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Abstract

The analytic continuation of the exponential transform of a domain in Rn is proved under some global
geometric assumptions on the boundary. Two approximation schemes of the continued transform (one based
on a Taylor series truncation, the other on a global eigenfunction expansion) are also discussed.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The exponential transform, as defined below, is a renormalized Riesz potential μ ∗ |x|−n−α at
critical exponent α = 0, on Rn. This object has appeared in low dimensions (i.e., n = 1,2) in the
theory of moments of bounded densities μ, and has well served there as a tool in resolving various
inverse problems, see the monograph [13] and the survey [14]. Apparently the 1D transform was
discovered by A.A. Markov around 1880 in his analysis of extremal values of certain integrals
appearing in probability theory, see for comments [13].
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In the case of two real variables, all quadrature domains (in the sense of Aharonov and Shapiro
[1,15,16]) carry a rational exponential transform. This function encodes in an optimal way the
algebraic defining equation of the boundary of the quadrature domain and has different minimal
realizations (one of them in terms of the resolvent of a matrix, very much in the spirit of transfer
functions appearing in linear control theory). As a byproduct of this formalism a finite step
algorithm has the effect of transforming:

{moments of Ω} −→ {defining equation of Ω}.
This operation is exact for every planar quadrature domain Ω , see [4]. For arbitrary bounded

domains, an analysis of their approximation (in moments) by quadrature domains is reflected at
the level of the exponential transforms by a diagonal Padé type approximation.

The above (quintessential) transformation is of course familiar to all beneficiaries of the exact
or approximate inversion formulas for integral transforms of Riesz type, such as Radon trans-
forms and spherical mean type integrals [3,9–11]. It is also worth mentioning that there are
other deviations from the standard normalization of the α = 0 Riesz potential in the context of
Marcinkiewicz integrals, see, for instance, [12].

Besides the above application, the 2D exponential transform has proved to be useful in under-
standing the regularity of certain free boundaries [5].

An analysis of higher-dimensional exponential transforms was started in [7]. In dimensions
greater or equal than 3 some strong positivity features (such as log-subharmonicity) of the expo-
nential transform are lost, see [7,17]. However, on quadrics, convex polyhedra or spherical shells
the nD exponential transform preserves and reveals a very simple geometric feature: it selects,
based solely on distant moment data, a simple defining function for the boundary of the domain.
Note that Green’s function or other classical reproducing kernels attached to a domain of Rn are
not simple expressions of its moments (or equivalently of tomographic data).

The present note is concerned with a specific technical detail in the analysis of the nD expo-
nential transform of a domain Ω possessing a strictly convex component U in its complement.
Namely we prove the possibility of continuing the exponential transform across the smooth real
analytic portions of ∂U , coming from inside the cavity U . There is evidence, based on examples
and the better understood low-dimensional analysis, that this analytic continuation phenomenon
persists on more general real analytic smooth boundaries, cf. [6].

The efficient rational approximation scheme (diagonal Padé table), well known in dimensions
d = 1,2, is missing in higher dimensions. As possible alternatives we discuss (and illustrate on
examples) two different approximation schemes for the analytic continuation of the exponential
transform. These computations, although still conceptual at this stage, might be of interest for
further applications to shape reconstruction from finitely many data.

2. The exponential transform

We recall in this section the basic definitions, conventions and a few facts about the exponen-
tial transform. The reader can consult for details [5,7].

The (exterior) exponential transform of an open set Ω ⊂ R
n is defined for x ∈ R

n \ Ω as

E(x) = exp

[
− 2

|Sn−1|
∫

dy

|x − y|n
]
. (1)
Ω
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For x ∈ Ω there is a corresponding interior exponential transform H(x), which can, for exam-
ple, be defined as the inverse of a rescaled version of the exterior exponential transform of the
complementary domain

H(x) = lim
R→∞

1

R2
exp

[
2

|Sn−1|
∫

BR\Ω

dy

|x − y|n
]

(x ∈ Ω).

Here BR = BR(0) denotes the ball of radius R and centered at the origin. If Ω ⊂ BR, then there
is also the more direct representation

H(x) = 1

R2 − |x|2 exp

[
2

|Sn−1|
∫

BR\Ω

dy

|x − y|n
]
.

If ∂Ω is smooth and Ω is bounded, the integrals above can be transformed into boundary
integrals. Then the exterior and interior exponential transforms turn out to be given by exactly
the same formula:

E(x) = exp

[
− 2

|Sn−1|
∫

∂Ω

log |x − y|dθ(y − x)

]
(x /∈ Ω), (2)

H(x) = exp

[
− 2

|Sn−1|
∫

∂Ω

log |x − y|dθ(y − x)

]
(x ∈ Ω). (3)

Here dθ is the solid angle differential form, i.e., the (n − 1)-form defined in R
n \ {0} by

dθ(x) = ∗(x1 dx1 + · · · + xn dxn)

|x|n

= x1 dx2 · · · dxn − x2 dx1 dx3 · · · dxn + · · · + (−1)n−1xn dx1 · · · dxn−1

|x|n .

Above, and throughout this note we omit the wedge sign for the product of differential forms.
The star is the Hodge star and ∂Ω is provided with its natural orientation (as a boundary of Ω).
The interpretation of dθ is that if A ⊂ R

n \ {0} is a piece of a hypersurface then
∫
A

dθ equals the
area of the radial projection of A onto Sn−1, with multiplicities and signs taken into account. If
A ⊂ Sn−1 then

∫
A

dθ simply is the area of A.
If Ω is convex, then dθ(y − x) can, for fixed x ∈ Ω , be considered as a positive measure of

total measure |Sn−1| on ∂Ω . Hence H(x) can in this case be interpreted as the geometric mean
of 1

|x−y|2 over y ∈ ∂Ω with respect to dθ(y − x).

Example 2.1. For the ball Ω = BR(0), we have H(x) = 1
R2−|x|2 (x ∈ Ω) in all dimensions. The

expression for E(x) is slightly more complicated and depends on the dimension. For example,

E(x) = 1 − R2

|x|2 for n = 2, E(x) = |x|−R
|x|+R

exp[ 2R
|x| ] for n = 3.

For further examples, see [7].

3. Main result

The aim of the present section is to prove the analytic continuation of the inverse of the interior
exponential transform across strictly convex, smooth real analytic boundaries. Let Ω ⊂ R

n be
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a bounded domain. By saying that Ω has a smooth real analytic boundary we mean that there
exist a neighborhood V of ∂Ω and a real analytic function q :V → R such that

(∂Ω) ∩ V = {
x ∈ V : q(x) = 0

}
and such that ∇q 	= 0 on ∂Ω . When this is the case we shall always choose V and q so that q is
negative in Ω and positive outside:

Ω ∩ V = {
x ∈ V : q(x) < 0

}
, (4)

and also so that q is actually real analytic in a full neighborhood of V . With Ω , V and q as
above, we say that Ω is strictly convex if Ω is convex and if the Hessian of q is positive definite
on ∂Ω . The latter means that for every x ∈ ∂Ω and every ξ ∈ R

n \ {0},
n∑

i,j=1

∂2q(x)

∂xi∂xj

ξiξj > 0.

Theorem 3.1. Let Ω ∈ R
n be a strictly convex bounded domain with smooth real analytic bound-

ary. Then the there exists a real analytic function F defined in some neighborhood of Ω such that

F(x) = 1

H(x)
for x ∈ Ω.

In other words, F is a real analytic continuation of 1
H

.
On ∂Ω , F satisfies F = 0, ∇F 	= 0, hence serves as a global real analytic defining function

of ∂Ω .

Proof. Choose V and q as in the definitions preceding the theorem. We shall use the boundary
integral presentation of H ,

H(x) = exp

[
− 2

|Sn−1|
∫

∂Ω

log |x − y|dθ(y − x)

]
(x ∈ Ω),

and build upon the same basic idea as was used in the proof of Theorem 4.4 in [7].
Choose a point x ∈ Ω and a direction ω ∈ Sn−1. Then the straight line

L(x,ω) = {x + tω: t ∈ R}
through x with direction ω intersects ∂Ω in exactly two points. Let t = t1(x,ω) and t = t2(x,ω)

be the parameter values for these intersection points, ordered so that

t1(x,ω) < 0 < t2(x,ω).

The function t 
→ q(x + tω) need not be defined for all t ∈ R, but it is at least defined for
t close to t1(x,ω) and t2(x,ω), and it has simple zeros at these points. Thus we can factor
q(x + tω) as

q(x + tω) = (
t − t1(x,ω)

)(
t − t2(x,ω)

)
p(x,ω, t)

= (
t2 + a(x,ω)t + b(x,ω)

)
p(x,ω, t), (5)

where

a(x,ω) = −t1(x,ω) − t2(x,ω), b(x,ω) = t1(x,ω)t2(x,ω),
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and where p(x,ω, t) is a real-valued non-vanishing function defined for triples (x,ω, t) ∈ Ω ×
Sn−1 × R satisfying x + tω ∈ V . By (4) the polynomial t2 + a(x,ω)t + b(x,ω) has the same
sign as q(x + tω), hence we even have

p(x,ω, t) > 0. (6)

The roots t1(x,ω), t2(x,ω) and coefficients a(x,ω), b(x,ω) are defined for all (x,ω) ∈
Ω × Sn−1. We note that the roots are exchanged as ω 
→ −ω:

t1(x,−ω) = t2(x,ω) (7)

while the other functions are invariant under this map:

a(x,−ω) = a(x,ω), b(x,−ω) = b(x,ω), p(x,−ω, t) = p(x,ω, t).

If x ∈ Ω ∩ V we may choose t = 0 in (5), to obtain

t1(x,ω)t2(x,ω) = b(x,ω) = q(x)

p(x,ω,0)
. (8)

Next we note that, due to the strict convexity of Ω , the above analysis extends to Ω , i.e., we
may allow x ∈ ∂Ω . Indeed, if x ∈ ∂Ω and the line L(x,ω) is not tangent to ∂Ω , then one of
the roots tj (x,ω) is zero, and the other non-zero. Hence b(x,ω) = 0, a(x,ω) 	= 0. If L(x,ω)

is tangent to ∂Ω , then both roots are zero, hence a(x,ω) = b(x,ω) = 0. Most important is that
in each of these cases p(x,ω, t) > 0, in particular p(x,ω,0) > 0. For example, in the case of
tangency we have

q(x + tω) = t2p(x,ω, t).

Taking two derivatives with respect to t and evaluating at t = 0 gives

n∑
i,j=1

ωiωj

∂2q(x)

∂xi∂xj

= 2p(x,ω,0),

and here the left member is > 0 by assumption. In summary, (5), (6) hold for all (x,ω, t) ∈
Ω × Sn−1 × R satisfying x + tω ∈ V .

Now, in the boundary integral representation (3) of H(x) we can write

y = x + tω

with ω ∈ Sn−1 and t one of the roots t1(x,ω) or t2(x,ω). We prefer to use both roots simulta-
neously, and then every point y ∈ ∂Ω gets represented twice as ω runs through Sn−1. Therefore
we get, using (8)

H(x) = exp

[
− 2

|Sn−1|
∫

∂Ω

log |x − y|dθ(y − x)

]

= exp

[
− 1

|Sn−1|
∫

Sn−1

(
log

∣∣t1(x,ω)
∣∣ + log

∣∣t2(x,ω)
∣∣)dθ(ω)

]

= exp

[
− 1

|Sn−1|
∫
n−1

log
∣∣b(x,ω)

∣∣dθ(ω)

]

S
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= exp

[
− 1

|Sn−1|
∫

Sn−1

log
−q(x)

p(x,ω,0)
dθ(ω)

]

= − 1

q(x)
exp

[
1

|Sn−1|
∫

Sn−1

logp(x,ω,0) dθ(ω)

]
.

Thus H(x) equals − 1
q(x)

times the geometric mean of p(x,ω,0) over ω ∈ Sn−1.

Therefore the requested real analytic continuation of 1
H(x)

follows if we can show that

p(x,ω,0) has a continuation as a positive real analytic function to some domain U × Sn−1,
where U is a full neighborhood of ∂Ω . The function F in the statement of the theorem will then
be

F(x) = −q(x) exp

[
− 1

|Sn−1|
∫

Sn−1

logp(x,ω,0) dθ(ω)

]
(9)

for x ∈ U . The arguments used below are rather standard in the context of the Weierstrass prepa-
ration theorem, but for clarity we spell out most of the details.

That q is real analytic means that in a neighborhood of any point in its domain of definition V ,
q can be expressed as the sum of a convergent power series (its Taylor series at the point).
Equivalently, q is the restriction to the real domain of a complex analytic function

q(z) = q(z1, . . . , zn) = q(x1 + iy1, . . . , xn + iyn)

defined in a neighborhood of V in C
n. The above parameter t can therefore be allowed to take

complex values, which we then denote τ = t + is (t, s ∈ R, |s| small).
For fixed (x,ω) ∈ Ω × Sn−1, let

D(x,ω) = {
τ = t + is ∈ C: x + tω ∈ V, |s| < ε

}
with ε > 0 chosen so small that q(x + iτ ), as a function of τ , is analytic in a neighborhood of
D(x,ω). Note that D(x,ω) may very well be disconnected, but that it in any case contains the
points t1(x,ω) and t2(x,ω).

If ε > 0 is taken sufficiently small, then q(x + τω) will have no other zeros than t1(x,ω) and
t2(x,ω) in D(x,ω). Indeed, choosing D(x,ω) so that q(x + τω) has no zeros on the boundary

γ = ∂D(x,ω),

the number of zeros in D(x,ω) equals

1

2πi

∫
γ

d logq(x + τω) = 1

2πi

∫
γ

∂
∂τ

q(x + τω)

q(x + τω)
dτ,

which is a local constant under variations of γ . Thus for small enough ε > 0 only the real roots
will be in D(x,ω). Since Ω × Sn−1 is compact this ε > 0 can be taken to be independent of
(x,ω) ∈ Ω × Sn−1.

Now keeping D(x,ω) as above we can express the symmetric functions of tj (x,ω), hence
a(x,ω), b(x,ω) and finally also p(x,ω, t), as contour integrals over γ and with integrands only
involving q(x + τω). First we have
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t1(x,ω) + t2(x,ω) = 1

2πi

∫
γ

τ d logq(x + τω),

t1(x,ω)2 + t2(x,ω)2 = 1

2πi

∫
γ

τ 2 d logq(x + τω).

These expressions can be inserted into

a(x,ω) = −(
t1(x,ω) + t2(x,ω)

)
,

b(x,ω) = 1

2

[(
t1(x,ω) + t2(x,ω)

)2 − (
t1(x,ω)2 + t2(x,ω)2)].

Finally, the function (of τ )

q(x + τω)

τ 2 + a(x,ω)τ + b(x,ω)

is analytic in D(x,ω), and by (5) it equals p(x,ω, t) when τ = t is real. Therefore,

p(x,ω, t) = 1

2πi

∫
γ

q(x + τω)

τ 2 + a(x,ω)τ + b(x,ω)

dτ

τ − t
.

The above integrals are invariant under small deformations of the contour γ . Hence, when
studying the dependence of a(x,ω), b(x,ω), p(x,ω, t) on x, ω and t we can freeze the contour
γ (say γ = ∂D(x0,ω0)). Then it is immediately seen from the above representations that a(x,ω),
b(x,ω), p(x,ω, t) are analytic as functions of x, ω and t and can be extended to be complex
analytic functions in a neighborhood of Ω × Sn−1 in C

n × C
n. Clearly, p(x,ω,0) will remain

> 0 on U × Sn−1 for some neighborhood U of ∂Ω in R
n.

The last statement of the theorem is immediate from (9).
This finishes the proof of the theorem. �

4. Applications

We record below a translation of the main result and we also discuss two appropriate approx-
imation schemes.

4.1. Analytic continuation of EΩ

First, the complementarity formula (see Section 2)

EΩ(x)HU(x) = HΩ∪U(x) (x ∈ U)

yields the following result.

Proposition 4.1. Let Ω ⊂ Rn be a bounded domain and let U be a strictly convex, bounded
connected component of Rn \ Ω , possessing smooth, real analytic boundary. Then the function
EΩ(x) extends analytically from x ∈ U to an open neighborhood of U . Moreover, the extension,
still denoted EΩ , satisfies

EΩ(x) = 0, ∇xEΩ 	= 0 (x ∈ ∂U).
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Thus, if q is any global defining real analytic function of ∂U , non-degenerate along the bound-
ary

U = {
x ∈ Rn; q(x) < 0

}
,

we obtain the factorization

EΩ(x) = q(x)f (x), x ∈ U,

with a real analytic, non-vanishing function f defined on a neighborhood of U .

4.2. Approximation by eigenfunction expansion

In low dimension there are good approximation schemes for EΩ , with the benefits men-
tioned in the Introduction. In higher dimension, the following theoretical method seems to give
an appropriate theoretical method for approximating the exponential transform. The analytic
continuation via global expansions (usually with respect to well chosen orthogonal systems of
functions) is not new. We adapt below an idea developed in the case of a single complex variable
by H.S. Shapiro and the authors of the present note in [8].

We keep the above assumptions, and consider besides the cavity U a standard system of
neighborhoods of its closure, in Cn:

Vδ = {
z = x + iy ∈ Cn; q(x) < δ, |y| < δ

}
,

where δ is a small positive parameter. Note that by the very definition of the exponential trans-
form,

EΩ(x + iy) = exp

[
− 2

|Sn−1|
∫
Ω

du

(
∑

k(uk − xk − iyk)2)n/2

]

is well defined and complex analytic in the domain {x + iy; q(x) < 0, |y| < dist(x,Ω)/2}.
Proposition 4.1 asserts that this function admits an analytic continuation to Vδ , provided δ is
small enough. Fix such a parameter δ and consider the restriction map

R :L2
a(Vδ) −→ L2(U), Rf = f |U ,

defined on the Bergman space associated to Vδ (and the 2n-dimensional volume measure dx dy)
and with values in the Lebesgue space L2(U) associated to the n-dimensional volume mea-
sure dx.

Since U is relatively compact in Vδ , the operator R is trace class, and hence its modulus
admits a spectral decomposition

R∗R =
∞∑

k=0

λn〈·, fk〉fk.

The system of functions (fk)
∞
k=0 is orthonormal and complete in L2

a(Vδ) and in the same time
the system (Rfk)

∞
k=0 is orthogonal and complete in L2(U). The spectrum (λk)

∞
k=0 consists of

positive eigenvalues, of at most finite multiplicity, converging exponentially to zero, as one can
see from the identity

‖fk‖2
U = 〈Rfk,Rfk〉U = 〈R∗Rfk,fk〉Vδ = λk

and the min–max principle, see [8].



B. Gustafsson, M. Putinar / J. Math. Anal. Appl. 328 (2007) 995–1006 1003
Knowing that E = EΩ ∈ L2
a(Vδ) means that the Fourier series,

E(z) =
∑

k

〈E,fk〉Vδfk(z)

is convergent in L2
a(Vδ), hence it is uniformly convergent on compact subsets of Vδ . The main

point of using such a doubly orthogonal system is that merely the values E(x), x ∈ U, suffice for
computing the generalized Fourier coefficients:

〈E,fk〉Vδ = 1

λk

〈E,R∗Rfk〉Vδ = 1

λk

〈E,fk〉U .

The orthogonal decomposition

F(z) =
∞∑

k=0

fk(z)

λk

∫
U

EΩ(x)fk(x) dx

converges in L2
a(Vδ), and by standard analyticity arguments, it converges uniformly on compact

subsets of Vδ . Note that F(z) = EΩ(z) whenever z ∈ U .
This non-local analytic continuation method is rather classical, at least in one complex vari-

able, cf. [2,8]. There, in general, the functions fk turned out to be special functions adapted to
the geometry of the domain. We outline such and example.

Assume that the smooth, convex cavity U contains a cube � whose boundary may touch the
boundary of U :

� = [−1,1] × [−1,1] × · · · × [−1,1].
Let

Gρ =
{
u + iv ∈ C; u2

cosh2 ρ
+ v2

sinh2 ρ
< 1

}
, ρ > 0,

be the family of confocal ellipses with foci at ±1. According to Proposition 4.1, the exponential
transform EΩ extends analytically to a neighborhood of � in Cn. Hence there exists ρ > 0 such
that EΩ(z1, . . . , zn) is analytic in the domain zj ∈ Gρ , 1 � j � n.

An observation going back at least seven decades ago to Friedrichs (see for details [8]) asserts
that Chebyshev polynomials of the second type,

Uk(cos ζ ) = sin(k + 1)ζ

sin ζ
, k � 0,

are mutually orthogonal on all ellipses Gt , t > 0, and on the segment [−1,1] endowed with the
Chebyshev weight

√
1 − x2 dx. Thus, the modulus of the restriction operator

R : L2
a(Gρ × · · · × Gρ) −→ L2

(
�,

∏
j

√
1 − x2

j dxj

)

admits the spectral decomposition

R∗R =
∑
α∈Nn

λα〈·, fα〉fα,

where the scalar product is taken in L2
a(Gρ × · · · × Gρ).
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The non-normalized eigenfunctions are

fα(z1, . . . , zn) = Uα1(z1) · · ·Uαn(zn), α ∈ Nn,

and the corresponding eigenvalues are

λα =
‖fα‖2

L2(�,
∏

j

√
1−x2

j dxj )

‖fα‖2
L2

a(Gρ×···×Gρ)

.

A standard (conformal mapping) argument yields∫
Gρ

|Uj (w)|2 d Area(w) = π sinh(2(j + 1)ρ)

2j + 2
,

whence

‖fα‖2
L2

a(Gρ×···×Gρ)
=

n∏
k=1

π sinh(2(αk + 1)ρ)

2αk + 2
,

and in the limiting case (ρ 
→ 0)

‖fα‖2

L2(�,
∏

j

√
1−x2

j dxj )
= πn.

This gives explicitly

λ−1
α =

n∏
k=1

sinh(2(αk + 1)ρ)

2αk + 2
.

In conclusion, the analytic expansion of EΩ in a neighborhood of � is given by the series

EΩ(z) =
∑
α∈Nn

n∏
k=1

[
sinh(2(αk + 1)ρ)

2αk + 2
Uαk

(zk)

]∫
�

EΩ(x)

n∏
k=1

[
Uαk

(xk)

√
1 − x2

k

]
dx.

4.3. Taylor series expansion

The naive approach of using the Taylor series expansion of EΩ(x) at an external point
x0 ∈ Rn \ Ω (for continuing analytically EΩ across portions of the boundary ∂Ω) does not
look very promising for arbitrary shapes Ω . There are however specific configurations when this
method works. We present one of these cases.

Let B(a, r) be the open ball in Rn centered at a and of radius r > 0. Denote B = B(0,1). We
consider the domain

Ω = B
∖ N⋃

j=1

B(aj , rj ),

where the closed balls B(aj , rj ) are mutually disjoint.
The external exponential transform of a ball is known explicitly. Denoting Ed(|x|) = EB(x),

for B the unit ball in Rd and |x| > 1 we have

E1(r) = r − 1
, E2(r) = 1 − 1

2
,

r + 1 r
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and

Ed(r) = Ed−2(r) exp

[
2

(d − 2)rd−2

]
,

see Theorem 4.5 in [7]. The inner transform is also known:

HB(x) = Cd

|x|2 − 1
, |x| < 1,

where the constant Cd depends only on the ambient dimension d , cf. Theorem 4.4 in [7].
Let us choose in our example the cavity U = B(a1, r1) and denote for simplification Bj =

B(aj , rj ). Let us assume, to fix ideas, that n is even.
The already cited complementarity formula

EΩ(x)HU(x) = HΩ∪U(x) (x ∈ U)

yields, in the above case (of Ω being the unit ball minus finitely many disjoint spherical bubbles)

EΩ(x) = HB(x)

HB1(x)

1

EB2(x) · · ·EBN
(x)

, x ∈ B1.

In explicit terms, for every point x ∈ B1 we obtain

EΩ(x)
|x|2 − 1

|x − a1|2 − r2
1

=
N∏

j=2

[ |x − aj |2
|x − aj |2 − r2

j

exp

(
− 1

|x − aj |2 − 1

2|x − aj |4 − · · · − 1

(n/2 − 1)|x − aj |n−2

)]
.

A similar expression holds for n odd.
In conclusion, the Taylor expansion of the exponential transform EΩ(x) at a point x0 ∈ B1

converges beyond the boundary of the cavity ∂B1, on a radius |x − x0| < ρ, where ρ is the
distance from x0 to the other boundaries, specifically to ∂[Ω ∪B1]. Moreover, the above formula
shows that this analytic continuation of EΩ vanishes of the first order on ∂B1.
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