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Abstract. We consider a quasilinear Neumann problem with expopes}l, +ocf, in a
multidomain ofR™, N > 2, consisting of two vertical cylinders, one placed upon the other:
the first one with given height and small cross section, the other one with small height and
given cross section. Assuming that the volumes of the two cylinders tend to zero with same
rate, we prove that the limit problem is well posed in the union of the limit domains, with
respective dimensioh and N — 1. Moreover, this limit problem is coupled jf > N — 1

and uncoupledil <p < N — 1.

0 Introduction

LetN > 2,letw ¢ RY~!beabounded open connected setwith a smooth boundary
such that the origin ilR™~!, denoted by0’, belongs tow, and let{r,}, ..
{hn}, N D€ two sequences of positive numbers convergirty Eor everyn € N,
consider the thin multidomaif?,, = 2} U 22, the union of two vertical cylinders
with small volumes2! = r,w x [0, 1] with small cross section,w and constant
height,22 = wx] — h,, 0] with small heighth,, and constant cross section (see
figure next page).

This paper arises from the desire of studying the asymptotic behaviour, as
n — +oo, of the following model problem:
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wherep €]1,+oo[, F € LiT(wx] — 1,1)), X = (X1,---, Xn_1, Xn) =
(X', Xy) e RN andDx/V = AL

i X X, 0Xn_1)

It is well-known that this problem admits a unique solutign € W17 (£2,).
To study the asymptotic behaviour 6, }, ., asn — +oo, we introduce the
classical transformation mappin@,, onto the fixed domain? = wx] — 1,1]
(compare, for instance, [5], [6], [7], [14] and [17]) and set, for every N,

() = ug)(x’,xN) =Up(rn2’,zn), (2',zn)a.e.inf2; =wx]0,1;
" w2 an) = Un(2' hozy), (2/,2y)ae.inf2y = wx] —1,0[.

It is easy to see that, for every € N, w,, is the unique solution of the following
problem:

1 p P
min {jn(v) = / <U(1)|p +|=Dyv®| + ov n f”v(l) ot
2 Tn 895N
h 1 @ P
0.1 —n P D@ P 4 | — 0@ | da
©1) +TT]7Y_1 /(22 <|U 7+ 1Darv ™ + hy Oz N + Juv t
1)

v= (v, @) e WLP(2)) x WHP(§2,)

v (2’,0) = v @ (r,2,0), 2’ a.e. inw} ,
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v Ov
wherex = (.’L’l, te 7$N71,.TN) = (.’L'/,"L'N) S RN,DI/’U = (6'1517 N ,arjv_l>
and

Ful@) = F(rpz',zn), (2/,zy)a.e.infy,
T F( hpry), (2, xN) @e.ingls.
This paper is devoted to the study of the asymptotic behaviour,-as+oo,

of Problem (0.1). Precisely, by assuming that the volumes of the two cylitigfers
and{2?2 tend to zero with same rate, that is

hn
(0.2) lim —— = ¢ €]0, +o0]
LCO )
and by assuming also that
(0.3) fn — f weakly inL7-1 (),

(for instance, (0.3) holds true, up to a subsequendé df L>°((2)), itis proved in
this paper that

ult) — u strongly inW P (2;),ul? — u? strongly inWh?(£2,),
1 . _
—Dyul) — 0strongly in (L?(2,)V ',

Tn
1 aug)
hn 81’]\]

— 0 strongly inL? (£2,),

asn — +oo, where,
eif 1 < p < N—1,u® andu® are the unique solutions of the following problem:

1 p
; 1M = (1) P
Uu>655132(]o,u>{3 () = meas, /0 <|u (an)P? + )m
1
+/ <v(1)(xN)/fdx’> de},
0 w
: 2 (@) (2) (1) [P (@) (o
v(2>ent}[}2p(w){j (U ) /w<|v ()] +‘DI1} (z')
0
—|—/ <U(2)($/)/ fdzN) dx’},
w —1
respectively;

eif p> N —1, (uV,u?) is the unique solution of the following problem:

min {j1 (v(l)) +qj° (v@)) :

(0,0) e WH2(0,1) x WH(w), v (0) = v (0)}.

vV
(zN)
N

p) dx’

Moreover, in both cases the energies converge, that is

lim i (un) = ' (u®) + 72 (®).
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Consequently, sincé, (U,,) = 7Y =15, (u,), it follows that

n

lim J, (Uy,) = 0.

We point out that the limit problem is coupled by the conditidh’ (0) =
v®)(0’) and its solution depends anif p > N — 1. Otherwise, ifl <p < N —1,
the limit problem is uncoupled and its solution does not depengd bmparticular,
for N = 3, the limit exponent i = 2, so that the coupling is lost at the limit
for the Laplacian. Moreover we remark that the condition N — 1 is necessary
and sufficient for having(® continuous (and hene€é? (0') meaningful) for any
v® e WhP(w).
Indeed, the above-mentioned resultis just a corollary of a more general theorem
(see Theorem 1.1) proved in this paper. Precisely, for exery N, let u,, =

(uﬁf), uf)) be a solution of the following problem:

1 v
min {/Q (A (m,v(l), T—lev(l), 31;1\{) + fnv(l)) dr+
1 n

hy 2 5 1 0v® 9
+TT];[_1 /92 (A <x,v( ), Dyl ),E Oin + foo® ) da

v = (oM, @) e WP(02)) x WHP(£2,) : vV (2, 0) = @ (1,2’ 0)

z' a.e. inw},

whereA : (z,s5,&,t) € 2xRxRY1xR — A(x, s,€,t) € RisaCaratheodory
function satisfying usual convexity apegrowth conditions, withy €]1, +o00[ (see
assumptions (1.3 (1.4)).

Then, if (0.2) and (0.3) hold, there exists an increasing sequengecn C
N, (u®,u?) € WLr(]0,1]) x WP(w), (yM,y?) € LP (0,1; WL? (w)) x
LP (w; WLP (] — 1,0()) (see (1.13) for the definition), depending possibly on the
sequencén; }ien, such that

ul) — uM) weakly inW'P(2;), P — u® weakly inW?(£2,),

1 . _
— Dyl — Dyy™ weakly in (L7 (02, )N,

i

Tn;
1 ould)  ay® .
— 81;?\, - 81:1131\; weakly in L (£2,),

asi — +oo, and((u, u?), (y), y())) is a solution of a minimization problem
which depends og, if p > N — 1. Otherwise, ifl < p < N —1, the limit problem

is uncoupled and is decomposed in two minimization problems with respective
solutions(u(), y V) and (u®, y), which do not depend op In both cases the
limit problems are given explicitly and the convergence of the energies holds.
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. L . o1
We point out that, in this general setting, the weak limits-ef D, ") and
T’IL,; ‘
1 0 (2)

h i 83:N
! The proof of this theorem is performed in Sect. 4 and 5, by making use of the
basic ideas of thé'-convergence method introduced by E. De Giorgi in [11] (see
also [2] and [10] for general references aboutfheonvergence method, [1], [15]
and [16] in the context of thin structures, and [9] in the context of domain with
oscillating boundary). In Sect. 2 some compactness properties for the sequence
{un}, cn are obtained. These properties are based on Proposition 2.1. In Sect. 3
a density result is proved. We emphasize that the main difficulties arise in proving
Proposition 2.1 and Proposition 3.1. These difficulties originate from the junction
condition connecting the two thin subdomai$ and(22. Otherwise the paper is
very much inspired by [17].

A preliminary version of these results, concerning the model problem, but in-
cluding oscillating coefficients, was published in [12] with sketch of proofs.

We recall that [3] and [4] deal with the case of oscillating coefficients having
measure limits, but witt22 = (2 independent of. and with a simpler (purely
algebraic) transmission condition. For a general reference about homogenization
of thin structures, the reader is refered to [8].

In a forthcoming paper we study a similar problem for equations involving
monotone operators, by making use of the method of oscillating test functions
introduced by L. Tartar in [18].

are not necessarily equal @qcompare [17]), as in the model case.

1 Statement of the problem and main results

Let N > 2. In the sequelgx = (z1, - -,2y_1,2n) = (¢/,zxn) denotes the
generic point ofRY. Moreover, for a real functiom defined in an open subset
of RY and with weak derivativesD,v denotes thg N — 1)—vector function

v v

(6331"”’833]\;1)

Letw ¢ RV~! be abounded open connected set such that the origtrd'in*,
denoted by, belongsta, 2 = wx]|—1,1[, 21 = wx]0,1[andf2; = wx]—1,0[.

Letp €]1, +ooandA : (z,s,&,t) € 2xRXRY1xR — A(z,s,£,t) €R
be a function satisfying the following conditions:
(1.1)
A(-, s,€,t) is a measurable function a@, for every(s,¢,t) € R x RV 7! x R;

(1.2)  A(z,-,-,-)is a convex function olR x R¥~! x R, fora.e.x € £2;

[A(z,5,&,t)| < a(|s]” + [€]7 + [t]7) + a(),
(1.3) fora.e.x € 12, forevery(s,&,t) € R x RV x R;
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Az, s,&,t) = B(|s” + £ + [t]7) + b(z),
(1.4) fora.e.x € 12, forevery(s,£,t) € R x RV x R;

whereq, 3 €]0, +o00[ anda, b € L($2).
For everyn € N, letr,, h, €]0,400|, f, € Lot (£2) and consider the
following problem:

09 min, {KOCO) s e |
where

V= {00, 0) e Wh2(20) 5 W 2(22) : 0o, 0)
(1.6) = 0@ (r,a',0), 2’ a.e. inw}
and

1 (1)
KM oW e whe(0)) - A <x,v(1), — Do dv ) dx
2,

Tn " dzn
.7) + fovPdz,
2,
2
K® 0@ e Whr(0y) — A (x,v(Q),Drrv(Q), 180()) dx
25 hn 8.’17]\/
(1.8) + [ farPdae.
2

By virtue of (1.1) = (1.3), K\ and k(> are convex and strongly continuous
and, consequently, weakly l.s.c. Moreovil, is convex and strongly closed and,
consequently, weakly closed. Then, by making use of the coerciveness (1.4), it is
easy to prove that Problem (1.5) admits a solution.

The goal is to study the asymptotic behaviourpas> +oo, of Problem (1.5)
under the following assumptions:

(1.9) limr, =0 =limh,,
. hy
and

(1.11) fo — fweaklyin L7 (£2).
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Precisely, let

(1.12)

{(w®D,0@) e WhP(021) x WLP(2;) : vV is independent af’,
v? is independent %N} ifp<N-—1,

V= {(w,0@) e Whp(02y) x WEP(£2) : oW is mdependent af’,
v®) is independent af , U(l)(O) =v2(0)} ifp>N-1,
and
(L13) 2= 1P (0,1 Wh () x 7 (W2 - 1,00)
where

Whe (w) = {v e WP (w): /wvdx’ = o},

Whr (] —1,0)) = {ver’p(] —1,0[);/0 vdrn :0}.

-1

The following is our main result:

Theorem 1.1.Let, for everyn € N, (u;”,u;?)) € V,, be a solution of Problem

(1.5) under assumptior{$.1)+(1.4) and(1.9) + (1.11). Moreover, lel/ andZ be
defined by (1.12) and (1.13) respectively. Then, there exist an increasing sequence of
positive integer numbersy; }ien, (v, u®), (yM),y?)) € V x Z, depending
possibly on the selected subsequefeg ;cn, such that, ag — +oo,

(L14) () — ™ weakly inW 7 (1), u? — u® weakly inW ' (02,);

n

(1.15) 1p puld) — D,y weakly in (LP(2:))Y "

Tn;

(2) (2)
(1.16) L dun, 9y

weakly inLP ({25)

hn, Oxy  Ozy
and ((u™M, u®), (yV,y)) is a solution of the following problem:
(1.17) min {K(l)(v(l), D) 4 K@ (3 2(2))} ,
((U(l),v(z)),(z(l),2(2)))6V><Z
where
KW (oW W)y e W2 (02y) x LP (0, 1; WP (w)) —
1)
(1.18) / Al z,vW, DyzW, v dx + foMda,
o} 833]\/' o2

K@ (0@ 23y e WP (02y) x LP (w; WHP((—1,0))) —

32(2)
(1.19) / A (x,v(z), Do > de+ | foPdzx
2 TN 2
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Moreover the energies converge in the sense that

(1.20)
lim (KT(LU(U;D) N J’éan(z)(u@))) = KO W, 50 1 KO () ),
Tn — n n I I

Remark 1.2The convergence (1.20) holds true for the whole sequence, because the
limit is the minimum of Problem (1.17) and it is independent of the subsequence.
Moreover, if one assumes that

A(z,-,-,-) is a strictly convex function oR. x RV~ x R, fora.e.x € £,

then Problem (1.17) admits a unique solutign?, u(?), (y,y@)) e V x Z
and, consequently, the convergences (1:14)16) hold true for the whole se-
qguence.

Of course in this case, also problem (1.5) admits a unique solution.

Remark 1.3The limitproblem (1.17) is coupled by the conditiof) (0) = v(2) (0/)
and its solutions depend anif p > N — 1. Otherwise, thatisip < N — 1, the
limit problem is uncoupled and its solutions do not depend.are. (u,y;) and
(ug,y2) are solutions of

min K(l)(u(l),z(l))
(0™ ,zM)eW P ((0,1)) x LP (0,1; WP (w))

and

min KO u® )
(0(®),2() WL (w) x L (w; Wik ((~1,0)))

respectively.

Remark 1.4.1f A(z,s,&,t) = |s|P + |£|P + |¢|P, Problem (1.5) admits a unique

solution(ul”, u?)). By applying Theorem 1.1, it follows easily that

ul) ~ 4 weakly inWP(2,), u® — u® weakly inW'r(£2,);

1 . _
—Dyu) — 0weaklyin (LP(£2,))Y ",
T'n

1 8u%2)
E Oz

— 0O weakly inL? (£2),

asn — +oo, where(u"), u(?)) is the unique solution of the following problem:

! ov) b
min mea&J/ v (z3) P + ‘ (xn)| | dan
0 Ox N

(v w2)eV
» 0
+q/ <|v(2)(x/)\p+ ‘Dz/v@)(x’) )dx’+q/ (’U(2)($/)/ fde> da’ 3.
w w -1

1
+/O (v(l)(xN)/wfdm’) dry +
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Moreover, by using the convergence of the energies (1.20) with (1.10) and
(1.11), the Rellich-Kondrachov compact embedding Theorem and the uniform
convexity of the spacé? for 1 < p < +o0, it is easy to prove that the above
convergences occur in the strong sense, that is

uM — @ strongly inW P (£2,),  u® — u® strongly inW (£,
n aly ) n agly )

1
—DyuM) — 0 strongly in (LP(£2,))V 7,
Tn

1 auf)
h, dzN

— 0 strongly inL? (£2,),

asn — +oo.
We point out that in this case, since the limit problem admits a unique solution,
the convergences hold true for the whole sequence.

2 Compactness properties

In this section some compactness properties for sequences of solutions of Problem
(1.5) are obtained. These properties are based on the following result:

Proposition 2.1.Let{%,,}, . satisfy (1.9) ane{v@)} N C WP (§2). Assume
ne
that there existg €]0, +-oo[ such that

(2.1) v,(f) ‘ <ec¢, VYneN;
WLr(£22)
v
(2.2) ‘ ; <ch,, VneN.
N e ()

Then, there exists an increasing sequence of positive integer numbgrs N,

v e WP (§2,), depending possibly on the selected sequemce;cn, such
thatv(® is independent of 5 and

(2.3) vl — v weakly inW'?(12,),

asi — +oc. Moreover, if{r, }, . satisfies (1.9), ir{ } satisfies (1.10)
neN

n
rrjlv_l
andifp > N — 1, then

(2.4) hm/ (1, @', 0)dz’ = |w|v@(0").
Proof. By virtue of (2.1), there exist an increasing sequence of positive integer

numbers{n;};cn andv® € WP (12,) such that (2.3) holds. Moreover (1.9),
(2.2), (2.3) and a |.s.c. argument providé independent of .
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Assume nowp > N — 1. To prove (2.4), for every, € N set

p
v? (gc’,xN)‘ ) dr', zy a.e.in] —1,0].

p
pg)(ﬂCN):/ (‘DI,07(L2)(36/7$N)‘

By virtue of (2.1),

0
[t (o s
1

<e¢, VYneN.

W1=p(92)

Consequently, by applying Fatou Lemma, it follows that

0
/ hmmfp( )(xN)da:N < hmlnf/ xN )dxn < c,
-1

from which it follows that
(2.5) 0 < liminf p{? (zn) < +oo, zy a.e.in| — 1,0,
Fix Ty €] — 1,0[ satisfying (2.5). Then, passing possibly to a subsequence of
{n;}ien (depending only o y), {pn, (T )} N is bounded if0, +o0], i.e.
S

(2.6) {vfi)(yEN)} . is bounded iV P (w), up to a subsequence
1€

Since (2.3) and the compactness of the trace mapping providéii’(amN) —
v strongly inL?(w) asi — oo and sincéV ?(w) is compactly embedded into
C°(w) forp > N — 1, it follows from (2.6) that

(2.7) v (-, Zn) — v strongly inC®(@), asi — +oo.

Now, observe that

/ (2)(rn1x 0)d / nl (rp,z',0) — (2)(r :Jc)) dx’ +

+/ 0@ (rp, 2’ )dz' = / vn%,) (rp,z',0) — v,(i_) (rnix’,fN)) dz’ +
w w

(2.8) +/ (Ugi)(rml’/,fN) —U(Z)(Tniaj/)) de’' +
w

+ [ v (r,,a")da’, Vie N,

As regards the first term in the right hand side of (2.8))dér’s inequality and
assumptions (2.2), (1.9) and (1.10) give
| (620020 = o ' 7)) di| <

lim
i
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N— 1

U

p=1 ch,, p—1 Ton, w
< (measw) 7 lim —= = c(measw) » hr_n< Tn, =0.
“p [

As regards the second term in the right hand side of (2.8), convergence (2.7) gives

/ (U,(fi) (rn, 2’ Zn) — 0@ (rnix’)) dz’

lim
i

1
(210) < 11111( N1 / ’U»SZ-)(:I;,,EN) —U(Q)(x/) dx/) <
v Tn; T, W
< measw lim vaﬁ_)(-,f]\;) —~ ’U(Q)(.)HL o 0.

As regards the last term in the right hand side of (2.8), siftec C° (@),
(2.11) lim / 03 (1, 2")dz' = |w|v@(0).

Finally (2.4) is obtained by passing to the limit, as+ +oo, in (2.8) and by
using of (2.9% (2.11). O

Inthe following lemma, some a priori norm-estimates for sequences of solutions
of Problem (1.5) are obtained.

Lemma 2.2.Let, for everyr € N, (v, u'?) € V;, be a solution of Problem (1.5)

under assumptiongl.1) = (1.4), (1.10) and (1.11).Then, there existg]0, +oo|
such that

(2.12) ’ ulV) ‘ <eg¢, ‘ u? ‘ <c, VnelN;
Wl,p(Ql) W1=p(92)
2.13 Dyl <crn,, VneN;
( n
(Lp())N 1

P (2)
(2.14) tn <ch,, VneN.

aIN

LP(£2;)
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Proof. Since(0,0) € V,,, by virtue of (1.3) it results that

hn ha,
K (“S)> * mef) (“g)) < KV(0) + x5 K2(0)

hTL
(2.15) S/ adx + ﬁ/ adr, VYn € N.
Ql Tn QZ

On the other hand, by virtue of (1.4) it results that

K (uw) b K (u2) 2
Tn

@ P
> ﬁ ‘ Uy, i z/ (1) ‘p Oun +
- Lr(@)  Th BRUCICDRR R P
hn P duy;)
R ‘uf) Ly(02 +HD$, L(2)N-1  hE 8:: +
Tn (£22) (LP(£22) N L2
hn,
(2.16)+ bdr + —— bdx —
21 Tn 2
h
(1) n ‘ <2>‘ Vn e N.
(‘ Up Lo (1) rr]y_l n LP(Qg)) 2618 ||fLHLﬁ(Q) n e

By combining (2.15) with (2.16) and by making use of (1.10) and (1.11), it
follows that there exists; €]0, +oo[ such that

P 1 8u511)
‘US) e rh Doy (LP(21))N -1 ‘83:1\/ +
(91)
(2)
T e A
Lr(2:) (Lr(422)) N o
Sq( ‘uf) ) Vn €N,
Lr($21) Lr(£22)

from which it is easy to obtain (2.12(2.14). O
Proposition 2.1 and Lemma 2.2 provide the following compactnes result:
Corollary 2.3. Let, for everyn € N, (u,(}),uff)) € V,, be a solution of Problem

(1.5) under assumptiond.1) + (1.4) and (1.9) + (1.11). Moreover, letV and
Z be defined in (1.12) and (1.13) respectively.Then, there exist an increasing se-

quence of positive integer numbérs }ien, (u™), u(?) € Vand(y™, y?) € Z,
depending possibly on the selected subsequence, such that; asxo,

(2.17) ul) — u® weakly inW P (21), ul? — u® weakly inW'?(12,);

1 . _
(2.18) —Dyul) — Dyry™ weakly in (L7(£2,))V

Uz
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1 ou? ay®

2.1 —
( 9) hm 8.13]\/ al‘N

weakly inLP (£2) .

Proof. By virtue of (2.12), (2.14) and Proposition 2.1 there exist an increasing
sequence of positive integer nuMbgrs };en, and (u(M, u®) € WhP(0;) x
WLr(£2,) depending possibly on the selected subsequence, such that (2.17) holds,
u® is independent of ; and

(2.20) hm/ (rn,a’,0)dz’ = |w|u®(0'), if p> N —1.

Moreover, (1.9), (2.13), (2.17) and a |.s.c. argument provideé independent of
2'. Then, ifp < N — 1, (™, u?) € V. To prove thatu™,u(?) € V also in
the cas@ > N — 1, it remains to check that

(2.21) uV(0) =u®@(0), if p>N—1.

At first observe that, by (2.17),

(2.22) hm/ (',0)dz’ = |w]uM(0).

Then, (2.21) is obtained by passing to the limit in the following relation:
/ ulM (2, 0)da’ = / uP (ry,2’,0)dz’, VieN

and by using (2.20) and (2.22).
In order to prove the existence gf!) € L? (0,1; WL? (w)) satisfying (2.18),
for everyn € N set

m{ (zy) =

() (! da’ a.e.inj0, 1.
measw/wun (' xn)da’, xn 10, 1]

By virtue of the Poincar-Wirtinger inequality, there exists €]0, +oo[ (depending
only onw and not onz ) such that

= (D) — m ()

T'n

c
<L

H l L () Tn
(2.23) zy a.e.in0,1[, VneN.

By combining (2.13) with (2.23), it follows that there exists<]0, +oo[ such that

1
-
Tn

We notice thatZL? (0,1; W,,? (w)) is a closed subspace & (0,1; WP (w)).
Consequently, passing eventually to a subsequence of the previous selected sub-
sequence, still denoted Hy:, }ien, it follows from (2.24) that there existg!) €

LP (0,1; Wp (w)) such that

Dz’ugzl) YT H ’
SR

<c9, Vn€eN.

(2.24) ‘
L2 (0,1;W" (w))

- ( o 5}>) — y weakly inL? (0, 1; WL (w))

i
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asi — oo, from which (2.18) is obtained. Similarly, the existenceyd? <
LP (w; WP (] — 1,0])) satisfying (2.19) can be proved

3 Density properties
Let
V= {(v(l),v@)) e Wh(02)) x WH>(£2,) : vV is independent of,
(3.1) v isindependent of vy, v (0) = v<2>(0’)} .
This section is devoted to prove the following density result, which will be used in
the proof of Theorem 1.1.:
Proposition 3.1.LetV andV be defined in (1.12) and (3.1) respectively. Then

is dense i/ in W1P-norm.

Proof. Inthe cas@ > N —1, the proofin very simple. Infact, l¢v(1), v(2)) € V
WP ()0, 1]) x WhP(w). If v andv(® denote also extensions of thendii' ?(R)
andW?(RN-1) respectively, them™ ¢ C°(R) andv® ¢ CO(RN-1). Con-
sequently, by setting, for everye N,

oM = plD 5 v 1MW (0) — pI (1 (0) in R,

v = p@ 4@ L@ (0) — pP x @ (0) in RN,

where{pgll)} N and{pﬁf)} , denote sequences of mollifiersithandR ™ !
ne ne

respectively, it results thav', v{?) € V and
(M, 02y = (v 0@ strongly inW P (]0, 1[) x WP (w),

asn — +oo.

In the casep < N — 1, the proof in more complicated. In this cadé,=
Wtr(]o,1[) x WhP(w) andC*([0,1]) x C'(w) is dense in/. In order to prove
the assertion of Proposition 3.1, it is enough to prove that

v, @) e ¢1([0,1])C @)

3 {(1}(1) 0(2))} L CWER(01) x W) 1 oD (0) = v (0')vn € N,
ne

n Jr'n
v — vy strongly inW?(]0,1[), v{?) — v, strongly inW?(w).

Let (v, v(®)) € C1([0,1]) x C1(@). For everyn € N, definev’” = v in
10, 1[. Moreover, for everyr € N, consider twq N — 1)-dimensional ball$(s,,)
andB(n,,) with centerd’ and radii to be determinated later on, and such that

(3.2) 0<en<nm VYneN and limn, =0.

Now definev’? in w by

v = oM(0)in B(e,), 02 = @™ (0) 4+ (1 — ¢n) 0@ in B(n,)\Bl(e,),
v = 0@ inw\B(n,),

n
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whereyp,, is an interpolation function to be determinated later on and such that

(33)  pueC (B)\Blen), 0<pn<1inBl)\Blen),
on =10n0B(e,), @n=00n0B(n,).

It is clear that{(vﬁb),v,(f))} L C Whe(]0,1[) x Wh(w), v (0) =
ne
vﬁf)(o’) for everyn € N andv’” — v, strongly inW1tr(]0,1[), asn — +oo.
We prove now that, for convenieft,, }, ., {70 } e @NA{ 00 },, o SALiSying

(3.2) and (3.3)p'?) — v® strongly iINW?(w), asn — +oo. In fact, by virtue
of (3.2) and (3.3), it results that
: dx') <

—Jim ( / \um(o) - v(z)’pdx'+ / o2 [v®(0) — @
" B(nn)\B(en)

< H M(0) — v(Q)H o lim measB(7,) = 0.
Loe w n

On the other hand, by virtue of (3.3),

/ ‘Dw(f) — Dv®@ ‘pdx =

:/ ‘Dv(z) ’pda:’—k/ ‘(anv(Q) + (v(l)(O)—v(Q)) Dgon‘p dz' <
Blen) B(nn)\B(en)

<27 ||pu®@ ] measB (n,,) +
- (Lo (@) N o

+or va(o) D |P da,

Lee(w) /an)\B(sn)
Vn € N.

Then, sincdim,, measB(n,,) = 0, in order to complete the proof it is enough to
choose{e, },, cnr 170 fnen @NA{0n }, o Satisfying (3.2) and (3.3), and such that

(3.4) lim |Dp, | dx’ = 0.
" B(nn)\B(en)

1 2
Inthe case < N —1, for everyn, one can take,, = L andp, (') =
ndist(z’,0B(n,)) = 2 — n|z’| for 2’ € B(n,)\B(e,). Since|Dy,| = n, this
gives
1

lim |Dp,|P de’ = measB(1)(2V ! — 1) lim ——— =0,
R TESIVCICS o

whereB(1) is the(N — 1)-dimensional ball with centd¥ and radiusl.
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In the casey = N — 1 (remark that in this cas& > 3), for everyn € N,
one can choosg,, as the solution of thé/N — 1)-capacity problem oB(e,,) with
respect taB(n,, ), that is the solution of

min{/ |D<,4N_1 dx’: ¢ € C’é(B(r]n)), p=1inB(e,), 0<p< 1} .
B(nn)

It is well known (see [13], example 2.12. page 35) that,fop> 3,

n

2—N
/ |Dg, |N ! dz' = measdB(1) <log 77") , VneN.
B(nn)\B(en) €
Consequently, in order to obtain (3.4) with= N — 1, it is enough to take, for
1
everyn € N, g, = — andn, = —. O
n n
Recall the following known result:

Lemma 3.2. C'(;) x C'(£2,) is dense in LP(0,1;W'? (w)) x
LP (w; WP (] —1,0])).

4 The convergence result
In this section we prove the following result:

Proposition 4.1.Let, for everyn € N, V., K, K\, KO and K, be
defined in (1.6), (1.7), (1.8), (1.18) and (1.19) respectively, under assumptions
(1.1) =~ (1.4) and (1.9) + (1.11). Moreover, letV be defined in (3.1). Then,
for every (v, v@) € V and (21, 2?)) € C'(21) x C'(%), there exists
{(vfll),v,(f))} | with (Wi, v € V, and such that, fof = 1,2,

ne

lim K9 (v) = KO (p® 20,

Proof. Let (v, v?) € V and(2(1, 2?) € C1(2)) x C(125).
For everyn € N, set
(s (@, ) + 00 e) 2
+ (hn2® (rpa’,0) + v (r,a")) S
z = (2',xn) € wx]0,e,],
rpzW(z) + W (zy), z=(2',2y5) € wx]en, 1],

o) =

v () = hp2@(z) + 0P (2)), =€ 2,
where{e, },.n CJO, 1] is a sequence to be determitated later on and such that

(4.1) lime,, = 0.

Itis evident that, for every, € N, (v,(ll), vﬁf)) € V.
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Since @

1 Ovy 82

hn al‘N 8,@]\{ n &2 vn €
and, by (1.9),

v® — 0@ strongly inLP(£2,),

Dyv® — Dyv® strongly in (LP ()N ", asn — +oo,

it results from the continuity afl with respecttds, £, t), (1.3), Lebesgue Theorem
and (1.11) that

(4.2) lim K2 (v@) = K@ (1@ 22,
It remains to show that
(4.3) lim KM (M) = KO (M) W),

At first, remark that

1 81}%1)
KD // (x e 7DW§L G | et
y / s+
1) (1)
// (x 2D + 0 Dy M rnaz + dv >daz+
o oxn Ooxn
+// rnz(l) —|—v(1)> fMde =
En
// D ’U(l) 8vn dx+//5n f(l)U(l)d:E—i_
Tn o wdo T

(1) (1)
(4-4)+/ A (x,rnz(l) +v(1),Dm/z<1),rnaZ N o >dx+
o}

é)xN al‘N
Jr/ (rnz(l) Jrv(l)) fr(,ll)d:c +
Lo

en 921 5D
_/ / 4 (x’rnz(l) + U(l)va’Z(1)7Tn é + ; ) et
w JO 8xN 8551\,

En
—// (rnz(1)+v(1)) fWdz, VneN.
w JO

The task, now, is to pass to the limit,as— +o0, in the last six integrals of (4.4).
Since, by (1.9),

2z + 0 — oM strongly inLP(£2,),

920 oM 9 .
(4.5) Tn Oin + Dzn — T strongly inLP($2;),
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asn — +oo, it results as previously that

1 1
A (-,Tnz(l) 4o, D,y 9z N vl ))

" 8xN al'N
1
— A0 Dy 0vy
) ) ) axN

(4.6) strongly inL'(£2,), asn — +oo.

Then, from (4.6), (4.5) and (1.11) it follows that

1) 1)
lim (/ A (a:,rnz(l) + v(l), lez(1)7rn827 + v ) dr+
(o2

n 8xN 8:6]\7

4.7) Jr/ (rnz(l) Jrv(l)) fy(Ll)d:E> = KW M W),
2,

In order to prove (4.3), it is enough to show that the remaining integrals in (4.4)
converge to zero.
Since, by (4.1),

Xwx]0,e,[ — 01N L7°(§2,) weaks, asn — +oo,

wherex,, «jo,c,.| denotes the characteristic functionwk |0, &, in 2y, it follows
from (4.6) that

€n (1) (1)
lim/ / A x,rnz(l) + U(l), Dx/z(l),rnaZ— + v dr =
n JwJo oxn TN

-1 5D
= lim <A (x7rnz(1) + oM, Dz/z(l)JnZ— + v)
n o) 6$N (9%‘1\[

(48) wa](),en[> dr =0.
As regards the last integral in (4.4)pkder’s Inequality, (1.9), (1.11) and (4.1)

provide that
En
// <Tnz<1>+v<1>) FWDdg| <
w J0

1

<( v

lim
n

o
p—1 (.Ql)

1
(4.9) lim <€p ( H UH + Hv(l)H )) = 0.
n Lo (821) L>(]0,1[)

In order to prove that
(4.10)

(1) n
hm// z, oM, L Dx/v(l),% d:v+/ /(S F Mgy =0
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since, by virtue of (1.3), (1.11) anddtler’s inequality,

( D b, ?{;}" )d —|—// FyM el <
p
<a// (\ <1>\ o] o [2 +a<x>)dm+
orn o
En o) i
p / / U(l) AN R Vn € N,
Lﬁ(nl) wJ0
it is enough to check that
- "l ~ "1 lp.mf
(4.11) lim v lim —Drv,, =0
n w J0 n wJ0 Tn
and
En avr(zl) p
4.12 lim// =0.
(4.12) S
Since, for every: € N,
0] < s |« .
Loo(821) L>°(]0,1]) Lo°(£25)
Hv(2)H in wx]|0,e,],
LOC
Lo, < o) ¢ o]
T'n (Lo=(2q))N -1 (Lo (£22))N 1
+HDU(2)H(L oy a.e.inwx]0,e,],

convergences in (4.11) follows immediately from (1.9) and (4.1).
In order to prove (4.12), remark that, sing¢é) (0) = v(?(0’), we have for any
n € N,

o
Ba:N -
1
= a2z (@ en) + 00 (en) — hp2® (rpa’, 0) — v (rpa’)| =
n
1
= — rnz(l)(x',sn) — hnz(2)(rnx', 0)+
En
en 5p()
+ / Ov dz + v (0) —v@(r,a')| <
o Oz
< 1 <rn z(l)H + hy Z(Z)H
€n L= (421) Lo (822)
ov :
+en Y + cLip\x’hﬂn a.e. inwx]0,e,],
N lpeeqo.ap
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wherecy i, is the Lipschitz constant of(?), Consequently, by virtue (1.9) and
(4.1), convergence (4.12) is obtained as soor{g%} and {g”} are
neN n ) neN
bounded. By virtue of (1.10), this happens if one takes, for instance, r,,.
Finally, by passing to the limit, a8 — +oo, in (4.4) and by making use of
(4.7)-(4.10), convergence (4.3) is obtained. O

5 Proof of Theorem 1.1

Corollary 2.3 provides the existence of an increasing sequence of positive inte-
ger numbergn; }ien, (uM, u®) € Vand(y™M,y?) € LP (0,1, WLP (w)) x
L? (w; WLP (] — 1,0])), depending possibly on the selected subsequence, satisfy-
ing convergences (1.14)1.16).

In order to prove thaf(u™), u®?), (y, y(?))) solves Problem (1.17), remark
that, by virtue of (1.1}(1.3), the functionals

(v,w,t) € LP(£2;) x (LP(2)N ™1 x LP(12;) —>/ Az, v,w,t) dz,

for i = 1,2, are convex and strongly continuous so they are weakly l.s.c.. Conse-
quently, from (1.10), (1.11) and (1.14§1.16) it follows that
(5.1)

KO (@, 50) 4K @, y®) <l inf <K<l>(u<1>) L gy <2>)>

Tni
On the other hand, by virtue of Proposition 4.1, for every), v?) € V and
(1, 2) e C1(2)) x C1(125), there eX|st<{ (@S ,v,?))} with (05", v))
neN
€ V,, and such that

(5.2) lim KM (M) = KO @M ) 1im K& (02) = K@ (3 2?),

Then, since(u;1 LU 2 ) solves Problem (1.5), convergences (5.1), (5.2) and
(1.10) provide that

KW ®,yM) + g u®,y®) <
ha,
< lim inf <K§L{>(u;ﬁ>) + 5 KO (ugg))) <

B,
R )) <

Ty

< limsup (K( ) (u (1))

< KDWYy 4 qk@ (@ 22),
VL, 0@y eV, v(W 23) e (1) x O (),
from which, by making use of Proposition 3.1 and Lemma 3.2 and by recall-

ing that KV, K are strongly continuous, it follows that the above inequali-
ties are also true for anfp™,v(?) € V and (2(V), 2(?)) € Z. Consequently,
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(u®,u®), (yM,y?))) solves Problem (1.17) and, by taking the infimum over
(v, 0®@), (2™, 2(2))), it results that

. hnl
i () + R D)) = K w0+ i ),

nq

Since this limit is the minimum of problem (1.17) and it is independent of the
selected subsequence, the convergence holds true for the whole sequence and (1.20)
isproved. O
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