g outside Ω. Then M is a (local) minimum also forJ = Jfg. Indeed,
one immediately finds that J( ) — J( ) ^ J(v) — J(v)9 and hence J( ) ^ J(v)9 for every
t; e K (close to u).
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Gustaf sson and Shahgholian, Solutions ofafree boundary problem 163

One conclusion from this observation is that if g is not continuous then a local mini-
mizer u cannot be expected to satisfy the equation (3.1) for a weak solution (because g
can be replaced by any larger function on ^Ω (or on R N \ ) and u will still be a local
minimizer). Cf. [4], 5.9.

Theorem 3.7. Assume that uj ^ 0 (j = l, 2) are weak Solutions for Jfgy Qj = [uj > 0}
and that f^ 0 outside Ω2 (or simply that J /^ 0). Then

J gd^N~1^ J
5( iu 2) <^2

Proof. We have

where the unions are disjoint. Thus it is enough (and necessary) to prove that

J gd^-1^ J
ΒΩι\Ω2 dQ2r\Qi

Set M = inf(M l9 u2). Then w ^ O , u is continuous and ΩιηΩ2 = {w > 0}. Since
Μ,.Ε^1^*) (Remark 3.2) also we/i1^). Since -Aw 7=/in ί27· we have

(3.2) -Δκ^/ ίηί2 1 ηΩ 2 .

In particular, Δ M is a Radon measure in t ηΩ2.

Now we claim that ΔΜ actually is a Radon measure in all RN. It is not hard to show
(cf. [4], 4.2) that this is the case if and only if Aw has finite total mass in ΩίηΩ2, i.e.

(3.3) - f A w ^ C < o c ,
U>E

for all ε > 0. Here the left member can also be written

- J Δ(κ-ε)+= J A(«-e)+ .
Μ > ε «^ε

Since Δ(Μ-ε)+ is a Radon measure with compact support in Ω1Γ\Ω2 Lemma 2.16 can
be applied to (u - )+ and (uj - e)+ - (w - ε)+ showing that

Ο ^ Δ(Μ - )+ g Δ(Μ;· - ε)+ in {uj g e} .

From this (3.3) easily follows using the fact that /^uj have finite total masses.

Next we apply Lemma 2.16 to w, W j - u and u2 - u. This gives

Ο^ΔΜ^Δ«! ondf l l 9 and Ο ^ Δ « ^ Δ ί / 2 on ΘΩ2 .
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164 Gustafsson and Shahgholian, Solutions of afree boundary problem

Combining with (3.2) we obtain

J /^ — f AM = J AM = J AM
in 2 in 2 ( in 2)c d( in 2)

< f Aw-j- f AM < f A M < + f AM?— J ' J _ — J l ' J 2
e5 in 2 d 2n i <5 ir\ 2 5 2n i

and hence

"1= J _ Δ«2^ J" /- j Δ«!

= f /+ J Δ « 1 + ί Δ Μ ι = J /+ f gdX^-lf
io 2 ΒΩι\Ω2 i in 2 i\ 2 i

= - i /+ i g^^N~'^ J
t\ 2 ^Ωl\Ω2

as required. D

Corollary 3.8. Assume uj ^ 0 (j = l, 2) are vt^^afc Solutions with g = const. > 0,
/<* 0 outside Ω2 and that Ω2 is convex. Then Ω^ c= Ω2 (Ω} = (uj > 0}).

Proof. Let P: IRN ->· Ω2 be the projection, taking χ G RN onto the closest point
P(x) on the compact convex set U2. Then

(3.4)

(3.5)

as is easily seen. But (3.4) implies [15], Theorem l, p. 75, that P shrinks Hausdorff measure,
in particular

Thus, by (3.5)

(3.6) tf»

If Ω! φ Ω2 then Ω^\Ω2 Φ 0 (since Ω2 is convex), and it is easy to see that the inequa-
lity (3.6) must be strict in this case. But this contradicts Theorem 3.7. Thus Ω1 c Ω2. D

Corollary 3.8 partly generalizes [44], Theorem 2.6, where the same conclusion was
obtained assuming some regularity of 3Ω but without any positivity assumption on u.
Other results related to convexity can be found in [8], [1] and [27].

Next we shall use some reflection methods to obtain a result on monotonicity or
convexity along lines. The method is related to the "moving plane method" which has
previously been used in similar problems in [42], [20], [7], [24], [45]. Important points
in our approach are that we do not require any regularity of the Solutions u and that we
are able to work with local minima (not only global minima).

For a fixed unit vector a e RN and for λ € R set
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Τλ = Τα.λ*={Χ'<* = λ}9 Τλ-:={χ·α<λ}, Τ+*={χ·α>λ}.

For χ e RN let χλ denote the reflected point with respect to Τλ and for φ a function
φλ(χ) = φ(χλ). If Ω c R" we define

Ωλ = Ωη Τλ
+ = the cap cut off by Τλ ,

ΩΛ = {χλ : χ 6 Ωλ} = the reflection of Ωλ in ΓΑ.

Theorem 3.9. Assume that f and g satisfy Condition A and moreover that for some
unit vector aeUN and some A0 e RN we have

(3.7) f^f\ g^g* ίηΤλ
+

for all λ ^ >10. Thenfor any local minimum u of J thefollowing hold:

u < ηλ in Ωλ for all λ > λ0 ,

(3.8) ΩλαΩ for all λ ^ Α 0 ,

(3.9) a - V w < 0 ίηΩλο.

Note. (3.7) holding for all λ ̂  A0 is equivalent to that

hold on ΓΑ^ (in the sense of distributions).

Proof. Define

V == s
{max(i/, Μ
fmin (H ,n A ) in Γ/,

== s in 7 ~ ,

Then Lemma 1.1 (with UN replaced by Τλ
+) shows that

/(ΓΛ) = /(min (M, M*)) + 7A(max(M, ΜΛ))

g /(«) + /*(«*) = /(«)

for all l ̂  AO.

On the other hand /(»*) ̂  /(«) whenever υΛ is close enough to « in the metric (2.1),
since u is a local minimum. Thus
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166 Gustafsson and Shahgholian, Solutions ofafree boundary problem

(3.10) J(v*) = J(u)

for all values of λ ̂  A0 such that νλ is close to w.

Now for λ ̂  λ0 so large that Ω c 7^~ we have

(3.11) t;A = w ,

i.e. w ̂  MA in Γ/. Note that (3.11) implies

(3.12) Aci .

We shall prove that (3.11) holds for all λ ̂  A0. For this it is enough to prove that if for
some λ i > A0, (3.11) holds for all λ ̂  ̂  then it also holds for all λ in a f ll neighbourhood
of λι. Note that the set of values of λ for which (3.11) holds is a closed set.

By Lemma 1.1

/(min (κ, υλ)) + /(max(w, νλ)) ^ J(u) + /(t?A)

and if νλ is close to u then also min(w, νλ) and max(w, ι?λ) are close to u. Thus by (3.10)
also min(w, A) and max(«, ι;λ) are local minima when t;A is close to u. In particular, by
Lemma 2.2

(3.13) - Δ max(ii, t?A)=/ in Ω

(note that max (M, uA) > 0 in Ω).

Set
/ ΑΧ °</> = max(w, A) - M

Then (3.11) is equivalent to φ = 0 in RN. Clearly we have

(3.14) φ = 0 in!RN \ A

and, when (3.13) holds,

(3.15) Δφ = 0 in Ω.

Thus by the maximum principle (3.12) implies φ = 0, i.e. (3.11) (when (3.13) holds).

If Ω is connected then the above readily shows what we want, namely that (3.11)
holds for all λ ̂  λ0. Indeed assume that (3.11), and hence (3.12), holds for all λ ̂  λΐ > A0.
Then, for any λ in some small neighbourhood of λ1 we have (3.13) and hence (3.15). If
Ω c Τλ~ (for such A) then obviously (3.12), and hence (3.11), holds. If ΩηΓλ Φ 0 then (3.14)
implies that φ = 0 in an open subset of Ω. Therefore, by (3.15), φ = 0 in all Ω and hence
(3.11), (3.12) hold. Finally note that, by (3.12), |Ωλι|^|Ω|. Therefore, the remaining
case, namely that Ω c Τλ

+ cannot occur for λ close to λ^
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Gustafsson and Shahgholian, Solutions ofafree boundary problem 167

Thus (3.11), (3.12) hold for all λ ̂  A0 provided Ω is connected. If Ω is not connected
a similar reasoning can be applied to each component (we omit the details) and the same
conclusion is obtained.

We have now proved (3.8) and that u ̂  ηλ in Τλ
+ for all λ £ A0. This readily implies

that a - V u ̂  0 in Ωλο (note that u e C 1 (Ω)).

Next Δ(ΜΛ - w) = /-/* ̂  0 in Ωλ. Οη 3ΩληΓ/, ι/λ - u = WA £ 0 and on ̂ Ωλr^Tλ we
have ux — u = 0. Moreover, when A > A0 then WA must be strictly positive somewhere on
3Ωλη7^+ (or even on 5Ζ)ηΓΛ

+ for any component D of ΩΛ) because A can be decreased
further with (3.12) still holding. Therefore it follows from the minimum principle for
superharmonic functions that MA - u > 0 in ΩληΤλ

+ when λ > λ0. It also readily follows
that a - V u < 0 in ΩΑο. The proof is finished. α

Corollary 3.10. Lei u, f and g be s in Theorem 3.9 and assume moreover f and g
are Symmetrie in Τλο. Then u is Symmetrie in Τλο.

Corollary 3.11. Assume that f and g satisfy Condition A and that moreover bot h f
and g are constant outside some compact convex sei K (then necessarily supp/+ c K). Lei
Ω = {u > 0} where u is a local minimum for J. Then for any χ e οΓβαΩ \Κ the in ward normal
ray Nx = { — tv (x) : t > 0} of ΘΩ at χ intersects K. Moreover, ^Ω\K is Lipschitz.

Proof of Corollary 3.11. If for χ e <3red Ω \Κ we have NxnK=$ then one can find
a e RN and A0 e R such that χ e Ta < Λ ο , Κα Τα~λο, Νχ α Τ+λο. The first inclusion implies that
the assumption of Theorem 3.9 are satisfied while the second inclusion implies that the
conclusions do not hold (e.g. (3.9) is violated). This contradiction proves the first State-
ment of the corollary. The second Statement follows easily by varying a and λ0 such that

~. D

Theorem 3.12. Assume that /, g satisfy Condition A and that u is a local minimizer
ofJftg. Assume moreover that

f ( x / t ) ^ t f ( x ) a n d g ( x / t ) ^ g ( x )

for all 0 < t < l (and all χ Ε RN). Then

t u ( x / t ) ^ u (x)

for all 0 < t < 1. In particular Ω = (u > 0} is starshaped with respect to the origin.

More generally the same conclusion holds with the above inequalities replaced by,
respectively

f f ( x l t ) £ f ( x ) , ta + lg(xlt)^g(x) and t* + 2 u ( x / t ) £ u(x)

for any (fixed) real number a.

Proof. Fix a 6 R" and set φί (χ) = (p(x/t) for any function φ. It follows from Remark
2.7 that t* + 2ut is a local minimizer of Jt = ·/,«/*. ί« + Ι*·
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168 Gustafsson and Shahgholian, Solutions ofafree boundary problem

Since ia/f ̂ /, t* + igt ^g, Lemma 1.1 therefore shows that w, = max(/a + 2wp w) is a
local minimizer of / and that J(wt) = J( ), provided t ̂  l is close enough to 1. Clearly
wt = u for / = 1. Now similar arguments s those in the proof of Theorem 3.9 show that
actually wf = u for all 0 < t <* l . Thus tct + 2ut<*u(Q< t<*l), and this readily shows that Ω
is starshaped. D

Theorem 3.13. Assume that /ε, /, g£, g satisfy Condition A. Lei w£, w 6e the largest
minimizers ofJ* = Jfe g£ andJ=Jfg respectively, andlet Ωε = {u£ > 0}, Ω = {u > 0}. Assume
also that

(3.16) /.-hg^const. >0

outside Ω. Then if

f£\f and g* S g a.e.

(or in the sense of distributions) s s \ 0 we have

(3.17) u£ \ u uniformly and in w-//1 (RN) ,

(3.18) Ωε \ Ω with respect to Hausdorff distance .

Note. Condition (3.16) is needed only for (3.18).

Proof. By Lemma 1.1, M£ decreases (pointwise) with ε. Thus v = lim u* = inf M£

£-*0 ε> Ο
exists. As in the proof of Lemma 1.2 one has ||Vw£|| ̂  C< oo. Hence ue -» v weakly in
H1^") (and strongly in L2(RN)). It is now easy to check that J(v) ^lim/£(we). Since
Je(ue) ^ Je(u) ^ J( ) (also, lim/£(w) = J(u)) it follows that v e K minimizes /. But v ̂  u
since u ̂  u£ for ε > 0. Thus v = u since u was the largest minimizer. Thus u£ \ M, and the
convergence is uniform since u* and u are continuous. This proves (3.17).

Clearly Ωε decreases with ε and Ω c P) Ωε. In order to prove (3.18) it is enough to
ε > 0

prove the following: for any ball Br = Br(x) with 52ι.ηΩ = 0 we have 5ΓηΩε = 0 for
ε > 0 small enough.

So assume B2rr\Q = 0. Then u& \ 0 uniformly in B2r. Assume now that Β,ηΩε Φ 0
for some ε > 0. By combining Corollary 2.9 and Remark 2.1 1 we have, if (3.16) holds in 52r,

sup u* ;> sup u* ̂  Q r + C2 r2

B2r

for y E Br n Ωε, where C1? C2 ̂  0, C1 + C2 > 0. This contradicts the uniform convergence
of M£ if ε is small enough, proving (3.18). D

Theorem 3.14. Assume that /ε, /, g£, g satisfy Condition A. Let u£
9 u be the smallest

minimizers ofJ* = Jf£ gc andJ=Jfg respectively, andlet Ωε = {u£ > 0}, Ω = {u > 0}. Then if

/ε /* / and g* \ g a.e.
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(or in the sense of distributions) s ε \ 0 we have

u* /* u uniformly and in w-Hl(UN) ,

Ωε /* Ω with respect to Hausdorff distance .

The proof is similar to (and somewhat simpler than) that of Theorem 3.13 and
therefore omitted.

Example 3.15. Take f = fa = axBR-b, g=c s in Example 1.5, where now
R > 0, b ̂  0, c> 0 are kept fixed and a > 0 is regarded s a parameter. Then, s we saw
in Example 1.5, there is a critical value a0 with b + Nc/R < aQ ^ (b + Nc/3R)3N such
that, for a < a0, u = u0 = 0 is the unique minimizer of Ja = Jfatg, for a = a0 there are two
minimizers, u0 = 0 and u1 φ 0, say, while for a > a0 there is again a unique minimizer
ui φ 0 (depending on a).

For a ̂  00 the set Ωα = [u^ > 0} is a ball whose radius ρ = ρ (a) > R (given by equation
(1.17)) increases with a.

Thus we see that the largest solution is continuous from the left with respect to a
(i.e. it depends continuously on a, on the intervals 0 < a < a0 and a0 ̂  a < oo) while the
smallest solution is continuous from the right. This is in accordance with Theorem 3.13
and 3.14, and it also shows that one cannot expect to have more than the semicontinuities
stated. See also Example 4.4.

4. Quadrature domains and balayage

Let 0 ̂  g, h e L00 (R*) be given density functions. In this section we shall study the
following type of balayage problem. Given a positive Radon measure μ with compact
support, find a bounded open set Ω containing supp^ such that μ is "graviequivalent" to
the measure

(4.1) v

in the sense that ί/ν = υμ in R N \ . Here, if σ is any (positive) Borel measure, U* denotes
its Newtonian potential, i.e.

U· (x) = lE(x- y) da (y) (xeUN)

where E(x) = (l/(N- 2)ωΝ)|χ|2'Ν (N* 3), and £(*) = ̂  log | χ | (ΛΓ = 2) so that

-Δ[/σ = σ.

When a measure μ is graviequivalent to a measure v associated with a domain Ω, s
in (4.1), and Ω contains supp/x (or at least μ(Ω') = 0) then the word "quadrature domain"
for Ω is sometimes used [36], [47]. The reason for this terminology is indicated after
Remark 4.2 below. In this paper we shall use the following definition of a quadrature
domain.
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170 Gustafsson and Shahgholian, Solutions of afree boundary problem

Definition 4.1. Let g, h and μ be given s above. Then Ω is a quadrature domain for
μ (and for the given densities g and A) if Ω is a bounded open set in RN such that

(4.2) supp μ c Ω ,

(4.3) υν=υμ οηΚ"\Ω,

where

(4.4) v = A^fNLfl

We then write

Ωββ(μ) or

Remark 4.2. (a) As in Remark 3.2 (b) it follows that if Ωεζ)(μ\ h, g) then Ω has
finite perimeter in any open set in which g ̂  const. > 0.

(b) Suppose that (4.2) holds. Then, by definition, Ωθ<2(μ; A, g) if and only if the
"quadrature identity"

(4.5) f φάμ = f <pA</;c + J cpgdJif"-1

Ω Ω 3Ω

holds for a certain class of harmonic functions φ in Ω, namely for all linear combinations
of the functions φ(χ) = E (χ — y), with y e Ω€. By an approximation argument, (4.5) then
also holds for every harmonic φ in Ω which can be extended to a smooth function in a
neighbourhood of .

(c) Our definition of quadrature domain is quite weak e.g. in the sense that the
identity (4.5) is required to hold only for a rather small class of harmonic functions φ.
Indeed, s is explained in Example 4.3 below, our definition allows for a large class of
nonsmooth members in ζ?(μ; A, g) when g > 0. (When g = 0 the Situation is much better.)

Therefore we wish to point out conceivable ways of strengthening the requirements.
In addition to (4.2), (4.3) one could ask e.g. to have

(4.6) Uv ^ υμ in RN ,

(4.7) |VC/v |^const. < oo .

Since these inequalities look a little ad hoc we have preferred not to put them into the
definitions, but they do have some good properties: (4.7) rules out the type of nonsmooth
domains occurring in Example 4.3 (relevant when g > 0) and (4.6) implies uniqueness (up
to nullsets) of quadrature domains when g = 0 [36], [23]. Moreover, both (4.6) and (4.7)
hold for the quadrature domains we construct in Theorem 4.7, 4.8.

Quadrature domains have been extensively sudied in the case A = l, g = 0, [12], [2],
[36], [23], [47] and also (to a smaller extent) when A = 0, g = l, [6], [48], [22], [31],
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Gustafsson and Shahgholian, Solutions ofafree boundary problem 171

[32],[45], [25]. If e.g. h = l, g = 0 and μ is a finite sum of point masses then the identity
(4.5) gives a very simple way of Computing the integral f φάχ for φ Harmonie in Ω. This

explains the terminology. Let us now give a couple of examples, primarily for the case

Example 4.3. Let μ = Q be the point mass at the origin and let h ΞΞ 6, g = c be
constant. Then the ball Ω = 5(0, R) with > 0 chosen so that

ba)NRN + cNa)NRN-l = i

is in £?((50; 6, c). If Z? > 0, c = 0 this Ω is the unique element in (<50; b, 0) (see [30], [3],
[23]).

If b = 0, c> Ο, Ω is still unique among domains with smooth boundary [43]. Indeed,
it is even shown in [32] that Ω is unique among domains in (i0; 0, c) satisfying in addi-
tion (4.7) and M N~1(dQ\dmesQ) = 0 ((4.6) is automatically satisfied). However, without
these additional assumptions there turns out to exist also a quite large family of domains
in (<5o;0> c) with rather "pathological" boundaries. In two dimensions these are the
famous non-Smirnov domains first found by Keldysh and Lavrentiev and later (in a more
constructive way) by Duren, Shapiro and Shields [14], [46] (see also [13]). In higher
dimension such domains were recently constructed by Lewis and Vogel [31].

It should be told that these non-smooth domains Ω are not extremely pathological.
E.g. they are images of the unit ball under Holder class homeomorphisms RN -* R* (which
when N = 2 even can be taken to be quasiconformal). They satisfy

(4.8) c J

for every φ harmonic in Ω and continuous on . Also, it follows from our Corollary 3.8

Finally we mention that, when 7V = 2, we do have uniqueness of finitely connected
domains satisfying (4.8) if the test class of functions φ is enlarged to the appropriate Hardy
(or "Smirnov") space. See [6], Theorem 2.1, [22], Remark 3.4.

Example 4.4. We cite the following interesting example due to Henrot [25]. Let
7V = 2, g = l, h = Ο, μ = fl(5(- l f o) + (i.o)) where a > 0.

(i) If 0 < α < 2π then Ω0 = #((-1,0), 0/2π)υ5((1,0), α/ 2 π) is a disconnected ele-
ment in β (μ).

(ii) If 4.60. . . < a < 2 π then there moreover exist two connected domains, Ωί and
Ω2, in β(μ). We have Ω0 <= ΩΙ <= Ω2> and for a = 4.60..., Ω, = Ω2.

(iii) As a increases towards 2 π, Ω0 expands and Ω1 shrinks. For α = 2 π, Ω0 = Ων

For a > 2 π, Ω0 and Ω1 do not exist.
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172 Gustafsson and Shahgholian, Solutions ofafree boundary problem

(iv) As 0>4.60... increases towards +00, Ω2 expands all the time, and from
a = 5.65 ... on it is convex.

The above is proved by conformal mapping. For more details, see [25]. This example
illustrates in a beautiful way several of our (and also Henrot's) results, e.g. Corollary 3.8
and Theorems 3.13 and 3.14. As to the different behaviour (shrinking, expanding etc.) of
Ω0, Ω19 Ω2 s functions of the parameter a > 0, there is a classification of weak Solutions
into "hyperbolic", "elliptic" and "parabolic" based on such properties due to Beurling
L8]. Cf. also L16].

The existence of two different simply connected and smoothly bounded quadrature
domains for a measure s simple s the above μ is particularly interesting. In the case
g = 0, h = l there is no such example known for any μ.

Example 4.5. Let W = 2, g = l , h = 0 and let μ = a tf * L/ where a > 0 and / is the
closed line segment from (-1,0) to (1,0). If Ω6β(μ;0,1) then 7 < = Ω by (4.2), which
implies that Ji*1(3 )>4 . On the other hand (4.3) implies Jc/v = J^ and hence
2tf 1(οΩ) = J άμ — 2α. Thus we see that a necessary condition for the existence of a qua-
drature domain for μ is that a > 2.

Now to relate quadrature domains with our minimization problem, assume
μ 6 L00 (RN) (i.e. μ is absolutely continuous with a bounded density function, also denoted
μ) and set /= μ — h. Let u Ξ> 0 be a weak solution for Jfi9 so that

where Ω = {u > 0}. This identity can also be written

μ - h A w = v ,

where

Clearly, u=Ufi- U\ Thus we see that

(4.9) Ω6β(μ;Α,#) ο

When μ is a more general measure (not in L00), e.g. a sum of point masses, then our
minimization problem does not make sense, but one can still pass between quadrature
domains and the minimization problem by mollifying.

Lemma 4.6. Let 0 :g ψ e L°°([RN) be radially Symmetrie, non-increasing s a function
of \x\, have compact support and satisfy $ipdx = 1. Then, for μ α positive measure with
compact support,

β(μ; A, g) .

Moreover, if (4.6) holds for μ * ψ it holds also for μ.

Brought to you by | Kungliga Tekniska Hogskola (Kungliga Tekniska Hogskola)
Authenticated | 172.16.1.226

Download Date | 3/1/12 3:39 PM



Gustaf sson and Shahgholian, Solutions ofafree boundary problem 1 73

Proof. By the supermeanvalue property for superharmonic functions

ΙΙμ*ν^υμ everywhere

and by the ordinary meanvalue property (for harmonic functions)

U»*v =υμ outside supp (μ *γ>) .

Note that suppju c 8υρρ(μ * φ). Thus the assertions of the lemma follow directly from
Definition 4.1. D

From (4.9) and Lemma 4.6 it is clear that in order to construct quadrature domains
for general positive measures μ using the minimization problem one just has to make sure
that 8ηρρ(μ * ψ) c Ω = [u > 0} for a suitable mollifier t/?, where u is a (local) minimizer.
This is the way two of our main results, Theorem 4.7 and 4.8 below, are proved. Since
u ̂  0 and u is Lipschitz continuous (Corollary 2.6) the quadrature domains constructed
will automatically satisfy (4.6) and (4.7).

In these theorems b, c ̂  0 are constants with b + c> 0, g, h e L00 (RN) are density
functions satisfying

Moreover, at least one of h and g is assumed to be ^ const. > 0 outside a compact set,
and g is assumed to be continuous and to satisfy the Holder condition in Theorem 2.13.

Theorem 4.7. Lei μ be a positive measure which is concentrated to a ball BR = B(x0,R)
to the extent that

(4.10)

Nc
(4.11) μ(ΒΛ)>

Then, for any h, g s above there exists Ωεζ)(μ;^ g), which moreover satisfies (4.6), (4.7)
and B3R c Ω.

Proof. For ρ > 0 set
l

(4.12)

Then (4.10), (4.11) imply that

μ * Ψ2η = ° outside B3R .
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174 Gustafsson and Shahgholian, Solutions ofafree boundary problem

( Nc\
Setting /= μ * ip2R - Ae L00 (RN) we may choose a > l b + — 1 3N so that /;>
Note that a satisfies (1.18) of Example 1.5. ^ '

Let w denote the largest and unique minimizer of JaXBR-b,c anc* δ the largest mini-
mizerof/ = /jr ThenO ̂  w ̂  «by Lemma 1.1 and- 3K c: {w > 0} by Example 1.5(subcase
4(c)). Now denote Ω = [ > 0}. Then supp(/x * ψ2Κ) a E3R c {w > 0} c= Ω and it follows
that Ω e ζ)(μ * φ2Α; A, g). Thus Ω 6 β (μ; A, g) by Lemma 4.6. D

Theorem 4.8. With b, c, A, g s in Theorem 4.7 there exists a constant C = C(N, b, c)
such that if

(4.13) sup N
r_ t ^ C /or every χ e 8ΐφρμ

r > 0 1*

(for μ α positive measure with compact support) then there exists fle (/x;A,g), which
moreover satisfies (4.6), (4.7). If c = 0 the condition (4.13) can even be replaced by

LL( B (χ}}
(4.14) sup r

N — - ̂  C for every χ e supp^
r> 0 T

(for another C = C(N9 b)).

Proof. Take (if c> 0) any

C> sup
0 < R < l

Then, if (4.13) holds with this C there exists for each χ e suppju a radius ΛΛ > 0 such that

/ MC \
(4.15) μ(Β(χ9 Rx)) > (b + — 6^|5(x, Rx)\ .

V 3/^χ/

Since supp^ is compact we can select finitely many xl9...9xme supp/ι such that

supp μ c B(xl9 J u · · · u 5(^m, m) ,

where j = Xj.. Now we can choose ε > 0 small enough so that

Nc

for j = l, . . . , m. With ψρ s in (4.12) this means that

3

Now minimize J}̂  with/= μ * φε - A and set Ω = {M > 0} where M is the largest minimizer.
Then, s in Theorem 4.7, B (xp 3(Rj -h ε)) <= QJ = l, . . . , m. In particular supp (μ * t/>£) c Ω
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Gustaf sson and Shahgholian, Solutions ofafree boundary problem 175

and it follows that Ω e β(μ * φε; A, g) and Ω Ε ζ)(μ; A, g). This proves the theorem if c> 0.
If c = 0 then one also gets (4.15) if (4.14) holds with O6Nb\Bl\93,nd the rest of the
proof is unchanged. D

Comments. Clearly (4.13) is satisfied if μ is a finite sum of point masses or if μ is
supported by a finite System of manifolds of dimension g N - l and has a sufficiently high
density on them (for dimension s < N - 1 it is enough that the Hs density is bounded
away from zero).

Moreover it is clear from Example 4.5 that an assumption of the sort (4.13) really
is necessary for the existence of a quadrature domain. However, the constant C obtained
in the proof is probably far from the best possible. Indeed, Example 4.5 indicates that if
N = 2, h = 0, g = l then any C> 4 should work in (4. 1 3), whereas our proof needs C> 24 π
in this case. If c = 0 then, according to [40], [33], Theorem 4.7 holds with 6N in (4.11)
replaced by 2N, which is the best constant. This also gives the best constant in (4.14),
mme\yC(N9b)>2N\B1\b.

Aside from interesting cases of nonuniqueness of quadrature domains, s in Example
4.4, there is sometimes, for nonconstant g, a kind of trivial nonuniqueness: if μ ^ 0 is any
measure, take h = 0, g = \VU»\ (outside supp// at least). Then Ω, = {jce R* : υμ(χ) > ή
is in £)(μ; A, g) for any te R such that Ω, contains 8υρρμ and is bounded. Cf. discussions
in [8]. The function u = U» - Uv in this case simply is ([/" - /)+.

Finally note that when Ω is a quadrature domain obtained from a local minimizer
of / then the regularity results of section 2 and the geometric results of section 3 apply.

5. Appendix

In order to prove (a) of Theorem 2.17 we need to generalize (modify) some of the
lemmas and theorems in [4].

In [4] the weak solution u is harmonic in {w>0} whereas in our case -AM =/.
However, s in the proof of Theorem 2.13, the term / disappears in the blow-up limit, i.e.
we get a blow-up sequence UQ(X) = U(QX)/Q (Q -> 0) converging to a harmonic function.

In most cases the changes are just a remark. It is our objective here to provide the
reader with a step-to-step programme on necessary changes in the proofs of the results of
[4], 6-8.

We will adopt notations from [4] and we only give changes in the proofs and not
the Statements of the results.

Lemmas and theorems that need changes are s follows: 6.1-6.3, 7.2, 7.5, 7.6, 7.10.
The remaining results in [4], 6-8, go through without changes.

6.1. The function t? in the proof isv = u+xN and in our case
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176 Gustafsson and Shahgholian, Solutions ofafree boundary problem

provided Γ<4κδ€Ν/Μ. Here M = sup|/|. Hence we need to adjust r and the choice of
r depends on CN, δ, κ, and M.

6.2. Here we get an additional term

f \Vu\d jf-^C f dJPN'i
Brn{M = fi} dBr

for r small. Here again C = C(#, M) and M= sup|/|.

6.3. Step l, 2, 3 and 5 need no changes. In step 4 let he be defined s — ΔΑε =/ in
Br\AB and Αε = 0 on dBrvAe. Then at the end of step 4 we will have

ue — he^u ̂  er = crwe on 55r

and we get us — he^crwem Br. Hence we arrive at

lim sup>iWcCBr/2) ^ - lim supA( i i£_M( r/2)
£ \ o r ε ^ o

for r small enough.

7.2. v should be such that — Δι? = Μ^>/ίη/λ Then the estimate d _ v i; (z) ̂  l + CN σ
still holds and we also have u^v. Hence we get l — σ ^ / ^ 1 + €σ s in [4] and their
proof works all along. However, since our v is not harmonic but superharmonic we need
to take a much smaller ball ΒΓ(ξ) (r = 1/10 in [4]) where r depends on M and should be
smaller for larger M. We need this in particular for the use of Harnack inequality. Indeed
we have

(v - κ)(ί) ̂  C((v - ii)(jcc) -f r2) ̂  C(ca + r2) ^ C> ,

if r is small (r2 < σ).

7.5. The inequality at the end of page 135 in [4] involves an additional term in our
case, namely

(5.1)

where Z+ = Z*(akg). Observe that g here is not the same s our g.

We have to take into consideration that while "blowing-up" our solution M will
change and we get |Aw fc | = \Qkf\ ^ Qk M. Hence in 5.1 we should replace M by Mqk. We
will thus arrive, s in [4], at
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Gustaf sson and Shahgholian, Solutions ofafree boundary problem 177

If we assume rt, gk = o(ak) then this is a contradiction, s in [4].

We should be careful here, since our / and g are different from those of [4].

7.6. Again our solution will give an additional term and we obtain

h ί β*<?ί^- ί ν«»·νσ* + Α f

where we assume |Awk | g Min 5 . Now the "blow-up" Solutions uk(Qkx)lQk (which again
is called wfc in [4]) give |AwJ ^ ρ^Μ. This justifies the above inequality.

Now proceeding s in the proof of [4] we only have to prove that

which is true if Qk = o(ak).

7.10. Since in our case U = max(| Vue\ — sup , 0) is, in general, not subharmonic
Bar,

but involves a defect of magnitude ρ M under the action of Δ, we have to take a super-
harmonic function VQ with ^ = τ on dB2ri, ^ = 0 on dB and -Δ^ = ρ2Λ/ in B2n\B.
This gives for ρ small F^ (l — C(N, ρ)) τ in 5^. This is the only point that needs attention.
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