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Abstract: We are concerned with the homogenization of elliptic problems of the kind
—div(Avuf) = fin @ C RV (plus boundary conditions) where € > 0 is a parameter
(¢ — 0) and the conductivity matrices A® = (aij(:):)) are symmetric and depend on only

one of the coordinates, say x; (stratified medium). We also assume coercivity a ]{12 <
2 a5zl < g € with 0 < & < 8¢ < oo (allowing 8¢ — ). If A =(a;j(z))is a

3,7=1
matrix satisfying similar conditions then our main result states that we have H-corivergence

Af — A provided
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M(R) being the dual space of C()). This generalizes previoﬁs results of Murat and
P g
Tartar. . ' S

1. Introduction. |
We are concerned with the homogenization of linear elliptic problems of the form
{ wdiv(A'Vu)=f in Q |

(1.1) "y
+ boundary conditions,

where the “conductivity” matrices A€ .:.AE(:@:) = {a;;(2)) are symmetric and uniformly
(in = and ) elliptic, with bounded measurable coefficients.  is a bounded domain in
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RY(N > 2) and € > 0 is a parameter which is going to tend to zero. The basic assumption
about the A® will be that they depend on only one variable, let us say that 4¢ = A%(xy),
where £ = (z1,...,2n). This means that we are regarding £ as a layered or stratified
medium (material). For simplicity we shall let £ be of cylindrical form

(1.2) Q={0,1) x w

where w is a bounded domain in R ! (for the (z3,... ,zn)-variables).

Under the above circumstances there is a well-known result of Murat and Tartar [9],
[12], [13] saying that if, as € — 0, A° — A = (a;;) (ai; € L>(Q)) in the sense that

1 1
(1.2) e w* — L*=(Q)
a 11
alf. al‘ .
(1.3) a—’ - w* — L™=(Q) for i=2
11 a11
afat . .
(14)  af— 1M g, 200 w* — L®(Q)  for . 4,5 >2
) a11

then the problems (1.1)¢ converge to the homogenized limit problem
(1.1) { - div (Avu) = f in Q

+ boundary conditions,
the convergence meaning, among other things, convergence of the solutions, u¢ — u, in
w — H'(2). Murat and Tartar actually allow nonsymmetric matrices, with the transposed
condition added to (1.3). The convergence A° — A in the sense (1.2)-{1.4) is an instance
of H-convergence (cf. Spagnolo {11} and Murat and Tartar {9}, [12]).

Note that (1.3), (1.4) imply that the sequences ——-'— and a5 Mai—}ei are bounded in L.

In many situations this condition is not satisfied but still one has the convergence of (1.1)¢

towards (1.1). See Example in § 2 below. The aim of the present paper is to generalize
the Murat-Tartar result to cover such cases. Indeed our main result simply states that the
convergence (1.1)° — (1.1) remains to hold if (1.2) is satisfied but (1.3), (1.4) are relaxed
to convergence in w - L*(Q) and w* — M(Q) respectively, M(Q) denoting the space of
measures on (I (the dual space of C(Q)). It turns out that the uniform coercivity of the
A€ results in a natural precompactness of the quantities appearing in (1.2), (1.3), (1.4) in
the spaces w* — L(Q),w — L?(Q)) and w* — M(Q) respectively, and for this reason it is
even enough to assume convergence in D'({2) {weak distribution sense) in (1.2) and (1.3).
In (1.4), however, the w* — M(Q?) convergence cannot be relaxed to convergence in D'(),
Thus our assumptions on the convergence are virtually the weakest possible in our setting
of the problem.

Our method is that of formulating (1.1) and (1.1}¢ as minimization problems, and prov-
ing I'-convergence F* — I of the corresponding functionals involved, namely

N

(1.6)¢ Fe(u) :/ Z a; gu % - 2fu ) dz

o \ii=1
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and similarly for F. Murat and Tartar prove their result dealing directly with the differ-
ential equation (1.1)¢ and using arguments related to “compensated compactness”.

The limit behaviour of quasilinear problems of the form

N
& ¢ Ou® e 3 Cfeut Y :
T N1 (x,al aﬂ)_z % Bz, gl(az.-) =f 1 Q,

=2
+ boundary conditions

is investigated in [7}, [6] for stratified structures with high conductivity, and in [8] in the
case of both low and high conductivities. Homogenization of periodic (stratified or not)
structures with thin inclusions of high conductivity has earlier been studied for linear
problems in 2], [4], [10].

Acknowledgements: This work has been partially supported by the Swedish Natural
Science Research Council (NFR). We are grateful to Bernard Heron and Francois Murat
for helpful discussions and to Siv Sandvik for excellent typing of our manuscript.

2. The main result.

With @ = (0,1) xw asin § 1 let [' = {0} x w C 80 and set
H}Q) ={ue H(Q):u=0o0nT}
We shall work with the family of minimization problems
(2.1) inf{F(v) : v* € H(Q)}

for € > 0, where

ol SPv Qv
(1] hi=

Our assumptions on a;5(1 < 1,7 < N} and f© will be that

(23)6 (1,1-;- - a‘;i:
(24)° a5 = a;3(z1) € L™(0,1),
N .
(2.5)¢ 3 as(2)&é > ale forallé € RY and ae. 21 € (0,1)
i,j=1

with & > 0 independent of ¢ and z;

(2.6)° fee L)
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The condition (2.5)¢ will be referred to as “a-coerciveness” of A® (where @ > 0 is a
number). When we write (2.5) we mean (2.5)° with a,5 replaced by a;;; similarly for other
formulas. . .

The problems (2.1)¢ are equivalent to the weak formulations of (1.1)¢ (with f¢ in place
of f) with the boundary conditions

u® =10 on r,

(A" u) n=0 on &M,

n denoting the exterior unit normal vector on Q2. We have chosen these particular bound-
ary conditions just because they are the ones for which our treatment works most smoothly
and because the boundary conditions anyway are not very important (the criteria for con-
vergence are local ones).

Clearly the problems (2.1)° have unique solutions «*. Here € is a small parameter corre-
sponding to the heterogeneity of the medium and we will be concerned with the behaviour
of the problems (2.1) as € — 0. To avoid some trivial and uninteresting complications we
shall assume that € tends to zero just through a sequence of values.

In an electrical framework, with 4¢ interpreted as a conductivity matrix, the vector field
E¢ = u® (with components ES = 0u®/0z;} is the electrical field strength and D¢ = A°E*
is the electrical displacement fleld. As has been remarked by Tartar [13] the coefficients
appearing in (1.2)-(1.4) are those which appear when (suppressing the e for a moment}
E;,Dy, ..., Dy are expressed in terms of 4, Es,... ,En:

1 .
E, =D~ ZiE.

@11 j>2 a1t
a; a;10y; ,
D, = 11D1+Z(G5J—M)E3‘ st 2 2.
a1l iz2 an
It is convenient to introduce
Q1415 . .
(2.7 bij = aij — ~——— (4,7 = 2).
an

(Similarly for 5,5.) Then b;; = bj;. Note the identities

(2.8) > ayEE; =) ED;

3,31 i1
1
= —Df+ > bi;EiE;
H 4322
2
. .
=an | By + Z ELJEJ‘ + Y b,EE;
iz LG22

with D, E related as above.
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As simple consequences of the coercivity (2.5) we have the following estimates (still
suppressing €).

Proposition: Assume that A = (ai;) is a-coercive, i.e. that (2.5) holds, and define (b;;)
by (2.7). Then

1 1
2. . : —<
(29) a1 o«
(bi;) is also a-coercive:
(2.10) > bimins z el
‘ S a2
for alln = (n2,... ,yn) € RV L,
1 ..
(2.11) lbij| < 5 (bii +b55) (1,5 2 2);
ar; |? 1
(2.12) 611: . bii (t=2).

Proof (2.9) is obvious from (2.5). To derive (2.10) one may look at {2.8) and observe that
Dy, Es,... ,Ex can be varied arbitrarily there. Taking [y = 0 and combining with {2.5)
then gives (2.10). (2.11) is obtained by choosing n with n; = 1,9; = £1,n, =0 for v 1,5
in (2.10).

To show (2.12), finally, we note that the a-coercivity of A implies that for each ¢ > 2

det { 11T %) 5 g
aq Gy — &

Thus (a1,-)2 < (a1 — @) {a; — a) ylelding

2 _
bii = a;i — (e11) > a+ () ( S i)

a11 1] — « @11

2 2
Q11 a4 ) al¢
: 1] — & \ a1 a1

which is the same as (2.12).

Corollary: Assume that the A° = (a;5(x1)) are a-coercive and that the sequences
{05} (i = 2) are bounded in L' (0,1), i.e. ‘

1
(2.13) / bidt<C<oo  (i22).
J |
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Then the sequences {1/ay%},{a,5/a,i} and {b5}(i 2 2,7 > 2} are bounded in L*(0,1),
L?(0,1) and L' (0,1) respectively and hence are precompact in w* — L {0,1), w—L*(0,1)
and w™ — M [0, 1] respectively.

The corollary (which follows directly from the proposition) gives natural topologies for
the convergence of the coeflicients of A¢. We now state our main result.

Theorem: Assume (2.3)° to (2.6)¢ and that, for some symmetric matrix A = (aij) with

ai; = aij{x1) € L= (0,1},
1/a;, € L™(0,1)

Af — A in the sense that

1 1

2.14 — = — W= L™(0,1),

(2.14) ot (0,1)

(2.15) ﬁ‘l — 2y 12(0,1) (7 22},
ayy a11

(2.16) b — by w* —M[0,1] (1,7 >2)

as € — 0 (b;j defined by (2.7)). Assume also that, for some f € L? (),
(2.17) ff—=f w— L*{Q).

Then A is a-coercive, hence there is a unique solution u € H(Q) of

(2.1) inf{F(v):v e Hi ()},
where
N
dv dv
(2.2) F(v) = / Z By By 2fv | da.
0 1,7=1

Ase—=10
(2.18) uf — oy w—H'Y(Q),

N N

1 ou® 1 Ju

2.19 C . s el *LZQ,
( ) a}§ J:Zl a’lj 61'] a]_] j=1 alj‘ 8$J w ( )
(2.20) Fu) > F(u).

The proof of the theorem will be given in § 3-5. The rest of this section is devoted to
discussions of the convergence assumptions (2.14)-(2.16).
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1. We have preferred to regard the coefficients a;; as functions on the interval (0,1},
since they depend only on z,. However, the theorem could equally well have been stated
with convergence in w* - L* () ,w — L? (Q) and w* — M {{2) instead, and then one would
not have to assume in advance that the imit matrix depends only on x1, but that would be
a (simple) consequence of the convergence. (Notational remark here: to avoid subscripts
we will frequently denote z; by t, and later on in the paper we will use y for the remaining
variables (z2,... ,2n5).)

2. Recall that (2.16) means that

1 1
(2.21) /bijgodt—»,/b,-jgadt (1,7 > 2)
0

8]

for every ¢ € C[0,1}. Choosing here ¢ = 1 and ¢ = j shows that (2.16) implies (2.13).
On the other hand, if (2.13) is assumed the corollary yields precompactness of the se-
quences in {2.14) to (2.16) and therefore that (2.14)-(2.16) automatically hold assuming
only convergence in any Hansdorff topology.

Thus, in the presence of {2.13) or (2.16) it is enough to assume convergence in e.g.
D'(0,1) for (2.14) and (2.15). However in (2.16) the convergence can not be replaced by
convergence in D'(0,1) (note that M|0,1] is not a subspace of D'(0,1)), even if (2.13) is
assumed separately, as the following example shows.

Take N = 2, af =1, a5 = a5 =0 and a5(f) = 1+ 1/e for 1 —e < ¢ < 1,
a5(t) =1 for 0 <t < 1—e Then b = a5, by — 1 inD'{0,1) and (2.13) holds

1
true, since [ b5 = 2 forall 0 < ¢ < 1. But b5 — byg = 1+ 6§ w* — M[0,1] where

0

¢ denotes the Dirac measure at the point t+ = 1, and one can verify that the “correct”
limit problem (which falls outside the scope of this paper) has measurevalued coefficients,
namely a;y =1, ayo = ay =0, a2 = by = 1+48. As a minimization problem it can be

written inf{G(v) : v € H{Q)} where H(Q) = {v € H}(Q) :vip € H (I}, T' = {1} xw
2
and G(v) = [ (|w|2 —2fv) day day + [ (ai-) dzs.
Q I

3. A further comment on (2.16) is that, due to the coerciveness of b5, it implies, and
actually is equivalent to, mean convergence on intervals, namely that

(2.22) /bi;‘- dt—>/bij dt (5,5 > 2)
I

I

for every interval I C [0,1]. To see this first observe that in order to prove {2.22) it is
enough to prove that

(2.23) > nny [ bt
T

§j>2

Z ninjfbij dt

‘iJZ? I
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for every n = (m2,...,nn) € RV7L But 0 == Yoman; b5 2 0,5 = Jonnibi; > 0,

1
and for any § > 0 there are ¢,9 € C[0,1] with ¢ < x5 < ¢ and (¥ —)dt < §.
0

1 1

1 1 1 1
Since [bpdt < [bcdt < [b9, [bpdt < [bdt < [bypdt, [bipdt — [bodt < §|b|,,
0 I 0 4] I 0 0 0

1 1 1 1
[bpdt — [bedt, [b¢dt — [bpdt and § > 0 is arbitrary (2.23) follows.
0 0- 0 0

Conversely (2.22) implies {2.16) because (2.22) guarantees, by (2.11), that the sequences
{b;5} are bounded in L' (0,1) and then one just has to use that any function in C[0,1] can
be uniformly approximated by step functions. (Since the step functions are dense also in
L'(0,1) and L? (0,1) all three convergence assumptions (2.14)-(2.16) could actually have
been replaced by mean convergence on intervals.)

We thus see that the class C[0, 1] of test functions allowed in (2.21) automatically extends
to the class of piecewise continuous functions. On the other hand, it does not extend to
all L°°(0,1). In fact we now give an example in which all hypotheses of the theorem are
satisfied without the b;% converging weakly in L' (0,1).

Example: Let, for every ¢ > 0, J; ¢ [0,1], ¥ = 1,2,... be intervals, periodically dis-
tributed with period ¢, of lengths |J{| = r* < ¢ (e.g. Jf = [0,7°], J§ = [e,e +r¢] ete.) and
let A — +oc as € — 0 in such a way that, for some 0 < 3 < oo,

rA — f as e — 0.
€
Define
14 A¢ if  te {J Jg,
(1) = 3
1 otherwise,
a{t) =1+ 3.
Then for every interval I C [0,1]
[3 _ 3 € |I| €
a’dt = [T+ A° —r° + o(e)
€

I

showing that

(2.24) /af dt———a/adt
I I

as € — 0. It follows that the sequence & is bounded in L'(0,1) and that e* — a
w* — M [0,1].
However the a° are not equiintegrable and hence they do not converge to a (or any other

function) weakly in L1(0,1). In fact, taking E€ = |J J{ we have |[E¢|=r/e — 0ase — 0
k>1.

while [ a®dt ~ Xr¢/e — B > 0, disproving the eqﬂiihtegrability.
B
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Consider the conductivity matrix
A(z1) = a¥(e2)d

corresponding to an isotropic stratified medium with many thin layers of high conductivity.
Clearly -~ - 1 in w* — L°(0,1). This together with (2.24) shows that the A° converge in
our sense (2.14) to (2.16) towards

A(”“‘l):(é' 12@’)'

Since the a¢ do not converge in w* — L°(0,1}, or even in w — L!(0,1), this convergence
A€ — A is not covered by the Murat-Tartar result mentioned in the introduction.

3. Proof of the theorem.

Now, following De Giorgl and others (see e.g. [1], [5]), we shall prove the theorem by
proving I'-convergence of the functionals F¢. The main part of the proof will consist in
proving the following twoe lemmas.

Lemma 1. For every v € H} (Q) N C°(RY) there exist v¢ € H} () such that, as e — 0,
vt v w— Hi (Q),

limsup F* (v*) < F(v).
e~—+0

Corollary (of the proof): The limit matrix A = (a;j (z1)) Is a-coercive.

Lemma 2. Let v*,v € H} () (e > 0) and suppose that, as ¢ — 0,

vf— v w— Hi(Q),
dv* ar " v aj; Ov )
Jry +Zz a,§ Oz; 1 +Zz arr 9z; w = L&)

Then
1imi(1}1f Fe(v*) > F(v).

Proof of the theorem from lemmas:

Take an arbitrary v € H}(2)NC*(RY). Then with v¢ as in Lemma 1 {(and u* denoting
the solution of (2.1)¢) we have :

(3.1) liminf F(u®) < limsup F9(u®) < limsup F(v°) < F(v) < oo.
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By (2.5)¢ this shows that

/|VUE|2 dz < C < oo,
Q

]8” +Za”ai de < C < oo,

at Jz;
4 Oz, i>e T k]

where the last estimate is obtained by writing F' in the form

. _ | Ov a; Ov
F* (v) —f |fhl “5;; +Z ay, 0z,
Q 3122

TR S SEANCLIE YN P

= 1 0z; Ox;
t,52>2

(see (2.8)) and using also (2.10).

Hence it follows, by weak compaciness, that for any subsequence € — 0 there is a subse-
quence and u € H}(Q),g € L*(2) such that as e — 0 through the latter subsequence

(3.2) u —u w— H'(Q),
(3.3) 9u! i R )
au"’)] i>2 (Ilfl BIJ

By (3.2) uf —» u s — L? () and together with (2.15) this gives

1 1
Sy D),
ay a11

in particular in the sense of distributions. Hence

a5 Jut ad a5 J ; . d ) s
L = ( 17 uf) — B (aﬁ u) = 4y Y in the sense of distributions

€ . . € . .
ag Or;  Ox; \ay i \ ay ayy Or;

for j > 2 and it follows from (3.3) that

(3.4) Ou |y~ Ou

g~ a3
6:01 >z a1 6.’,]3_;,

Thus u® — u (for a subsequence) in the sense required in Lemma 2, so that

(3.5) o Fu) < liminf F¢(u*)..
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Combining (3.5) with (3.1) shows that F{u) < F(v) for every v € H}(Q) N C(RY).
Since such v are dense in s — H} () and F is continuous in s — H1(Q) it follows that
F(u) < F(v) for all v € H} () and hence that u is a solution of (2.1). '

By Corollary of Lemma 1 u then is the unique solution of (2.1) and a standard argument
with subsequences shows that
uf — u w— Hi(Q)
with € running through the full sequence. Similarly one gets (3.3), i.e. (2.19), for the full
sequence.

Combining again (3.5) with (3.1) gives

F(u) < liminf F*(«®) < limsup F(u*) < F(v)

and letting here v = v, — u s — H} () shows that Hm F¢(u) exists and equals F(u).
Modulo the proofs of the lemmas this finishes the proof of the theorem.

4. Proof of Lemma 1 with Corollary:

Let v € HL($2) N C(RY) and we shall construct v¢ € Hi(Q) such that v¢ — v
w — H' () and limsup F*(v¢) < F(v) (actually such that F€{v¢) — F (v)).
We define v® as the unique, in H} (), solution of

ol . Ov* ol v )
(4.1) ;aljgﬁ—j:;augj in £
(explicitly given by (4.7) below). Then
o 1 N{avfzd_ 1 N‘augd
(4.2) J&E ;“’U@) x—!gg(;ahé}; z

N
1 dv
— ] AR
/an Zah dz; g
Q i=1

2

as € — 0 by (2.14).
Write (4.1) in the form

(4.3) Ov Y CLE o P L)
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It has integral curves

r1 =1
(4.4) {0z G (G22)

where
¢ 013( s)
4.5 (1) = ds +y
(45) (0 faﬁ() £(0).
o
The solution of {4.3) can be written
alJ(T €
4.6 v {(t,y°(1)) / (r,y%(T)) dt.
(45) o= |2 35 5

Inverting (4.4), (4.5) gives

by which (4.6) becomes

@1 voi(e) = / Z 2}18 % (T,Iz - ]}%%%3655,... LN — fm azfj((;))ds) dr.

321 ; p

Also, for k& > 2,

ay(r) v mjlalé(S) _]IafN(s) ;
o f 2 G4 32,00 ( as () TN [ i )

and similarly for higher derivatives in z9,... ,zpn.
From (4.7}, using {2.14), {2.15) we see that v° is smooth in the variables z2,... ,zn5y with
(4.8) [l pee €€ and D% e < Ca

(with C and C, independent of ) for any derivative in these variables (i.e. o = (a1,... ,an)
is a multiindex with a; = 0). By (4.3), (4.8), (2.14}, (2.15) we have, for h > 0,

111+h
a €
R R e

14k
o T
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and by (4.8) :
v (z1,y) — v (z1, ¥ )i S Cly — ¢
(€ denoting various constants).

It follows s that the family {v¢} is equicontinuous on Q. Similarly, {9v®/0x,} is equicon-
tinuous on §) for any 7 > 2. For fixed z and 7

x1 xq
ﬁ ngwfaiéz(s)ds... mN—fmds

Oz a)(s) s a5 (s)
v 7 aq2(s) ]1 ain(s)
___,,a—x;(T,:{:z——/all(s)ds,...,m;\r—— PR ds

as € — 0 by (2.15). Since these functions are uniformly bounded we also have convergence
in the L'-norm with respect to 7 for fixed z. By (4.7) and (2.14) this implies that v*(z) —
v(x) pointwise. Similarly, dv¢/dz; — Ov/dz; pointwise for 7 > 2.Combining this with the
uniform equicontinuity and using the Ascoli-Arzela theorem it follows that

(4.9) )

(4.10) gz; — —(%% (7122
uniformly on 2 as € — 0. By (4.10) also

(4.11) v Qv dv v (i>9)

dz; Oz; T dx;

uniformly on £ as € — 0.

Now we can conclude that F*(v¢) — F{v). Writing (see (2.8))

2

e 1 . Ov*
F(U)Z/a_f Zaljaj dCC
Q

11 izl
j > b,J 89: _ zf foocde
)J> Q

the three terms converge separately to the corresponding terms in F(v) by (4.2), (4.11)
and (2.16), (4.9) and (2.17).

To prove that v — v w — H'(Q) it just remains to see that dv¢/0x; — dv/0xy
w — L2 () and this follows easily from (4.3), (4.10), (2.14) and (2.15). This finishes the
proof of Lemma 1. :
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To prove the corollary it is enough to prove that for every 0 < ¢ € D{Q) and every

¢ € RN we have
fZaus,sjapdwaw! [eds

1,521 e

So let 0 < ¢ € D(Q) and ¢ € RY be given. Then we can choose v € H} ()N C* (RY)
such that Vv = £ on supp ¢, and we shall prove that

Fy (v) ::/Zau gv ;U p dx >0¢J/|Vv|2 o dz.

Define F similarly (q;; in place of a;;). Clearly the proof of Lemma 1 can be repeated
with F,, F; in place of F' and F¢, and we obtain v* € H} (1) with

(4.12) v —v  w— H{(Q),
FE(v) = Fy(v).

Since (4.12) implies liminf [ |vv|* o dz > [1vv|® ¢ dz and the (a,$) are a-coercive we
@ Q

now get
Fy(v) = lim F (v°)
> liminfoz/’h?"ufi2 pdr > a/ \vol? ode
) O
as desired.
5. Proof of Lemma 2: Assume
(5.1} v — v w— H}(Q),
vt a5 dv* Ju ay; Ov
.2 —_ 1 PSPV S 7'? —_ L2 Q .
(5.2) A4 +Z2 a§ Oz; dz, +z ary O v ()
and we shall prove that
(5.3) liminf F¢(v®) > F(v).

Writing again

er e 1 . Ov
(5.4) F(v):[gg Sei g | do
Q izl
+/ bi; gv gv ffeve dz
g ags2 T O
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we shall actually show that (5.3) holds for each term separately.

For the first term in (5.4) a convexity argument combined with (5.2) and (2.14) gives

2 2

1 . Ovt 1 ou
/**”"g' Zalj-a—a—:— d$2/ s ZaljaTj dx

a a
11 i>1 3 o 11 >l

ov dvt as Jvt a1; Ov
2 E o — E J E J d
+ f a1 6mj 8331 + ; (Ilfl aIJ‘ a.lfl a:l:j e

n X
1 Ov
— ——— E G,lj é—'— dm
a 4
o gz s

as desired. The third term in (5.4} tends to 2 [ fv dz by (5.1) and (2.17).
Q

The difficult part of the proof is to handle the second term in (5.4), i.e. to prove that

dv Bv
(5.5) hmmff Z 1)U 33: 3:;:3 /Z b”a—xi 513

(the indices ¢ and j, and later on r and v, will from now on always range over 2,... ,N).
Clearly it is enough to prove (5.5) for every subsequence of e for which

. <
(5.6) /Zb” o a%d C < oo

From now on € denotes any such subsequence.

Utilizing an idea which goes back at least to Chabi [3], (but which has here been con-
siderably developed) we shall approximate the vector fields (Jv®/0z;);>2 by vector fields
£¢ which are step functions with respect to z;. Foranym =1,2,... and 1 <k <m let

mom

k-1 k&
Iy =1 m = |:—*,““:|

The vector £ = £9™(z) = (&5,... ,£% ) will as a function of x| be constant on each interval
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It. (The index m will often be dropped from the notation.) We have

[0,

(5.7)

(5.8)

(5.9)

. Ju Bv
/Z 7 B, amj

/Zb (5o gr ) ot [ (o5 =) e oo
’ Q

[En (e )
{2

86
2]2 b £ (%j-g;) de

fz S b)) L da

v (., Ov
+2/Zbija—m(€j_5£>d$
Q

and we will choose £° = £9™ so that each of (5.7), (5.8), (5.9) tends to zero as m — oo,

e — 0.

Integrating {2.10)° over I; shows that the matrix (f‘,k b dt)

>

with eigenvalues > « |Ix| = a/m, in particular is invertible. Let (

Thus for each fixed ¢, m,k,y = (z2,... ,zn) the system

(5.10)

Zgr/b;dth-/ ”81:
o

‘TI];

(z > 2} is uniquely solvable for &,:

ame]Ua

is positive definite

be its inverse.

(r > 2). This defines & = ££ = £5™(y) for #; € I;. Hence £° is defined on Q as a step
function in z;. The system (5.10) is chosen so that the first term (5.7) above vanishes.

As to (5.8) we can , by (2.22) for any m choose ¢(m) > 0 such that

. 1

m
I
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whenever 1 <k < m,0 < e < e(m). This gives

f 2 (b5 = bij) €565 d
0 UJ

= gz/ /(bi;wbﬁ) dt

I

< Zf &) W f(bifi"bij) dt
k=1 1.3 1, i
< /£§)| dy) < =
k,t,] w
<

< — ||§E " @yv
for 0 < € < e(m). Thus the term (5.8) will tend to zero as m — oo, 0 < ¢ < e(m) if just
(5.11) ”fe’mﬂm(g)N—l < C < oo

This estimate will shortly be proven.

We shall also prove that (after possibly redefining e(m}))

o 3] N
(5.12) £eom ——fi, e v in the sense of distributions
63)2 (3.TN
asm — 00, 0 < e < e(m). Combining (5.12) with (5.11)} shows that £5™ — (59;2 Yo ai’)’v)

w— L)Y~ and hence that the term (5.9) tends to zero as m — oo, 0 < € < e(m}. Thus
it just remains to prove (5.11) and (5.12).

To prove (5.11} we estimate, in Iy,

(513) (f LTI

/ Zbu By 8,5 dt / 2513 Bz, Bst

Iy

T [puEE:

k

__ﬂr'r/Z iy a 65!73

2
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In the first step above we used the Cauchy-Schwarz inequality in matrix-form with the

positive definite matrix (51;) as weight matrix. In the second step we simply used the

definition of (35). Since (45) is positive definite with eigenvalues < m/a (cf. (2.10)) we
have 8,5 < C’m Thus (5. 13) gives

12 agaywms = 3 f ay 3 11 ¢
r k=1 1
<CfdyZ/ZbU§$

klI 7

-0 [Tu g

which by (5.6) proves (5.11).
To prove (5.12) let 1% € D(f2) be a test function. Then for each r =2,... , N

(e 5=9) [ kZI / (Zﬁm [ 25 ar -‘15—(3—?’—)) (1, )it dy

- / >/ 6 / B§(7) g (0(0) = v°(t, ) dr ) ey

klI

=/Zf25”/ < T)/a (s y)dsdT (t y) dt dy,

il

Using the inequality corresponding to (2.11) for 85, |85| < 3. 3L, < Cim, we thus get
dv* Lol vt
€ < . —

(o229 2] |2

Iy

m 8 €

<[5 [Sem S e [[2

Lok=1{ p i v 7 !

<Cym - fZ/dt/ZbV”(T d’r/{

Cs -maxZ/ (TYdr /

dsdr dt dy

Ti iy

ds dr dt dy

ds dy

8:.91
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for suitable constants C,... ,Cs.
Setting M = 1+ > ||bii]| - it follows from (2.22) that given any m we can find
i>2

€(m) > 0(0 < €'(m) <_e(m)) so small that
1 M
€ < b dr < —
> fbu(fr)dr_ - +Z/ (r)dr < —
1 Ik T Ik

for 1 <k <m whenever 0 < € < ¢'(m). Since f Ig—ii dz is bounded as € — 0 we therefore
Y}

get
dv*

dz,.’

whenever 0 < e < €'{m). This proves (5.12}, finishing the proof of Lemma 2.

¢>ls£

(6 -
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