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1. CLASSICAL BALAYAGE 

The french verb “balayer” means “sweep”, “clear dust away with a brush”, “clean”, 
and “balayage” is the corresponding noun. In potential theory (classical) balayage, or 
“Poincari: sweeping”, refers to the operation of replacing a mass distribution p > 0 in a 
(say bounded) domain I> c FBN (N > 2) by a mass distribution v  on the boundary dD 
without changing the external gravitational potential. The latter means that 

U” = up outside D, 

where, generally speaking, U p = E * ~1 denotes the Newtonian potential of p (so that 
-AUp = p) and E is the Newtonian kernel. 

In the cleaning terminology classical balayage thus corresponds to a kind of complete 
cleaning of a room D from its layer ~1 of dust. In the present survey paper we shall 
discuss the relatively new notion of partid balayuge, corresponding to just partial cleaning, 
a residual layer of dust of a prescribed maximum thickness being allowed. 

Let 
u = Bal(p) 

denote the classical balayage v  of ~1 with respect to D. The most straightforward way of 
constructing u is by noticing that the function u = U P - U” will have to solve the Dirichlet 
problem 

-Au=/L in D, 

u=o on FPN 1 D. 

Then I/ = p+ Au, A taken in the distributional sense in all WN, or (if p has no mass on 
t3D) , 

u = (Au)lao = -2 ds, 

where ds denotes hypersurface measure on 8D and au / dn is the outward normal derivative 
of UJD. 
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There are several other ways of getting hold of v  = Bal(p), or U”: 

(i) I/ is the unique solution of 

where I14,ergy = Jj- E(r -Y)M~W(Y), th e competing I/ ranging over all positive 
(or even signed) measures in RN \ D with compact support and finite energy. 

(ii) U” is (the lower semicontinuous regularization of) the smallest function V in RN 
satisfying 

v 2 lJ@ on RN 1 D, 

-AV>O in W N . 

In other words, U” is the so-called reduced function (“reduite”) of Up with respect 
to RN \ D. 

(iii) U” is the largest function V satisfying 

v < U’ in RN, 

-AT/<0 in D. 

Some mild regularity of dD is assumed above. 

The concept of balayage goes back at least to Gauss. We refer to [2] for details, both 
mathematical and historical. 

2. PARTIAL BALAYAGE 

For partial balayage one also has a prescribed density function p E L”(D), p 2 0. It 
is natural to set p = +co outside D, and then the information of D is built into p. The 
partial balayage of p > 0 with respect to p, 

is defined as the solution Y of 

Minllp - ~l[z,~~s,, : 1/ 5 p in D (2.1) 

(we identify p with p times Lebesgue measure). 
This definition requires that p has finite energy. Another definition which does not 

assume this is: 
Bal(p; p) = -AVP (in RN), 

where VP is the largest function V satisfying 

v < up in RN, 

-AV<p in D. P-2) 



Second World Congress of Nonlinear Analysts 2559 

It is not hard to show that such a largest function Vfi exists. It coincides with U” outside 
D and by a Perron family argument one also finds that 

-AVP = p in the open set {V@ < Up} c D. (2.3) 

Thus the two inequalities in (2.2) are complementary (at each point there is equality in at 
least one of them) for the actual largest V 1. This complementarity statement is equivalent 
to a variational inequality, which is the variational formulation of the minimization problem 
(2.1). Therefore the two definitions of partial balayage are equivalent. Since Vf’ has the 
behaviour of a potential at infinity, we have VP = U” with v  = Bal(p; p). Details for all 
the above, and also for most of the subsequent, material on partial balayage can be found 
in [6]. See also [ll]. 

By definition, Bal(p; p) 5 p in D, and one may also prove that min(p, cl) 5 Bal(p; p) 

in D, P L Bal(p; P> outside D. One further natural property is that partial balayage can 
always be performed in smaller steps, for example 

Bal(Balbl; ~2) + ~2; ~1) = Bal(pl + ~2; PI) (2.4) 

holds if pr < p2 + ~2. 
As to the structure of Bal(p; p), let fl(/.~; p) d enote the “saturated” part of D, namely 

Q(p; p) = the largest open subset of D in which Bal(p; p) = p. 

Then, under some light regularity assumptions (p E L” is enough), 

in D. In “good” cases the second term drops off and Bal(p; p) takes, inside D, the pure 
form 

Bal(v; P> = PXQ(~;~). 

This occurs if ~1 is concentrated enough, e.g. if ~1 is singular with respect to Lebesgue 
measure or if ~1 2 p on some open set and p = 0 outside it. It also holds if, for some open 
ball B, p(B) > 2NIBI s;pp and p= 0 outside B [ll, 151. 

As with classical balayage (which is the case p = 0 in D) p H Bal(p; p) may also 
sweep some part of DID onto 8D. It is not necessary in partial balayage to assume that 
supp p c 0, but we always assume that ~1 has compact support in RN. Outside a, 

Balb; P> = c”. 
Note that the set Q; pj is unknown from the beginning, so partial balayage is effectively 

a free boundary problem. A direct statement of this free boundary problem in terms of 
the function u = Up - VP is (assuming for simplicity ~1 E L”, in which case u will be 
continuously differentiable in D) 

uyo in RN, 

u=o on RN \ D, 

Au=p-~1 in {U > 0) c D, 

u = jvu( = 0 on (a{u > 0)) rl D. 
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In addition it is required that the unknown set {U > 0) contains the set where p > p, 
Notice that {U > 0) c C@;p) by (2.3), and typically these two sets actually coincide. 

Historical remark: The idea of partial balayage goes back at least to the work in the 
1960s of the Bulgarian geophysicist D. Zidarov [20], who also developed an intuitive and 
efficient numerical process for it, sometimes called “Zidarov bubbling” (cf. also [9]). In 
this process the mass distributions p,p etc. are represented as functions on a numerical 
lattice (EZ)N ( re pl acing RN), and the “bubbling” process, which is a discrete version of 

P H Bal(p; p), goes by moving around indefinitely in the lattice and each time a lattice 
point at which p is larger than p is encountered the exceeding mass p - p (or part of it) is 
redistributed equally on the 2N closest neighbours. This process can be shown to converge. 

Later on (and independently) corresponding ideas and methods, for the nondiscrete 
version, were invented and put on a firm mathematical basis by M. Sakai [13, 14, 61 and 
others in connection with construction of “quadrature domains”. 

Parallel to all this there has been a development in abstract potential theory with cre- 
ation of concepts of mixed envelopes [l] which appear to be very close to partial balayage. 
In fact, the definition (2.2) can, in the notation of [l], be written 

Bal(p; P> = P - P, 

where p 4 p is the mixed lower envelope of p and p. (We have here changed the framework 
of [l] slightly.) 

3. EVOLUTION VERSION OF PARTIAL BALAYAGE AND HELE-SHAW FLOWS 

For partial balayage the set D may very well be unbounded, and indeed D = RN is a 
case of major interest. I f  D is unbounded one has to assume that p is not too small at 
infinity in order to ensure that Bal(p; p) h as compact support (p > const. > 0 is enough). 

In the sequel we shall concentrate on the case 

D=WN, 

p = c = constant > 0. 

In this case one can, using the “moving plane method”, prove a beautiful geometric prop- 
erty of BaQ; c): For any closed half-space H which contains supp ~1 the part of Bal(p; c) 
which falls outside H is of the form cXfi\H (where Q = Q(p; c)) and 0 \ H is a subgraph 
of a real analytic function when viewed from H. In addition, the reflection of R \ H in dH 
is contained in R. If, e.g., H = { 2 : xN < 0) the first statement means that 

R\H={X:O<XN<‘P(XI,...,XN-I)} 

with p real analytic. 
Let Ii’ be the closed convex hull of supp p. Applying the above result to all half-spaces 

H containing K it follows that, outside K, Bal(p; c) is of the form CXQ, (80) \ K is real 
analytic and 

for any z E (8Q) \ K th e inward normal ray of dR at z intersects K. (3.1) 
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Thus we have both regularity and geometric information about dfi outside K. 
Instead of regarding partial balayage as an instantaneous operation one may turn it into 

a continuous process by introducing a time parameter t. If one is interested in Bal(p; c) one 
might, e.g., look at p(t) = Bal (IL; eet ) where t goes from -co to - log c. For t = - log c, 
p(t) = Bal(p;c) while, as t -+ -co, p(t) -+ p in some sense. If e.g., p E L” then p(t) = p 
for all t 5 - log J(~L(ILcc. 

The above continuous process has several physical applications. One is Hele-Shaw flows, 
in which case a blob of a viscous incompressible fluid is squeezed in the narrow region 
between two parallel plates [12, 31. If the fluid region at time t is represented by w(t) c R2 
(a bounded domain) and the plates are squeezed so that the distance between them at 
time t is proportional to eVt, then the Hele-Shaw law for the growth of w(t) is that h(t) 
propagates with outward normal velocity equal to minus the outward normal derivative of 
p,(,), where p = p,(,)(r) is t,he unique solution of 

i 

-Ap =1 in w(t), 

P 0 on au(t). (3.2) E 

Extending p by zero outside w(t) and taking the Laplacian in the distributional sense in 
all W2 the above gives that 

d 
-APu(t) = Xw(t) - -& Xw(t) 

= --et $ (e-txw(t)). 

Integrating we find 
Au = eetxwct) - ewSxw(.q, 

t 
where u = s e-Tp,(T)d7 (the “Baiocchi” transform of p). 

For s < i, w(s) c w(t), hence u = 0 outside w(t) and u >_ 0 everywhere. From this it 
easily follows that 

e-txw(t) = Bal (e-9xw(B); eet) (3.3) 

when s < t. Thus the fluid region at any particular instant is obtained as a natural partial 
balayage of the fluid region at any previous instant. Equation (3.3) may also be written as 
xwct) = Bal(et-sxW(s); 1) or w(t) = R(etV5 xwcs); 1) (up to null-sets). Taking s = 0 we have 

xw(t) = &I( etxw(o); 1) 

for t > 0. 
The above was one version of Hele-Shaw flow moving boundary problems. Another 

popular version is to not squeeze the plates but instead inject fluid at a constant rate at 
some point a f w(O). Then p = p,(,) will satisfy instead -Ap = S,, i.e., it will be the 
Green’s function of w(t), and one ends up with the balayage formula 

xw(t) = B~J (xw(oj + t hz; 1) (3.4) 
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for t > 0. This is a (somewhat stronger) form of the moment property discovered by 
Richardson [ 121. 

The Hele-Shaw interpretations above make physical sense only in two dimensions, but 
clearly the mathematics works equally well in any number of dimensions. 

4. INVERSE BALAYAGEAND MOTHER BODIES 

The above forward versions of Hele-Shaw flows can be considered as being fairly well 
understood by now. Less well understood, however, are the backward versions of Hele- 
Shaw flows (letting time go backwards or, equivalently, changing a sign in (3.2)) and the 
corresponding notions of inverse balayage. 

In the backward version of (3.3) w(O) ’ g’ 1s lven and one asks for “good” domains w(t) for 
t < 0 such that (3.3) holds whenever s < t 5 0. In particular one requires 

~(0) = Bal (eetxw(t); 1) 

for t < 0. This problem is ill-posed, and good solutions w(t) (satisfying, e.g., w(t) c w(O) 
for t < 0) only exist if &J(O) is real analytic (roughly speaking). 

There always exist “bad” solutions in abundance. One example is obtained by ball- 
packing: first write w(O) = UF=“,, B(u~, r,)U (null set)! where the B(a,, rn) are disjoint 

balls, and then take w(t) = UrZ,B(an, n T etjN ) (t < 0). Such solutions are not very in- 
teresting, and it is in fact a major problem to find additional conditions for (3.3) which 
single out some reasonable class of good solutions. The extreme alternative is to allow 
only “classical” solutions of the moving boundary problem as stated at (3.2) (with time 
going backwards) but these exist only rarely (when &(O) is analytic basically) and, when 
they do exist, usually break down rapidly because of development of singularities on the 
boundary [7]. S ome good concept of weak solution would therefore be welcome. Cf. [lo], 
and also below. 

Another approach to backward Hele-Shaw flows, perhaps the most intuitive one, is a 
probabilistic approach using Brownian motion. Then it becomes a version of so-called 
diffusion-limited aggregation [19]: at each instant t a particle is dropped with uniform 
probability in w(t) and there starts moving around according to the Brownian law of 
motion. Sooner or later it reaches i%(t) where it gets stuck and becomes part of the 
“aggregate” RN \ w(t), which then grows by a corresponding amount (it is easiest to think 
of the case in which both time and space have been discretized). The above gives, except 
for a time scaling, exactly the law at (3.2) (with si g ns adjusted to get a shrinking w(t)). 

For stochastic versions of forward Hele-Shaw problems, see [21]. 
Xow, assume that we are given a backward solution w(t) of (3.3), defined for all t 5 0. 

Then W(S) c w(t) for s < t and ept[w(t)l = lw(O)1 f  or all t 5 0. It follows that, as t -+ -co, 
e-fxU,(t) converges weakly to a measure p which lives on a set of Lebesgue measure zero 
and which generates the whole flow in the sense that 

xw(t) = Bal (eeLp; 1) 

for all --oo < t < co. 

(4.1) 
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Related to this there is a vague notion of mother body, or potential theoretic skeleton, 
for a domain w c RN [20]. A mother body ~1 (positive measure) for w should satisfy 

xw = Bal(p; l), (4.2) 

and moreover be sufficiently concentrated in some sense. Suggestions for making the latter 
requirement precise are [5]: 

supp p has Lebesgue measure zero; (4.3) 

each point in w \ supp p can be joined to RN \ W by a curve in RN \ supp p. (4.4) 

It may be worth saying that (4.2) is e q uivalent to the two requirements 

ux” 5 u’” in R”, (4.5) 
uxw = UP (a.e.) on RN \ w. (4.6) 

This can be seen relatively easy from the second definition of partial balayage along with 
(2.3). 

In the backward Hele-Shaw case (3.3) we see that p will be a mother body of w(0) in the 
above sense provided (4.3), (4.4) are satisfied. To ensure (4.3) we just need to require that 
]&(t)] = 0 for all t < 0. The requirement (4.4) is more crucial and is, e.g., not satisfied 

in the ballpacking example above: we then have supp p = {ui, ~2,. . . }, which typically 
contains all of aw(0). 

One point with the above notion of mother body is that, in at least some cases, one 
can get close to both existence and uniqueness, and even to direct constructability [5, 
171. Note also that mother bodies provide one approach to weak solution concepts for 
backward Hele-Shaw problems. This is in particular true for the squeezing version, as 
(4.1) in this case right away defines a global weak solution out of any mother body for the 
initial domain. 

Also the (backward of the) injection version (3.4) of Hele-Shaw flows can be handled by 
mother bodies to a certain extent. First one notices that (3.4) can be written 

xw(t) = Bal(p + &; 1) (4.7) 

(t > 0) if ~1 is a mother body of w = w(O). (Th is is a consequence of (2.4), (4.2).) In very 
lucky cases p + tS, 2 0 for some interval of negative values of t, and then (4.7) can be used 
directly for these t to get a backward solution. 

In the general case one first has to modify y+tS, a little, e.g. to Bal(p; cl)+t Bal(S,; cz) 
for suitable cl, cz 2 1. Then 

Bal (Bal(p; ci j + t Bal(6,; ~2); 1) = Bal(p + tS,; 1) = xwCt) (4.8) 

for t > 0 by (2.4), (4.7). N ex one realizes that cl, cz > 1 can be chosen so that the left t 
member of (4.8) makes sense and is of the form xwct) also for some negative values of t. 
This gives our backward solution w(t) for some, usually short, interval --E < t < 0. 
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Examples of mother bodies. 

1. The simplest example is any ball w = B(a,r), which has the unique mother body 

P = IB(a,r)l& (’ 1.e , 1-1 is unique among all measures satisfying (4.2)-(4.4)). 

2. For w an ellipsoid in RN there exists a mother body supported by the so-called focal 
ellipsoid (which is the segment between the foci in the case of N = 2) [8, 181. When 
N = 2 this mother body is unique [17]. 

3. I f  w is a convex polyhedron in RN then w also has a unique mother body [5]. It is 
supported by the set of points x E w which has at least two closest neighbours on 
dw (the “ridge” of w). 

4. For w a general polyhedron in W2 t,here exists at least one mother body of w, but 
there are examples of nonuniqueness [20]. In higher dimensions existence is not 
clear. 

Unfortunately some very good domains do not admit mother bodies in our sense. This 
is the case, e.g., for any domain w C W2 which is the conformal image of the unit disc under 
a polynomial of degree strictly greater than one. The same is true, more generally, for any 
domain w c RN for which (4.6) h o s Id f  or some distribution (not necessarily a measure) p 
with support in a finite number of points in w, but for which (4.5) fails to hold. Such a p 
will automatically satisfy (4.3), (4.4), and it is easy to see that there cannot simultaneously 
exist a positive measure satisfying all of (4.3)-(4.6) (i.e., (4.2)-(4.4)). 

In principle one could of course relax the notion of mother body by allowing more general 
distributions than positive measures and by dropping requirement (4.5). It seems, however, 
that (4.5) is crucial for the evolution version (4.1) and for the coupling to Hele-Shaw flows. 
Also, without (4.5) and positivity of p there will be no coupling whatsoever between the 
geometry of w and that of supp ~1 [4, 161. For positive p satisfying (4.2) we have at least 
some geometric information, by (3.1) f  or example. Note that (4.2) implies w = Q&L; 1) (up 
to null-sets). 
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