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TOPICS IN GEOMETRIC FUNCTION THEORY AND RELATED QUESTIONS OF
HYDRODYNAMTICS
by

Bjorn Gustafsson

This dissertation summarizes the papers [A],[B] and [C].

Paper [A] deals with domains in the complex plane called
"quadrature domains". £ cC is a quadrature domain if a "quad-
rature identity" of the kind

m Tl

[ faxdy = ¢ = ak.f
Q k=1 j=0

Dz, 1)

where akj € C, Zj £ & and m, nj are integers > 1, holds
for all f 1in some specified test class of integrable, holomor-
phic functions in Q. Usually this test class is LEKQ) (con-
sisting of functions f holomorphic in 0 with [|flPdxdy < + ,
1<{p<=) or LpaS(Q) ( fe€ LE(Q) and moreover having a
single-valued integral in ). Quadrature domains arose for
D.Aharonov and H.S.Shapiro in studying certain extremal problems
for univalent functions. The same authors then began investiga-
ting quadrature domains for their own sake in [1]. Among the

results proved in [1] are the following.

1) @ 1is a quadrature domain if and only if there exists a mero-
morphic function h(z) in §, continuously extendible to ,
such that

h(z) =2 on a0 (2)

(Lemma 2.3 din [1]; (2) is to hold in a certain technical

gsense also at z =« if @ 1s unbounded).

2) A simply comnected domain § 1is a quadrature domain if and
only if @ is the conformal image of D (the open unit disc) under
a rational function (with no poles on D). In particular there

exist plenty of simply connected quadrature domains.( Thm. 1 in [1].)

3) If @ is a quadrature domain, 30 is part of an algebraic

curve (theorem 3 in [1]).




In all three cases the apriori assumption about § 1is that

«Jf%d%mo (z = x + iy), (3)
Q

and the test class of functions is L;(Q).
Among the questions left open in [1] are:

4) Do there exist multiply connected quadrature domains and,
if so, how can one produce them? (Equivalently, find an ana-

logue to 2) for multiply connected domains.)

5) Can two different quadrature domains have the same quad-

rature identity?

Paper [A]l grew out of the attempts to answer questions

4) and 5). 'he main results obtained are the following.

a) We give a positive answer to question 4) by giving a
method, analogous to 2), for producing multiply connec-

ted quadrature domains. (See 27) below.)

b)  We develop point 3) above by showing that the boundary
of a quadrature domain must be a whole algebraic curve
(Theorem 3.4 1n [A]l) and by finding explicit relations
between the coefficients of the polynomial function of that
curve on the one hand and the data a. .., Zj’ m, nj of the

k3
quadrature identity on the other (Theorem 5.1).

c) We give a partial answer to 5): it turns out that, in the
multiply connected case, there in general exist continuous
families of domains admitting the same quadrature identity.
The number of real parameters in such families depend on the
connectivity of the domains and on the test class of func -
tions. In Section 7 of [A]l we compute what these numbers
are in certain cases (Theorem 7.1, 7.2, Suggestion 7.3).
In Section 6 a specific example is worked out, yielding a
one-real-parameter family of doubly connected quadrature do-
mains all having the same quadrature identity for the test
class Li(Q).

Part of question 5) is however still unsolved: €an
two different simply connected quadrature domains have the

same quadrature identity for the test class L;(Q)'? Almost




certainly the answer is yes but we have so far no specific
example of this. The reason for expecting the answer to be
yes is that there seems to be no reason for the answer to
be no, in particular in view of a recent example of Sakai
([16]) showing that, in a very closely related problem, the

corresponding answer is yes.

d) We prove, in Section 4, a couple of results on non-existence
of multiply connected quadrature domain admitting quadrature
identities of certain low orders. (The order of a quadrature

* . . m
identity like (1) is by definition % n s
k=1

all z. are distinct and that a # 0.) For example it is
J k,nk—i

assuming that

proved (Corollary 4.5) that a multiply connected domain never
admits a quadrature identity of order < 2 for the test class
Li(Q). (Here the domains considered are subject to our apriori
assumptions, (i) and (dii) below.) The same result has been
obtained also by Avcei (Theorem 6 in [31), by using different
methods, and special cases of it are proved by Aharonov-Shapiro

(Theorem 4 in [1]) and C.Ullemar (Theorem 2 in [18].)

'The general idea, underlying most of the results in [Al, 1is
that of completing a plane domain © with a "backside" é, S0
that a compact Riemann surface

A R
Q=0U3¥MUQ,

the Schottky double of @, is obtained ([8], p. 47 £).

In order for this to be possible (in a certain technical sense)
f¢. must be conformally equivalent to a domain bounded by finitely
many analytic Jordan curves. 'lherefore all domains in [A] are

assumed apriori to be

(1) finitely connected, with no boundary component consisting
of a single point.

Moreover, the test class LS(Q) suits us better than Li(Q)
Since we want to have 1 € Li(Q) (which also ensures that

Li(ﬂ) - Li(Q)) we only consider domains that have -




(ii) finite area.

These apriori assumptions are stronger than that one, (3),

used in [1].

From the Schottky double point of view equation (2) simp-
ly means that the pair (h(z),z) defines a mercmorphic function
on 5 , namely that function which equals h(z) on § , equals
7 on 5 and extends continously over 32 by (2). By means
of this interpretation of (2) we are able to generalize proper-

ty 2) to the multiply connected case as follows.

27) Let W be a standard domain bounded by analytic Jordan cur-
ves, representing a certain conformal type. 'lhen all quadrature
domains conformally equivalent to W are obtained as conformal
images of W under functions meromorphic on the Schottky double
% of W (Theorem 3.1). (Note that, in 2), Athe rational func-

tions are just the meromorphic functions on D = the Riemann sphere).

Although the classical theory of compact Riemann surfaces
does guarantee a good supply of meromorphic functions on Q one
must have meromorphic functions which moreover are univalent (and
pole-free) on W in order to produce quadrature domains from 27).
'l'he existence of such functions is proved by approximating some
explicit functio?, defined and univalent in some neighboufhood
of WU 3W in W , with functions meromorphic on W . This ex-
plicit function can e.g. be chosen to be z (the identity func-
tion% on W. This function extends holomorphically over dW
in W because oW was assumed to be analytic. The possibility
of approximating such a function by functions meromorphic on Q
follows from Runge-like approximation theorems as proved e.g. in
[12] or [9] . ‘The approximation is to be uniform on a neigh-
bourhood of W U oW and it is easy to see that the approximating
meromorphic functions then will be univalent on (a neighborhood
of) W U W whenever the approximation is good enough. This is
the way exlstence of multiply connected quadrature domains is

proved.

Part of the results in [A] concern quadrature identities
for the test class Lis(ﬂ) instead of L;(Q). In that case equ-
ation (2) for property 1) has to be replaced by

h(z) = z + constant on each component of 3%, (%)




with (in general) different constants on d%fferent boundary com-
ponents. In terms of the Schottky double © of Q  (4) means
that the pair (h7(z)dz , dz) defines a meromorphic differenti-

al on @ (on observing that (%) can be written
h'(z)dz = dz along 90 ). (5)

In [B] we study the motion of a vortex in two-dimensional
flow of an ideal fluid in simply and multiply connected domains.
This study was initiated by questions posed by Prof. Bengt Joel
Andersson (Dept. of Hydromechanics, KTH, Stockholm), concerning
existence and uniqueness of "equilibrium points" for such a vor-
tex, i.e. points where a free vortex is at rest (. in general a

free vortex moves).

The hydrodynamical setting is this. Let Q be a finitely con-
nected, possibly unbounded, domain regarded as a subdomain of the
complex plane. In Q we have an incompressible, (locally) irro -

tational, time-dependent flow with a vortex of constant strength
at a moving point Zg = Zo(t).

Suppose first that the vortex is kept fixed (in some way).

Then the surrounding fluid will exert a force F, on it (the pa-

B
rameter B will be explained below). Since this force depends
on the position of the vortex it may be regarded as a vector field

in @ . 'lhis vector field turns out to be a potential field, i.e.

F, = grad u

B B (6)

for some (real) function wu, in Q .

B8
If on the other hand the vortex can move freely (which is

perhaps the most natural situation), then its velocity will be

—— = 1 * (real constant) FB(ZO) 7N

(i = V=1). ‘lhus its velocity is always perpendicular to Fg
“and it follows that it moves along a level line of ug (The
fact that a free vortex moves along the level line of a function
has, in the simply connected case, earlier been observed by H.

Villat ([19]) and B.J.Andersson ([21).)




The domain functions FB and ug are in the center of in-
terest in [B] . They are expressible in terms of certain "modi-
fied" Green’s functions gg(z,g) for the domain. These differ
from the ordinary Green’s function g(z,r) in that, instead of
being constantly equal to zero on the boundary, they are free to
take arbitrary constant values on the individual boundary compo-
nents, and are determined by having thelr conjugate periods pre-
scribed (together with a normalization condition). The parameter
] in gB(Z,C) (and in Uy and FB) Jjust is the list of these
conjugate periods (B = (81,...,§m) ). The presence of this pa-
rameter reflects the fact that for a flow in a multiply connected
domain one can prescribe the circulations around the "holes' of
the domain. When the domain is simply conmnected the two kinds of

Green’s functions coincide.

bExpanding the analytic completion (with respect to z) GB(Zig)

of gB(Z,Q) in a power series about z = ¢ ,

G (z,0) = -log(z-r) + ¢

‘ . , 2 .
8 (£) + cBl(g):(z—g) + -CBQ(C)'(Z~C)_ + 1., (8)

RO

we find that

FB(C)

- (positive constant)-c

Bi(z;) (9

uB(C) ~ (positive constant)-c,.(z) (10)

RO

(c,~{z) 1s chosen real in (g) ).

RO
The functions CBO(C), cBi(g),..,as well as the corresponding

functions cO(C), ci(g),... defined in terms of the ordinary

Green’s function, are studied in [B] with regard to boundary be-

haviour, transformation properties under conformal mappings etc.

Although these investigations give few or no results which are

new from a purely mathematical standpoint they give some results

which are interesting in their hydrodynamical context.

For example we find that
uB(;)+~+w as ¢ > 3R (11)

if Q@ is bounded. Thus ug must have a point where it attains




its minimum in @ , and such a point is a point where a free vor-
tex is at rest. This proves the existence of equilibrium points

for bounded domains.

It is also shown that Ug is subharmonic, more precisely
that

AuB = (positive constant)-KS(C,C), (12

Where'KS(z,C) is the redﬁced Bergman kernel for Q (thus KS(C,C) > 0).

If Q 1is simply connected u, satisfies a remarkable dif-

8
ferential equation , namely
BuB :
M, = Ae R (13)

B

where A and B are positive constants. This equation, which

has no obvious physical interpretation and does not hold if @

is multiply conmnected, has an interesting history, being studied

by Liouville (it sometimes appears under the name Liouville’s equ-
ation), H.A.Schwarz, Picard, Poincare, Bieberbach and others for

example in early attempts to prove the so-called uniformization

theorem. See [u]. Recently, and in our context, it has been ta-
xen up by S.Richardson (Dept. of Mathematics, Univ. of Edinburgh) ([15]).

If Q@ moreover is convex, and not an infinite strip, then
we find that Ug . can have at most one local extremum (equivalent-
1y, FB has at most one zero). 'lhus there is at most one equi-
librum point for a vortex in a convex domain (other that an in-
finite strip). (lhis result was conjectured by B.J.Andersson, and
was originally thought to be the main result of [B]. However,
as we found this result to be already known in a function theo-
retic context (Sats 4 in [10]) the emphasis of [B] changed
towards a general study of vortex motion in finitely connected

domains.)

The condition of convexity for the above property to hold
cannot be relaxed to starlikeness, as we show by giving an expli-
cit example of a starlike domain with three zerces for FB.

In paper [C] we use the technique of variational inequali-
ties to prove existence and uniqueness for a kind of weak solution
to a moving boundary problem arising in the theory of Hele Shaw

flow. 'lhis moving boundary problem also has some relevance to




quadrature identities (paper [Al). See ».11 f below.

The moving boundary problem we study in [C] was introduced
by S.Richardson in [14]. 'the hydrodynamical background for it
can be briefly described as follows.
Let two large plane surfaces be lying parallel to each other,
separated by a narrow gap. In one of the surfaces there is
a hole for injection of fluid. At time zero a prescribed region
(covering the hole of injection) in the space between the two sur-
faces is already occupled by fluid. From then on fluid is injected
through the hole at a moderate constant rate so that the region
of fluid grows. It is the growth of this region (regarded as a

two-dimensional set) we study.

'l'he assumptions on the fluid are that it shall be Newtonian
and incompressible, but it might well have high viscosity. Then,
under some mild further assumptions, the flow will be what is known
as a Hele Shaw flow ([13], p. 581 f), more precisely a two-dimen-

sional Hele Shaw flow with free boundaries and with a source point.

Mathematically, the problem of describing the growing region
of fluid is a kind of moving boundary problem. Identifying the
plane of the two surfaces with the complex plane and letting the
point of injection be the origin the Hele Shaw flow moving boun-

dary problem turns out to be the following:

Given an initial domain D c € with 0 €D, find a family of

= P
domains, t - D, for t >0 (0« D, = € ), such that, at each
instant t, the normal velocity of aDt at z < oD, equals

- grad th(z), where th is the Green’s function for Dt with

respect to the origin (g, (z) = - log|z| + harmonic in Dy
T

gy (z) =0 on aDt).
T
For this moving boundary problem we formulate a concept of
weak solution, which is as follows:

[0,») Dt ->D (1)

-t b]
where Dt c € are open sets with 0 € Dt , 18 a weak solution

1f there exist (for each t) distributions u

. with compact sup-

port in € such that




Xp T Xp T Du + 2mtes (15)
t 0

u, > 0 and (16)

D, = Dy U {zecC: ut(z) > 0} . 17

Here ¥ is the characteristic function of D, 60 the Dirac
measure at the origin and the statement ut(z) >0 in (17) is
meaningful because u,_ , by (15) , can be represented by a func-
tion continuous outside the origin. If Dg is connected the term
D, can be deleted from (17) (for t > 0).

(Within the body of the paper we actually have to work with a
slightly more technical variant of the concept of weak solution

(called (C) ) +than the one described ).

To see how the concept of weak solution i1s related to the
first description of the moving boundary problem one can formu-
late the latter within the language of distribution theory by the

equation

Ty

¥ Xp = Aep to2msy (18)
t

&

Dt

in which gy oW is extended to all € by setting it equal to
zero outsidet D, . (Both members of (18) will be distributions
supported by 8D, .) Integrating (18) with respect to t+ from
0 to t vyields (15) for

T
u =égD at. (19)

'This U, also satisfies (16) and (17) because 2N >0,
with strict inequality (only) in DJC , and because DJEJC must be
increasing with t (since the right member of (18) 1is a non-
negative distribution). Thus a solution in the first sense, a

"classical solution'", is also a weak solution.

Now our main result, Theorem 13, states that, given D
bounded and with 0 £ D

0=

g @ weak solution always exists and is

~unique. It also states that a (weak) solution has a property we




call the "moment inequality", namely that

Jo > fo + 2mt-o(0) (20)

be Dy

for every function ¢ , subharmonic in Dt' Actually, this mo-

ment property is equivalent to the property of being a weak so-
lution (Theorem 10).

Choosing ©(z) = + Re z'  and i_Im_zn in (20) gives

IDtI = [DOI +2mt (n = 0) (21)
(]..] denotes area) and

[z = [ " (n=1,2,... ). (22)

by Dy

This nice property, of preserving the "complex moments" | z
b

(n > 1) for the domains D_, of a solution of the Hele
Shaw problem was discovered by S.Richardson ([14]).

The proof of existence and uniqueness of weak solutions
goes via the theory of variational inequalities. Let § be a

sufficiently large disc, centered at the origin, and let ¥

10

t
be the function in @ defined by
Awt = XDO -1+ QWt'SO in Q
(23)
lp.t =0 on of
Then, if u, satisfies (15) to (17),
bug + Ay, <0
u, >0 (2w)
ug e (AuJC + Awt) =0 .
This 1s a so-called linear complementarity problem for U and

it is equivalent to the following variational inequality.




11

Find U s defined in Q@ and = 0 on 99, such that

Aut + Aﬁk S_O

and

fV(u—ut)'Vut >0 for all u (25)

satisfying u =0 on 9302 and
bu+ Ay <0 (in Q)

Such a variational inequality always has a unique solution
(in an appropriate Sobolev space), and if U is this solution
Dy > defined by (17), are shown to satisfy (15) +to (17) for
t small enough compared with Q. Thus we get a weak solution
of the moving boundary problem by solving a variational inequa-

lity for each t.

The variational inequality (2b) can be transformed to a

more familiar form by the substitution
v T ug ot wt . (26)
'Then (25) will be equivalent to:

Find Vi o defined in © and = 0 on 4R , such that

Ve 2¥ g
and

fv(v - v ) vy > 0 for all v (27)

Vi
satisfying v = 0 on 3R and

v>vy, (in 0.

this is the kind of variational inequality occurring for example

in the famous "obstacle problem" ([11]).

The existence of weak solutions to the Hele Shaw problem
leads to the existence of certain kinds of quadrature identi-

ties. For example the following is proved (part of Corollary 16.1):
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Given zl,...,;m € C, al,...,am‘> 0 there exists an open set
D such that
o 1
[f(z)dxdy = T a.f(z.) for all f € L-(D) (28)
D j=1 3 @

'The theory of variational inequalities has already been
used by others to handle moving boundary problems of various
kinds. Works closely connected with ours are [5] by G.Duvaut
on the classical two-phase Stefan problem, [6] by C.M.Elliott
on a problem arising in electro-chemistry and [7] by C.M.E1-

liott~V.Janovsky on the Hele-Shaw problem.

Recently M.Sakai, in a paper ([17]) primarily devoted to
quadrature domains (in a more general sense than ours), has ob-
tained results on the Hele Shaw problem similar to ours, but by
using quite different methods. Sakai works with a concept —of
weak solution which is essentially the same as our moment in-

equality (20).
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