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Stratified materials allowing
asymptotically prescribed equipotentials

Björn Gustafsson, Jacqueline Mossino and Colette Picard

1. Introduction

Let us consider the sequence of minimization problems:

P (an) : inf
{

1
p

∫
Ω

ap−1
n |∇v|p dx−

∫
Ω

fv dx ; v ∈W 1,p
L (Ω)

}
,

where Ω is a bounded domain in RN , 1<p<∞, L stands for suitable Dirichlet
boundary conditions and, for each n∈N, 0<an∈L∞(Ω). In the applications we
have in mind Ω is a conductor, the an represent rapidly oscillating (thermic or
electric) conductivity coefficients and we are interested in the possible convergence,
as n→∞, of the problems P (an) to some “homogenized” limit problem when an

converges to some a∈L∞(Ω) in a suitable sense.
In the case N =1 it is well known (cf. [12] for p=2) that if 1/an, 1/a and a are

in L∞(Ω) and

(H)
1
an

→ 1
a

in w∗-L∞(Ω),

then the solution un of P (an) converges in w-W 1,p(Ω) to the solution u of P (a) and
∫

Ω

ap−1
n |u′

n|p dx→
∫

Ω

ap−1|u′|p dx,

which is to say that P (an) converges to P (a).
In the case N>1 the situation is more complicated and the hypothesis (H)

by no means implies that P (an) converges to P (a). In general not very much can
be said, as far as we know, but if the an happen to depend on only one variable,
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say x1, then it is known (cf. [11], [13] for p=2 and [9] for more general situations)
that if (H) holds and moreover ap−1

n →(a∗)p−1 in w∗-L∞(Ω) for some a∗∈L∞(Ω),
then P (an) (with |∇v|p=

∑N
i=1 |∂v/∂xi|p) converges to the problem

inf
{

1
p

∫
Ω

ap−1

∣∣∣∣ ∂v

∂x1

∣∣∣∣
p

dx+
1
p

∫
Ω

(a∗)p−1
N∑

i=2

∣∣∣∣ ∂v

∂xi

∣∣∣∣
p

dx−
∫

Ω

fv dx ; v ∈W 1,p
L (Ω)

}
.

The present paper is a natural sequel to [7], [8] and is concerned with a kind
of singular version of the above, namely corresponding to the case a∗=+∞. Let φ

be a given smooth function on �Ω and assume that the an depend only on t=φ(x),
so that an(x)=an(t) say. Assume also that (H) holds. In [7], [8] we proved that
if, in addition to the above, Ω contains an increasing (as n→∞) number of leaves
of perfect conductors which are uniformly distributed level surfaces of φ (this cor-
responds to having the additional constraint “v= constant on each leaf” in P (an))
then P (an) converges to a limit problem P whose admissible functions are constant
on each level surface of φ. In practice P then is a one-dimensional problem.

In this paper we obtain the same conclusion under more relaxed conditions,
namely with the leaves of perfect conductors replaced by the assumption that an is
very large along many of the level surfaces of φ. Precisely, the right condition on an

turns out to be that

(H ′)
∫

I

ap−1
n (t) dt→+∞ as n→∞

for every interval I of positive length. Thus, if (H) and (H ′) hold, then P (an)
converges to the same homogenized limit problem P as before, the solution of which
is constant on all the level surfaces of the prescribed function φ.

This is our main result. It contains as special cases earlier results in e.g. [4]
concerning periodical reinforced structures. A typical example is when an=a (inde-
pendent of n) except for an increasing number of thin layers of very high conductiv-
ity. If there are n uniformly distributed layers of thickness ε=εn and conductivity
λ=λn then (H), (H ′) hold if

nε→ 0 and nελp−1 →∞ as n→∞.

In the body of the paper we actually work with more general problems than
P (an), namely

(Pn) inf
{∫

Ω

1
an

Gn(x, an∇v) dx−
∫

Ω

fnv dx ; v ∈W 1,p
L (Ω)

}
,
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where the functions Gn(x, z) satisfy certain natural conditions, e.g. Gn(x, z)=
|z|p/p, where |·| is either the euclidean norm (|z|p=(

∑N
i=1 |zi|2)p/2) or the lp-norm

(|z|p=
∑N

i=1 |zi|p). Note that problem Pn is equivalent to the weak formulation of
the quasilinear boundary value problem{ −div gn(x, an∇un)= fn in Ω,

un ∈W 1,p
L (Ω),

where gn is the gradient of Gn.

Acknowledgements. We are grateful to F. Murat for enlightening discussions,
and to the Swedish Natural Sciences Research Council (NFR) for support.

2. Statement of the main result

We shall work with domains Ω of annulus (or shell) type (cf. however §4).
Let Ω=Ω0\�Ω1 where Ω0 and Ω1 are bounded domains in RN , (N≥2) with smooth
boundaries and satisfying Ω0⊃�Ω1. Let φ∈C1(�Ω,R) satisfy φ=0 on ∂Ω0, φ=1 on
∂Ω1 and ∇φ �=0 on �Ω. It then follows that 0<φ<1 in Ω; the condition ∇φ �=0 also
imposes topological restrictions on Ω. The geometry we think of is that with Ω0

and Ω1 homeomorphic to balls, but the above assumptions also allow Ω0 and Ω1 to
be e.g. nested tori.

Let us consider the following sequence of minimization problems

(Pn) inf
{∫

Ω

1
an

Gn(x, an∇v) dx−
∫

Ω

fnv dx ; v ∈W 1,p
L (Ω)

}

where
� an∈L∞(Ω), an(x)≥c>0 for every n∈N and a.e. x∈Ω,
� W 1,p

L (Ω)={v∈W 1,p(Ω);v=0 on ∂Ω0, v=1 on ∂Ω1}, (1<p<∞),
� fn∈Lp′

(Ω), 1/p+1/p′=1, fn→f in w-Lp′
(Ω),

� Gn are standard functions in the calculus of variations, that is:
– Gn :(x, z)∈Ω×RN →Gn(x, z)∈R is a Carathéodory function (that is, mea-

surable with respect to x, continuous with respect to z)
– for every n∈N, for almost every x∈Ω, Gn(x, ·) is a strictly convex function

which admits a gradient denoted by gn(x, ·),
– there exist constants c1, c2, c4>0 and c3∈L1(Ω) such that, for every n∈N,

for almost every x∈Ω and for every z∈RN ,

(1) c1|z|p ≤Gn(x, z)≤ c2|z|p+c3(x);
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(2) |gn(x, z)| ≤ c4(1+|z|p−1).

� There exists G satisfying the same properties as Gn, such that for almost every
x∈Ω and for every z∈RN ,

(3) Gn(x, z)→G(x, z) as n→∞,

(4) gn(x, z)→ g(x, z) as n→∞.

Clearly (cf. [10]), problem (Pn) admits a unique solution un, and un is also the
unique weak solution of{ −div gn(x, an∇un)= fn in Ω,

un ∈W 1,p
L (Ω).

Theorem. We assume that (an) satisfies the following hypothesis:

(5) an =an�φ with an ∈L∞(0, 1) and ∃c > 0 :∀n∈N, a.e. t∈]0, 1[ , c≤an(t),

(6) ∃a∈L∞(0, 1):
1
an

→ 1
a

weakly∗ in L∞(0, 1) as n→∞,

(7) for every non degenerate interval I ⊂ [0, 1],
∫

I

ap−1
n (t)dt→+∞.

Then, as n→∞, the solution un of (Pn) converges weakly in W 1,p(Ω) to the solu-
tion u of

(P ) inf
{∫

Ω

1
a
G(x, a∇v) dx−

∫
Ω

fv dx ; v =v�φ,v∈W 1,p
L (0, 1)

}
,

where a=a�φ and W 1,p
L (0, 1)={v∈W 1,p(0, 1);v(0)=0,v(1)=1}. Moreover

(8)
∫

Ω

1
an

Gn(x, an∇un) dx→
∫

Ω

1
a
G(x, a∇u) dx,

which is to say that the infimum of (Pn) converges to the infimum of (P ).

Remark 1. The assumptions in the theorem are actually slightly excessive.
In (5) we could allow c>0 to depend on n. This would still guarantee that 1/an∈
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L∞(0, 1) and then it would follow from (6) and the uniform boundedness principle
that c actually could be taken independent of n.

Conversely, with (5) as it is, (6) could be replaced by the weaker condition that∫
I

dt

an(t)
→

∫
I

dt

a(t)

for every interval I⊂[0, 1] (making (6) more similar to (7)). In fact, by (5) the se-
quence (1/an) is bounded in L∞(0, 1) and then it is enough to have the convergence

∫ 1

0

1
an(t)

ψ(t) dt→
∫ 1

0

1
a(t)

ψ(t) dt

for a dense set of functions ψ∈L1(0, 1), e.g. for all step functions.

Remark 2. The limit problem (P ) of (Pn) is the same as that obtained for a
foliated material with leaves of a perfect conductor in [8] and by Lemma 2.2 of [8],
(P ) can also be formulated
(P )

inf
{∫

Ω

1
a
G(x, a∇v) dx−

∫
Ω

fv dx ; v ∈W 1,p
L (Ω),∀t∈]0, 1[ , v = constant on Γt

}
,

where Γt is the level surface {φ=t}.
Actually (P ) is a one dimensional problem (cf. [8], §3.b, where the coarea

formula of [6] is used). More precisely, let

� G(t, z)=
∫

Γt

G(x, z∇φ)
|∇φ| dγ,

� f(t)=
∫

Γt

f

|∇φ| dγ,

� (P) : inf
{∫ 1

0

1
a
G(t,av′) dt−

∫ 1

0

fv dt ;v∈W 1,pL(0, 1)
}

,

� u the solution of (P).

Then u=u�φ and∫
Ω

1
a
G(x, a∇u) dx−

∫
Ω

fu dx =
∫ 1

0

1
a
G(t,au′) dt−

∫ 1

0

fu dt.

Remark 3. In [9] we investigate a case when
∫

I
ap−1

n (t)dt is bounded; more pre-
cisely we determine the limit problem of (Pn) assuming

∫
I
ap−1

n (t)dt→
∫

I
a∗p−1(t)dt

where a∗∈L∞(0, 1) instead of hypothesis (7).
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Example. Stratified annulus containing numerous thin layers of very high con-
ductivity which are uniformly distributed in Ω.

For each n∈N, let Tn={ti,n ;0≤i≤n} where (ti,n)i is a sequence of points
in [0, 1] such that 0=t0,n<t1,n<...<tn,n=1. Let ε=εn such that

0<ε< 1
2 min{ti,n−ti−1,n ; 1≤ i≤n}

and let Σi,n,ε be the layer located between the two level surfaces of φ of values
ti,n−ε and ti,n+ε, that is

Σi,n,ε = {x∈Ω ; ti,n−ε<φ(x)<ti,n+ε}, 1≤ i≤n−1 and set Σn,ε =
⋃

Σi,n,ε.

Let us suppose that this stratified annulus Ω (which contains the n−1 thin layers
Σi,n,ε) has a conductivity coefficient an such that

an =
{

bn in Ω\Σn,ε,

λn in Σn,ε,

where bn=bn�φ, bn∈L∞(0, 1), λn=λn�φ, λn∈L∞(0, 1), λn(t)≥Λn>0 and Λn→∞
as n→∞.

The problem (Pn) can be written

inf

{ ∫
Ω\Σn,ε

1
bn

Gn(x, bn∇v) dx+
∫

Σn,ε

1
λn

Gn(x, λn∇v) dx−
∫

Ω

fnv dx ; v ∈W 1,p
L (Ω)

}
.

Corollary. Let us assume that
� ∃c>0:∀n∈N, a.e. t∈]0, 1[ , c≤bn(t),
� ∃b∈L∞(0, 1):1/bn→1/b weakly∗ in L∞(0, 1) as n→∞,
� ∃β>0:∀n∈N, ∀1≤i≤n, ti,n−ti−1,n≤β/n,
� nε→0 and nεΛp−1

n →∞ as n→∞.
Then, the solution un of (Pn) converges weakly in W 1,p(Ω) to the solution u of

inf
{∫

Ω

1
b
G(x, b∇v) dx−

∫
Ω

fv dx ; v =v�φ,v∈W 1,p
L (0, 1)

}

where b=b�φ. Moreover,∫
Ω\Σn,ε

1
bn

Gn(x, bn∇un) dx+
∫

Σn,ε

1
λn

Gn(x, λn∇un) dx→
∫

Ω

1
b
G(x, b∇u) dx.
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Proof. We have to prove that the sequence (an) has the properties (5), (6),
and (7) of the theorem. It is clear that (5) holds. As to property (6), we have
1/an→1/b weakly∗ in L∞(0, 1), since 1/bn→1/b weakly∗ in L∞(0, 1), nε→0 and
Λn→∞.

To verify (7) finally, let I be a subinterval of [0, 1] and denote by k the number
of intervals [ti−1,n, ti,n] which meet I. We have |I|≤kβ/n. The number of intervals
[ti,n−ε, ti,n+ε] contained in I is at least k−3. Hence we get

∫
I

ap−1
n (t) dt≥ (k−3)2εΛp−1

n ≥ 2
(

1
β

n|I|−3
)

εΛp−1
n →+∞.

Remark 4. Periodical reinforced structures have been studied in [2], [3] and [4].
In [4], p=2, an=1 in Ω\Σn,ε, an=λ in Σn,ε, Γt are hyperplanes, G is “less general”
and the limit behavior of (Pn) was obtained if nελ→k∈[0,+∞]. The previous
example extends the case nελ→+∞, that is the case of “very high” conductivity.
The case nελ→k∈[0,+∞[ of “high” conductivity is a particular case of the results
of [9].

3. Proof of the theorem

Since the convergence of minimization problems is related to the Γ-convergence
of the functionals we want to minimize (cf. [5] and also [1]), the theorem will be
easily deduced from the following three lemmas:

Lemma 1. Under conditions (5) and (6), for every v=v�φ with v∈W 1,p
L (0, 1)

there exists a sequence vn∈W 1,p
L (Ω) such that vn converges to v in w-W 1,p(Ω) and

lim sup
∫

Ω

1
an

Gn(x, an∇vn) dx≤
∫

Ω

1
a
G(x, a∇v) dx.

Lemma 2. Under conditions (5) and (6), if vn converges to v in w-W 1,p(Ω),
then

lim inf
∫

Ω

1
an

Gn(x, an∇vn) dx≥
∫

Ω

1
a
G(x, a∇v) dx.

Lemma 3. Under conditions (5) and (7), if vn∈W 1,p
L (Ω) and converges to v

in w−W 1,p(Ω) and if
∫
Ω

ap−1
n |∇vn|pdx is bounded, then there exists v∈W 1,p

L (0, 1)
such that v=v�φ.

Before proving these lemmas we establish the theorem:
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Proof of the theorem. Let un be the unique solution of (Pn). Let v=v�φ with
v∈W 1,p

L (0, 1). By Lemma 1, there exist vn∈W 1,p
L (Ω) such that vn converges to v

in w-W 1,p(Ω) (therefore in Lp(Ω)) and

∫
Ω

1
a
G(x, a∇v) dx−

∫
Ω

fv dx≥ lim sup
(∫

Ω

1
an

Gn(x, an∇vn) dx−
∫

Ω

fnvn dx

)

≥ lim sup
(∫

Ω

1
an

Gn(x, an∇un) dx−
∫

Ω

fnun dx

)

≥ lim sup
(∫

Ω

c1c
p−1|∇un|p dx−

∫
Ω

fnun dx

)
.

(9)

Using Poincaré’s inequality, we deduce that (un) is bounded in W 1,p(Ω) and that∫
Ω

a−1
n Gn(x, an∇un)dx is bounded. Hence a subsequence of un, say un again, con-

verges to some u in w-W 1,p
L (Ω) and in Lp(Ω) and due to hypothesis (1),∫

Ω
ap−1

n |∇un|pdx is bounded. By Lemma 3, there exists u∈W 1,p
L (0, 1) such that

u=u�φ and, by Lemma 2,∫
Ω

1
a
G(x, a∇u) dx−

∫
Ω

fu dx≤ lim inf
(∫

Ω

1
an

Gn(x, an∇un) dx−
∫

Ω

fnun dx

)
.

Consequently, by (9), for all v=v�φ with v∈W 1,p
L (0, 1), we have∫

Ω

1
a
G(x, a∇u) dx−

∫
Ω

fu dx≤
∫

Ω

1
a
G(x, a∇v) dx−

∫
Ω

fv dx.

Therefore, u is the unique solution of (P ), the whole sequence (un) converges to u

in w-W 1,p
L (Ω) and in Lp(Ω) and∫

Ω

1
an

Gn(x, an∇un) dx→
∫

Ω

1
a
G(x, a∇u) dx.

Proof of Lemma 1. Let v=v�φ with v∈W 1,p
L (0, 1). Let vn be defined by

vn(t)=
1
δn

∫ t

0

a
an

v′ ds, where δn =
∫ 1

0

a
an

v′ ds,

and let vn=vn�φ. Then vn∈W 1,p
L (Ω), vn→v in w-W 1,p(Ω) and in Lp(Ω) (cf. [8],

Lemma 2.4 where the same functions were used), and

Gn(x, an∇vn)=Gn

(
x,

1
δn

a∇v

)
.
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Let us write

Gn(x, an∇vn)−G(x, a∇v)

=Gn

(
x,

1
δn

a∇v

)
−Gn(x, a∇v)+Gn(x, a∇v)−G(x, a∇v).

Using hypotheses (3), (1) and Lebesgue’s theorem, we get Gn(x, a∇v)→G(x, a∇v)
in L1(Ω). Moreover,

Gn

(
x,

1
δn

a∇v

)
−Gn(x, a∇v)=

∫ 1/δn

1

a∇v ·gn(x, ta∇v) dt;

since δn→1 and using (2), (1) and Lebesgue’s theorem, we deduce that

Gn

(
x,

1
δn

a∇v

)
−Gn(x, a∇v)→ 0 in L1(Ω).

Consequently,
Gn(x, an∇vn)→G(x, a∇v) in L1(Ω).

Since, by hypothesis (6) and Lemma 2.1 of [8], we have 1/an→1/a in w∗-L∞(Ω),
it follows that ∫

Ω

1
an

Gn(x, an∇vn) dx→
∫

Ω

1
a
G(x, a∇v) dx.

Proof of Lemma 2. Let vn→v in w-W 1,p(Ω). Since Gn(x, ·) is convex,∫
Ω

1
an

Gn(x, an∇vn) dx

≥
∫

Ω

1
an

Gn(x, a∇v) dx+
∫

Ω

1
an

gn(x, a∇v)·(an∇vn−a∇v) dx.

We have ∫
Ω

1
an

Gn(x, a∇v) dx→
∫

Ω

1
a
G(x, a∇v) dx

since Gn(x, a∇v)→G(x, a,∇v) in L1(Ω) and 1/an→1/a in w∗-L∞(Ω). Moreover,∫
Ω

1
an

gn(x, a∇v)·(an∇vn−a∇v) dx =
∫

Ω

gn(x, a∇v)·
(
∇vn−

a

an
∇v

)
dx→ 0

since gn(x, a∇v)→g(x, a∇v) in s-Lp′
(Ω) (using hypotheses (4), (2) and Lebesgue’s

theorem), ∇vn→∇v in w-Lp(Ω) and (a/an)∇v→∇v in w-Lp(Ω). Therefore,

lim inf
∫

Ω

1
an

Gn(x, an∇vn) dx≥
∫

Ω

1
a
G(x, a∇v) dx.
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Proof of Lemma 3. Let vn∈W 1,p
L (Ω) and vn→v in w-W 1,p

L (Ω). Suppose that

∫
Ω

ap−1
n |∇vn|p dx≤C.

In order to simplify the computations, we switch to “cylindrical” coordinates on Ω:
it is easy to see that �Ω is C1-diffeomorphic with (e.g.) [0, 1]×Γ0 by

D =(φ, ψ):x∈ �Ω→ (t, y)∈ [0, 1]×Γ0,

where t=φ(x) and y=ψ(x) e.g., can be defined to be the point of Γ0 which lies on
the orthogonal trajectory to the level surface Γt={φ(x)=t} which passes through x

(cf. [8], Appendix).

Let Vn=vn�D
−1 and V =v�D−1. We have Vn→V in w=W 1,p( ]0, 1[×Γ0). We

will prove that ∇yV =0 a.e.; therefore V (t, y)=V (t) for a.e. t∈[0, 1] and then v=v�φ
with v∈W 1,p

L (0, 1) and v=V .

For that purpose, let us approximate the functions Vn(t, y) by the functions
Wm,n(t, y) (which are step functions with respect to t) defined as follows: given
m∈N, let Ik=[(k−1)/m, k/m], for k=1, ...,m and let

Wm,n(t, y)=
∫

Ik

Vn(s, y)
an(s)p−1∫

Ik
ap−1

n

ds, for t∈ Ik and y ∈Γ0,

that is, for t∈[0, 1] and y∈Γ0

Wm,n(t, y)=
m∑

k=1

XIk
(t)

∫
Ik

Vn(s, y) dµn,k(s),

where XIk
=1 on Ik and XIk

=0 elsewhere and dµn,k(s)=(an(s)p−1)
/
(
∫

Ik
ap−1

n )ds

on Ik. Observe that µn,k is a probability measure on Ik.
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We have∫ 1

0

|Wm,n(t, y)−Vn(t, y)|p dt

=
m∑

k=1

∫
Ik

|Wm,n(t, y)−Vn(t, y)|p dt

=
m∑

k=1

∫
Ik

∣∣∣∣
∫

Ik

(Vn(s, y)−Vn(t, y)) dµn,k(s)
∣∣∣∣
p

dt

≤
m∑

k=1

∫
Ik

∫
Ik

|Vn(s, y)−Vn(t, y)|p dµn,k(s) dt

=
m∑

k=1

∫
Ik

∫
Ik

∣∣∣∣
∫ t

s

∂Vn

∂τ
(τ, y) dτ

∣∣∣∣
p

dµn,k(s) dt

≤
m∑

k=1

∫
Ik

∫
Ik

(∫
Ik

∣∣∣∣∂Vn

∂τ
(τ, y)

∣∣∣∣ dτ

)p

dµn,k(s) dt

≤
m∑

k=1

∫
Ik

∫
Ik

|Ik|p−1

∫
Ik

∣∣∣∣∂Vn

∂τ
(τ, y)

∣∣∣∣
p

dτ dµn,k(s) dt

=
m∑

k=1

|Ik| |Ik|p−1

∫
Ik

∣∣∣∣∂Vn

∂τ
(τ, y)

∣∣∣∣
p

dτ

=
1

mp

∫ 1

0

∣∣∣∣∂Vn

∂t
(t, y)

∣∣∣∣
p

dt

≤ 1
mp

∫ 1

0

|∇Vn(t, y)|p dt.

Thus, integrating with respect to y∈Γ0,∫ 1

0

∫
Γ0

|Wm,n(t, y)−Vn(t, y)|p dt dγ(y)≤ 1
mp

∫ 1

0

∫
Γ0

|∇Vn(t, y)|p dt dγ(y)≤ C

mp
,

since Vn is bounded in W 1,p( ]0, 1[×Γ0). Consequently Wm,n∈Lp( ]0, 1[×Γ0) and

(10) ‖Wm,n−Vn‖Lp( ]0,1[×Γ0) ≤
C

m

with C independent of n and m.
Next, for t∈[0, 1] and y∈Γ0

∇yWm,n(t, y)=
m∑

k=1

XIk
(t)

∫
Ik

∇yVn(s, y) dµn,k(s),
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∫ 1

0

|∇yWm,n(t, y)|p dt =
m∑

k=1

∫
Ik

∣∣∣∣
∫

Ik

∇yVn(s, y) dµn,k(s)
∣∣∣∣
p

dt

≤
m∑

k=1

∫
Ik

∫
Ik

|∇yVn(s, y)|p dµn,k(s) dt

=
m∑

k=1

|Ik|
∫

Ik

|∇yVn(s, y)|p dµn,k(s)

=
m∑

k=1

|Ik|
∫

Ik

ap−1
n (s)∫
Ik

ap−1
n

|∇yVn(s, y)|p ds

≤ 1
m

1
mink

∫
Ik

ap−1
n

∫ 1

0

ap−1
n (s)|∇Vn(s, y)|p ds.

Thus, integrating with respect to y∈Γ0, we deduce that
∫ 1

0

∫
Γ0

|∇yWm,n(t, y)|p dt dγ(y)

≤ 1
m

1
mink

∫
Ik

ap−1
n

∫ 1

0

∫
Γ0

ap−1
n (t)|∇Vn(t, y)|p dt dγ(y)

≤ C

m

1
mink

∫
Ik

ap−1
n

,

since
∫
Ω

ap−1
n |∇vn|p dx is bounded.

Now, given any m, we can choose M=M(m) so large that mink

∫
Ik

ap−1
n ≥1

(e.g.) whenever n≥M(m) (this is by assumption (7) in the theorem). Thus

(11)
∫ 1

0

∫
Γ0

|∇yWm,n(t, y)|p dt dγ(y)≤ C

m
whenever n≥M(m).

For each m, we choose an n such that n≥m, n≥M(m). Then, it follows from
(10) and (11) that Wm,n→V in s-Lp( ]0, 1[×Γ0) as m→∞ and that ∇yWm,n→0 in
s-Lp( ]0, 1[×Γ0) as m→∞. Thus we have ∇yV =0 a.e. as desired.

The proof of the theorem is now complete.

Correctors. The convergence of un to u in w-W 1,p(Ω) can be made more pre-
cise, introducing correctors. Let rn be defined by ∇un=δ−1

n aa−1
n ∇u+rn. Assume

that the operators gn are uniformly strongly monotone, that is there exists α>0
such that for every n∈N, x∈Ω, z1, z2∈RN ,

α|z1−z2|p ≤ (gn(x, z1)−gn(x, z2))·(z1−z2).
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Assume also that either Gn is positively homogeneous of degree p or Gn=G. Then
rn→0 in s-Lp(Ω).

Proof. Let vn(t)=δ−1
n

∫ t

0
aa−1

n u′ds where δn=
∫ 1

0
aa−1

n u′ds and let vn=vn�φ.
Then ∇vn=δ−1

n aa−1
n ∇u. Since the operators gn are strongly monotone, we get

αcp−1

∫
Ω

|∇un−∇vn|p dx≤
∫

Ω

(gn(x, an∇un)−gn(x, an∇vn))·(∇un−∇vn) dx

≤
∫

Ω

fn(un−vn) dx−
∫

Ω

gn

(
x,

1
δn

a∇u

)
·(∇un−∇vn) dx.

Since un−vn→0 in w-W 1,p(Ω) and in s-Lp(Ω), it follows that

∫
Ω

|∇un−∇vn|p dx→ 0 as n→∞.

Hence ∇un−δ−1
n aa−1

n ∇u=rn→0 in s-Lp(Ω).

4. Some generalizations

Other geometric settings can be considered with practically no change in the
proof. In fact, we never used the assumption that Γ=Γ0 (or Γ1) was the boundary
of a domain Ω0 (Ω1 respectively). Therefore Γ could as well be any bounded smooth
hypersurface (with or without boundary) in RN and Ω could be any domain for
which we have, as in the proof of Lemma 3, a diffeomorphism D=(φ, ψ):x∈�Ω→
(t, y)∈[0, 1]×Γ. In this case Γt⊂�Ω (0≤t≤1) is to be the inverse image under D of
{t}×Γ and Γ0 and Γ1 now just make up part of the boundary ∂Ω of Ω (in general).
Thus e.g. Ω could be any kind of deformed rectilinear box with Γ0 and Γ1 being
two opposite faces.

The proof goes through as in the case Ω=Ω0\�Ω1 with W 1,p
L (Ω) now defined

as {v∈W 1,p(Ω);v=0 on Γ0, v=1 on Γ1}. The minimization problem (Pn) will be
equivalent to (the weak formulation of):




−div gn(x, an∇un)= fn in Ω,

un =0 on Γ0,

un =1 on Γ1,

gn(x, an∇un)·ν =0 on ∂Ω\(Γ0∪Γ1),

where ν denotes the outward normal vector of ∂Ω.
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