s s s e R

B. Gustafsson, D. Khavinson

ON ANNIHILATORS OF
HARMONIC VECTOR FIELDS

Abstract. For @ C RN a smoothly bounded domain we characterize
smooth vector fields g on OQ which annihilate all harmonic vector fields f
in Q continuous up to 8, with respect to the pairing (f,g) = [ f-gdo

an

(do denotes the hypersurface measure on 0.} Also, we extend these re-
sults to the context of differential forms with harmonic vector fields being
replaced by harmonic fields, i.e., forms f satisfying df =0, 6f = 0. Then
a smooth form g on 8% is an annihilator if and only if suitable extensions,
u and v, into Q of its normal and tangential components on 9N satisfy
the generalized Cauchy—-Riemann system du = 6v, bu = 0, dv = 0 in Q.
Finally we prove that the smooth annihilators we describe are weak® dense
among all annihilators.

§ 1. INTRODUCTION

Let Q be a bounded domain in RY (N > 2) with smooth boundary Q.
The goal of the present paper is to characterize smooth vector fields g on
0Q which annihilate all harmonic vector fields f in § with respect to the
pairing

()= [ 1-gds. @
an

Here the “dot” denotes the scalar product in RY and do denotes the
hypersurface measure on 8. “Smooth” means “of class C*” for simplicity.

By a harmonic vector field we mean a vector field f = (f1,...,fn)
satisfying -
divf=0,
A curl f =0, (12)

N

ie., Y 8f;/0z; =0 and 8f;/0z; — 0f;/0xx = 0 for all k and j. The set
Jj=1

of harmonic vectors fields in  continuous up to 952 will be denoted by

90
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A(S2) and will be provided with the uniform norm

N 1/2
1511 = sup | 5e) 1= sup (SOI5EF)

zel T€ Nj=1

The problem of describing the annihilators of harmonic vector fields came
up in connection with generalizing some results concerning “analytic con-
tent” from two to higher dimensions. Cf. [7, 5]. In two dimensions our
problem is closely related to a celebrated result of F. and M. Riesz [9, 3].
See §2 below.

Besides the harmonical vector fields we also consider the subspace of
harmonic gradients

B(Q)={feA(Q) : f=Vu for some harmonic function v in Q}. (14)

The annihilator of B(2) turns out to have a simple description in terms
of a differential equation on 82 involving the normal and tangential com-
ponents of the given vector field g. By adding to this certain conditions on
the flux of g through a finite number of surfaces one also gets a description
of the annihilator of A(2). The above is stated in Theorem 3.1.

A more elegant description of the annihilator of A(€2) however can be
obtained by regarding the vector fields as differential forms and using some
results from the Hodge theory. Theorem 4.1 obtained along those lines is
in fact our main result. Roughly it says that g is an annihilator if and only
if suitable extensions into § of the normal and tangential components of
g satisfy a Cauchy-Riemann-like system of equations. In two dimensions
one obtains precisely the Cauchy—Riemann equations.
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§ 2. THE TWO-DIMENSIONAL CASE

For N = 2 the harmonic vector fields are simply the anti-analytic func- -
tions (identifying R? with C in the usual way) and the pairing (1.1) can
be written

(f,9) = Re \ Foldzl.
a8l

[

Since f is anti-analytic if and only if 7 is analytic (and then also if if -
is analytic) it follows that our problem becomes that of identifying those

o
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complex-valued functions g on 99 for which
‘\.\.c ldz)=0 (2.1)
an

for all analytic f in Q (continuous up to 9).
In case  is the unit disc (2.1) is equivalent to

2%

\hAn%vmm:a&Q” 0 .

0

for all n > 0 and the well-known answer then is that (2.1) holds if and only
if g belongs to the Hardy space H® (with g(0) = 0). This is true even if g
is assumed a prior: only to be a complex-valued measure on 9Q (F. and
M. Riesz theorem, [9], [3, Theorem 3.8]). -

In case of a general two-dimensional domain £ with smooth boundary
(2.1) can be written

\zsﬁsmu&no. (2.2)
a0

where t(2) = dz/|dz| denotes the unit tangent vector on 9%, oriented so
that Q lies on the left. It is well-known that (2.2) holds for all analytic
f (continuous up to 8Q) if and only if 9(2)t(z) extends as an analytic
function into .

Write igf = u + iv where u and v are real-valued. This means that

ﬁan? (2.3)

v =gt

where g, = Re (g-(—it)) denotes the normal component of g regarded as a
vector (n = —it is the outward unit normal vector on 8) and g; = Re(g-%)
denotes the tangential component of g. The fact that gt (or igf) extends
analytically into Q means that u and v can be extended to {2 where they
satisfy the Cauchy-Riemann system

ou _ v
dr ~ By
. (2.4)
dy ~ oz

in Q. Thus a function g on 89 annihilates all analytic f in © (2.1) if and
_only if the normal and tangential components of g can be continued into
Q so that they satisfy the Cauchy~Riemann equations. This result will be
generalized to higher dimensions in §4.

Let s denote an arclength parameter along 89, so that t = dz /ds. Then
restricted to 6Q the Cauchy-Riemann equations (2.4) can be written

ou _ 8u
n T 8s?

A w8y (2.5)
8s —  on°

Conversely (2.5) imply the Cauchy-Riemann system (2.4) in Q provided
u and v are known in advance to be harmonic.
Now let us drop the last equation in (2.5), so that we only require

—— = — on Of. (2.6)

If Q is multiply connected then, with u, v harmonic in Q, (2.6) is strictly
weaker than (2.5). Indeed, let w be a harmonic measure, i.e., a harmonic
function in Q with dw/ds = 0 on Q. Then (2.6) is not affected if » is
replaced by v + w, while (2.5), if it holds as is, becomes false when v is
replaced by v+ w (if w # 0).

Note that (2.6) is independent of the extension of v to Q. Hence it can

be written

%ﬁ @Q“

_— T Q. 2.7

on  Os on 9 (2.7)
It turns out that, with u being the harmonic extension of g, to Q, (2.7)
holds if and only if g annihilates analytic functions f in Q which are of the
form f = 04 /dz for some real-valued harmonic function 4. (This is the
same as saying that f is a harmonic gradient (1.4).) This class of analytic
functions is not closed under multiplication by i = V—1.Ifeg. Qis an
annulus, say 1 < |2| < 2, then f(2) = 1/z = 26(log |2])/8z belongs to the
class whereas i/z = —20(arg z)/0z does not (arg z is not single-valued in

In §3 we shall generalize the above assertion concerning (2.7) to higher

dimensions, and prove it.

§ 3. ANNIHILATORS OF HARMONIC GRADIENTS

We now turn to the general case, with Q CRY, N > 2. Let n denote
the outward unit normal vector on 0. Any vector field g on 8 can be
decomposed uniquely as

g=9gt+gnn,

where g is a scalar function (the pormal component of g) and gt is 3
vector function tangent to 9Q. In fact, gn = 9-n, g1 =9 — (g -n)n.
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If g is any vector field on 9Q which is tangent to 8Q (9n = 0) then its
divergence on 92 can be defined by action on test functions as follows:

.\E?SS&QH!.\Q.QSQQ
an 8n

for every smooth function ¢ defined in a neighbourhood of 8. Note that
V¢ on the right can be replaced by (V), and that the latter only depends
on the values of ¢ on 8. It is easy to see that this definition of div g agrees
with the usual one [12] when 89 is considered as a Riemannian manifold
embedded in R¥.

Recall that A(Q2) and B(Q2) were defined in §1. Since each component
of a harmonic vector field f € A(Q) is a harmonic function, and hence is
uniquely determined by its boundary values on 8%, A(Q2) can be consid-
ered as a subspace of C(8Q)N, C(9Q) denoting the space of continuous
functions on 9. Note that the norm (1.3) on A(f2) agrees with the natural
norm on C(A2)N. With M (%) being the space of signed Borel measures
on 92, the dual space of A(Q) thus is a quotient space of M (0N, namely
M(OQ)N JA(Q), where A(Q)* ={u=(u1,..., un)€E M@OQN : [ f-du=0

80
for all f € A(Q)}. Similarly for B(Q), its dual is M(8Q)N/B(Q)*.
We shall describe here A(Q)1 N C®(6Q)Y and B(2)* N C=(8Q)N.
Theorem 3.1. Let © be a bounded domain in RN (N 3 2) with smooth
boundary 8Q, let g be a smooth vector field on 8Q and let u be the

harmonic extension of g,, to Q. Then
a) g € B(Q)* if and only if

. i}
div g, H.w.m. on 09, (3.1)
b) g € A(Q)* if and only if
\..$ cvds= WW&Q (3.2)

on

s s
for every smooth oriented hypersurface S CQ with S C 8Q. Here u/dn
denotes the normal derivative on S in the direction singled out by the
orientation. The orientation of S induces an orientation on 8S and v is
the oriented normal vector of 8S regarded as a submanifold of 69 (hence
v is tangent to 95)). .

In both cases a) and b), the smooth annihilators satisfying (3.1) or (3.2)
are weak® dense in B(Q)* and A(Q)* respectively.

Note that (3.2) implies (3.1). Indeed, (3.1) is equivalent to (3.2) holding
for every S CaQ.
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Proof. Now we prove only the statements concerning a). b) will be proved
in §4. , .

With ¢ and u as in the statement, let f € B(Q), f = V. Then pis
harmonic and continuously differentiable up to 02, and we have, using
Green’s formaula,

Oy
Q,Su\dﬁ.n&qu\zsyé%+ mm..?mq
an 8 an
Ou Ou .
Hl.\ﬁaw<.e“&q+\sm|:mqu.\SAMMI@? .fv do.

an an an

Clearly this vanishes for all ¢ as above if and only if (3.1) holds, proving
statement a).

Now to prove the weak* density of such vector fields in B(Q)1, it suffices
to show that each f € C(0)N which is annihilated by all smooth vector
fields g satisfying (3.1) does in fact belong to B(£2).

So assume that f € C(0Q)" and that

(f.9) = \ (ft-9¢+ fagn)do =0 (3.3)
af

for every smooth g satisfying (3.1). Choosing all ¢ izw gn=0 muam div g; = 0
it easily follows that f; is “exact”, i.e., that there exists ¢ € C*(9Q2) with

u

ft = (Vo). Then [ fi-gedo = — [ pdivgido = — [ 3% do for g
1) a0 sa
satisfying (3.1), so that (3.3) takes the form

.\SWM.&QH\\:@RQ.
a6

an

(3.4)

Choosing u = 1 (which is allowed) shows that [ f, do = 0 and hence
1!
that the Neumann problem

Abﬁﬂo
W.m.”\a

in Q,
on 0%

can be solved, with ¢ € C®(Q)N C(Q). Inserting this into (3.4) and using
Green’s theorem gives

\Asvémm do = 0. (3.5)
an

i
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This holds for all u harmonic in Q and smooth up to 09 for which

there exists a g; on 99 satisfying div g, = O0u/dn, i.e., for u for which
J Ou/8ndo = 0 for each component S of 9.

s

Therefore (3.5) shows that ¢ — 1 =constant on each component of Q.
Hence (V¥): = (Vg): = (V) and thus f = V4 on 0Q. Also it follows
that ¥ € CY(Q) (e.g. since each component of Vi must be given by the
Poisson integral of the corresponding component of f). This proves that
f € B(R) as desired. O

Remark. If N = 2 and Q is the unit disc then the F. and M. Riesz theorem
[3, 9] asserts that all of A(Q) is contained in LY(3Q)N c M(8Q)Y . This
result easily extends to arbitrary smooth domains in R2. However, it is
clear from Theorem 3.1 (or its proof) that is does not generalize to higher
dimensional in this form. There are e.g. plenty of vector measures ¢ €
M(BQ)N \ LY(0Q)" with divg; = 0 and 9n =0 when N > 3.

As a particular example, take Q to be simply connected and let v be
a closed oriented curve on 9. The functional s [ f-dz on C®(8Q)N

b4
defines an element in M(3Q)N \ L1(8Q)N (if N > 3) which annihilates all
gradients f = Vo, in particular all f € A(R). Note that A(Q) = B()
when 2 is simply connected.

The F. and M. Riesz theorem can, however, be generalized to higher
dimensions in another form, namely stating that if a harmonic vector field
in Q has boundary values (in an appropriate sense) in form of measures on
0% then these in fact have to be absolutely continuous. See [10, Chap. VII
§3.2], [11] for a special case. We shall also see in §5 that A(Q)* is in some
sense larger than A(Q) when N > 3.

§ 4. ANNIHILATORS OF HARMONIC FIELDS

In §3 we described the annihilators of harmonic gradients in a way which
generalizes the two-dimensional formula (2.6) or (2.7). In this section we
shall find the higher dimensional counterpart of (2.4) as describing the
annihilators of harmonic vector fields. The natural language for this is
that of differential forms rather than vector fields.

So'we identity vector fields with 1-forms in the usual way, i.e., f =
(f1,--., fn) is identified with f = fidzy+ ...+ fndzy. Recall [12} that
the Hodge’s star operator on such f gives the (N - 1)-form

*f = fidzs .. .doy ~ fodzidas. . .dey + ...+ (=1)V " fydz, .. doy_,

N
and that hence fAxg = 3 figidzy...dzy = (f - g)w, w denoting the
=1

volume form w = dz; ...dzy.

{

In order to define {f, g) f A *g must be turned into a (N — 1)-form, so
that it can be integrated over Q. Let n denote the unit outward bOH.B&
vector to 8% considered as a 1-form. Then any 1-form f on 9% has a unique
decomposition

f=fi+nAfa Ahc

i i = d fn is a function (0-form).
where f; is a 1-form free of n, i.e., nA%f; = 0, and f, :
meom.“\: can be defined by *f, = n A (xf) and gmm_ (4.1) determines f;
~ of. [8, 2]. The decomposition (4.1) actually generalizes to p-forms f for
any p, 0 < p < N, namely by defining f, as

#fo = (=1 In A (xf). (4.2)

f: is then a p-form and f, a (p — 1)-form.

Example 4.1. Suppose part of 9§ is given v%. z3 = 0 with Q lying ».M the
left (z1 < 0). Then n = dz; on this part .mu.m, 5@ f = fidz1+. .»..+b< a%‘
ft = fadzo+.. .+ fndzy and fo = fi. Similarly, if f is w@.moz.u or any @r«
consists of terms of f which do not contain dz; and f, is obtained from the
remaining terms by factoring out dz; to the left (so that f = fi+dzy \V fn)
As a particular example we have that A&aunau. m&,wzv: = dz, e Mw:
i.e., the normal component of the volume form in R™ is, up to a sign, the
(N — 1)-dimensional “volume” form on 8. . -
The right (N — 1)-form to integrate over 8Q, in place of hypersu ace
measure do, must be *n, at least up to a sign. To see that the (plus) sign
is correct, consider the Dirichlet problem Ay = lin p.ﬂ =0 on 5. HWm
solution ¢ is negative in €, hence on 0Q dy is a positive 5&910 om the
normal 1-form n. Since [ *dp = %m* dp = %DS = || > 0 this shows
: an

that [ #n > 0, i.e., that *n has the right sign.

>wﬁﬂww&um to (4.2) *n = w, where w = dz;...dzy.If f and g are 1-

i ded as'vectors.
f then f A*g = (f-g)w where on the right f, g are regar 1 to
Howmwm (f m> MS: = ( .M - g) *n and it follows that the appropriate definition

of (f,g) when f, g are 1-forms is .

(f.9)= \ (f Axg),,. (4.3)
aq

This is still a correct definition when f and g are forms of arbitrary degree
0 < p € N. In particular, we then always have Cn. fl=o.
Recall the definition of the coexterior derivative é:

§f = (-1)NE++ g f
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if f is a p-form. A p-form f is called a harmonic field if
df =0, 6f=0 (4.4)

(cf. T. 8, 2]). If p = 1 then (4.4) becomes curl f=0,divf=0if fis
.nonmamnwm as a vector field. Hence the harmonic fields when p=1 can be
identified with the harmonic vector fields.

For any H\.Unmm P (0 < p < N) let A(Q) denote the set of harmonic fields
of degree p in Q which extend continuously to £, provided with the norm

(generalizing (1.3))
1Al = sup VI (f AxS)].

(Note that *(f A x£) is a 0-form.)

Asin arm.‘énﬁoﬁ case A(Q2) can be regarded as a subspace of QSSVQV
and the annihilator \Kbv._. with respect to (4.3) (with g having measures

N
as components) as a subspace of M va?v. Here we shall characterize
At n 08383 .
Theorem 4.1. If g is a smooth p-form on 852, then g € A(Q)* if and only

if there exist smooth forms u and v of degrees p—1 and p+ 1 respectively
on {2 satisfying

Ut=gn, Un=g; on 0N, (4.5)
du = év in £, (4.6)
bu =0, dv=0 in Q. (4.7)

Moreover, the smooth fields g satisfying the above conditions generate in
the weak  topology the whole annihilator A(Q)L. The last condition (4.7)
can be viewed as a normalization and may be omitted.

In short, A(2)* is generated in the weak * topology by all smooth fields
MM .wvb of the from g = v, +n Au, with u, v satisfying (4.6) and (deliberate)

Example 4.2. If N = 2 and p = 1, then writting v = vdz dy (where
(z,9) = (21,22)) (4.6) becomes

and (4.7) is automatically satisfied. Thus we recover the Cauchy~Riemann
system (2.4).
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Example 4.3.If p=1and N = 3, then u is a function and v = v;dzodzs+
vodzsdz) +v3dz1dz; can be identified with the vector field ¥ = (vy, vz, v3).
Then the system (4.6), (4.7) becomes

Ve =curly in £, (4.8)
divv=0 in Q. (4.9)
Regarding g as a vector field denoted by g on 02 and writing § = g:+gn 7

with §; a vector tangent to 0}, g, a scalar and 1 the outward unit normal
vector, the first equation in (4.5) simply becomes

gn=u in OQ. (4.10)
To see how the second equation in (4.5) translates into vector analysis

language, suppose that a portion of 82 is given by £, = 0 with Q lying to
the left (z; < 0). Then v, = vgdzs — vadzs on this portion, so that g; = v,

means that g, = v3, g3 = —v3, where g; denotes the components of g (or
of 9).
Since here 7 = (1,0,0) these equations can be written
gi=vxn on 0Q. (4.11)

This is a coordinate free reformulation of the equation v, = g;. Thus we

conclude from Theorem 4.1 that in three dimensions a vector field § on

8% annihilates all harmonic vector fields in £ if and only if there exist a

function u and a vector field ¥ in 2 such that (4.8)-(4.11) hold. Note that

u necessarily is the harmonic extension of g,,, v satisfies curl curl ¥ = 0 and

that (4.11) simply means that §; and ; are related by a 90° rotation.
The proof of Theorem 4.1 is based on two lemmas.

Lemma 4.1. Let f, u, v be smooth forms on 2 of degree p, p—1,p+1
respectively (1 < p < N — 1) and let g be the p-form on 05} defined by

gt = Un, gn = Uz (l.e., g = vn +n Auy). Then
. A\Q>*3=H\\>*A&=lmev+.\.&«>*el\&n>*=. (4.12)
an : a a Iy}
In particular, if f is a harmonic field we have, setting h = du — §v,
\Q Axg)n = \\ A *h. (4.13)
an o

Note that h is a harmonic field if and only if §du = 0 and dév = 0.

Remark: In general, a form f € A(Q2) does not fulfil the smoothness
assumptions in the lemma. However, it is easy to see by an approximation
argument that (4.13) still holds for an arbitrary f € A(Q).
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Proof (lemma).

\qi? = \ ((fe+ 7 A fa) A%(on +nAw)).
an

an

= ﬁ\.qu>*=:v=+,\Q“>*A:>§vv=

an an

+\?>?>3Lﬁf\?>?>£3§&@
an

an

n\b>*?>SL+o+o+\x=>s>A=>?a=
an an

Mm‘m\>*e+.\:>*w

an

un\&;*iT%s\?%e+N%>&+T%L\=>%\

Q

u&?i&|§+N&>§un\&>§. O

Lemma 4.2 (Bo Berntsson). Given any smooth p-form g on 0} there
exists a (p— 1)-form u in Q and a (p+ 1)-form v in Q, both smooth up to
39, such that

AQ:HP $du=0 in Q, 114

Ut = Gn on 0%Q; (4.14)

A dv=0, dév=20 in Q, 415)
UV = Gt on 09. (*

The forms u and v are uniquely determined up to harmonic fields satisfy-
ing, respectively, u; = 0 and v, = 0 on 0f).

.The weaker version of the lemma obtained by omitting the requirements
6u = 0 and dv = 0 follows from [8, 2]. The present version was shown to
us by Bo Berntsson, who kindly consented to including it here, along with
his elegant proof.

The proof is based on the following version of the Hodge theorem for
Riemannian manifolds with boundary.

Every smooth p-form a on Q has a unique decomposition

a=(d6+6d)n+h (4.16)
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where 7, h are smooth p-forms on Q, 7. = 0, (dn)a = 0, by = 0 on 0Q
and dh = 0, 6h = 0 in Q. Moreover, if da = 0 then dn = 0; if & is ezact
then h = 0. Thus there is ¢ unique harmonic field with vanishing normal
part on ) in each de Rham cohomology class of Q2.

This theorem can be proved by imitating the proof of the classical Hodge
theorem for closed Riemannian manifolds as presented e.g. in [12, Chap. 6]
or by doubling Q to a closed manifold € [1, 4] and applying the classical

" Hodge theorem to a extended to Q as an “even” form (i.e., satisfying

~

J*(a) = «, where J denotes the natural involution on 2 and J* its pull-

back map). See [4].
Let us, for later reference, point out that there is another (“dual”)

version of the Hodge theorem, with the boundary conditions replaced by
m = 0, (6n): = 0 and hy = 0 on Q. This corresponds to the Hodge
theorem on the double § applied to “odd”™ forms (J*(a) = —a). It follows
from this version of the Hodge theorem that there is a unique harmonic
field in Q with vanishing tangential part of 9 in each relative cohomology
class of  (cycles and boundaries taken modulo 59). See [4, 8, 2] for more
explicit statements.

Proof (Lemma 4.2). Choose p € C®(R") such that @ = {z € RN .
p(z) < 0} and such that [Vp| =1 on 8Q. Then dp = n.
Extend g in an arbitrary way to a smooth form in RY and set £ = d(pg).

Then d€ =0 and :
m: =g: on o9

Now decompose a = d§¢ according to (4.16):
ds¢ = (dé + éd)n+ h.

Since da = 0 it follows that dn = 0, hence h is exact. But then A = 0.
Setting
_ v=§-1

it follows that dv =0, dév = 0 in Q, v, = g¢ on 0.

This proves (4.6). (4.5) is obtained by applying the same procedure to
xg instead, and setting u = *(¢ — 1) in the final step.

To prove the uniqueness statement for (4.14) means to prove that if
(4.14) holds with g, = 0 then du = 0. But

\.mz>;&:ﬂ\.:>*m=!AIS@L\=>&*&=
a

aq 0

".\S>*m=+.\.:>*mm§”0.
aa [y}
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The uniqueness statement for (4.15) is proved similarly. O

Proof (theorem). Given a smooth p-form on 99 g, choose forms u and v
on § satisfying (4.14) and (4.15). Setting h = du— 6v h then is a harmonic
field and it follows from (4.13) that (f, g) = 0 for all f € A(RQ) if and only if
h = 0 (for the “only if” part, just choose f = h). Note that the conditions
du = 0 and dv = 0 are really not needed, they are just a normalization.
From this the first part of the theorem follows.

To prove the second assertion of the theoremn means to prove that if for
some continuous f on 0 (f,g) = 0 for all ¢ satisfying (4.5), (4.6) then
f extends to a harmonic field in Q. Now, given f on 89 we can always
extend f in a unique way to Q as a harmonic form, i.e., satisfying

déf +6df =0 in Q. (4.17)

(This just means that each component of f is extended as a harmonic
function). But (4.17) means that u and v defined by u = —6f, v = df
satisfy (4.6). If these are smooth on 0Q then g = v, 4+ n A u; is one of the
smooth annihilators of A(£2) so that by (4.12)

0={f,9) ummqieau\&if\&i?

1] a

Thus df = 0, §f = 0 in Q as desired.

If df and §f are not smooth up to 8 then the above argument fails
and one has to proceed as in the corresponding part of Theorem 3.1. Let
us outline a proof along these lines, assuming for the sake of simplicity
that € is homeomorphic to a ball.

According to the proof of Lemma 4.1 (f,g) = [ fA*v+ [ uAxf.

a0 an
Thus (f, g) = 0 holding for all g satisfying (4.5), (4.6) means that

\\>*e+\:>*xno

asi an

for all smooth forms u and v on § satisfying (4.6). Choosing in particular
u = 0.and v = % for ¥ a general smooth (p + 2)-form on &, and applying
the Stokes formula to (4.18) we conclude that

df =0 along 09, (4.19)

i.e., (df); = 0 on 62, in the sense of distributions.

It follows easily from (4.19) that f; can be approximated uniformly on
0Q by smooth p-forms ¢, on 92 (¢ — 0) satisfying dp, = 0. The latter
equation shows that ¢, are admissible boundary values for harmonic fields

(see [2]), i.e., that there exist harmonic fields f. in £ smooth up to 62 and
satisfying (f¢): = v, on 0. Thus

(feh— fr on 09 (4.20)

uniformly as € — 0.
For u, v satisfying (4.6) we get

‘\.b>*el\\>*e as e€—0,
50 a0

and

KhienT%Nbiius&bi&

HINQ=>*>HI\:>*\?

an

Thus, taking (4.18) into account,

im [ uA*x(fe—f)=0 (4.21)

(]
EX
for every smooth u satisfying ddu = 0 in (this is equivalent to saying
that v satisfying (4.6) exists). .
For such u the smooth tangential boundary value u; can be prescribed
arbitrarily (Lemma 4.2). Therefore (4.21) shows that

A.\nv: - .%:
in the sense of distributions as ¢ — 0. Thus using also (4.20),

f.—f on 89 (4.22)

in the sense of distributions. This easily implies that f. converge :uﬁoﬂ&%
on compact subsets of Q to a harmonic field which has f as continuous
boundary value and hence provides the desired extension of f.

Indeed, extend f to Q as a harmonic form (4.17). Then the components
of f. — f are harmonic functions in Q continuous up to 0. It w.uzoém now
from (4.22) and the Poisson integral formula that b.l.v f uniformly on
compact subsets of 2 and hence f is in fact a harmonic field. 0

Proof of b) of Theorem 3.1. We first translate the condition (3.2) into
the language of forms, regarding g as a 1-form. Choose u and v (4.14),
(4.15). Then u is the same as in (3.1), (3.2). The left member of (3.2) can
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be interpreted as the flux of g; through 8S and this can readily be seen

to be given by [ *(nAg.). (In fact, #(n A g:) equals ®g: where ® denotes
8s
the star operator on 9 regarded as an oriented Riemannian manifold in

itself.) Thus (3.2) translates into

mm*?>$v Hm\*m:r (4.23)
Now
.\*&:I.\.*A=>$vH.\*m=|.\.*A=>e:vﬂ\*&=I\*e
s 8s 5 as s 8s
um\?%uieum\*ag..m&um\*?

‘where h = du — 6v, a 1-form. Thus (4.23) says that

.\.**_Ho for every SC{ with 85cCaQ,
s

whereas Theorem 4.1 says that g € A()* if and only if A = 0.

Clearly (4.24) holds if A = 0, so we only have to prove, conversely, that
(4.24) implies that h = 0. But this follows from the dual version of the
Hodge theorem (4.16) stated earlier. Indeed, *h is a harmonic field and
(4.24) says precisely that it is in the zero relative cohomology class of )
and that it has vanishing tangential part on 8Q. (The latter follows by
applying (4.24) for arbitrary S C 89.) Thus *h = 0, and hence h = 0, as
desired.

The fact that (4.24) implies h = 0 can also be proved more directly
as follows. Since dh = 0, h is of the form h = dp, locally, where ¢ is
a (harmonic) function. It § is not simply connected then ¢ need not be
single-valued. However, Q can always be made simply connected by cutting
it up along a finite number of (N —1)-surfaces Sy, ... , Sm satisfying Sj cq,
3S; C 8. (For example, a torus in R3 can be made simply connected by

m
means of a single cut.) Thus £/ =2\ | S; is simply connected.
j=1
Each S; given two contributions to 8%, .m.w. and 57 say, so that oY =
m m
00+ 3 SF - Y S;.In @ g is single-valued and it is easy to see that its
j=1

i=1
values at corresponding points on .wm. and S; differ simply by a constant

o,
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(for each §), callit c;. Using (4.24) and an earlier observation that (xh); = 0
on 8 we now obtain .
\ @ Axh

\r>*vﬂ\>>*>ﬂ
o a aqy

u\s>§+mﬁ\s>§u\s>§v,

an st

u\sZ*leo.\;no. )

.np
an J s}
Thus h = 0 as desired. a

§ 5. A REMARK ON THE SYSTEM du = $v,6u=0,dv=20

In §4 we say how solutions of the system du = bv, bu =0,dv =0
generate A(Q)*. In two dimensions the same system, with a sign change,
also describes A(R) itself (§2). In this final section we wish to show how
this generalizes to higher dimensions.

Let € # 0 be a 1-form in Q with constant coefficients (e.g: e = dzy).
Given a p-form f in Q we define a (p — 1)-form v and a (p + 1)-form v by

xu=(=1P e Axf, (5.1)
v=eAf (5.2)

(cf. u and v in §4). If e.g. e = dzy then writting f = g + dzy A h, where g
and h do not contain dz;, we have u = h, v =dz; Ag.

Proposition 5.1. With e, f, u, and v as above we have

df =0, 6f=0 (6.3)
if and only if .
du+ v =0, (5.4)
Su=0, (5.5)
dv=0. (5.6)

Note: If ¢ = dz; then u and v have, respectively, A”Wu v and Azmnwv
nontrivial components (the “trival” ones are those which vanish by defini-
tion (5.1), (5.2)) and these are simply the AWV components of f. Written

out in components the system (5.4)—(5.6) then is exactly the same as (5.3).
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Proof. Let € be the (constant) vector field corresponding to e, let i(€)
denote the interior multiplication (“contraction”) by € and Lz the Lie
derivative (see [12]). The star operator and the above two operations are
related by

*(fAe)=i(e) *f, (5.7)
Lef = di(®)f +i(2)df (5.8)

for any form f. Since € is a constant vector field we moreover have
Lzxf = *Lzf. (5.9)

Also,
de = 0.
In view of (5.7) the definitions of u and v can also be written

u=1(e)f (5.11)
*xv = (—1)Pi(€) = f. (5.12)
It is easy to check that f can be reconstructed from u and v by the formula
f= m_.w.c.@e +enu) (5.13)

where |e| denotes the Euclidean length of e (or of €), so that i(€)e = |e|.
Using (5.1)-(5.2), (5.7)—(5.12) we now compute

du+8v = di(@)f + (-1)VP*P s dxv
= di(e)f — (1P NP x di(e) + f
= Lef —i(@)df = (=P wLzaf + (1PN xi(@)d + f
= ~i(@)df + (-1FPV P +i(@)d+ £,
bu= (-1t s d(e Axf) = (-1)NPHP- 1 s (e Ad = f),
dv=—e Adf.

From this we see immediately that (5.3) implies (5.4)~(5.6).
Conversely, assume (5.4)—(5.6). Then by the above computations

eAdf =0, (5.14)
eAdxf =0, (5.15)
*i(€)df = i(€)d = f. (5.16)

We may assume, without loss of generality, that e = dz;. Then (5.14) says
that df = e A g for some p-form g free of e. Thus *i(€)df = *g. Similarly
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(5.15) shows that dxf = e A h for some (N — p)-form h free of e. Thus
i(€)d*f = h. Now *¢g = h by (5.16). But since g and h are both free of e
this implies g = 0, h = 0. Hence df = 0, d*xf = 0 as desired. Q.

Example 5.1. Take N = 2, p = 1. Then u is a 0-form and v a 2-form
so that (5.5), (5.6) are trivially satisfied. Thus (5.3) is equivalent to (5.4)
alone. If ¢ = dz; then u = f}, v = fadzidz, and (5.4) is the ordinary
anti-Cauchy-Riemann system for f1 and f5.

Example 5.2. Take N > 3, p = 1. Then (5.5) is still trivially satisfied,
but not (5.6). For N = 3 e.g., with v = vydzadzs + vedzade) + vadzde,,
v = (v1,v2,v3) (as in Example 4.3), (5.4) and (5.6) become, respectively,

Vu+curlv =0,
divy =0,

If e = dzy, then u = fi, v = (0, - f3, f2)-

A particular consequence of (5.4) is that *du is an exact form. If p=1
and e = dr; we have u = fi. Thus Proposition 5.1 shows that if f is
a harmonic vector field then each component f; is a harmonic function
having zero flux through any closed hypersurface S. Indeed,

\*&»H\*mcul\&*eﬂo.
5 s 5

For a different proof of this fact, see e.g. [5, 6].

The descriptions of A(Q)* in Theorem 4.1 and of A(Q) in Proposi-
tion 5.1 can be summarized in the following way. Let E4(Q) denote the
set of pairs (u, v) of smooth forms of degree p—1 and p+1 in §, satisfying

du=4b6v, éu=0 dv=0

(coupled signs). In the + case we require u, v also to be smooth up to 5.
Then Theorem 4.1 describes a linear map

E4(@) — A@)*,

namely (u,v) = g = v, + n A u;, with weak™ dense range and finite
dimensional kernel. Given e # 0 Proposition 5.1 shows that (5.1), (5.2)
define a linear map

A(Q) — E_(9).

This is injective, by (5.13), but far from surjective in general. Indeed,
the range is readily seen to consist of (u,v) € E_(2) N C() satisfying
{(u=0,eAv=0.
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OB OIIHOM AHAJIOTE TEOPEMBI PYHTE IUILA
TAPMOHWUYECKUX IMN&SPEPEHIMAJIEHBIX 20PM

IIndppepernmanstan $popMma u, 3alaHHAA B OTKPHITOM IOJMHOMXE-
crBe ) mpocrpancTea R, HasnBaerca rapMOHUYECKOH, ecau

du=0, 6u=0 (1)
B Q, rae d ¥ 6-omepaTopnl BHeIIHero A¥¢pdepeHIMpOBanHMA U Komag-
$pepeHiMpoBanuA. JTo MOHATHE 0606maeT NMOHATHE aHAJNTHIECKOH
$YHKIMM KOMIUIEKCHO# epeMeHHoH (npmn = 2 popma u= P dz+Qdy
yzomeTBopsAeT cucreMe (1) Torna m TONBKO TOrZA, KOTAa dyHKIMA
P — iQ anammuTHuHa).

B pa6oTe [1] (cM. Tatoxe [5]) cpemm npoyero GHUI A0Ka3aH ClELyIO-
muit agasor TeopeMu Pyxre: ¢opma u, rapMOHMIECKadA B OKPECTHOCTH
koMmaxkTHoro MHoxkecTsa K C R™, RonyckaeT paBHOMEpHOE Ha K npu-
6mwxenue cymmamu ¢opM Buo-Capapa u Kysona (Tak Ha3wHBalOTCA
rapMoEMuecKie GOPMHE CHENMANBLHOT0 B1Aa C ocobeHHOCTAMM Ha -
k1ax). B HacTosmelt cTaThe NMpelJaraeICH BapHaHT 8TOM TeopeMsl,
KOTOPHIM B M3BECTHOM CMHICIe 6mpKe K Knaccudeckoil Teopeme Pyn-
re. MBI BBOJIMM HEKOTODHE FrapMOHIIeCK#e GOPMBI C TOUETHHKIMH 0CO-
feHHoCTAMM (Tak HasblBaeMble “pallMOHAJbHEIE dopMH” ) ¥ HOKa3BIBA~
eM TeopeMy O BHIBOJE NOJIIOCOB aNlIpOKCHMMHUPYIOMUX PalBAOHAJILHBIX
$popm. KpoMe TOr0, MBI CTPOMM HOBOE MHTETpaJbHOE npeacTaBieHMe
(ananorwunoe dopmyine Koum) TouHbIX ¥ (0HOBpEMEHHO) KOTOYHBIX

rapMoHMYeCKuX GopM.

§ 1. ®orMbl Bo-CABAPA, IOPOXKIEHHBIE NAPOY IIMKIOB

Bcrony Hwbke MBI TpeiojiaraeM, 4ro 7 2 3. Homoxamm

deP
« 2
M mu:u _le_at» dz®, A v
C

n atM,

1
Wer = —
T

rae 0 < r < n, ¢ — HekoTophui (n — r)-muka B R, 7, — (n = 1)-mepHBIH
o6beM cheprt §n~i ¢ R®, M, — MHOXecCTBO BCeX BO3pacTalomux 7-
MEepHEIX MYJILTHHHIEKCOB & = (31,0 y8r), 81 < .o < ip,y 1€i, € B
o6oanauaer (n —r)-MyIbTHMHIEKC, OO IHATENLHEIA IT0 OTHOIIEHMIO K
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