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1. INTRODUCTION 

IN THIS PAPER we define and derive some properties of a fairly wide class of balayage operators. 
We also apply our results to obtain geometric information about quadrature domains and 
solutions of certain moving boundary problems (e.g. for Hele-Shaw flows). Actually it was our 
interest in these applications that was the starting point for the present investigations and the 
balayage operators were developed rather as a tool. 

Our balayage operators are denoted F = Fp = Fp,R and they depend on an open set R c I?" 
and a measure p in R; actually we always assume that p has a density (also denoted p) in L”(R). 
What F does is replace a given measure p by the nearest one (in the energy norm) v = F(p) 
which satisfies v 5 p in R. This presupposes that fi has finite energy. If this is not the case, there 
is another definition, which is the one we will actually use: among all distributions u in IRN 
satisfying u I 17’ (the Newtonian potential of p) in IRN and -Au I p in R there is a largest one, 
u = VP. Then F(p) = -AI/‘” (by definition). 

The operator of interest in the above-mentioned applications is F with R = IRN, p = 1. The 
definition of F(y) when ,U has finite energy can be formulated as an elliptic variational 
inequality (or linear complementarity problem), and this is one of the standard tools when 
dealing with free boundary problems of the above kind (see [l-4]). However, we think that the 
balayage point of view is quite natural in our context. 

The reason for considering the balayage operators for more general R and p than R = RN, 
p = 1 is, firstly, that we need them in the proof of one of our theorems (theorem 4.1). Secondly, 
and perhaps more important, is that we think that the more general operators have quite a lot 
of intrinsic interest, in particular as they turn out to contain “classical” balayage (of positive 
measures) as a special case (namely with R bounded and p = 0). Recently, we also learnt 
that discrete (or numerical) versions of these operators have been developed and applied in 
geophysics during the last three decades by Dimiter Zidarov, who calls the balayage process 
“(partial) gravi-equivalent mass scattering”. See [5], and also, for example, [6]. 

The paper is organized as follows. In Section 2 we define and establish the basic properties 
of our operators. At the end we also explain their relation to quadrature domains and certain 
moving boundary problems. Section 3 is devoted to one single theorem (theorem 3.1) and its 
corollaries. These results concern the F with R = lRN, p = 1 and give rather good geometric 
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information about F(U) outside the convex hull of supp fi when ,U 2 0. The implications for the 
applications are quite striking in some cases. 

The proof of theorem 3.1 is based on a kind of reflexion argument which is similar to 
methods which have earlier been used in [7-lo]. (These methods seem to be due to Alexandroff, 
however.) In Section 4 we generalize part of theorem 3.1 and use a different method of proof. 
For the moment we have no concrete applications of the result there, theorem 4.1, but we hope 
that it can be used as a tool in the study of F(p) (R = IRN, p = 1) inside the convex hull of 

suPP iu. 

Notation 

B(a; r) = (x E IRN: jx - al < r) (N 2 2); 
cr = IRN\clZ; 
CT = P\Si; 
xn = characteristic function of a; 
h,: mollifiers; see (2.8); 
m = Lebesgue measure; 
[n] = lx E IRN: m(B(x; r)\Cl) = 0 for some r > 0) = the completion of n with respect to 

Lebesgue measure (if 52 C RN is open); 
S, = Dirac measure (point mass) at x E IRN; 
6 = 6,; 
A = Laplacian operator; 
V = gradient; 
*: convolution; 
ZIJ’(RN): the distributions in RN; 
&‘(fRN): those with compact support; 
MC = &‘(RN)+ - g’(RN)+ : the Radon measures with compact support in RN; 
L” = L”(rRN); 
LT = LT(lRN) = (YE L”(lRN): f = 0 outside a compact set); 
M’ = (p EM,: ,f_ EL”] = syPj+ + LT; 
(p, p): the action of a distribution p on a test function 9, a measure p on a continuous function 

v, ((p, (~1 = S a, dp) etc.; 
H,(B), H-‘(B): Sobolev spaces; 
E = the spherically symmetric fundamental solution of -A (so that -AE = 6); 
U” = E * ,u = the Newtonian potential of fl E MC (or ,u E &‘(RN)); 
V’ = Vd: defined in theorem 2.1; 
w(p) = lx E R: V&(x) < V(x)] (see theorem 2.1); 
a(,~): see (2.31); 
F = Fp = Fp,R: defined before theorem 2.2; 
S;: see (2.5); 
Z’(a), HL’(Cl): see after example 2.2; 
Q(p, SL’), Q(F(, HL’): see after example 2.2. 

Primarily, measures etc. are regarded as distributions, therefore we usually do not distinguish 
notationally between an absolutely continuous measure and its density function with respect to 
Lebesgue measure, e.g. m (Lebesgue measure) and 1 denote the same thing, and two absolutely 
continuous measures p and v coincide if and only if .u = v a.e. as density functions. 
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2. THE OPERATORS Fp 

In this section we define and establish some basic properties of our balayage operators 
F = Fp = Fp,R. For a given measure p, v = F(p) will turn out to be the measure closest (in the 
energy norm) to ,u among all measures satisfying v I p in R. This v = F(p) will be equivalent 
to ,u in the sense that U’ = U” holds wherever v < p in R and also everywhere outside R. 

The data needed are 

an open set R c RN (N L 2); (2.1) 

a function p E L”(R). (2.2) 

p will be regarded as a measure (identified with pm, where m denotes Lebesgue measure), and 
in principle we could allow p to be a fairly arbitrary measure, but unfortunately this leads to 
technical difficulties which we have not been able to handle. For R we assume that it is regular 
for Dirichlet’s problem, i.e. that 

there exists a barrier (see [ll]) at each point of aR. 

Moreover, if R is unbounded we assume that 

(2.3) 

p 2 constant > 0 outside a bounded subset of R. (2.4) 

It is sometimes convenient to have p defined in all RN. We then set (formally) p = +oo outside 
R. Thus, R = (p < +a) and in our notation (e.g. writing Fp instead of F,,,) the information 
about R will usually be thought of as being built into p. 

For p E A4, (see the list of notations before this section), we set 

3:: = (u E D’(RN): u I U@ in RN, -Au I p in R). (2.5) 

We shall see that this family 5: always contains a largest element I” = sup Ss (this is true 
even under more general assumptions on p and R than stated above) and the balayage operator 
Fp will be defined by F,(p) = - AV’. Then F,(p) E .%‘(lRN) if ,U E A&. 

It is crucial for our theory that F,(p) is a measure. If R = IRN this is automatically the case, 
but in general we will have to make additional assumptions on ,U to ensure this (as well as some 
other properties we need). What we need is that the negative part of p is not too bad. For 
convenience we shall in most of the paper simply assume that ,K E L”, although that certainly 
is far from the best possible assumption (what we will be using is simply that U”- is a 
continuous function). The class of measures we will usually work with is thus 

M’ = (/I E MC: ,L_ EL”] = &‘(lRN)+ + Ly. 

Since our main results in this paper just concern positive measures, the above limitations on b 
will be of minor importance. 

It is immediate from the definition (2.5) of 5; that 

5 p+o = 3; f U” P+o for o E M’ n L”(R), (2.6) 

5’” = ty 
*P P 

for t > 0, (2.7) 

where in both formulas it is understood that R is unchanged when going from p to p + CJ or tp 
(as is consistent with writing R = {p < +a]). 



1224 B. GUSTAFSSON and M. SAKAI 

Radial mollifiers will be needed in the paper. Let h E C,“(lRN) be a function depending only 
on r = 1x1 and satisfying h z 0, supp h c B(0; 1) and 1 h dm = 1. For any E > 0 set 

h,(x) = CNh(&-lx). (2.8) 

Then h, 2 0, supp h, C B(0; E) and j h, dm = 1. Recall that if v, is (say) a subharmonic 
function then 9 * h, 2 rp within the domain of definition of the convolution v, * h,, and 
Ed * h, L q~ pointwise as E L 0. 

An important remark is the following. A distribution u satisfying -Au 2 p E L”(R) in an 
open set R has a canonical (= smallest here) representative in the form of an upper 
semicontinuous function with values in IR U (--03). In fact, if p = 0, this is the representative in 
the form of a subharmonic function, and in the general case the difference to a subharmonic 
function is a function v, satisfying A9 E L”(R) and such a Ed has a unique continuous representa- 
tive. Another characterization of the canonical representative u above is that, with (h,),,. 
mollifiers as in (2.8), 

u*h,+u pointwise as E + 0. (2.9) 

If -Au 2 p E L”(R) similar statements hold of course (there is a canonical lower semi- 
continuous representative etc.). Thus, any distribution u with Au bounded from above or below 
has a canonical representative which we will often refer to in the sequel. For ,D E M’, UP always 
refers to the canonical lower semicontinuous representative, and this coincides with the 
function defined pointwise by 

Note, as a consequence of (2.9), that if an inequality U, I u2 holds in the distribution sense 
between two distributions ur and u2 which have canonical representatives in the above sense, 
then the same inequality holds pointwise (at every point) for their canonical representatives. 

THEOREM 2.1. With p, R as above ((2.1)-(2.4)) and with ,U E M’, 5; contains a largest element, 
denoted I/’ (or, if necessary, VPP). Moreover, 

(a) I/’ coincides with UP outside a compact set, 
(b) -A V’ z 1, where A is the measure defined by 

A = min(p, P) 

i 

in R, 

P on RC. 

It follows in particular that V‘ is the potential of a measure in M’ (namely -A VP) and that I/” 
has a canonical lower semicontinuous representative (which we will always refer to in the sequel). 

(c) VP is continuously differentiable in R (in fact -A V E L”(R)) and satisfies V” = UP 
everywhere on R’. 

(d) -Al/” = p in the (bounded) open set a(,~) = lx E R: V“(x) < U”(x)). 

Thus I/” satisfies a kind of complementarity system. 

V” 5 u’” in IRN, 

-AVv”sp in R, 

V” = U” on R’, 

-AV@ = p in W(D) = lx E R: V”(x) < Up(x)]. 

(2.10) 

(2.11) 

(2.12) 

(2.13) 
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We shall see later that, at least if p has finite energy, (2.10)-(2.13) characterize V’ (among 

potentials of finite energy). 
It is sometimes more convenient to work with the function 

u = U” - V” 

instead of V”. For u we then have 

(2.14) 

2.420 in RN, (2.15) 

Auip-p in R, (2.16) 

u=o on RC, (2.17) 

Au=p-p in w(p) = lx E R: u(x) > 0). (2.18) 

Moreover, u has compact support and is the smallest function (or distribution) satisfying 
(2.15)-(2.16). In (2.18) we are referring to the canonical lower semicontinuous representative of 
u in R. Outside R, the right-hand side of (2.14) may take the form (+a)--(+a) at certain points. 
By definition we set u = 0 at such points (and then (2.17) follows from (2.12)). Note that 
working with u instead of I/“, one automatically takes care of the “covariance” (2.6). 

Proof of theorem 2.1. First observe that all statements of the theorem are invariant under 
transformations as in (2.6). We will use freely this possibility of replacing (p, p) by (p + o, 
p + a) whenever convenient. This means that we can always assume, for example, that ,LI 2 0, 
or that p = 0 in any bounded set (but not both these things at the same time). 

We start by assuming that 

Set 

P 2 0, (2.19) 

p L constant > 0 in R. (2.20) 

u, = U@*h,. 

Then U, 5 U” in RN by (2.19) and, because of (2.20), 

-Au,=,u*h,rp in R (2.21) 

if just E > 0 is large enough. 
Fix an E > 0 such that (2.21) holds. Then u, E 5; and u, = U” outside an .s-neighbourhood 

of suppp. Also note that UP, u, E L~,,(lRN). 
The above shows that 5; is nonempty , and that in forming the supremum of 3:: we may 

restrict ourselves to elements u E 5; which satisfy U, I u 5 U “, hence, are locally integrable, 
locally bounded from below and coincide with U” outside some compact set K. This also shows 
that nothing is changed if we cut off R slightly outside K. It is easy to see that this cutting off 
can be done without violating (2.3), and that when going back to the original R the statements 
of the theorem remain valid. Thus we assume from now on that R is bounded. 

With R bounded and regular for the Dirichlet problem, we shall (for later use) improve U, a 
little: for arbitrary E > 0, let U, be the solution of Au, = 0 in R, v, = u, on dR and define 

u, in R 
w, = 

4 on R’. 
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Then w, is superharmonic and continuous, w, I u, and w, E 3;. As E L 0, u, /n U’ at every 
point and it follows [l 1, theorem 4.151 that w, /* w, where w = sup,, 0 w, is a superharmonic 
function satisfying w = U” on R’. Moreover, w E 3;. 

Next we replace assumptions (2.19), (2.20) by 

p=o in R 

(with R bounded and with (2.19) possibly violated). Define I/” E L:,,,(&?) by 

(2.22) 

V” zz 
U@ on R’ 

L4 in R, 

where u is the largest subharmonic function in R satisfying u 5 U” (in R). Observing that the 
family S; is locally bounded from above in R, it follows from standard facts about sub- 
harmonic functions [ll, theorem 4.161 that this u exists; it is contructed as the upper 
regularization of the pointwise supremum of all subharmonic functions 9 in R satisfying 
9 I UP. It is immediate from this construction that VP E 3; and that 9 I VP for all 9 E 3;. 

Thus, V” = sup 3; is now constructed and it satisfies VP E L&,(F?N) and (a) in the theorem. 
Moreover, I/” never takes the value --CL) and in R it, moreover, never attains +oo. 

Set w(p) = lx E R: VP(x) < Up(x)). For every x E O(U) there is, by the semicontinuities of 
VP and U”, a neighbourhood B CC R of x and a number cy E R such that V@ 5 a I U” in B. 
It follows that -AT/” = 0 in B, for otherwise the replacement of I/’ in B by its Poisson 
integral with boundary values V’ on aB would give a larger element in 5:, contradicting the 
maximality of VP (cf. [ll, lemma 4.171 and also “Perron’s method”). We conclude that 
-A I/‘” = 0 (=p) in o(p). This proves (d) in the theorem. 

Next we want to prove (b). From (2.6), we get 5; = %;I,” + U’, and this shows that, in 
order to prove (b), it is enough (and necessary) to prove that 

under the assumption that 

For this purpose set 

-Al’” 2 0 

p 2 0, p L 0. 

6 = (v E B’(RN): u 2 V”, -Au 2 0). 

Then U” E s and in a standard manner (as in the construction of VP), it follows that 6 contains 
a smallest element, which has a representative W” in the form of a superharmonic (hence, lower 
semicontinuous) function. Thus I/’ I W” 5 U” (a.e.) and -A W’ 1 0. We claim that 

-AW’rp in R. (2.23) 

If this is true, then WP E Fi. Since VP 5 W”, it follows that W” = V” (a.e.). Hence, 

-AV” 2 0, which is the desired conclusion. 
Consider the function 

r,l = W” - V” in R. (2.24) 

Then it is enough to prove that u is subharmonic, for since -AV” 5 p in R this would give 
(2.23). We have 

lJZ0 in R, (2.25) 

Au I p in R, (2.26) 
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where the first inequality holds pointwise (by an earlier remark), if we take u to be its canonical 
lower semicontinuous representative. 

Set 

Z = (x E R: u(x) = 0), 

i2 = (x E R: u(x) > 0). 

Then Z is closed (in R), Q is open and Z U L2 = R. Clearly LX c W(P). Thus, by what we have 
already proved, -AI/” = p in Q, and using the same argument as for Vfl we find that 

-A W” = 0 in 0. Thus, 

Au = p in Sz. (2.27) 

Since u is to be proved to be subharmonic, we have to prove that it is upper semicontinuous, 
hence, that it actually is continuous. This can be deduced from (2.26), (2.27): let B CC R be an 
open ball (say) and consider the (positive) measure 

v=p-Au in B. 

By (2.27) 

supp v c B n I. (2.28) 

Since -A( U” - v) = p E L” in B, U” - u is continuous in B. Hence, it is enough to prove that 

Uy is continuous. 

But by (2.28) Uy~sUppy = (U” - ~)~,,ppv. Hence, ~y~sUppy is continuous, and by a “continuity 
principle” for potentials [12, p. 16; 11, Chapter 6, Section 51 this implies that U’ itself is 
continuous. Since B was arbitrary, this proves that u is continuous in R. 

Now it is easy to prove that v is subharmonic: let K C R be compact and let h be a continuous 
function on K which is harmonic in int K and satisfies u I h on X. What we have to prove is 
that u I h on all K. 

By (2.25) h 2 0 on aK, hence, h 2 0 on all K. This proves that v 5 h on K fl I. In 
(int K) fl Cl, Au 2 0 by (2.27) and on a((int K) n Cl) c aK U (K fl I), .v I h by the above. 
Hence, u 5 h also in (int K) fl Cl. Thus, u I h on all K as required. 

The above finishes the proof that u is subharmonic in R. Hence, (2.23) follows and (b) of the 
theorem is proved. Note that it actually follows that v = 0, Q = 0, and that W” as a super- 
harmonic function is the canonical representative of V”. 

We now turn to (c). Since -AV”lp E L”(R) the first statement follows immediately from 
(b). In the first part of the proof we constructed a superharmonic function w E Sz satis- 
fying w = U’ on R’. From this it follows that W’ = Ufl on R’, hence, that VP = U” on R’, 
proving (c). 

This finishes the proof of the theorem. n 

For fixed p (and R) satisfying (2.1)-(2.4), we now define F = Fp = Fp,R: M’ + M’ by 

F(p) = -AI/” (P EM’) 

with V” = VP“ as in the theorem. It follows from (a) and (b) that F(p) E M’ and that VP is the 
potential of F(p): 

V’ = UF”‘. 
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By definition F(,u) 5 p in R. If already p I p in R then U’ E Sz, hence, V” 
F(p) = p. Thus, F is a projection operator, i.e. F(F(,u)) = F(p) for p E M’. 

By (d) there is a bounded open set o(p) c R such that 

F(P) = P in W(P), 

@OI) = UP P\o(p). 

It is convenient to also introduce the open set 

a(p) = (the largest open subset of R in which F(p) = p) 

= R\~~PP(P - F(P)). 

Then Q(p) is bounded and, by (2.29), 

o.0) C Q(P). 

Moreover, it is obvious that 

F(P) = P in D, 

,yFW = ufi on lRN\D 

hold for an open set D C R if and only if w(p) C D C 52(p). 

Another way of expressing (2.30) is by saying that 

V(P), P,> = CPU, 9) 

U’ and 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

holds for any function v, of the form p(x) = E(x - y) with y $ o(p). This easily gives that 
(2.33) holds for any smooth function ~1 in IRN which is harmonic in o(p). (Compare the 
application to quadrature domains in example 2.2.) In particular, we have 

<F(P), I> = (P, I>, (2.34) 

i.e. p and F(p) have the same total mass. 

THEOREM 2.2. Let R, Rj, j = 1, 2, . . . , be open sets in IRN, let p E L”(R), pj E L”(Rj) and let p, 
pj, v E M’. Then 

(i) FP+& + o) = F,(P) + o for 0 E M’ II L”(R); (2.35) 

(ii) F,,(U) = @(P) if t > 0; 

(iii) FPI(F&u,) + PUZ) = F,,(P, + ~2) 
(2.36) 

(iv) 

(v) 

(vi) 

ifp,<p,+p2(i.e.R,CR,andp,~p2+,u2inR,); 

min(p,p) 5 F,(u) 5 p in R, p I F,(,u) on RC; 

if ,u I v then F,(p) 5 F,(v); 

if ,uu, 7 p weakly (i.e. (p - p,,, v) L 0 for any continuous rp I 0) 
as n + co then F,(,u,J 7 F,(p) weakly. 

(2.37) 

(2.38) 

Proof. (i) and (ii) follow immediately from (2.6) and (2.7), respectively, and (iv) follows 
directly from the definition of F,(p) and (b) of theorem 2.1. 
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(iii) We have to show that 

I/F&l)+Pz = I,D’+“z 
PI PI 

if pi I p2 + p2. Using that for general p and P, VP“ = UFpQ’ is the largest function I U’ 
satisfying -AVpfi 5 p in R, we get VpFoll)+pz I UFpz(1’1)+b2 = UFpzoL1) + Up2 = VP:’ + Up2 5 

Up1 + Ufiz = U@li@2 and, hence, since -AVpfb2011)+p2 5 p1 in R, , Vp/pfb2@1)+p2 I Vp:l+“*. 

Conversely, Vpl+Pz - UP2 I UPI and -A( Vprl+pz - UF2) I p, - p2 I pz in R2 C RI 

showing that VP, 1 fipie - Up* 5 VP:1 and, hence, that Vp~1f~2 I VP:, + Up2 = UFpzG1) + lJ”2 = 

TjF&)+@z. Since --A Vp:1+p2 5 p1 in R, , this yields I/pr1+B2 I I$,~oL1)+p2. This completes the 

proof of (iii). 
(v) Setting 

Iz = 

t 

min(F,(P) + v - P, p) in R, 

F,(P) + v - P on RC 

we have, using (iii) and (iv), 

F,(p) 5 A 5 F,(F,(& + v - p) = F,(p + v - ,U) = F,(v). 

(vi) By (v), F(pi) 5 F(& I ... I F(P), and since (,u~, 1) + (,D, l>, (2.34) shows that 

UQJ, 1) -+ (F(U), 1). From this (vi) follows. In fact, if cp 2 0 is continuous 0 I 

P(P) - F(&), P> 5 lIPlIme (mu) - m4z)~ 1) + 0. n 

Formula (2.36) is a kind of principle of partial balayage, saying that the balayage F,,(P) of 
,U = ,Y, + ,u~ can always be effected via first balayaging part, ,~i, of p “a little” (to Fpz@J). By 
taking in (2.36), p1 = pz = p and ,~i = ,D[,, pz = plRC for any P E M’ we obtain F,(P) = 

rp(pc, + rllz) = F,(F,(PJ + iuz) = F,(P~) + p2 (since F,(PJ + p2 5 P in R). Thus 

and in particular 

F,(P) = Fp(PIR) + PIF 

Fp(P)lR = Fp(illlRh 
It is also clear (from (2.12) for example) that 

~p(Ph~ = illliP. (2.39) 

Thus Fp does not change any thing outside ii. About F,(~L)[~~ we cannot in general say any- 
thing more than that it is 2 plaR by (2.37). 

As to Fp(& 3 we have, roughly speaking, that 

F~(P) = PXnb, + %fR\C22@) in R. (2.40) 

This formula can be proved, for example, under the assumption that p E LT: in Q(p) (2.40) 
holds by definition (2.31) of a(,~) and in R\SJ(,u) V” = U” by (2.32), hence, F,(p) = -AV’ = 
-AU’ = ,u a.e. in RW(p) in view of the regularity of U” and V’” when ,u E LT. 

In many applications it is desirable that the second term in (2.40) drops off, i.e. that (2.40) 
takes the pure form 

FpC.4 = PX~&,, in R. (2.41) 
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(2.41) holds, for example, if /-1 I 0 and ,D is singular with respect to Lebesgue measure or if 
there exists an open set D c R such that p 1 p in D, p = 0 on R/D. See, for example, [13, 
theorem 2.41 for proofs of the corresponding statements when R = IRN and p = 1. 

If p E M’, the energy of ,u can be defined as 

I]PII: = 
T.T 

E(x - y) d/0) d&9, 

which is possibly = +co. If ,D and v both have finite energy then 

(Pu, VI, = JW - Y) Wx) dW) 

makes sense and equals j UP dv = j U” dp. We now give an alternative description of F when 
acting on measure of finite energy. 

PROPOSITION 2.3. If fi E M’ has finite energy, then F,(p) has finite energy and moreover can be 
characterized as the unique minimizer of 11,~ - VII, among all measures v E M’ of finite energy 
satisfying v 5 p in R. 

Proof. In proving that F,(p) has finite energy we may assume that p, p 2 0 (because of 
(2.35) and the fact that any o E Ly has finite energy). Setting v = F,(p), we have v L 0 and 
U” = V’” I U”, hence 

,,vll~-iU~dvajUldv=iU.d~~~U~d~= ][#<cQ. 

To prove that v = F,(p) minimizes 11~ - vile, it is enough to prove that 

(P - F,(P), F,(P) - v), 1 0 

for all v E M’ of finite energy and satisfying v 5 p in R. But using (2.10)-(2.13), we have 

(P - F,(P), F,(P) - v), = c (UC - VP) d&(p) - v) 

= (Up - V’) d(F,W - v) 
Wol) 

= (u’ - VP) d(F,W) - P) + (Up - Vp) d(p - v), 
a&) OoL) 

where the first term vanishes and the second is 2 0. This finishes the proof. n 

In the second part of the proof we only used that I/’ satisfies (2.10)-(2.13). Since the 
minimizer v = F(p) of 11~ - VII, is unique, it follows that (2.10)-(2.13) uniquely characterizes 

I/” among potentials of finite energy when p E M’ has finite energy. 
In terms of u = U” - I/” we have 

F,(P) = P + Au 
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and u satisfies (2.15)-(2.18). If p has finite energy then Au has finite energy (by proposition 
2.3), hence, u E Hi(B) if B is a ball (say) chosen so large so that suppp and suppF,(p) are 
contained in B. Moreover, (2.15)-(2.18) uniquely characterizes u among all functions in H,(B) 
in this case. 

If we endow the dual space H-‘(B) of H,‘(B) with its natural energy inner product (corre- 
sponding to the inner product Se Vu - Vu dm on Hi(B)) and define 

FP: H-‘(B) -+ H-‘(B) 

as the orthogonal projection onto the closed convex set K = (v E H-‘(B): v I p in R fl Bj, then 
it. follows from proposition 2.3 and the above discussion that 

F,(P) = QP) 

whenever fi E M’ n H-‘(B), suppp c B, suppF,(p) c B. 
The above finishes the basic description of the operators FP. We now give two examples. 

Example 2.1. Take R bounded and p = 0. Then F = FP reduces to classical balayage, i.e. 
sweeping positive measures on R out to aR (see [ll, 141). In fact, if ,U 2 0 then v = F(p) 
satisfies v = 0 in R (by (2.37)) and U” = UP on RC (in particular, supp v c aR if supp,~ c R). 

If ,U is not positive then F(p) differs in general from the classical balayage measure v. If, for 
example, p I 0, then F(p) = p so that the mass in R is not swept out. 

Example 2.2. Take R = IRN and p = 1. Then we get a balayage operator F = FP of interest 
in the theory of quadrature domains and certain free and moving boundary problems arising in 
physics (e.g. Hele-Shaw flow). Below (up to the end of this section), we expand a little on these 
less well-known items, referring to [3, 13, 15-221 and references therein for further details. 

When R = IRN, p = 1, (2.40) takes the form 

F(P) = xn + iuxnc (in RN) (2.42) 

(Q = Q(P)) and (2.41) 

F(P) = xn (in RN). (2.43) 

Equation (2.42) is true if, for example, .u E Ly, while (2.43) is not true in general (but is often 
the desired result of applying F). 

Note that if (2.43) holds for some open set 52 then s2 equals Q(P) up to a null set. More 
precisely, since Q(u) by definition (2.31) is chosen to be maximal, a(~) = [Q], the completion 
of fi with respect to Lebesgue measure (see the list of notations in Section 1). 

Suppose that (2.43) holds and let U” denote the potential of xflrn (so that -AU” = x0). 
Then U” = If,” and, therefore, by (2.10)-(2.13), (2.32), 

u” I U” in RN, (2.44) 

u”= IJ’ outside Q (2.45) 
(with Q = Q(p)). 

Conversely suppose that (2.44)-(2.45) hold for some bounded open set Q. Then U” I Vfi 
because U” E ST by (2.44). On the other hand, the continuous (if p E M’) function u = 
I” - U” is subharmonic in Sz and, by (2.45), is I 0 outside Q. Thus u I 0 everywhere by the 
maximum principle, hence, V” I U”. (Note, for later use, that this was a consequence of (2.45) 
alone.) Thus P‘ = U” and it follows that (2.43) holds. 
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Thus, (2.43) is equivalent to (2.44)-(2.45), with just the qualification that if fi is allowed to 
be an arbitrary open set, then we can from (2.43) only infer (2.45) outside the completion [a] 
of Q. Now, with fi any bounded open set and assuming for simplicity that ,U E Ly, (2.44)-(2.45) 
can on the other hand be seen to be equivalent to that 

,u=o outside Sz, (2.46) 

i r 
y?dp 5 pdm for all q E SL’(CJ), (2.47) 

n n 

where SL’(fi) denotes the set of integrable subharmonic functions in a (see [13, 17, IS]). 
Moreover, assuming that a is taken to be complete with respect to Lebesgue measure (i.e. 

that &2 = [a]), (2.45) alone is equivalent to that 

/.f=o outside Sz, (2.46) 

li .i 
yldp = (odm for all ~1 E HL’(!& (2.48) 

rl a 

where HL’(a) denotes the set of integrable harmonic functions in a. (Without the assumption 
that a is complete (2.46), (2.48) are equivalent to (2.45) together with VU’ = VUF outside a.) 

Equations (2.46), (2.47) (or (2.46), (2.48)) mean, with the definitions used in [13, 17-191 and 
when ,D E Ly, that the bounded open set Sz is a quadrature domain (or “quadrature open set”) 
for p with respect to subharmonic functions (or harmonic functions, respectively). The set of 
such quadrature domains is denoted Q(p, SL’) (or Q(,D, HL’), respectively). 

We have Q(,u, SL’) C Q(,u, HL’) and Q(,u, SL’) is either empty or consists (up to null sets) of 
just a(p), depending on whether F(U) is or is not of the form (2.43). Q(,u HL’) often contains 
several different elements, but an interesting open question is whether Q(,u, HL’) can contain 
more than one solid open set (for some p). (A bounded open set Sz is called solid if c~Q = a(@) 
and CY is connected.) As an example of the usefulness of the balayage operator F in the study 
of Q(,u, HL’), we have the following result, related to [17, corollary 4.10; 13, corollary 3.31, for 
example. 

PROPOSITION 2.4. Let p E M’ and suppose that fi E Q(p, HL’) (or simply that (2.45) holds). 
Then U” 2 I/P and C+sZ c Q(p). 

Proof. Set u = V” - U”. The inequality u I 0 has already been proved (after (2.45)). 
Next we prove afi c n(p) by contradiction. Suppose x E &2\C@) and let B c Q(p)' be an 

open ball with centre x. Since a(~)~ C Ok, V" = Us in B, hence u = 0 in BW (using (2.45)). 
By the regularity of u (/Au/ bounded), this implies that Au = 0 a.e. in B\Q (see 11, lemma A.4, 
p. 531). In B fl i2, Au = 1 - F(p) L 0. Hence, u is subharmonic in B. Recalling that u 5 0 this 
gives 0 = U(X) I (l/m(B)) je u dm 5 0, hence, u = 0 in B. But in B fI t2, Au = 1 - F(p) f 0 
by the definition (2.31) of a(,~). This is the desired contradiction and finishes the proof. n 

As to the free and moving boundary problems consider, for example, the moving boundary 
problem in which one starts with an initial (bounded) domain C&, c RN and asks for the 
(increasing) family of domains (a(t): t 1 0) satisfying 

n(O) = a,, 

aw moves with velocity -(Vp)(anct,, 
(2.49) 
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where, for each t,p = p(x, t) denotes the solution of 

i 

-Ap=f in Q(t), 

p=o on XJ(t) 
(2.50) 

and f = f(x, t) 2 0 is a given function (which we set equal to zero outside Q(t)). In two 
dimensions one interpretation of this problem is that Q(t) represents a blob of a viscous 
incompressible fluid in the narrow gap between two parallel plates, a so-called Hele-Shaw ceil 
(without walls in the present case). Assuming that the surface tension at the free boundary 
&2(t) can be neglected (which is reasonable as long as the curvature of a&J(t) is not too large) 
the equations (2.49), (2.50) follow from the “Hele-Shaw equation”, withf representing some 
kind of source, e.g. the injection of more fluid through a hole in one of the surfaces. Instead 
of having a source, one can think of squeezing the plates together, which is modelled by taking 
J’= constant > 0 (in Q(t)). 

For further information on the Hele-Shaw model, see, for example [3,23,24]. 
In higher dimensions there are other physical interpretations of (2.49)-(2.50), e.g. within 

porous medium flow, heat conduction with phase change (degenerate Stefan problems) and 
electrochemical machining. 

It is well known that problem (2.49)-(2.50) is well posed and always admits a unique global 
weak (variational inequality) solution (Q(t): 0 I f < 05). In terms of our balayage operator this 
is given by 

W(t)) = X0(t)? (2.51) 

where 

At) = xn, + ‘fC, 5) dr. (2.52) 
0 

Thus the fluid domain at time t > 0 is obtained simply by balayaging out me, plus the 
accumulated source up to time t. The function u = UcCr) - VP@) (U = U(X, t)) involved in the 
definition of F in (2.51) is related to the pressure p by 

t 
u(x, t) = p(x, z) dr 

0 

(“Baiocchi” transformation). 
More generally one has 

F(xw + j:f) = xn(t) (2.53) 

whenever r 5 t and (Q(t)) solves (2.49)-(2.50) (with f 2 0). This makes the operator F 
interesting also for the ill-posed Hele-Shaw problem in which fluid is extracted instead of 
injected and the fluid region, hence, shrinks (i.e. (2.49)-(2.50) with f 9 0). In fact, this problem 
is obtained from the previous well-posed one simply by a time reversal, so in (2.53) (with f 2 0) 
it corresponds to having, say, n(O) known and looking for domains Q(t) for t in some 
interval -T I t 5 0 (T > 0) satisfying (2.53) whenever T I t. (Actually it is enough to find 
CA-T) such that (2.53) holds with t = -T, t = 0; for then the Cl(t) with -T < t < 0 are 
obtained from (2.53) by choosing t = -T, and it follows from (2.36) that (2.53) then holds for 
all -T I T I t I 0.) 
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The case of squeezing the plates (f = constant) turns out to be particularly nice. In fact, 
denoting the distance between the plates by p(t), supposed to be a decreasing function of I, one 
easily finds that (2.53) in this case can be replaced by 

&,(P(r)Xnc,j) = P(0Xact) (r 5 f), 

where Fpctj is the operator Fp,R with p = p(t), R = IRN (N = 2). Thus, we get a quite concrete 
squeezing interpretation of (some of) our balayage operators. 

3. AGEOMETRICPROPERTYOFIQ) 

This section is entirely devoted to the balayage operator F in example 2.2, i.e. to Fp with 
R = lRN and p = 1. As indicated in that example, it is of great interest in several applications 
to know first of all to what extent F(p) is of the form xn (L2 = n(p)) and secondly to have as 
much information as possible on the shape Q(p). 

Here we prove a theorem on the geometry of F(p) outside the convex hull of supp~ when 
,U 2 0. The proof uses a reflexion argument which is somewhat similar to symmetry arguments 
invented by Alexandroff and which have also been used in [7-91, for example. Another related 
result (and proof) is [lo, theorem 4.11. See also [25, Section III. lo]. 

THEOREM 3.1. Suppose ,u E A4,, p 2 0, and that supp p c 0, where D is an open half-space, say 
D = (x E IRN: x, < 0). (We write x = (xl, . . ., xN) = (x’, xN).) Then 

F(P)ILY = ~a, (3.1) 

F(P)/, 2 xn 9 (3.2) 

where M is an open set of the form 

fi = (x E lRN: x’ E G, 0 < x, < g(x’)) 

for some open set G C RN-’ and some real analytic function g: G + R and where L? = 

((x’,xN) E RN: (x’, -xN) E a), the reflexion of C2 in dD. 
Moreover, the function u = UP - V“, which is continuously differentiable in D’, satisfies 

u=o in LY\Q 

u>o in CJ, (3.3) 

*<o 
ax, 

in Q. (3.4) 

Note. In this section the letter Sz (without ,D) often denotes just some part of the set a(,~) (2.31). 
For example, it follows directly from the statements of the theorem that 

Q = o(fi) n D’ = Cl(p) Cl D’ 

in theorem 3.1. Observe also that (3.2) simply states that d C a(p). 

Proof. It is enough to prove that for every E > 0 the statements of the theorem hold with 
D = (x E IR”: xN < E] (with d then defined as the reflexion in xN = E). Therefore, we may 
assume that suppp c D. 
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In terms of u = U” - VP, we have 

F(p) = ,u + Au 

and u satisfies, by (2.15)-(2.18), 

24 L 0, (3.5) 

Au I 1 - p, (3.6) 

Au=l-p in o(p) = (x E lRN: u(x) > 0). (3.7) 

Moreover, u is the smallest function satisfying (3.5), (3.6) alone. Since supp~ C D, u is 
continuously differentiable in a neighbourhood of DC. 

Let G denote the reflexion of u in the hypersurface xN = 0, i.e. 

and define 

fi(x’, XN) = u(x’, -xN) 

min(u, ti) in LY 
v= 

U on 0. 

Clearly v 2 0 everywhere and Av 5 1 - p in D. Moreover, Av I 1 in RN because Au 5 1, 
and so Atl I 1. Hence, A min(u, ti) 5 1 and one easily checks that Av 5 1 also near dD using 
standard superharmonicity criteria. Thus, Au I 1 - ,u. Since u is the smallest function 
satisfying (3.5), (3.6), it follows that u I v. Thus, 

which implies that 

Set 

Ulli in LF, (3.8) 

au 
-50 
ax, 

on dD. (3.9) 

sz = w(p) n D’ = lx E D: u(x) > 01. 

Then by (3.5)-(3.7) (or by (2.32)) 

Au = 1 in Q. (3.10) 

Moreover, Au = 0 a.e. on LY\Q = (x E De: u(x) = 0) as a consequence of the regularity of u 
in D ([Au/ bounded there). It follows that 

&~IP = (A&F = xn. 

Next, by (3.10) au/ax, is harmonic in Q and by (3.9), the definition of Q and the regularity 
of u, au/ax, is continuous up to asL with boundary values I 0 there (= 0 on (aa) n De). Thus, 
by the maximum principle 

at.4 
-50 ax, 

in Q (3.11) 

(and, hence, in all D). Moreover, if au/&N vanishes at some point in Sz, it vanishes identically 
in the whole component of Q containing that point. Since u = 0 on (a&2) II D it then follows 
that also u itself vanishes in that component of Q. But this contradicts the definition of Q. 
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IIence, we actually have 

dXN 

Thus, for each x’ E RN-’ the behaviour of u(x’, xN) as a function of x, > 0 is that either it 
is identically zero or else there is a number g(x’) > 0 such that u(x’, xN) = 0 for xN > g(x’) and 
u(x’, xN) > 0 with au(x’, x,)/ax, < 0 for 0 < x, < g(x’). This gives that 

0 = ((X',XN): X' E G, 0 < x, < g(X')) (3.12) 

with g as above and G the set of x’ E RN-’ for which u(x’, xN) does not vanish identically as 
a function of x, > 0. Since Q is open, G must be open in RN-‘. 

Next we have to prove that g is real analytic. Let x = (x’, xN) E (a&J) n DE. Then (3.12) shows 
that the ray L = ((x’, t): t > xN) lies entirely in Qc. Now, all that we have done up to now can 
be repeated for other half spaces D’, with suppp C D’, x E (D’)‘. Varying D’ around our 
original D then gives that there is a whole open cone of rays starting at x and lying entirely in 
Q2’. (Compare corollary 3.3 below, where this is expressed in a more precise form.) Thus, @ is 
“thick enough” at x E afi for the theory of Caffarelli and others [2,4, 26-281 to be applied, 
and the conclusion then is that g is real analytic at x’. 

To prove (3.2), finally it is enough, by (2.32) for example, to prove that u > 0 in d. But 
this is equivalent to that 1? > 0 in Q, and this latter inequality follows by combining (3.3) 

and (3.8) n 

COROLLARY 3.2. Assume ,u E A&, p 2 0 and let K denote the closed convex hull of supp p. Then 
the restriction of F(p) to Kc is of the form xa where Q = w(,D)/K = Q(,Y)/K is an open set with 
(XJ)\K consisting of real analytic hypersurfaces (without singularities). Moreover, VI/” # VU’ 
in a. Finally (Q U K)’ is connected. 

Proof. This follows by applying the theorem to all half-spaces D with suppp c 0. The last 
statement actually follows most easily from the next corollary. n 

Remark. In K\suppp, F(p) is still of the form xa but 13a may have singularities (cf. the 
remarks after example 3.4 below). To be precise: in two dimensions the regularity question for 
an outside supp ,U is completely solved [29]: (XJ)\supp p is analytic with a few specific types of 
singularities allowed. This is true for arbitrary ,D E M, and also under more general circum- 
stances than above. In higher dimensions the regularity question for ~?a seems not be 
completely solved. On suppp, R’(p) may be as nasty as ,D and not of the form xn; cf. (2.42). 

COROLLARY 3.3. With notations and assumptions as in corollary 3.2, let x E (%2)‘K (or just 
x E (a U K)C). Then the cone 

K,O=(ZER~:(Z-x,y-x)5Oforally~supp~) 

does not intersect Q U K. Observe that K,” is a convex cone with vertex at x and with nonempty 
interior. 

Proof. Let x E (0 U K)‘, z E Kj, and we shall prove that z $ Q U K. By translation and 
rotation of the coordinates, we may assume that x = 0 and that z = (0, . . . , 0, zN) where zN > 0 
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(the case z = x is trivial). Then the statement z E K,” means that supp~, and, hence, 
the half-space (y E RN: yN I O]. Thus, z $ K, and if z E Q it easily follows that also x 
which is a contradiction. H 
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K, lies in 
=OEQ 

COROLLARY 3.4. With notations and assumptions as in corollary 3.2, let B = B(x; r) be a ball 
such that supp,~ c B (equivalently K c i?). Then Q U B is star shaped with respect to x. 

Proof. This follows right away from the theorem or from corollary 3.3. n 

COROLLARY 3.5. With the same assumptions and notations as in corollary 3.2, for any 
x’ E (XA)\K the normal of K? at x intersects K. Moreover, if N = 2 and supp fi is connected, the 
normal in fact intersects supp,~ itself (cf. Figs 1 and 2). 

Proof. Suppose that the normal N, of aa at x E (KJ)\K did not intersect K. Then there 
would be a hyperplane H, > N, which also did not meet K, and K would be contained in one 
of the two components of RN\Hx, call it 0,. Observe that 0, is an open half-space. Therefore, 
the cone K,” in corollary 3.3 would contain in its interior the outward normal of aD, = H, at 
x. But this normal is perpendicular to N,, hence, is tangent to an at x. Thus, using corollary 
3.3, we reach the contradiction that a conic neighbourhood of (half of) a tangent line of asZ at 
x does not intersect C2. n 

COROLLARY 3.6. Let p and K be as in corollary 3.2 and let B = B(x; r) be a ball such that 
suppp C B. Then: 

(a) if R’(U) 2 xK then (2.43) holds with a = n(p) solid; 
(b) if F(U) 1 xe then (2.43) holds with C? = CA(@) star shaped with respect to x. 

Proof. (a) Since F(U) I 1 the assumptions imply that F(P) = 1 on K. Thus, with Sz, the 
open set obtained in corollary 3.2, F(P) = ~~,_,a,. Since K is convex dK has measure zero. It 

Fig. 1. fl 2 0, F(p) = xn, K = cow supp,u. 

Fig. 2. p 2 0, F(p) = xn, K = conv suppp 
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follows that the open set (int K) U L2r has the same measure as K U 0,. Set ~2 = int(K U Qi). 
Then (int K) U L2, c Q c K U Sz, , (K U C2,)\&2 has measure zero (actually C2 is the largest open 
set with this property) and (hence) 

F(P) = Xn . 

To prove that !Z is solid, it is enough to prove the following: for every x E &Y there is a 
sequence (x,) c CF such that x, - x as n + 03 and such that x,, is the vertex of a nonempty open 
cone contained in CF. In fact, if this is the case then every x E CA’ is in the closure of 
!A’ = int(@), hence, &2 = a(@‘), and every x E fiZe can be connected with infinity via a cone 
(with vertex close to x). 

So let x E CF, i.e. x $ int(K U !A,). By definition this means that there is a sequence x, + x 
with x,, $ KU !A, and corollary 3.3 then shows that Ix,] has the required properties. 

(b) This now follows easily, using corollary 3.4. 

The condition F(p) 2 xK in corollary 3.6 is sometimes easy to verify. Some examples of this 
follow. 

Example 3.1. Suppose ,u 2 0 has support in a hyperplane. Then XK = 0 (a.e.) in iRN so that 
F(p) > xK is trivially true. 

Example 3.2. Let ,u = C,“=, ajd,,, where aj > 0 and suppose that 

conv]xl , . . . , GJ c e Bj, 
j=l 

where Bj is the open ball with center Xj and volume aj. Then F(ajS,,) = xBj, and using (2.36) 
we get 

F(p) = F (j=,aJ f -6 5) = r(jg,F(aA,)) =F(j:I%)- 

By assumption CT= 1 xe, L xK (K = convlx, , , . . , x,,,) = conv supp P) and it follows from (2.37) 

that F(P) = F(CJL I xe,) 2 xK. 
More generally, the same conclusion holds with p = ~~=, Ajax, + v with xi as before and 

v 2 0, supp v c conv(xr , . . . , x,]. 
Similarly, the stronger condition F(p) 2 xB in (b) can also be verified in many cases. 

Example 3.3. Suppose p L 0, supp~ c B (B = B(x; r)) and that P(B) 2 SNm(B). Then one 
can prove that F(p) 2 xB, where B, = B(x; 3r). (See the proof of theorem 2.4 (v) in [13].) 
Thus, it follows that F(y) = xn, with C2 star shaped with respect to x and, moreover, B, C a. 

Example 3.4. Suppose p = ad, + v, where v 2 0, supp v C B and B is the ball with center x 
and volume a. Then (as in example 3.2) F(p) 2 XB holds. 

In (a) of corollary 3.6 it does not follow that fi is connected or (if N L 3) simply connected 
(for example). This is clear from example 3.1: by taking suitable ,D 2 0 with support in a hyper- 
plane one can produce a(p) which approximates any type of configuration in that hyperplane. 
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Nor does it follow that %2 is real analytic everywhere. As an example, let K be a closed 
equilateral triangle (N = 2) and let p = axK for some (I > 1. Then F(p) 2 xK by (2.37) but for 
a close to 1 &2 will meet K at the corners and have an angle there (thus, X2 will not even be 
of class C’ and the singularities will be nonanalytic) (cf. [30; 17, corollary 13.3; 31, Section 11). 
Another example is p = a(6,, + ax,), where Xj E RN and a > 0 is the volume of the ball with 
radius r = i Ix1 - x, I. Then K is the line segment joining xi and x, , C2 = B(x, ; r) U B(x2 ; r) and 
afi has an analytic singularity (a double point) at the midpoint of K, thus in K\supp~. 

As another application of corollary 3.6, we have the uniqueness question for quadrature 
domains: if p 2 0, F(p) 2 xK so that a(p) is solid, then it follows easily from proposition 2.4 
that Sz E Q(,D, HL’) implies [n] = a(,~) (cf. [17, corollary 4.10; 13, corollary 3.61). 

Finally, let us interpret some of the results in this section in terms of the moving 
boundary problem (2.49)-(2.50) for Hele-Shaw flows. We shall assume for simplicity that 
suppf(*, t) c L&, for all t 2 0. Then supp,u(t) = @, in (2.51)-(2.52). Thus, corollary 3.2 says 
that &2(t) is analytic outside the convex hull K of @, and that there are no holes in a(t) outside 
K. (Inside K there may very well be holes.) If S& itself is convex the above information is of 
course particularly precise. (But it does not follow that a(t) is convex; suppose, for example, 
that 82, contains a straight line segment and choose f to be a point source (in L&J very close 
to that line segment. This f will cause a “bubble” on %2(t) near suppf when t > 0 is small, 
making a(t) nonconvex.) 

Corollary 3.5 shows that for every x E %2(t) the normal of &2(t) at x intersects K. Clearly 
this gives interesting geometric information about X2(t) which is particularly precise when 
{Ifi(t) is far away from Q2,. 

If fi2, is a ball B(x; r), then corollary 3.6 shows that a(t) is star shaped with respect to x 
(independently of the form off) (cf. [lo, theorem 4.11). 

For the backward (or suction) problem, i.e. for solutions (a(t): -T I t I 0) of (2.53) with 
&2(O) given, we have the following, assuming that N = 2 and suppf(*, t) C @-T) for all t: for 
any x E %2(O) the normal of an(O) at x will intersect all the R(t) (-T I t I 0) as long as these 
are connected. Thus, for example, if n(O) contains a “finger” with parallel sides, this cannot 
be completely emptied by means of sinks outside it (cf. Fig. 3). 

Similarly, if D is a half-plane containing the sinks, then it follows from (3.2) that the part 
a(O)m of the initial fluid region M(0) cannot be completely emptied unless its reflexion in aD 
is contained in n(O). Neither can &2(O)D be completely emptied if it contains holes (or more 
generally if &2(O)\D is not the graph of a function) (Fig. 3). 

Fig. 3. p 2 0, F(p) = xn, K = conv suppp. Supp ,U must enter all the shaded areas. The same is true, in 
the Hele-Shaw model, for C&v) for s < t if D = CA(r). 
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4. AGENERALIZATION 

In this section we generalize part of theorem 3.1 to the case of an arbitrary F = Fp,R (with 
the limitation p 2 0, though) and with D an arbitrary subdomain of R. 

THEOREM 4.1. Let R and p satisfy (2.1)-(2.4) and, moreover, p sz 0, and let F = Fp,R. 
Furthermore, let D be an open set with D c R such that 8D has a barrier at each point. Then 
for any p E MC with p 1 0 and suppp c 0, there exists a v E MC with supp v c JD and 
v 2 pIan (in particular v r 0) such that 

Fly = FOP, (4.1) 

F(v) 5 F(P). (4.2) 

Remark. It is important that v 2 0. Taking R = IRN, p = 1, and a half-space D, one easily 

derives theorem 3.1 as in the second half of the proof of that theorem. 

Proof. Let F = Fp R as in the statement of the theorem and let G = F+,. The proof goes by 
successive balayage in an infinite number of steps as follows. Define measures (T,, r,, , A,, 
v, E MC for n = 0, 1,2, . . . inductively by 

I70 = ro = 0, (4.3) 

A, = G(&, (4.4) 

vo = G(P),c (4.5) 

and 

~n+l = F(a, + T, + v,h, (4.6) 

t,+1 = F(o, + T,, + V&F 3 (4.7) 

A II+1 = G&l + co,,, - ~,>)lDT (4.8) 

v,+1 = GV, + (on+1 - a,&~. (4.9) 

(It is always understood that when we take the restriction of a measure to some set the restricted 
measure is extended by zero to all RN.) Equations (4.6)-(4.9) can also be written 

F(o, + r’n + v,) = u,+ I + T,+I 9 (4.10) 

WC, + (on+i - a,)) = An+1 + “,+I, (4.11) 

where the right members are the decomposition of the left members into sums of two measures 
concentrated on D and F, respectively. Note also that since p = on = A, = 0 in fl, v, = 0 in 
D’ by (2.39). Hence, 

supp v, c ao. (4.12) 

The following properties of O’n, T,, A,,, v, will be established for all n. 

0 = 00 5 Qi I . . . 5 o,l ; (4.13) 

0 = To 5 T1 5 ... 5 T,; (4.14) 

0 I A0 I A.1 5 *** I A,; (4.15) 
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v, 1 0; 

0, I II,; 

F(v, + vr + * . . + v,) = on+1 + r5,+1; 

F(I, + v, + r,) = F(p); 

A, + r, 5 0); 

o’n + 5, 5 F(U). 

Assume that (4.13)-(4.21) have been proved and define 

v = vg + vr + v* + . . . ; 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

the sum converges to a measure v E MC because v, 2 0 by (4.16) and because it follows from 

(4.18), (4.21) that 

F(v, + vr + * . . + v,) I F(p) 

and, hence, by (2.34) that 

(v, + v1 + *** + V”, 1) 5 (/I, 1) <a. (4.22) 

(4.22) shows in particular that 

<Vnr 1) * 0 asn+a. (4.23) 

From (4.18) and (vi) of theorem 2.2 we obtain 

on + T, /* F(v) (n + 00). (4.24) 

Moreover, using (4.14), (4.15), (4.20) and that, by (2.34), (4.19), (4.23), (F(p) - 1, - r,, , 1) = 
(v,, 11 -+ 0, we see that 

A, + r,T F(P) (n + co). (4.25) 

Now (4.2) follows from (4.21), (4.24) and (4.1) follows from (4.24), (4.25), observing that 
cr, = ,I,, = 0 on DC. That supp v C dD follows from (4.12), and vlaD ?I plaD follows from (4.5), 
which by (2.37) shows that already vOlaD L ,YI~~. 

Thus, it just remains to verify (4.13)-(4.21). 
Equations (4.13)-(4.16): these hold by definition and (2.37) for n = 0. Assuming the validity 

of (4.13)-(4.16) for n one immediately deduces their validity for n + 1 using just (4.6)-(4.9) and 
(2.38). Thus (4.13)-(4.16) follow by induction. 

Equation (4.17): this also follows by induction, using (4.8), (2.38) and that o,, = A, = 0 
on DC. 

Equation (4.18): this follows by induction, using (4.3), (4.16), (4.10) and (2.36). 
Equation (4.19): for n = 0, we have F(I, + v0 + T,J = FG(p) = F(p) by (4.3)-(4.5) and 

(2.36). For arbitrary n, we have, using (4.10)-(4.1 l), (4.14), (4.17) and (2.36), 

F(&+, + V,+I + r,+t) = F(G(& + on+1 - 0,) + rn+r) 

= F(k, + cn+r - o‘n + r,+r) 

Thus, (4.19) follows by induction. 

= F(F(o, + T,, + V,) + ?L,, - 0,) 

= F(a, + T, + v, + A,, ~ a,) 

= F(& + v, + T,). 
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Equation (4.20): since by definition (4.7), (4.8) i, + r,, I p in R, (4.16), (2.38) and (4.19) 
show that A,, + r, = F(& + r,) I F(&, + rn + v,) = F(P) as required. 

Equation (4.21): this follows from (4.17) and (4.20). 
This finishes the proof of theorem 4.1. n 

There is also another proof of theorem 4.1, more in the spirit of the proof of theorem 3.1. 
It goes as follows (outline, assuming some additional smoothness of p and CJD). 

Write 

F(P) = P + Au, 

where u ( = U” - VP) satisfies (2.15)-(2.18), and is the smallest function satisfying 
(2.15)-(2.16). Set 

w= O 
i 

in D 

u on P 

and let u be the smallest function (or distribution) satisfying 

V2y/ in RN, (4.26) 

Au I p in R. (4.27) 

Observe that u satisfies (4.26)-(4.27) so the set of competing functions is not empty. It also 
follows that 

v=u on P, (4.28) 

VIU in D. (4.29) 

By (4.27) Au is a (signed) measure in R. Define a measure v on 8D by 

v = (P - Av)lao = (-A&U, (4.30) 

and extend v by v = 0 outside dD. This gives immediately 

vro in RN, 

v + Au <p in R, 

v=o on RC. 

If we can prove that 

v+Av=p in o = (x E R: v(x) > 0) (4.31) 

then it will follow that 

F(v) = v + Au, (4.32) 

at least if v has finite energy. (If p has finite energy that v does have finite energy, but we do 
not go through the verification of this.) 

Now (4.31) certainly holds in o fl dD by (4.30). In De, u = u, p = v = 0, hence, (4.31) holds 
in o fJ LY because of (2.18). Finally, that Au = p in o tl D follows from the minimality of v 
(as in the proof of (d) of theorem 2.1). This proves (4.31). 

From (4.32), (4.28) we see that F(v) = F(p) in D’, proving (4.1). As to (4.2), i.e. v + Au I 
P + Au, this holds in w because P + Au = p there by (4.29), (2.18). In D\w, v = 0, hence, 
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v + Au = 0 (a.e.) there (by the regularity of v in D). Since F(p) 2 0 this shows that (4.2) holds 
also in D\o. Since 130 has measure zero and F(U) = F(v) in LY by (4.1), (4.2) now follows. 

It remains to check that v 2 ,u aD. But (4.28), (4.29) give that -Au 4 -Au on dD, hence, 
,u I p - Au I p - Au = v on CID as desired. H 

Equation (4.1) says that, as to the effect outside D, v is equivalent to ,U in a certain sense. 
Since this certainly reminds of classical balayage, let us indicate the relation between the two 
operations. Let r be the classical balayage measure of p (onto aD). Thus, by example 2.1, 

r = H(P), 

where H = F,,o, assuming that D is bounded. 
The relation between v and T can be expressed by the formula 

r - v = H(F(p) - F(v)), (4.33) 

i..e. their difference equals the classical balayage of the difference in (4.2). Observe that 
F(p) - F(v) is a positive measure with support in 0. In particular 

and equality holds if and only if F(v) = F(p). 
To prove (4.33) it is enough to prove that the potentials of both members agree in P (since 

both members are measures on do). But U HUW-FW) = @G)-F(V) = uF@’ _ @(V) = I/V _ I/’ 

in P and U’-” = U’ - U” = UP - U” in LY, hence, the desired conclusion follows, for 
example, from (4.28) (observing that U’ - V” = v by (4.32)). 

The equality F(v) = F(u), and, hence, v = 7, does hold in some cases, e.g. if p = 0 in D or 
more generally if p is small enough in D compared to the size of p. However, in the applications 
we have in mind, v usually differs from r. If, for example, D is unbounded as in theorem 3.1, 
then v never equals r (unless p = 0). 

Example 4.1. Take N = 2, R = I?‘, p = 1 and let D = B(0; 1). Let t 2 0 be a parameter and 
consider the measures 

,D = p(t) = nt26. 

Then F(lu(t)) = xBcOit). For each t in the interval 1 < t < de, there is a unique s = s(t) in the 
interval 0 < s < 1 satisfying 

s 

t 
rlogrdr = 0 (4.34) 

s 

Now, denoting by d0 the arc length measure of aB(0; l), the measures t = t(t) and v = v(t) 
considered above are given by 

dr(t) = ;dB for all t 1 0, 

0 if05 t5 1, 

dv(t) = ((t’ - s(t)2)/2) de if 1 < t < de, 

(t2/2) d6’ if t 5 de. 
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For 1 < t < de, F(v(t)) = xnCtj where Q(t) = (x E R2: s(t) < 1x1 < t) and for t L de, 
F(v(t)) = xeCo;tj. The equation (4.34) for s(t) is the “quadrature identity” (cf. (2.33) or (2.48)) 
jnyj 9 dm = 1~1 dv(t) with p(x) = loglxl. 
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