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Abstract. In this paper we perform the asymptotic analysis of a class
of monotone quasilinear Neumann problems, with exponent p €, +oof
and nonstandard transmission condition, originating by change of vari-
ables from the quasilinear Neumann problem in a thin multidomain.
This completes the I'-convergence approach previously considered by
the same authors. In particular, the corrector type result which is given
here is more general.

0. INTRODUCTION AND MOTIVATION

Let N > 2, let w C RV-! be a bounded open connected set with cH
boundary such that the origin in RY-1 denoted by 0/, belongs to w. Let
Q) = wx (0,1), 2 = w x (=1,0) and let {ro},en: {An}nen be two
sequences of positive numbers converging to 0. We consider two vertical
cylinders with small volumes: Q) = rw (0,1) with small cross section
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r.w and constant height, Q) = & x (=hy,0) with small height h, and
constant cross section. Their interface is S = raw X {0} (see figure).

Then we consider the thin multidomain Q, = ngl) U Qg) U S, and the
following model Neumann problem in Qy:

— p—2 — 3
{ApUn-l—\Unl U,=F in Qn, 01)

Un _
5y = 0 on 89«,,,,

where p €]1, +oo[, ApUn = div(|VUP72VUy,), | - | is the euclidean norm

in RV or the absolute value in R, F € Lﬁ—l(w x (—1,1)). Assuming that,

when n — 400, the sequence {—fé’i—T} N converges to some finite positive
Tn ne

number, the asymptotic behaviour of U, can be obtained from a general
theorem of [11], where one considers a large class of minimization problems,
including the one corresponding to (0.1), with “energy”

1 b v e
5/ (IVVIP + |V [P)dX /QnFde.

- ke

In this paper our approach is more direct, as we study the asymptotic be-
haviour of a wider class of monotone Neumann problems, not necessarily
connected to an energy functional, but still having (0.1) as model equation,
written in its variational form : Uy, € WtP(Q,) and, for every Vin WHP(Q,),

/ [lVUn|P—2(va vV) + (]Unl”_QUn - F)V]dX =0,
Qn

(-,-) denoting the scalar product in RYN. To study the asymptotic behaviour
of {Un}neN as n — 4oo, we introduce the scallings TS) -l — Q(Tf)
(i = 1,2), defined by z = (Z1y- s TN-1,ZN) = (2’ zn) = T,(f)(;v) =X =
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(X1, . Xnv-1, Xn) = (X', Xn),
TT(Ll)(a;', zy) = (X', Xn) = (rnz’,zn),
T (2! en) = (X', Xn) = (&, bnzn).

By these homeomorphisms, each function v : Q) — R is connected with
v al) 5 R, by

v0(2) = V(X)) = VOTPI(2), (i=1,2)

and one can define V( g (i=1,2), by

v
v x) = (Vv
-V (X)_(VV (Y),aXN(X)),
(2)
VU (@) = (Vo (), -0~ ()
n N

. fy _ (Du 7 av .
where Vv = (7. alw -), VIV = (M1 -s 57— ). This allows to

transform the above problem posed in the thin multidomain €, depending
on n, into a problem which is posed in the fixed domain Q2 = w x (=1 1)

(Compare for instance [3 6 7,12, 13, 14, and 16]). Deﬁnmg U4 and B
by vl = v, L g and FY” F|Q( then defining u$) and fn by uﬁ)( ) =

L’n' (X) and fn (z) = Jos (X) as above, it is easy to see that for every
n &N, u, = (u&l). ug)) is the unique solution of the variational problem:

u, € K, = {u = (v, 0@y e whr(QW) x wheQy; (0.2)
v(l)(.tul, 0) = v'¥(r,z’,0), 2’ a.e. in w}
and for every v = (v(1), v(¥)) € K,

[ IS g, 900) () = )t
Ql

o [ ITEE (TR, V) ¢ (e - ) =0,
rn Qf2)
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More generally, the aim of this paper is to study the asymptotic behaviour,
(1 @)

as n — 400, of the following variational problem: u, = (un’y un ) € Ky
and for every v = (v1), vy € Kn,

/ﬂm [(a(z, BV, BHw) - S W] da (0.3)

h
_n 2),,2y B@p@Y — £ 0@ | dz =

where (.,.) is now the scalar product in RN+ BS) (i=1,2)is the linear op-
Lp(0) OV 5 (2),(9) () wli),()

erator from WHP(Q®) to (LP(Q ) given by Bn o = (v, Va'v ),
fn = fal(z)is defined in Q, a = a(z,s,§) is a Carathéodory function, satisfy-
ing suitable monotonicity, coercivity and growth conditions (see the precise
assumptions in the next section).

We assume that the volumes of the two cylinders Qg) and Qg) tend to
zero with same rate, as n tends to infinity, that is

h
r, — 0, hp — 0, g = —Nﬁ—_l —+q€ (0,00) (04)
Tn

and we assume also that
fo—Ff weakly in LFg—l(Q) (0.5)

(For instance (0.5) holds true, up to a subsequence, for the model problem,
if FelL>(Q).)

It is proved in this paper that for any sequence of solutions {un}pen of
(0.3), there exists a subsequence, still denoted {tn},eN for simplicity, such

that vl = () weakly in wie(QW), (i = 1,2),

L) vy weakty in (57000)" ™

T'n

(2) (2)
El_aaun —\%%—— weakly in L?(Q®),
n OLN N

and ((u), w2y, (yM), y()) is a solution of a variational problem involving
a(z, (v, vy, %ﬂ;\%)) and a(z, (v, v'ul?, %y?(i]—))).

In the case p < N - 1, the limit problem does not depend on ¢ and splits
into two independent variational problems posed in the respective domains
Q) and Q. In the case p > N — 1, the limit problem is coupled and
depends on ¢. This fact was already observed in [11].
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If a is strongly monotone, the problem (0.3) and its limit have unique
solutions and, in such a case, the above convergences occur for the whole
sequence and they are proved to be strong, a result which was not obtained
in such a generality in [11].

Finally, let us mention some other references. A preliminary version of
[11], concerning the model problem, but including oscillating coeflicients, was
published in [10] with sketch of proofs. We recall that [2] and [3] deal with

the case of oscillating coefficients having measure limits, but with Qg) =
Q2 independent of n and with a simpler (purely algebraic) transmission
condition. The homogenization of a monotone quasilinear problem in a
domain having oscillating boundary was considered in [9] (see also [17]).
For general background on homogenization of thin structures, the reader is
referred to [8]. The present paper, as well as [11], is inspired by [16].

1. MAIN RESULTS

We impose the following conditions on the nonlinear term a:
e Denoting V = (5,&) = (s,§,&n) € R x RM-! x R, the function
a = a(z,V) = a(z,s,&) = a(z,s, &, &), with values in RVt is a
Carathéodory function, that is, it is measurable with respect to z €
Q =w x (—1,1) and continuous with respect to the other variables.
e It satisfies the monotonicity condition:

(a(z, V) = a(z, W),V = W) 2 0, ae. z € Q, forall V,We RV (L1)
e It is coercive, that is there exist p € (1,00), @ > 0 and g € L'(Q),
such that

(a(z,V),V) > a|lVI]P —g(z), ae. z€Q, forall V & RVFL, (1.2)

7
o It satisfies the following growth condition: there exist 3 > 0 and
h e LP'(Q) with p' =

P T such that

la(z, V)] < BIVIPH+ h(z), ae. 2 € Q, forall V e RV (1.3)

It is well known that this growth condition implies that the mapping V' —
a{.,V{.)) is continuous from (LR to (LP'(Q))NFL

Under the above hypotheses, for every f, in LP' (), the problem (0.3)
admits at least one solution u, = (uq(@l). ug)) in the subspace K, defined in
(0.2) (see also beginning of Section 2).

When 7 tends to infinity, we assume (0.4) and (0.5).
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The asymptotic behaviour of u, in such a case is our main result, given
in Theorem 1.1, where we use the following notations:

WP (w) = {v e Wht(w), / vdz' = O},

WLP((~1,0)) = {u e WhP((~1,0)), /_01 vdey = o},

K =ww((0,1)) x W) if Il<p< N -1
K ={v=(oM,0®) e W((0, 1)) x WP (w); v1(0) = V@) if p> N-1,
.dentified in the canonical way to a subspace of Wh?(Q1)) x wir(Q®),
a(a:, V) = a(x, 575) = a(m, S,E’,&-N)
= (aO(m7 S, 6,7 £N)a a'(a:, S,f’,fN), aN(:D, 6,7§N)) € Rx RN—l x R.
Theorem 1.1. Let Wr(w), WiP((~1,0)), K and a = (ag,d’,an) be as
above, with a verifying (1.1), (1.2),(1.3). Let un = (ustl), ug)) be solutions of
(0.3). Assuming (0.4) and (0.5) when n — +o00, there exists u = (ull), u?) e

K and y = (¥, y?) € LP(0, 1; WP (w)) ¥ LP(w; WP ((—1,0))), such that
for a subsequence, the following convergences hold

usf) — ) weakly in Wl”’(Q(i)), (i=1,2); (1.4)

1 1 .
E(“(nl) ~ /w ug)dl") —y(D weakly in LP(0, LWhe(w)),  (L5)

1 o]
F< (2) —/ ug)dml\/) B weakly in LP(w; WEP((=1,0))), (1.6)
n -1

hence
%V’ug) — V'y(.l) weakly in (L”(Q(l)))N—l, (1.7)
E{:%ﬁfj — aa‘l;(: weakly in e (0@,
al., BMuMy = a(, uW, vy, %1) weakly in (Lp[(Q“)))NH, (1.8)
a(., BBy — a(.,ul?), vu®, 8;’;(12\:) weakly n (LPI(Q(:Z)))NH. (1.9)
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The limit (u,y) = ((u(l), u®), (y(l),ym)) satisfies the following variational
conditions, for every (v,z) = ((v™), o2y, (1] 2(2))) verifying the same con-
straints as (u,y),

duV
! (1) o) 1,(1) —
/;zm (a <x,u ,V'y ’dmN)’VZ >daf; 0, (1.10)
u(2y 92(2)
@ @ YN g = 1.11
/9(2) aN(:L,u ,Viu ,6$N)8$N z =0, ( )
duN do(®)
1) g,
A(l) {CLN(CE,U, 7vy ’dQ,N) de
(1)
+ (ao (z,u(l),V'y(l), (iu ) - f) U(l)] dz (1.12)
TN

Remark 1.1. Clearly, the equations (1.10) and (1.11) automatically extend
to every z(1) € LP(0,1; WhP(w)), 23 € LP(w; WHP(] - 1,0[)).
Remark 1.2. As in [11] we notice that the limit problem is coupled and its

solutions depend on ¢ if p > N — 1; otherwise it is uncoupled, its solutions
do not depend on ¢ and (1.12) splits into

(1) (1) - duW)
/ {aN<$, um,V'y(l) clu )du + (ao (ﬁ.u(”,vly(l’.u—-) —f)v(l)}dx:(),
Q1)

"dr~x / dzy dzn
& ey (2)
/ {(a’(x, u® , V'um, ay—),vlvm) + (ao (x, u(z),V'um, ay_) - f\vm}dm‘ =0.
Q(2) orn dr N J

Next we assert strong convergences, assuming strong monotonicity.

Theorem 1.2. If we suppose further that a is strongly monotone, that s,
with v > 0,
(a(z, V) = ale, W),V = W) 2 4|V = W,

in the case p > 2, or

o v
(a(z, V) —alz, W),V -W) > /W’
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in the case 1 < p < 2, then (0.3) and (1.10) to (1.12) have unique respective
solutions U, = (ug),ug)) and (u,y) = ((u®), u?)y, (yV),y3)). Moreover
we have strong convergences in (1.4) to (1.9), for the whole sequence .

Remark 1.3. The strong convergences in (1.5), (1.6) mean that yl), y2
are correctors for the limit problem in the same sense as in [16].

Remark 1.4. For the model problem,
—2
Qo (1"1 S, ‘Sla gN) = ts‘p—'237 al(x3 S,£i1 gN) = (‘fliz + 5}2\1)%—&4,

an (2,5, 6n) = (€1 + 8T én,

so that (1.10), (1.11) reduce to y1) = 0, y(® = 0 and the limit problem
reads (u(),u(?)) € K and for any (v, v € K,

1 d'{],(l) p—2 d’u,(l) d'U(]') (1) p—2 (1) 1 ’ (1)
|w|/0 U del dzn d—wj—v_+ (‘u P - Iz‘l/wfdiﬂ)v }dz (1.13)

—l—q/w [\V!u(z)lp-z (V’u(z), V/v(z)> + ()u(2)|p‘2u(2)__/_01 fde) v(z)] dz' = 0.

We notice that (1.13) has a unique solution (M, ) € K and it follows
from Theorem 1.2 that, for the whole sequence 7,

ull) — u(® strongly in whe(Q) (i = 1,2),

1 -

—v'ul) — 0 strongly in (LP(Q(I)))N '
’rTL

1 8u$3)

h, Orn

[t is interesting to remark that the limit problem obtained for (0.1) is the
same as for the model problem considered in [11], whose energy is

[ (el S e e

— 0 strongly in L7 Q3.

instead of

%/n (IVVP + V) dX — /Q FV dX.
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2. Proor oF THEOREM 1.1

Before proving the main result, we must observe that (0.3) admits at
least one solution. Indeed K,, defined in (0.2), is a closed subspace of
W = Wwhr(QW) x W2(Q?) and the operator A, : W — W’ given by

< Ao > = [ (ale, BOW), B de

Q1)
b [ (oo, BED), OV do
Q(2)

is monotone, bounded, continuous from strong-W to weak-W' and coercive,
under the hypotheses we are considering. Then, defining A7, : K, — K, by
Al = Ay it is clear that A’ enjoys the same properties as A,. This
implies (see [1], [4] or [15]) that A, (K,) = K. In particular, for any
f € LP(9), one has (figw, figm) € L (QW) x L (Q®) ¢ W' ¢ K/,
and there exists u, € K, such that, for any v € K,

< Aplun),v >= foll) dz +/

o da.
Q) Q@

Now we turn to the proof of Theorem 1.1. As usual, we begin with a priori
estimates.

Lemma 2.1. For any sequence of solutions u, of (0.3), for1=1,2, {ugf)}n
is bounded in LP(QW)) and {VS)(MS))}H is bounded in (L”(Q(i)))N.

Proof. In the sequel, C' will denote any positive constant, independent of
n. Consider v = u,, as test function in (0.3). We obtain

< Anftn) > = / (alz, BOWD), BOWD) da
Qi) >
Q)
:/ fnug)dm+qn/ faulPde.
JQ) Ja2)

As {qn}n is bounded away from oo and { f,} is bounded in LP'(Q), the right
member may be estimated from above,

/Qm il ) faulPdz < C[uD oy + a2 o)) (2:2)
JQl2
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As {gn}n is bounded away from 0 and by using the coercivity condition on
a, the left member in (2.1) is estimated from below:

< Ap(ug), un > 2> C’(/ (|V(n1)u£3)|p + lu%l)lp)dr
Q)

(2),,(2)p (2)|p _C
+/Q(2) (Nn w4 [ul’ |>dz) c.  (23)

From (2.1), (2.2) and (2.3) one casily obtains the claims of the lemma, by
using the fact that the second members in (2.2) and (2.3) have different
homogeneities.

The following proposition was proved in [11] (see Proposition 2.1 in [11)]):

Proposition 2.1. Let by, r satisfy (0.4). Let {vg)}n be a bounded sequence

in L?(Q®), such that {Vg)vg)}n is bounded in (LP(Q(Z)))N
a subsequence,

. Then, up to

v v weakly in W”’(Q(z)),
for some o(2) which does not depend on xn. Moreover, ifp>N -1,

lim/ vl (rpa’,0)da’ = lwlv®(0").

T

As in [11], the following general compactness result follows from Propo-
sition 2.1 and Poincaré-Wirtinger inequality.
Proposition 2.2. Let hn, satisfy (0.4). Let v, = (v,&l),vq(f)) be elements
in K, such that, for i =1,2, {uﬁf)}n is bounded in LP(Q)) and {Vg)v(ni)}n
is bounded in (LP(Q(i)))N. Then, up to a subsequence,
ol v weakly in wheQ), (i=1,2),
for some vV independent of ©' and v(2) independent of zn, and for some

L), 52),

L (v n_ L v?d:c') ) peakly in LP(0, 1 W, P(w)),

T'n \OJ\ w

Lo [ @ O weakly in LP (w; WEP((~
L vldzn ) — 2 weakly in LF (w; WyP((—=1,0))).
n -1

Moreover, if p> N —1,
vM(0) = v@(0").

Appllying Proposition 2.2 to the solutions of (0.3), we obtain part of The-
orem 1.1, namely we get (u, u?) in K, yWin LP((0, 1); WaP(w)), y{?) in
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LP(w; WiP((~1,0))) and the convergences (1.4) to (1.7). It remains to prove
(1.8) and (1.9) and to prove that (u,y) solves the limit problem (1.10) to
(1.12). This part of the proof of Theorem 1.1 proceeds with a suitable choice
of test functions and with monotonicity. It differs from [11], except that
it uses the same density argument.

As a consequence of Lemma 2.1 and the growth condition on a, the se-
quences {a(z, By(zz)us.f))}n are bounded in (L?' (Q()))NV+1 50 we may suppose
that, for some 7,

o . . NN+t
a(z, BDu®) = ) weakly in (L” (Q(l))) . (2.4)

Let

K = {(U(l), U(Z)) c Wl,w((o, 1)) % Wl,OO(w)’ U(l)(O) _ 0(2)(0,)} 7

7 = i@y x cr@?).

It was proved in [11] (see Proposition 3.1) that K is dense in K in Whe-
norm and Z is dense in Z = LP(0, 1; WhP(w)) x LP(w; WL2((-1,0))). So it
is enough to prove that (1.10) to (1.12) are satisfied for any (v,z) € K x Z
(cf. Remark 1.1).

In order to do this, we consider in (0.3) two types of test functions.

The first test function is the following one. Let v = (v(1), v(?)) € K and

define v, = (U#), vv(f)) € K, by

Ug) — ‘0(2),
w1 = ’U(l)(.rN), if oy > ay,
v U(l)(a«n)% + -U(z)(rnx’)——w";f' , it 0 < oy < ap,

where a,, € (0, 1) will be chosen later on. We obtain

- (1)
/ (a(z, B ul})y, {v(l),O,(Zv—})dx-l- / (fl(ﬂ?«Br(zl)“;l))’szl)va.l))dz
s TN Jo

N>R <zy<on

+ qp / (a(z, BHul?), {0(2), V'ul? 0})de (2.5)
Jo@)

= / fuvMdaz + / fn'vr(bl)da; + qn vz
TN D>un O<zy<an Q@
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Now we compute and take the limits of each term in the left side of (2.5).
From (2.4),

vt
am,B(l) 1)y, 1), 0,=—1)d
/Wu D), {o,0, 57— de
HvM)
_ / ao(x, BUuM)wWdz + an(z, BOU) L —ds  (2.6)
TN>Qn N>R OzN

(1)
(1),,(1) (1)dv
— v 4 dz,
/;2(1) (770 N aTN)

as soon as «,, tends to zero. For the first integral on 0 < TN < G, (2.4) and
Hélder’s inequality give

[ oo, O, BO) ] < B oo
<zn<an

Computing B,(ml)vg) on 0 < zny <y gives

e
By = an=2y 7'y (2) (r, ')

L (o1 (@,) = v (raz"))
We can now estimate

IB7(7/1)U7(’L1)I <C+ C«lv/U(Z)(rnm/)l + g_‘v(l)(an) _ v(2)(rnx/)l

aN (1) rn
<C+ < v(1(0) +/ v (zn)dzy — (0" - / VoD (tz') - 2'dt
an (1) Tn
=C + _C_ / duv (zn)den — / V'v(z)(tx’) -x'dt'
anlJo Ozn 0

<o+ Eantr) <0

n

as soon as {ry/ay }n is bounded.
So if we choose a,, with this property, we obtain that

/ (a(x, Bg)ug)), B,(ll)v,(ll)) dz — 0. (2.7)
Oz y<an

For the last integral in the left side of (2.5), we have from (2.4)

/ | @ (ate. BN, G 0}) de (2.8)
Q
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= / ao(z, Bu @y + / (a’(m, BPu(2), V'v(g)) dz
Q@) Q)

-—)/ 77(()2)0(2)(11: +/ (77(2),, V’vu)) dx
Q) Q)
The right member of (2.5) can be written
fnv(l)ddf + Qn/ fnv(z)dl‘ ‘|‘/ fn(vg) - U(l))d:lj;
Q1) (2) 0<zy<an
the last integral tends to zero and we have from (0.4) and (0.5)

/ fv<1)da:+q/ Fatl d:c—}/ fol d:z+q/ fo@dz. (2.9

By passing to the limit in (2.5) and using (2.6) to (2.9), we obtain

(1) ,
/ (rDs 0z 4 ! )2 )qu/ [n(()2)v(2)+ (n(z) ’v/v(z)ﬂ da
(2)

/ foldz + q/ foPdz, (2.10)

which is true for all v € K and then, by density and continuity, for all v € K,
in particular for u.

Next we take a second test function. Given z = (z(1) (%)) ¢ Z, we
define v, € K, by the following relations:

D= h, ),
o) — rnz(l)’ if ay > ay,
n rnz(”(:r',an)%:— + hn:(z)(rnx’,O)——-—“";f”, if 0<zy < a,.

Using v, as test function in (0.3), we obtain

/ (a(e, By 1)) ( (1))d1 + / (a(a:,B,ﬁvl)u;l)),Bg)vg))dl‘
N>On O<zy<an
B3 2)) {h ) v 22) _a_i(.?})m
i Jae) <a(c no ) Tdzy '
/ Favl Uy, dz—i—q / favy, (%) dz. (2.11)

We remark that Un2 — 0in L>(Q). Tt follows that the right side of (2.11)
tends to zero. It remains to pass to the limit in the integrals involving a.
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On zn > oy, we have from (2.4),

/ (a(x, Bff)ug)), B,(ll)vgl)> dz = rn/ agp(z, B,(f)ug))z(l)dz
TN>On

TN>On

(1)
+ / (a/(x, JIOMON vfz(l)) dz + 'rn/ an(z, BDub) 9z
TN>On TNDOn aZ'N

W 0
—>/Qm (n', V' )dm. (2.12)

Let us estimate the integral containing ¢ on 0 < N < O We have

dz

(1)
Un
BUuD) = | V20 (a!, o) 2 + V') (!, 0) 2255
04-17: [Tnz(l)($i7 Oln) - hnz(z)(r”'z,’ 0)]

Now it is easy to see that, if we choose a,, such that {rn/0n}n and {hn/an}n
are bounded, then IBS)U,(})] < C and from (2.4), if o, tends to zero,

[ (e B0, B daf < CUBLD e lzmoconcan) O
0<zy<an

(2.13)
For the integral involving a on Q). we have, using (2.4) again,
9z
» B(2),(2) ,2) 1,(2) ,
/ﬂm (a(x,Bn ul ),{hn V'), })dm (2.14)
= hn/ ap(z, Bﬁf)ug))zmdx + hy, / (a’(a:, B{Ay2)y, V'z(2)> dz
Q@) Q2
9x(2) 2 92(2)
+ an(r, Bﬁf)u(f) dz ——)/ ) dz.
/gm e ) dzn 0o ™V dzn
From (2.11) and (2.12) to (2.14), we obtain
7 82(2)
W' w0 d / D= gz =0 2.15
[, (0 s ae s [ G de =0 @)

which holds for any z € 7 and, by density and continuity, for any z € Z, in
particular for y.

In the remainder of the proof, we identify the quantities n'Y which, to-
gether with (2.10) and (2.15), will give the desired result. For this we use
the monotonicity condition.



ASYMPTOTIC ANALYSIS FOR MONOTONE QUASILINEAR PROBLEMS 637

Let V) = (v, 70) = (O, 0, 70 € (L7(29)) "+, We

have
0< / (e, BOWD) = a(e, vO), Bl - V) dz (2.16)
Q1)
+ qn/ (“(l‘» By — g(z, vy, By — V(2)) da
Q(2)
= z, BDuVy, By (2), (2 R(2),(2)
A(I) (a(aijn Un )7Bn un )dm_}'—qﬂ./ﬂ'(z) (a(xan 'U:n )’BTL ’U,n )dl‘
_/ (a(z,Bgl)ung))’V(l)) d:v+/ (a(x,v(l))’v(l) —Bff)ug)) de
) aw

_ qn/ (a(x,Bfﬁ)u&?)),V(?)) dz+qn/ (a(z,V(z)),V(z) _ Bﬁf)ug)) de.
Q(2) 0@

Using u, as test function in (0.3), we obtain, by means of (2.10),

/ ( (z, BMy My, By )) dz + gy / (a(x,Bif)uﬁf)).,Bf)uﬁf)) dz
(2)
/ fauNdz + g, / foul?dz — fu(l)d:c—l—q/ fuPdz  (2.17)

e
- W, 1y , (1ou , .2 2 () o)
_/Qm (770 U+ NN amN>dm+q/Q(2) [770 u') 4 (77 V' )

Now, with (2.17), using the convergences (1.4) to (1.7) as well as (2.4), we
pass to the limit in (2.16) and, regrouping the terms, we obtain:

dz.

1)
. [ (1), (1) _ (0 o (D) du o I R ) ig
- ./.rzm o (v o)y (da:N N )Jd“ (2.18)

+ q/ {né”(u(?) — (%) —i—( Vi y)]dw
+/ a(z, v { 1) — ) 20" gy (D) T(l) - (f:m}>dx

39,(2)
+ q/ (a(m, Vi, {10{2) —u® 72 gyl 1(\,2) — ?7/ })clm
JQf2)

— / (r)(l)l, T(l)l> dr — q/ ‘fjf\g)T[(\?)d(Lﬁ
Qi) Q)
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By taking v = u, (1) = vy, 7-}(\?) = %%(;-) in (2.18) and by using (2.15),
we get

(1)
(1) _ ) o (1) Oy (9w
0< /Q(l) (77N an(z, v, V'Y, my )) (dmN ™ )d:n (2.19)

@
+q / ) (1@ = a'(z,u®, 7' %yN) vl 1) de

In (2.19) we choose U= d”(l d) @' = v'u(?) — t1p with ¢t positive and
¢ e LP(QW), ¢ € (LP(Q(z))) , we divide by ¢ and we pass to the limit
for t — 0. It follows that

(1
(1) (1) ’ (1) d'M
< — .
0< /9(1) <77N an(z,uv, V'y d:l; ))¢dm (2.20)

@ ) viy®, 2
+q/m2)(n d(z, v, Vu ))

As ¢ and t may be arbitrarily chosen, we find that

(1)
W) _ gz u® vy, &

NN aN(Ta ut, VY, dzn
In the same way, in (2.18) we take v = u, F0 = vy — tp, with ¢ in
(LP(Q(U))N_I, Tj(\}) = ddr(;\:, 72 = vy, Tﬁ?) = %yi]) tep, with ¢ in
LP (22, we divide by ¢ and we pass to the limit for ¢ — 0, using (2.15)
again, and obtain

du(l) '
0< — ! (1) (D) _ o0 d
<= [ (@, 90, Zo0 =l )i

. Oy®
_ @) or,@ Y7 Ny
Q/Qm (CLN(CII,U ,V’Ul 131_\[) ﬂ,v)wdil’»

(2)
) o = (e, u®, vu®, B (221)
Oz N

which gives

(1) (2)
77(1)/ — a,(a), u(l)’ V’y(l) du ) 77;3) — aN(a:, u(2)’ V'u(ﬂ, . ) (2.22')
N

? dz“v ?
The last identification we need is obtained by taking, in (2.18), 1 =
vy, Tz(v) _ adu(v = V’u(z),rf\?) - ?jyr‘i’ , giving

dutV)
77(()1) = ao(IZ), UJ(I)% v/y(l)’ du )7 ’?((32) = aO(‘r lL ) V/
N

3J
s
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From (2.4), (2.10)

, (2. 15) (2 21) to (2.23), we finish the proof of the theorem,
that is we obtain (1.8), (

8), (1.9) and (1.10), (1.11), (1.12).

3. PROOF OF THEOREM 1.2

Assuming that a is strongly monotone, we first prove strong convergences
in (1.4) and (1.7). Then the strong convergences in (1.8) and (1.9) follow im-
mediately, as well as the ones in (1.5) and (1.6) since, by Poincaré-Wirtinger
inequality,

[ S (ug) 1 ug)dl.f) _yu)‘

Tn Iw’

[5o- [ raen) -

Let us begin with p > 2. Using the strong monotonicity condition in (2.16),
we obtain, after passing to the limit, that

1

Lo vfym“

Le(Q() ) “lr, (Lr(QM))N -1

1 8u$12) ay?)
e

Lr(Q®) — LP(Q(®)’

0 < Climsup ([VVul) — rV|, 4+ g|VPu) — 7Oz, (3.1)

+ [l — v 4 gllul® U(Q)ng) < second member of (2.18).

Now choosing u = v, T(\,) = (fi“m 7 = v, £V = vy ) Tﬁ?) = ‘27;(1) ,
and taking (2.15) into account, we immediately obtain that the convergenées
(1.4) and (1.7) are strong.

The case p < 2 is very similar, except that, in the first line of (3.1), each
term of the form [[A, — BJI  is r@placed by

/ {An — B'2
RN de,

(14| +[B)*=?

tending to zero as before. But, from Hoélder inequality,

/[A”"BM‘” s <_/%d@g(/(mnl+IB|)P(1;L->2—;£,

where the last integral is bounded independently of n. Heunce ||4, — BJ|7,
tends to zero again.
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