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Abstract

The Hadamard variational formula for the Green function is for-

mulated in terms of a polarized energy-momentum tensor and a strain

tensor. This is elaborated in a general setting of subdomains of a Rie-

mannian manifold in arbitrary dimension and linked to the way the

energy-momentum tensor in general field theory appears as a result of

varying the metric tensor in a Lagrangian function.
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1 Introduction

The Hadamard variational formula expresses how the Green function for a
domain changes under an infinitesimal variation of the boundary of the do-
main. It is usually formulated in terms of a boundary integral, like in (2.5)
below. However, in his book [3], Paul Garabedian formulated the principle
instead in terms of an area integral (in two dimensions) containing a general-
ization of the Maxwell stress tensor, which is an energy-momentum tensor for
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the electromagnetic field (see [7]). The present paper grew out from attempts
to understand Garabedian’s point of view from a more general perspective.

We elaborate the subject in a general setting of subdomains of a Rie-
mannian manifold of arbitrary dimension using tools of differential geometry
and tensor analysis. The Lie derivative plays a crucial role, even when re-
deriving the classical boundary integral formulation of Hadamard’s principle
in Section 2.5.

The main result, Theorem 3.1 in Section 3, expresses the Hadamard prin-
ciple in terms of a volume integral containing the energy-momentum tensor
and a strain tensor. The Green function takes the role of representing, as
a potential, the physical field in the energy-momentum tensor. This tensor
is quadratic in the field, and in our case it is actually polarized, with two
different Green functions. The strain tensor contains the information of how
the imposed vector field deforms the domain, and thereby also deforms the
metric tensor of the domain.

All this makes the treatment accord with general principles of physics,
which are briefly discussed in the final Section 4, partly in terms of an example
from [6].

The present paper can be viewed as a continuation of our understanding
of the Green function started in [4].

2 Traditional case, using the Lie derivative

The (Laplacian) Green functionGa for a (bounded) domain Ω ⊂ R
n is defined

by the properties

−∆Ga = δa in Ω,

Ga = 0 on ∂Ω.

Writing G(x, a) = Ga(x), G(x, a) is symmetric with respect to x and a. This
is most clearly seen by using standard Green’s formulas to express the Green
function as a mutual energy:

G(a, b) =

∫

Ω

(∇Ga · ∇Gb) dx. (2.1)

The Green function certainly depends on the domain, G = GΩ, and
Hadamard’s classical formula [3] expresses how GΩ(x, a) changes under small
(infinitesimal) variations of the boundary (there also exist formulas relating
to various kinds of interior variations). Here we shall start by reviewing
this formula (namely equation (2.5) below) using the language of differential
forms and Lie derivatives.
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So let a smoothly bounded domain Ω = Ω(t) ⊂ R
n move in the flow of a

vector field v =
∑n

j=1 v
j ∂
∂xj , and denote by L

v
the Lie derivative, and by i(v)

interior derivation (“contraction” ), with respect to v. See in general Frankel
[2] for differential geometric concepts and notations. That Ω(t) moves in
flow of v means effectively just that the boundary ∂Ω moves with speed, as
measured in the normal direction, equal to the normal component of v on
∂Ω.

One basic property of the Lie derivative is that if we integrate a differential
p-form ω over a p-chain γ(t) which moves in the flow of a vector field v (t
being the corresponding time parameter), then

d

dt

∫

γ(t)

ω =

∫

γ(t)

L
v
ω. (2.2)

In case ω itself depends on t there will be an additional term
∫

γ(t)
∂ω
∂t
. Also the

vector field v may depend on t, but that causes no changes in the formula.
We shall need (2.2) only in the case p = n and ω(t) = Ω(t).

Now, in the language of differential forms the representation (2.1) takes
the form

G(a, b) =

∫

Ω

dG(·, a) ∧ ∗dG(·, b), (2.3)

where the star is the Hodge star. From this we have, with a, b ∈ Ω (a 6= b)
kept fixed,

d

dt
GΩ(t)(a, b) =

∫

Ω(t)

L
v
(dGΩ(·, a) ∧ ∗dGΩ(·, b)), (2.4)

as an immediate consequence of (2.2). The right member of (2.4) can be
made more explicit by the computation (suppressing the t in Ω(t))

∫

Ω

L
v
(dGa ∧ ∗dGb) =

∫

Ω

(d ◦ i(v) + i(v) ◦ d)(dGa ∧ ∗dGb) =

=

∫

Ω

d(i(v)(dGa ∧ ∗dGb)) =

∫

∂Ω

i(v)(dGa ∧ ∗dGb) =

=

∫

∂Ω

(i(v)dGa) ∧ ∗dGb −
∫

∂Ω

dGa ∧ i(v)(∗dGb).

Here the second term disappears since dGa = 0 along ∂Ω. For the first term
we have

i(v)dGa =
∂Ga

∂n
vn on ∂Ω,
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∗dGb =
∂Gb

∂n
dσ along ∂Ω,

in terms of (outward) normal derivatives and components and with dσ de-
noting the surface area element on ∂Ω. Thus

∫

Ω

L
v
(dGa ∧ ∗dGb) =

∫

∂Ω

∂Ga

∂n

∂Gb

∂n
vndσ,

to be inserted in (2.4).
In traditional notation, with

vn =
δn

δt
,

d

dt
GΩ(t)(a, b) =

δ

δt
G(a, b),

the variational formula takes the well-known form

δG(a, b) =

∫

∂Ω

∂G(·, a)
∂n

∂G(·, b)
∂n

δn dσ. (2.5)

The derivation remains valid in the Riemannian manifold setting to be dis-
cussed in the next section.

Remark 2.1. A case of special interest arises when the vector field v itself
is generated by the Green function, with pole at a third point c ∈ Ω, namely
when v = ∇G(·, c). In order for v to exist in a full neighborhood of ∂Ω, that
boundary need to be analytic. The formula (2.5) becomes in this case

δG(a, b) =

∫

∂Ω

∂G(·, a)
∂n

∂G(·, b)
∂n

∂G(·, c)
∂n

δn dσ,

with a triple symmetry. This beautiful formula appeared in [8] expressing a
kind of integrability of the Dirichlet problem in relation to Laplacian growth.
See [5] in this respect.

3 Interior version by energy-momentum ten-

sor

In the computation in Section 2 we had an integral over Ω involving a Lie
derivative, and this integral was pushed to the boundary. But there is also
the possibility not to go to the boundary. Then also the vector field v will
be differentiated, and one may arrange matters so that the derivatives of v
appear only in a certain strain tensor D (see below). The remaining factor
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will be a polarized energy-momentum tensor T = T (a, b) (see in general
[6, 2]), or Maxwell stress tensor in the terminology of Garabedian [3].

We shall work in the more general setting of an oriented Riemannian
manifold M with metric

ds2 = gij(x)dx
i ⊗ dxj ,

and a relatively compact domain Ω ⊂ M with smooth boundary. Here and
in the sequel the Einstein summation convention applies: any index which
occurs once up and once down in a term is summed over, from 1 to n. The
volume form for the metric is

voln =
√
g dx1 ∧ · · · ∧ dxn, where g = det(gij).

The Green function Ga(x) = G(x, a) = GΩ(x, a) of Ω is defined by

−d ∗ dGa = δavol
n in Ω,

Ga = 0 on ∂Ω.

Here δavol
n is the unit point mass at a ∈ Ω considered as an n-form (an n-

form current, more precisely). The first equation can equivalently be written

−∆Ga = δa,

where ∆ is the Hodge Laplacian, here taking functions (0-forms) into func-
tions.

Let D be the symmetric covariant tensor defined by

2D = 2Dij(x) dx
i ⊗ dxj = L

v
(gijdx

i ⊗ dxj). (3.1)

In elasticity theory D is the strain tensor, measuring the deformation caused
by v. If there is no deformation, i.e. if D = 0, then v is called a Killing
vector field. The components of D are given by

2Dij = gikv
k
;j + gkjv

k
;i = vi;j + vj;i

where semicolon refers to covariant differentiation, as is traditional. (No-
tational remark: Frankel [2] uses a slash, in place of semicolon, to denote
covariant differentiation.)

Next we define a symmetric tensor T = T (a, b) = T (x; a, b), a polarized
energy-momentum tensor with respect to the variable x ∈ Ω, depending on
a, b ∈ Ω as parameters. As a covariant tensor it is T = Tijdx

i ⊗ dxj, where

Tij =
∂G(x, a)

∂xi
∂G(x, b)

∂xj
+
∂G(x, a)

∂xj
∂G(x, b)

∂xi
− gijg

kℓ ∂G(x, a)

∂xk
∂G(x, b)

∂xℓ
.
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This definition differs from what is common in physics by a factor two, but
the above will be convenient for us.

To simplify notation we set

α = dG(·, a), β = dG(·, b), Φ = αkβ
k. (3.2)

Then α and β are 1-forms, or covariant vector fields, while Φ is a scalar field
which can be thought of as a mutual energy density between α and β. In
terms of components,

α = αjdx
j , β = βjdx

j ,

where

αj =
∂G(x, a)

∂xj
, βj =

∂G(x, b)

∂xj
. (3.3)

We shall allow to freely raise and lower indices by means of the metric
tensor. For example,

βj = βig
ij, gijg

jk = gki = δki (Kronecker delta).

Then we have

Tij = αiβj + αjβi − gijαkβ
k = αiβj + αjβi − Φ gij. (3.4)

The trace of T is
tr T = Tijg

ij = (2− n)Φ. (3.5)

In the above notation,

G(a, b) =

∫

Ω

α ∧ ∗β =

∫

Ω

Φvoln. (3.6)

The contravariant version of the energy-momentum tensor has compo-
nents

T ij = Trs g
rigsj = αiβj + αjβi − Φ gij.

Using that all covariant derivatives of the metric tensor vanish this gives

T ij
;j = αi

;jβ
j + αiβj

;j + αj
;jβ

i + αjβi
;j − Φ;j g

ij.

By (3.3),
αi;j = αj;i, αi;j = αj;i

αj
;j = −δa, βj

;j = −δb.
It follows that T ij

;j = −αiδb − βiδa. Setting

µi = −αiδb − βiδa = −αi(b)δb − βi(a)δa (3.7)

for this source term we thus have:
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Lemma 3.1. The divergence of the energy-momentum tensor vanishes ex-
cept for the two point source field µ = µ(a, b) given by (3.7). In terms of
components,

T ij
;j = µi. (3.8)

Theorem 3.1. The variation of the Green function GΩ(a, b) due to a de-
formation of Ω ⊂ M driven by a smooth vector field v is, in terms of the
energy-momentum tensor T ij = T ij(a, b) and the strain tensor Dij, given by

d

dt
GΩ(t)(a, b) =

∫

Ω

T ijDij vol
n − viµ

i =

∫

Ω

(T ijvi);j vol
n (3.9)

Proof. Using (3.6) we have

d

dt
GΩ(t)(a, b) =

∫

Ω

L
v
(α ∧ ∗β) =

∫

Ω

L
v
(Φ voln) =

=

∫

Ω

L
v
(Φ) voln +

∫

Ω

ΦL
v
(voln) =

=

∫

Ω

(Φ,jv
j + Φ vj;j) vol

n =

∫

Ω

(Φ vj);j vol
n. (3.10)

Here we have used that L
v
(A⊗B) = L

v
(A)⊗B + A⊗L

v
(B) for arbitrary

tensors A and B and that

L
v
(vol)n = d(i(v)voln) = (divv) voln = vj;j vol

n

(see [2, 6] in general). For an arbitrary vector field A = Aj ∂
∂xj we have, by

Stokes’ formula,

∫

Ω

Aj
;jvol

n =

∫

Ω

d(i(A)voln) =

∫

∂Ω

i(A)voln =

∫

∂Ω

Aj njdσ, (3.11)

where the oriented surface area form njdσ is defined by the last equality.
With Ai = T ijvj this gives

∫

∂Ω

T ijvi njdσ =

∫

Ω

(T ijvi);jvol
n.

Using the symmetries of T and D together with (3.7) and (3.8) the above
identity can be continued as

∫

Ω

(T ijvi);j vol
n =

∫

Ω

(T ij
;j vi + T ijvi;j) vol

n = −viµi +

∫

Ω

T ijDij vol
n.
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From this, and (3.10), we see that what remains to be proved is that
∫

Ω

(T ijvi);j vol
n =

∫

Ω

(αkβ
k vj);j vol

n. (3.12)

For the verification of (3.12) we start with the left member and use (3.11)
to turn some terms into boundary integrals:

∫

Ω

(T ij vi);j vol
n =

∫

Ω

(

(αiβj + αjβi − αkβ
kgij) vi

)

;j
voln =

=

∫

Ω

(

(αiβj + αjβi − αkβ
kgij − αkβkg

ij) vi
)

;j
voln+

+

∫

Ω

(αkβk g
ijvi);j vol

n =

=

∫

Ω

(

(αiβj − αkβ
kgij)vi + (αjβi − αkβkg

ij) vi
)

;j
voln+

+

∫

Ω

(Φ vj);j vol
n =

=

∫

∂Ω

(

(αiβj − αkβ
kgij)vi + (αjβi − αkβkg

ij) vi
)

njdσ+

+

∫

Ω

(Φ vj);j vol
n =

=

∫

∂Ω

βj(αinj − αjni) v
idσ +

∫

∂Ω

αj(βinj − βjni) v
idσ+ (3.13)

+

∫

Ω

(Φ vj);j vol
n.

Let u be any defining function for ∂Ω, i.e. any smooth function satisfying
u = 0 on ∂Ω and having nonzero gradient there. In directions along the
boundary ∂Ω we then have

dGa = 0, dGb = 0, du = 0, (3.14)

We can normalize u so that |∇u| = 1 on ∂Ω and then du = nidx
i where

ni = ∂u/∂xi are the normal components in (3.13). Since dGa = αidx
i,

dGb = βidx
i and since the covectors dGa, dGb, du by (3.14) are necessarily

proportional at each point of ∂Ω, it follows that

αinj = αjni, βinj = βjni for all i, j.

Therefore the boundary integrals in (3.13) disappear and we end up with
∫

Ω

(T ijvi);j vol
n =

∫

Ω

(Φ vj);j vol
n,

which is (3.12), as desired.
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4 Connections to physics

In physics the energy 2-form (here mutual energy) α ∧ ∗β is related to a
Lagrangian density L by

L voln = α ∧ ∗β,
up to a sign and on disregarding source terms and mass terms. Thus L = Φ,
referring to (3.2). Theorem 3.1 mainly expresses, in this language, that

∫

Ω

L
v
(L voln) =

∫

Ω

T ij Dij vol
n. (4.1)

This is in line with the general philosophy in physics that the energy-momen-
tum tensor arises from the Lagrangian as a result of an infinitesimal variation
of the metric tensor. See [6, 1] for example. Recall also (3.1) in this respect.

In our case we started in Sections 2 and 3 with a fixed manifold M and
let a subdomain Ω deform by moving in the flow of a vector field v. This
means that Ω, as a body, consists of the same material particles all the time.
In that sense Ω is a fixed space (or body), and what really changes is the
metric tensor and the coordinate values for the individual particles. Thus we
are within the realm of the above mentioned philosophy. In physics books
the formula (4.1) may look like

δS =

∫

T ij δgij,

where

S =

∫

L voln

is the “action”.
To set our discussions in a specific physical context we give an example

of a Lagrangian function for scalar field ψ. Citing from Hawking-Ellis [6]
(Example 1 in Section 3.3 there), the Lagrangian for a field ψ representing a
π0-meson is

L = −ψ;iψ;jg
ij − m2

~2
ψ2.

The Euler-Lagrange equation obtained by variation of the action is

ψ;ijg
ij − m2

~2
ψ2 = 0.

In our case we have a polarized Lagrangian with two different fields, and
we also have a source term instead of a mass term. Our Lagrangian density
would be (with a different sign convention compared to [6])

L = (ψa);i(ψb);jg
ij − ψaδb − ψbδa,
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where ψa and ψb are independent scalar fields vanishing on ∂Ω. Variation of
the action gives the Euler Lagrange equations

((ψa);ig
ij);j = −δa, ((ψb);ig

ij);j = −δb,

which are the defining functions for the Green functionsGa andGb. Therefore
the Lagrangian density eventually (“on-shell”) comes out as

L = (Ga);i(Gb);jg
ij −Gaδb −Gbδa.

Rewriting and including the volume form we have

L voln = α ∧ ∗β −G(a, b)(δa + δb)vol
n.

The counterpart of the energy-momentum tensor in [6], namely

Tij = ψ;iψ;j −
1

2
gij

(

ψ;kψ;ℓg
kℓ +

m2

~2
ψ2

)

,

is in our case (up to a factor two, and replacing immediately the fields ψa,
ψb by Ga, Gb)

Tij = (Ga);i(Gb);j + (Ga);j(Gb);i − gijg
kℓ(Ga);k(Gb);ℓ.

This is exactly what we started with in Section 3.
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