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1. Introduction

Homogenization of rapidly varying coefficients in elliptic partial differential equations has been stud-
ied by mathematicians at least since the 1970s, and by physicists and engineers much longer (see [17,
2,16] and references therein). A typical example is when the conductivity matrix Aε = Aε(x) in an
equation

−div
(
Aε∇uε) = f (1.1)

in some (bounded) domain Ω ⊂ R
N oscillates rapidly at length scale ε > 0 and one wants to identify a

limit matrix A = A(x) (presumably less oscillating than the Aε) such that, as ε → 0, the solutions uε

converge in some weak sense to the solution u of the corresponding homogenized equation:

−div(A∇u) = f.

In the 1970s and 1980s, F. Murat and L. Tartar identified the appropriate type of convergence,
H-convergence, for the above type of problems, and started developing a general theory for it (see [13–
15,18–20]). Earlier work was much concerned with special cases, like strictly periodic structures, and
in fact the study of periodic structures has drawn most of the attention in homogenization even in recent
time, because of its numerous industrial applications.

The present paper deals with general homogenization in the spirit of the work of F. Murat and L. Tartar.
The first part (Section 2), extends the definitions and main properties of H-convergence to the framework
of systems, occurring for example in linear elasticity. There are several definitions of H-convergence
available in the literature. Some of them are formulated in terms of solutions of the partial differential
equations (1.1) (referring now to the diffusion case) while others are formulated directly in terms of the
algebraic constitutive equation

Dε = AεEε. (1.2)
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The latter relates, in an electrostatic language, the displacement field Dε, for which one has control
of div Dε (by (1.1)), with the electric field Eε, for which curl Eε is under control (in fact vanishes,
because Eε = ∇uε). Most definitions involve a localization argument (ω � Ω). In Section 3 of the
paper we give a unified presentation of the theory of H-convergence in linear elasticity, avoiding the
localization argument, and we prove the equivalence of three different definitions of H-convergence.
In linear elasticity the constitutive relation (“Hooke’s law”) is still of the form (1.2), but now with Aε

a fourth-order tensor (the elasticity tensor) and Dε, Eε the stress and strain tensors respectively (both
symmetric second-order tensors).

In Section 4, we state our main result, which is a criterion for H-convergence of elasticity tensors
in terms of ordinary weak convergence of the factors in certain quotient representations of the tensors.
More precisely, we prove that a sequence of tensors Aε H-converges to a tensor A if and only if there
exist tensors M ε, M , P ε, P with entries in L2 and with M invertible, such that

M εAε = P ε, MA = P ,
M ε ⇀ M weakly in L2, P ε ⇀ P weakly in L2,
{curl M ε}ε>0 relatively compact in H−1, {div P ε}ε>0 relatively compact in H−1,

with curl and div defined in Section 2.4. Section 5 is devoted to a “corrector” result, while applications
to laminates and periodic homogenization are given in Sections 6 and 7, allowing to recover some well
known formulae.

Explicit representations of the type M εAε = P ε have been constructed and used for proving H-
convergence in a series of papers [3–5,7]. The purpose of this article is to point out that the existence
of such quotient representations is a completely general fact in connection with H-convergence. In the
diffusion case, the corresponding result was announced in [9]. The proof consists of an adaptation of
methods developed by F. Murat and L. Tartar (see, e.g., [13–15,18–20]). Compensated compactness
is the crucial technical tool used throughout the paper. Although our results are not entirely new, they
give a hopefully fruitful general point of view on linear homogenization, based solely on compensated
compactness and quotient representations as above.

2. Preliminaries

2.1. Notation

In this paper we use the Einstein convention of repeated indices. We consider the scalar product [·, ·]
and the norm | · | defined on R

N×N by

[ξ, η] = ξijηij and |ξ|2 = [ξ, ξ].

Besides we use the following product of N ×N ×N ×N -tensors: by definition Q = MP is the tensor
with entries

Qijkl = MijmnPmnkl.

We denote by A (or Aε) a N × N × N × N tensor with real coefficients Aijkl for i, j, k, l in
{1, 2, . . . , N}, satisfying the symmetry assumptions

Aijkl = Ajikl = Aijlk, ∀i, j, k, l ∈ {1, 2, . . . , N}.
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We also identify A with the linear map:

ξ ∈ R
N×N → η = Aξ ∈ R

N×N with ηij = Aijklξkl.

Since Aijkl = Ajikl, it maps R
N×N into R

N×N
s , the set of symmetric matrices with real coefficients. In

particular it maps R
N×N
s into R

N×N
s .

Moreover the above tensor A is supposed to satisfy

[Aξ, ξ] � α|ξ|2, ∀ξ ∈ R
N×N
s ,

for some positive α, and then A is invertible on R
N×N
s .

2.2. Definition of M (α, β, Ω)

From now on, Ω is a bounded open set in R
N . For given α, β such that 0 < α � β < +∞, M (α, β, Ω)

denotes the set of N × N × N × N tensors with measurable coefficients Aijkl(x) satisfying

a.e. x ∈ Ω, ∀i, j, k, l ∈ {1, 2, . . . , N}, Aijkl(x) = Ajikl(x) = Aijlk(x), (2.1)

a.e. x ∈ Ω, ∀ξ ∈ R
N×N
s ,

[
A(x)ξ, ξ

]
� α|ξ|2 (2.2)

(hence A(x) is invertible on R
N×N
s ) and

a.e. x ∈ Ω, ∀ξ ∈ R
N×N
s ,

[
A(x)−1ξ, ξ

]
� β−1|ξ|2. (2.3)

The latter inequality implies that

a.e. x ∈ Ω, ∀ξ ∈ R
N×N
s ,

∣∣A(x)ξ
∣∣ � β|ξ|. (2.4)

Because of the symmetries (2.1), the bound (2.4) remains true for nonsymmetric ξ ∈ R
N×N , as is seen

by applying (2.1) to the symmetrized part ξs of ξ: |A(x)ξ| = |A(x)ξs| � β|ξs| � β|ξ|.

2.3. Definition of div D and curl E for D, E in D′(Ω)N×N

We define div D and curl E as div and curl of the line (or row) vectors Di and Ei of D and E. In other
words, div and curl apply to the last index of Dij and Eij :

(div D)i = div Di =
∂Dij

∂xj
,

(curl E)ijk = (curl Ei)jk =
∂Eij

∂xk
− ∂Eik

∂xj
.
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2.4. Definition of div P and curl M for P , M in D′(Ω)N×N×N×N

Again div and curl apply to the last index: for P , M ∈ D′(Ω)N×N×N×N , we set Pijk = (Pijkl)l,
Mijk = (Mijkl)l and define div P ∈ D′(Ω)N×N×N and curl M ∈ D′(Ω)N×N×N×N×N by

(div P )ijk = div Pijk =
∂Pijkl

∂xl
,

(curl M )ijklm = (curl Mijk)lm =
∂Mijkl

∂xm
− ∂Mijkm

∂xl
.

2.5. Definition of e(w) and ∇w for w in D′(Ω)N

By definition, e(w) is the symmetrized gradient (in distributional sense) of w, that is e(w) is the
symmetric N × N matrix with coefficients in D′(Ω) defined by

eij(w) =
1
2

(
∂wi

∂xj
+

∂wj

∂xi

)
.

On the contrary, the usual gradient of w is the N × N matrix ∇w with coefficients

∇ijw =
∂wi

∂xj
.

2.6. Definition of H-convergence in elasticity

From now on, ε describes a sequence converging to zero. Let 0 < α � β < +∞, 0 < α′ � β′ < +∞.

Let Aε ∈ M (α, β, Ω), A ∈ M (α′, β′, Ω). We say that Aε H-converges to A (and we write Aε H−→ A)
when ε tends to zero, if the following holds true:

Whenever Dε, D, Eε, E ∈ L2(Ω)N×N satisfy

Dε = AεEε, (2.5)

Dε ⇀ D and Eε ⇀ E weakly in L2(Ω)N×N , (2.6)

{div Dε}ε>0 is relatively compact in H−1(Ω)N , (2.7)

{curl Eε}ε>0 is relatively compact in H−1(Ω)N×N×N , (2.8)

then

D = AE. (2.9)

2.7. Definition of Hb-convergence

Let us denote by L2(Ω)N×N
s the set of symmetric matrices of size N × N with entries in L2(Ω). Let

0 < α � β < +∞, 0 < α′ � β′ < +∞. Let Aε ∈ M (α, β, Ω), A ∈ M (α′, β′, Ω). The subscript “b”
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refers to “boundary conditions”. We say that Aε Hb-converges to A (and we write Aε Hb−→ A) as ε tends
to zero, if for any g ∈ L2(Ω)N×N

s and for any h ∈ H1(Ω)N , the sequence of solutions uε = uε(g, h) of

⎧⎨
⎩

uε − h ∈ H1
0 (Ω)N and ∀w ∈ H1

0 (Ω)N ,∫
Ω

[
Aεe

(
uε), e(w)

]
dx =

∫
Ω

[
g, e(w)

]
dx

(2.10)

satisfy, as ε tends to zero,{
uε ⇀ u weakly in H1(Ω)N ,

Aεe
(
uε

)
⇀ Ae(u) weakly in L2(Ω)N×N ,

(2.11)

where u = u(g, h) is the solution of
⎧⎨
⎩

u − h ∈ H1
0 (Ω)N and ∀w ∈ H1

0 (Ω)N ,∫
Ω

[
Ae(u), e(w)

]
dx =

∫
Ω

[
g, e(w)

]
dx.

(2.12)

Remark 1. From the symmetry properties of Aε, A and g, it follows that Aεe(uε) = Aε∇uε, Ae(u) =
A∇u and that Eq. (2.10) is equivalent to

⎧⎨
⎩

uε − h ∈ H1
0 (Ω)N and ∀w ∈ H1

0 (Ω)N ,∫
Ω

[
Aε∇uε,∇w

]
dx =

∫
Ω

[g,∇w] dx,
(2.13)

the second line in (2.13) being the weak formulation of the system

∂

∂xj

(
Aε

ijkl∇klu
ε) =

∂gij

∂xj
in Ω (∀i = 1, . . . , N ). (2.14)

For simplicity, we write (2.10) or (2.13) as{
div

(
Aε∇uε

)
= div g in Ω,

uε − h ∈ H1
0 (Ω)N .

(2.15)

The same remark applies to (2.12).

2.8. Definition of Hloc-convergence

The following definition of H-convergence is more classical, at least in the diffusion framework (see,
e.g., [13,15]). In this paper, we call it Hloc-convergence. Let 0 < α � β < +∞, 0 < α′ � β′ < +∞.

Let Aε ∈ M (α, β, Ω), A ∈ M (α′, β′, Ω). We say that Aε Hloc-converges to A (and we write Aε Hloc−→ A)
as ε tends to zero, if for any ω � Ω and for any g ∈ L2(ω)N×N

s , the sequence of solutions uε = uε(ω, g)
of ⎧⎨

⎩
uε ∈ H1

0 (ω)N and ∀w ∈ H1
0 (ω)N ,∫

ω

[
Aεe

(
uε), e(w)

]
dx =

∫
ω

[
g, e(w)

]
dx

(2.16)
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is such that, as ε tends to zero,

{
uε ⇀ u weakly in H1

0 (ω)N ,

Aεe
(
uε

)
⇀ Ae(u) weakly in L2(ω)N×N ,

(2.17)

where u = u(ω, g) is the solution of

⎧⎨
⎩

u ∈ H1
0 (ω)N and ∀w ∈ H1

0 (ω)N ,∫
ω

[
Ae(u), e(w)

]
dx =

∫
ω

[
g, e(w)

]
dx.

(2.18)

2.9. The div–curl lemma

The “div–curl lemma” of compensated compactness [13,19,6] will be used extensively throughout the
paper. We recall that this lemma in general says that if f ε, gε, f , g ∈ L2(Ω)n are vector fields such that
f ε ⇀ f , gε ⇀ g weakly in L2(Ω)n and such that div f ε and the components of curl gε are all contained
in a compact subset of H−1(Ω), then [f ε, gε] ⇀ [f , g] weakly as distributions. (Here [f , g] = figi.)

3. Equivalence of H , Hb and Hloc-convergence and preliminary remarks

3.1. Comparison of H and Hb-convergence, uniqueness of the H-limit

Proposition 1. H and Hb convergences are equivalent. Moreover

Aε H−→ A is equivalent to tAε H−→ tA

with

(tAε)
ijkl = Aε

klij , ∀i, j, k, l ∈ {1, . . . , N}.

Proof. Step 1. In this step we prove that

Aε H−→ A implies that Aε Hb−→ A.

Let g ∈ L2(Ω)N×N
s , h ∈ H1(Ω)N and let uε be the solution of (2.10), Eε = ∇uε, Dε = Aε∇uε.

Similarly, let u be the solution of (2.12), E = ∇u, D = A∇u. Since Aε ∈ M (α, β, Ω), we get from
(2.2), (2.4), (2.10),

α
∥∥e

(
uε − h

)∥∥
L2(Ω)N×N �

∥∥g − Aεe(h)
∥∥

L2(Ω)N×N � ‖g‖L2(Ω)N×N + β‖e(h)‖L2(Ω)N×N ,

so that e(uε−h) is bounded in L2(Ω)N×N and, due to the Korn inequality, uε−h is bounded in H1
0 (Ω)N ,

uε is bounded in H1(Ω)N , Eε and Dε are bounded in L2(Ω)N×N . Hence, for some subsequence of ε
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(still denoted by ε), for some u ∈ H1(Ω)N (u − h ∈ H1
0 (Ω)N ) and for some D ∈ L2(Ω)N×N ,

uε ⇀ u weakly in H1(Ω)N ,

Eε = ∇uε ⇀ E = ∇u weakly in L2(Ω)N×N ,

Dε = Aε∇uε ⇀ D weakly in L2(Ω)N×N .

Finally, from (2.13) it follows that

∫
Ω

[D,∇w] dx =
∫

Ω
[g,∇w] dx, ∀w ∈ H1

0 (Ω)N .

It is enough to prove that D = A∇u because then we have u = u and the whole sequences uε, Eε and
Dε converge. But D = A∇u follows from the H-convergence of Aε to A and from the fact that (see
(2.14))

div Dε
i =

∂Dε
ij

∂xj
=

∂

∂xj

(
Aε

ijkl∇klu
ε) =

∂gij

∂xj

is a fixed element in H−1(Ω) and

curl Eε
i = curl∇uε

i = 0.

Step 2. Now we prove that

Aε Hb−→ A is equivalent to tAε Hb−→ tA.

Assume Aε Hb−→ A. Let g ∈ L2(Ω)N×N
s , h ∈ H1(Ω)N and let vε be the solution of

⎧⎨
⎩

vε − h ∈ H1
0 (Ω)N and ∀w ∈ H1

0 (Ω)N ,∫
Ω

[tAε∇vε,∇w
]

dx =
∫

Ω
[g,∇w] dx,

which we write as before (see (2.15))

{
div

(
tAε∇vε

)
= div g in Ω,

vε − h ∈ H1
0 (Ω)N .

(3.1)

It is clear (as in the beginning of Step 1) that, up to extraction of a subsequence, for some v ∈ H1(Ω)N ,
v − h ∈ H1

0 (Ω)N , and or some σ ∈ L2(Ω)N ,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vε ⇀ v weakly in H1(Ω)N ,
tAε∇vε ⇀ σ weakly in L2(Ω)N×N ,∫

Ω
[σ,∇w] dx =

∫
Ω

[g,∇w] dx, ∀w ∈ H1
0 (Ω)N .

(3.2)
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In order to prove that tAε Hb−→ tA, we have to prove that σ = tA∇v.
Let us fix i, j ∈ {1, . . . , N} and define uij ∈ H1(Ω)N by

uij(x) =
(
uijk(x)

)
k with uijk(x) = δikxj . (3.3)

It is clear that

∇kluij =
∂uijk

∂xl
= δikδjl. (3.4)

Now we define uε
ij as the solution of

{
div

(
Aε∇uε

ij

)
= div(A∇uij) in Ω,

uε
ij − uij ∈ H1

0 (Ω)N .
(3.5)

Since Aε Hb−→ A, we have

{
uε

ij ⇀ uij weakly in H1(Ω)N ,

Aε∇uε
ij ⇀ A∇uij weakly in L2(Ω)N×N .

(3.6)

By (3.1), (3.2), (3.5), (3.6) and compensated compactness,

[t Aε∇vε,∇uε
ij

] D′(Ω)−→ [σ,∇uij]

and

[t Aε∇vε,∇uε
ij

]
=

[
∇vε, Aε∇uε

ij

] D′(Ω)−→ [∇v, A∇uij] =
[t A∇v,∇uij

]
.

Hence

[σ,∇uij] =
[t A∇v,∇uij

]
or, by (3.4),

σklδikδjl =
(tA∇v

)
klδikδjl

or σij = (tA∇v)ij . As this is true for all i, j, we get σ = tA∇v and we conclude that tAε Hb−→ tA. Thus

Aε Hb−→ A implies that tAε Hb−→ tA and since t(tAε) = Aε (etc.) we get the desired equivalence.
Step 3. Finally we prove that

tAε Hb−→ tA implies that Aε H−→ A.
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Let again (for fixed i, j ∈ {1, . . . , N}),

uij(x) =
(
uijk(x)

)
k with uijk(x) = δikxj .

Now let uε
ij be the solution of

⎧⎨
⎩ div

(t
Aε ∇uε

ij

)
= div

(t
A∇uij

)
in Ω,

uε
ij − uij ∈ H1

0 (Ω)N .
(3.7)

Since tAε Hb−→ tA,

{
uε

ij ⇀ uij weakly in H1(Ω)N ,
tAε ∇uε

ij ⇀ tA∇uij weakly in L2(Ω)N×N .
(3.8)

Let (Dε, Eε) be as in the definition of H-convergence. We have to prove that D = AE. But

[
Dε,∇uε

ij

]
=

[
AεEε,∇uε

ij

]
=

[
Eε, tAε∇uε

ij

]
and by compensated compactness

[
Dε,∇uε

ij

] D′(Ω)−→ [D,∇uij]

while, by (3.7), (3.8) and compensated compactness,

[
Eε, tAε∇uε

ij

] D′(Ω)−→
[
E, tA∇uij

]
= [AE,∇uij].

Hence [D,∇uij] = [AE,∇uij], for all i, j, giving, as at the end of Step 2, D = AE. This finishes Step
3 and hence the entire proof. �

Remark 2. In the same way as we have proved that H-convergence implies Hb-convergence, one can
prove that H-convergence allows passing to the limit in many other boundary value problems in linear
elasticity (e.g., with mixed Dirichlet and Neumann boundary conditions).

Proposition 2. The H-limit is unique.

Proof. By virtue of Proposition 1, this is equivalent to the uniqueness of the Hb-limit. So let us assume

that Aε Hb−→ A. Let gij = A∇uij with uijk = δikxj and let uε
ij be the solution of (3.5). Then, by (3.6),

for any B, Hb-limit of Aε, we have

Aε∇uε
ij ⇀ B∇uij weakly in L2(Ω)N×N .

In particular, A∇uij = B∇uij , that is Aklij = Bklij , first for all k, l, and then also for all i, j, that is
A = B. �
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3.2. Comparison of Hb and Hloc-convergences and subsequent remarks

Proposition 3. Hloc and Hb-convergences are equivalent.

Proof. Let us first prove that Hloc-convergence tAε Hloc−→ tA implies Hb-convergence Aε Hb−→ A. Let
g ∈ L2(Ω)N×N

s , h ∈ H1(Ω)N , let uε be the solution of (2.10). It is clear that, up to a subsequence of ε,
for some u ∈ H1(Ω)N , u − h ∈ H1

0 (Ω)N and for some ξ ∈ L2(Ω)N×N , div ξ = div g,

uε ⇀ u weakly in H1(Ω)N ,

Aε∇uε ⇀ ξ weakly in L2(Ω)N×N .

In order to prove Hb-convergence, it is enough to prove that ξ = A∇u.
Let us consider two subdomains ω1 and ω of Ω, ω1 � ω � Ω. Let, for fixed i, j ∈ {1, . . . , N},

vij(x) =
(
vijk(x)

)
k with vijk(x) = δikxjϕ(x),

for some given ϕ ∈ D(ω) with ϕ = 1 in ω1. Now let gij ∈ L2(ω)N×N
s be defined by gij = tA∇vij and

let vε
ij be the solution of

⎧⎨
⎩ div

(t
Aε ∇vε

ij

)
= div gij in ω,

vε
ij ∈ H1

0 (ω)N .
(3.9)

Since, by assumption, tAε Hloc−→ tA, it follows that

{
vε

ij ⇀ vij weakly in H1
0 (ω)N ,

tAε ∇vε
ij ⇀ tA∇vij weakly in L2(ω)N×N .

(3.10)

By compensated compactness,

[t Aε∇vε
ij ,∇uε] D′(ω)−→

[t
A∇vij ,∇u

]
= [∇vij , A∇u].

Moreover, denoting by ṽε
ij and ṽij the extensions of vε

ij and vij by zero in Ω \ω, compensated compact-
ness gives

[
∇ṽε

ij , Aε ∇uε] D′(Ω)−→ [∇ṽij , ξ]

and hence

[t Aε ∇vε
ij ,∇uε] =

[
∇vε

ij , Aε∇uε] D′(ω)−→ [∇vij , ξ].

By comparing the two limits in D′(ω), we obtain

[∇vij , A∇u] = [∇vij , ξ].
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As this is true for any i, j, we obtain first that ξ = A∇u in ω1. But this is true for any ω1 and ω, hence
ξ = A∇u in all Ω.

Similarly one proves that tAε Hb−→ tA implies Aε Hloc−→ A (we omit the details for the sake of briefness).
In view of Proposition 1, the proof is finished. �

Remark 3. In the diffusion case, it was proved by F. Mura and L. Tartar (see, e.g., [15]) that M (α, β, Ω)
is sequentially relatively compact for Hloc-convergence, that is, for any sequence Aε ∈ M (α, β, Ω), there

exist a subsequence, still denoted ε, and there exists A ∈ M (α, β, Ω) such that Aε Hloc−→ A. The proof
of [15] can be easily extended to the elasticity case. It follows that, in our definition of H-convergence,
we may suppose that α′ = α and β′ = β, as we shall do in the next section.

4. Main result

Our main result is the following.

Theorem 1. Let Aε, A ∈ M (α, β, Ω), for some 0 < α � β < ∞. Then Aε H−→ A as ε → 0 if and only
if there exist N ×N ×N ×N tensors M ε, M , P ε, P with entries in L2(Ω) and with M invertible, such
that

M εAε = P ε, (4.1)

MA = P , (4.2)

M ε ⇀ M weakly in L2(Ω)N×N×N×N , (4.3)

P ε ⇀ P weakly in L2(Ω)N×N×N×N , (4.4)

{curl M ε}ε>0 is relatively compact in H−1(Ω)N×N×N×N×N , (4.5)

{div P ε}ε>0 is relatively compact in H−1(Ω)N×N×N (4.6)

with curl and div defined as in Section 2.4. When this is the case, M can be chosen to be the identity
tensor (Mijkl = δikδjl) and M ε so that curl M ε = 0.

Proof. We begin by giving the proof of the “if”-part. Suppose that we have the decompositions (4.1),
(4.2) with compactness (4.5), (4.6) and with weak convergences M ε ⇀ M and P ε ⇀ P as in (4.3),
(4.4). We are going to prove that Aε H-converges to A. We consider Dε, D, Eε, E satisfying (2.5) to
(2.8). Then (4.1) acting on Eε gives

M εDε = P εEε,

or in components,

M ε
ijklD

ε
kl = P ε

ijklE
ε
kl,

that is, for the usual scalar product of vectors,

(
M ε

ijk, Dε
k

)
=

(
P ε

ijk, Eε
k

)
. (4.7)
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We have

curl M ε
ijk relatively compact in H−1(Ω)N×N ,

div Dε
k relatively compact in H−1(Ω),

div P ε
ijk relatively compact in H−1(Ω),

curl Eε
k relatively compact in H−1(Ω)N×N .

By the div–curl lemma, we get by passing to the limit in (4.7) in the sense of distribution

(Mijk, Dk) = (Pijk, Ek),

that is MD = PE which, since M is invertible, is the same as D = AE.
Now we prove the “only if” part. More precisely, we prove that we may take M = I , i.e., Mijkl =

δikδjl, and P = A. Let tA denote the transpose of A. As in the proof of Proposition 1, we set, for fixed
i, j ∈ {1, . . . , N},

uij = (uijk)k, uijk(x) = δikxj , gij = tA∇uij

and we consider the solution uε
ij of

⎧⎨
⎩

div
(t

Aε∇uε
ij

)
= div gij in Ω,

uε
ij − uij ∈ H1

0 (Ω)N .
(4.8)

Then let M ε be defined by

M ε
ijkl = ∇klu

ε
ij

and let P ε = M εAε, or in components

P ε
ijkl = M ε

ijmnAε
mnkl.

We have

(
curl M ε)

ijklm =
∂M ε

ijkl

∂xm
−

∂M ε
ijkm

∂xl

=
∂

∂xm

(
∇klu

ε
ij

)
− ∂

∂xl

(
∇kmuε

ij

)

=
∂

∂xm

(
∂uε

ijk

∂xl

)
− ∂

∂xl

(
∂uε

ijk

∂xm

)
= 0,
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(
div P ε)

ijk =
∂P ε

ijkl

∂xl

=
∂

∂xl

(
M ε

ijmnAε
mnkl

)

=
∂

∂xl

((t
Aε)

klmnM ε
ijmn

)

=
∂

∂xl

((t
Aε)

klmn∇mnuε
ij

)

=
∂

∂xl
gijkl.

Hence the so defined tensors M ε, P ε satisfy

curl M ε = 0 and div P ε = div g.

From (4.8) we get for each i, j ∈ {1, . . . , N} the elliptic estimates

∥∥uε
ij

∥∥
H1(Ω)N � C < ∞,∥∥t

Aεe
(
uε

ij

)∥∥
L2(Ω)N×N =

∥∥t
Aε∇uε

ij

∥∥
L2(Ω)N×N � C < ∞.

Thus for some subsequence of {ε} and some limit fields vij (vij − uij ∈ H1
0 (Ω)N ) and σij , we have the

convergences

uε
ij ⇀ vij weakly in H1(Ω)N , (4.9){
e
(
uε

ij

)
⇀ e(vij)

∇uε
ij ⇀ ∇vij

}
weakly in L2(Ω)N×N , (4.10)

P ε
ij = tAε∇uε

ij ⇀ σij weakly in L2(Ω)N×N . (4.11)

The latter convergence together with (4.8) shows that div σij = div gij . At this point we use the fact

mentioned in Proposition 1 that H-convergence carries over to the transposed tensors. Thus tAε H−→ tA,
and since curl∇uε

ij = 0 and div P ε
ij = div gij have components staying in a compact subset of H−1(Ω),

it follows from the definition of H-convergence that σij = tA∇vij . Therefore vij solves the boundary
value problem

{
div

(t
A∇vij

)
= div gij ,

vij − uij ∈ H1
0 (Ω)N .

(4.12)

But this problem has the unique solution uij . Thus we conclude that vij = uij and that σij = tA∇uij .
It also follows that in (4.9) to (4.11) we have convergence for the full sequence ε. With this in mind, the
convergences (4.10), (4.11) state exactly that
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M ε ⇀ M = I weakly in L2(Ω)N×N×N×N ,

P ε ⇀ P = A weakly in L2(Ω)N×N×N×N .

Actually, (4.10) is equivalent to (for any k, l)

M ε
ijkl = ∇klu

ε
ij ⇀ ∇kluij = δikδjl = Mijkl

and (4.11) is equivalent to (for any k, l)

P ε
ijkl ⇀

(t
A∇uij

)
kl =

(t
A

)
klmn∇mnuij = Amnklδimδjn = Aijkl.

Moreover the last two convergences hold true, not only for any k, l, but also for any i, j. This proves the
theorem. �

Remark 4. It is clear that the matrices M ε, M , P ε, P appearing in the decompositions (4.1), (4.2) are
far from being uniquely determined by Aε, A, even when all the conditions (4.3) to (4.6) are satisfied.
For example, none of the conditions (4.1) to (4.6) are affected if M ε, M , P ε, P are multiplied from the
left by one and the same invertible matrix Q = Q(x) with Lipschitz coefficients. In the case of laminates,
Section 6 gives two possible choices of M ε, M , P ε and P .

5. Correctors

From the formulation of Theorem 1, one can easily pass to construction of “correctors” (cf. [19,20]).

Theorem 2 (and definition). Let Aε, A ∈ M (α, β, Ω), for some 0 < α � β < ∞. Let us assume that

Aε H−→ A. Then, first of all, there exist tensors N ε and Qε with entries in L2(Ω) such that

AεN ε = Qε,

N ε ⇀ I and Qε ⇀ A, weakly in L2(Ω)N×N×N×N ,

with

curl tN ε relatively compact in H−1(Ω)N×N×N×N×N

and

div tQε relatively compact in H−1(Ω)N×N×N .

Secondly, let Dε, Eε, E be as in the definition of H-convergence for Aε. By definition, we say that
N εE and QεE are correctors (good approximations) of Eε and Dε respectively, if the following con-
vergences hold true:

1
2

[(
Eε − N εE

)
+ t(Eε − N εE

)]
→ 0 and Dε − QεE → 0 strongly in L2

loc(Ω)N×N . (5.1)

Now (5.1) does hold if at least one of the following conditions is satisfied:
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• E is in W 1,∞(Ω),
• the sequences {N ε}ε and {Qε}ε are bounded in L∞(Ω)N×N×N×N ,
• E ∈ Lp(Ω)N×N for some p, 2 < p < ∞, and the sequences {N ε}ε and {Qε}ε are bounded in

L
2p

p−2 (Ω)N×N×N×N .

In the last case we even have the global convergence

1
2

[(
Eε − N εE

)
+ t(Eε − N εE

)]
→ 0 and Dε − QεE → 0 strongly in L2(Ω)N×N . (5.2)

Proof. In order to construct N ε and Qε, we apply Theorem 1 to the transposed tensors: if Aε H−→
A then tAε H−→ tA. Thus there are tensors tN ε, tN , tQε, tQ such that tN ε tAε = tQε, tN tA =
tQ, tN ε ⇀ tN , tQε ⇀ tQ with div tQε and curl tN ε relatively compact in H−1(Ω)N×N×N and
H−1(Ω)N×N×N×N×N , respectively. Here we choose the normalization tN = I , tQ = tA.

Now we consider vector fields Dε, Eε as in the definition of H-convergence (for Aε). To prove the
assertion (5.1), we first notice that, due to the symmetry property of Aε,

Dε − QεE = Aε(Eε − N εE
)

= Aε(Eε − N εE
)
s

with

(
Eε − N εE

)
s =

1
2

[(
Eε − N εE

)
+ t(Eε − N εE

)]
.

Thus,

[
Dε − QεE, Eε − N εE

]
=

[
Aε(Eε − N εE

)
, Eε − N εE

]
=

[
Aε(Eε − N εE

)
s,

(
Eε − N εE

)
s

]
.

Therefore, by (2.2) and (2.4), for every ω � Ω, the L2(ω)N×N -norms of both (Eε − N εE)s and Dε −
QεE can be estimated from above by

∫
Ω[Dε − QεE, Eε − N εE]φ dx, for some φ ∈ D(Ω), φ � 0,

φ = 1 in ω. But

[
Dε − QεE, Eε − N εE

]
=

[
Dε, Eε] − [

Dε, N εE
]
−

[
QεE, Eε] +

[
QεE, N εE

]
. (5.3)

Clearly, by the div–curl lemma, [Dε, Eε] → [D, E] in the sense of distributions.
• If E has regularity W 1,∞(Ω), the relative compactness of curl tN ε and div tQε implies that

curl(N εE) and div(QεE) are relatively compact in H−1(Ω)N×N×N and H−1(Ω)N , respectively. Then
the div–curl lemma gives that, in the sense of distributions,

[
Dε, Eε] − [

Dε, N εE
]
−

[
QεE, Eε] +

[
QεE, N εE

]
→ [D, E] − [D, NE] − [QE, E] + [QE, NE] = [D − QE, E − NE] = 0.

From this the assertion (5.1) follows.
• Assuming that E is just in L2(Ω)N×N , but the sequences {N ε}ε and {Qε}ε are bounded in

L∞(Ω)N×N×N×N , we observe that

[
Dε, N εE

]
=

[t
N εDε, E

]
.



262 B. Gustafsson and J. Mossino / A criterion for H-convergence in elasticity

The div–curl lemma gives that tN εDε converges in the sense of distributions to tND. But this conver-
gence holds also true in weak-L2(Ω)N×N , by boundedness, so that, for φ ∈ D(Ω),

∫
Ω

[t
N εDε, E

]
φ dx →

∫
Ω

[t
ND, E

]
φ dx.

In the same way, one can pass to the limit in the term [QεE, Eε] = [E,t QεEε].
As for the last term in the right-hand side of (5.3),

[
QεE, N εE

]
=

(t
Qε)

klij

(t
N ε)

stijEklEst =
((t

Qε)
kli,

(t
N ε)

sti

)
EklEst.

By the div–curl lemma and by boundedness, ((tQε)kli, (tN ε)sti) ⇀ ((tQ)kli, (tN )sti) in weak*-L∞(Ω),
so that∫

Ω

[
QεE, N εE

]
φ dx →

∫
Ω

[QE, NE]φ dx.

The assertion (5.1) follows again.
• Finally, if E is in Lp(Ω)N×N for some p > 2 and if the sequences {N ε}ε and {Qε}ε are bounded in

L
2p

p−2 (Ω)N×N×N×N , then tN εDε and tQεEε are bounded in Lp′(Ω)N×N×N×N , with p′ the conjugate
of p. They converge weakly in this space to tND and tQE, respectively. It follows that one can pass to
the limit in the second and third terms of the right member of (5.3). Moreover, since EklEst is in L

p
2 (Ω)

and ((tQε)kli, (tN ε)sti) is bounded in L
p

p−2 (Ω), one can pass to the limit also in the last term in the right
member of (5.3). We get the same corrector result.

We notice that, in the last case above, the integrals over the entire domain Ω of the last three terms in
the right-hand side of (5.3) tend to the limit, because of the weak convergences that we have mentioned.
The same is also true for the first term [Dε, Eε] = [AεEε

s , Eε
s ], which is bounded in L

p
2 (Ω), as soon as

{Eε}ε is bounded in Lp(Ω)N×N for 2 < p < ∞. This implies the stronger corrector result (5.2). �

6. The example of elastic laminates

6.1. H-convergence for elastic laminates: known result

The criterion for H-convergence in Theorem 1 is particularly useful when it is possible to find the
tensors M ε and P ε a priori (without solving any Dirichlet problem, e.g.). In such cases one often gets
additional properties of M ε and P ε, e.g., L∞-bounds, so that they converge in weak*-L∞. The main
example for which this occurs is the case of stratified media, i.e., when Aε depends on only one of the
coordinates, say xN :

Aε = Aε(xN ).

Then, following [10], we can write

Aε =
(

Aε
iβkδ Aε

iβkN

Aε
iNkδ Aε

iNkN

)
,
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where Latin indices run over {1, . . . , N} while Greek indices only run over {1, . . . , N − 1}. It fol-
lows from (2.2) that the matrix (Aε

iNkN ) is invertible. Denoting by (Rε
iNkN ) its inverse, we have

Aε = (M ε)−1P ε with

M ε =
(

δikδβδ −Aε
iβsNRε

sNkN

0 Rε
iNkN

)
,

P ε =
(

Aε
iβkδ − Aε

iβsNRε
sNtNAε

tNkδ 0
Rε

iNsNAε
sNkδ δik

)
.

It is immediate that curl M ε = 0, div P ε = 0, and it is proved in [10] that Aε H−→ A if and only if M ε ⇀
M , P ε ⇀ P weakly∗ in L∞(Ω)N×N×N×N , with M and P defined from A by the above expressions
(without ε). (These conditions of H-convergence for elastic laminates occurred in [12] for the first
time, before compensated compactness became a standard technique, while the proof by compensated
compactness is given in [10].)

Natural generalizations of the above example can be constructed as in the diffusion case in [7,4],
where M ε and P ε are supposed to have specific dependence upon coordinates, and in [3], where the
general condition, the diffusion analogue of (4.5), (4.6), is introduced. Note that in the diffusion case
these generalizations also contain the “isotropic factorizable” case of A. Marino and S. Spagnolo [11].

6.2. Recovery of the formula for laminates from the general theory of Theorem 1

In this subsection, we indicate another way of obtaining the H-limit A of Aε = Aε(xN ), more in the
spirit of Theorem 1.

So we assume that Aε H−→ A, Aε = Aε(xN ). For fixed i, j, we set uijk = δikxj and we look for
uε

ij = (uε
ijk) of the form

uε
ijk(x) = δikxj + vε

ijk(xN )

solving

div
(t

Aε∇uε
ij

)
= div

(t
A∇uij

)
,

that is

d
dxN

(
Aε

sNkN

dvε
ijs

dxN

)
=

d
dxN

(
AijkN − Aε

ijkN

)
.

As the matrix (Aε
sNkN ) is invertible (see [10]), it is possible to solve

Aε
sNkN

dvε
ijs

dxN
= AijkN − Aε

ijkN ,

for
dvε

ijs

dxN
. This gives, by defining Rε

sNkN as the inverse matrix of Aε
sNkN ,

dvε
ijk

dxN
=

(
AijsN − Aε

ijsN

)
Rε

sNkN =
((

A − Aε)Rε)
ijkN



264 B. Gustafsson and J. Mossino / A criterion for H-convergence in elasticity

and then

∂uε
ijk

∂xl
= δikδjl + δNl

(
A − Aε)

ijsNRε
sNkN .

Now we define a tensor M
ε

by

M
ε
ijkl = ∇klu

ε
ij =

∂uε
ijk

∂xl
.

We have

M
ε =

(
M

ε
iβkδ M

ε
iβkN

M
ε
iNkδ M

ε
iNkN

)
=

(
δikδβδ (A − Aε)iβsNRε

sNkN

0 AiNsNRε
sNkN

)
.

We also define the tensor P
ε

by

P
ε = M

ε
Aε =

(
P

ε
iβkδ P

ε
iβkN

P
ε
iNkδ P

ε
iNkN

)
=

(
Aε

iβkδ + (A − Aε)iβsNRε
sNtNAε

tNkδ AiβkN

AiNsNRε
sNtNAε

tNkδ AiNkN

)
.

Since the coefficients of Aε and Rε are bounded in L∞(Ω) independently of ε (see [10] for Rε), the
same is true for the coefficients of M

ε
and P

ε
, so that, up to a subsequence of ε,

M
ε

⇀ M and P
ε

⇀ P weakly∗ in L∞(Ω)N×N×N×N , (6.1)

with

M =
(

δikδβδ M iβkN

0 M iNkN

)
, P =

(
P iβkδ AiβkN

P iNkδ AiNkN

)
, (6.2)

for some M iβkN , M iNkN , P iβkδ and P iNkδ in L∞(Ω).
We claim that, by using compensated compactness, it is possible to pass to the limit in P

ε = M
ε
Aε

and get P = MA. Indeed, defining P
ε
ij and M

ε
ij by P

ε
ijkl = (P

ε
ij)kl and M

ε
ijkl = (M

ε
ij)kl, the equality

P
ε = M

ε
Aε reads

P
ε
ij = tAε∇uε

ij = tAεM
ε
ij ,

and

div P
ε
ij = div

(t
A∇uij

)
is relatively compact in H−1(Ω)N , while curl M

ε
ij = curl∇uε

ij = 0. As Aε H-converges to A, then
tAε H-converges to tA and it follows from the definition of H-convergence that P ij = tAM ij , with
(M ij)kl = M ijkl, (P ij)kl = P ijkl: we have proved that P = MA.
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With (6.2), this gives the following identities

P iβkδ = Aiβkδ + M iβsNAsNkδ, (6.3)

AiβkN = AiβkN + M iβsNAsNkN , (6.4)

P iNkδ = M iNsNAsNkδ, (6.5)

AiNkN = M iNsNAsNkN . (6.6)

As A is coercive, then (AiNkN ) is invertible and, denoting its inverse by (RiNkN ), we derive by succes-
sive use of (6.6), (6.5), (6.4) and (6.3) that P = A and that M is the identity tensor. Then (6.1) says
that

(
A − Aε)

iβsNRε
sNkN ⇀ 0, (6.7)

AiNsNRε
sNkN ⇀ δik, (6.8)

Aε
iβkδ +

(
A − Aε)

iβsNRε
sNtNAε

tNkδ ⇀ Aiβkδ, (6.9)

AiNsNRε
sNtNAε

tNkδ ⇀ AiNkδ, (6.10)

from which, by using successively (6.8), (6.7), (6.10) and (6.9), we recover the classical formulae of
H-convergence:

Rε
iNkN ⇀ RiNkN ,

Aε
iβsNRε

sNkN ⇀ AiβsNRsNkN ,

Rε
iNkNAε

kNlδ ⇀ RiNkNAkNlδ,

Aε
iβkδ − Aε

iβsNRε
sNtNAε

tNkδ ⇀ Aiβkδ − AiβsNRsNtNAtNkδ.

Remark 5. With M ε, P ε, M , P as in Section 6.1, we have

M−1 =
(

δikδβδ AiβkN

0 AiNkN

)

M
ε = M−1M ε, P

ε = M−1P ε.

7. The example of periodic elastic materials

7.1. The case Aε = A(x
ε )

In this section, we use our method to construct the H-limit A∗ of a tensor Aε(x) = A(x
ε ), with A

defined in R
N , periodic of period Y = ]0, 1[N . More precisely, we shall prove that Aε H-converges to

the constant tensor A∗ defined by

A∗ =
∫

Y
(I + ∇w)A dy, (7.1)
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where I = (Iijkl) = (δikδjl) and

(∇w)ijkl = ∇klwij =
∂wijk

∂yl
,

wij = (wijk) being a solution of

{
div

(t
A∇wij

)
= −div

(t
Aeij

)
in Y ,

wij Y -periodic,
(7.2)

with eij = (eijkl) = δikδjl.
We first notice that the vector function uε

ij = (uε
ijk) defined by

uε
ijk(x) = δikxj + εwijk

(
x

ε

)

solves

div
(t

Aε∇uε
ij

)
=

1
ε

∂

∂yl

(
Aijkl + Astkl

∂wijs

∂yt

)(
x

ε

)
= 0.

Now, setting

M ε
ijkl =

∂uε
ijk

∂xl
= δikδjl +

∂wijk

∂yl

(
x

ε

)
,

P ε
ijkl =

(
Aijkl + Astkl

∂wijs

∂yt

)(
x

ε

)
,

we have P ε = M εAε and it is clear that

M ε
ijkl ⇀ Mijkl = δikδjl +

∫
Y

∂wijk

∂yl
dy = δikδjl = Iijkl weakly in L2(Ω),

P ε
ijkl ⇀ Pijkl =

∫
Y

(
Aijkl + Astkl

∂wijs

∂yt

)
dy = A∗

ijkl weakly in L2(Ω).

Moreover

(
div P ε)

ijk =
∂P ε

ijkl

∂xl
= 0

and M ε
ijkl = ∇klu

ε
ij , so that (curl M ε)ijklm = 0. As P = MA∗, it follows from Theorem 1 that A∗ is

the H-limit of Aε.
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7.2. The case Aε = A(x, x
ε )

In this subsection, we prove, under some regularity conditions, that formula (7.1) remains true in
the case that A depends on both slow and rapid variables: Aε(x) = A(x, x

ε ), with A = A(x, y) a
measurable function, defined almost everywhere in Ω × R

N and periodic of period Y in the second
variable, symmetric, coercive and bounded so that Aε ∈ M (α, β, Ω) (see Subsection 2.2) for fixed
0 < α � β < ∞. This result is known (see, e.g., [2] or [1]), but our proof is new. With wij(x, ·) (as a
function of the second variable) denoting a solution of

{
divy

(t
A∇ywij

)
= −divy

(t
Aeij

)
in Y ,

wij Y -periodic
(7.3)

we shall prove that Aε H-converges to the tensor A∗ = A∗(x) defined by

A∗(x) =
∫

Y

(
I + ∇yw(x, y)

)
A(x, y) dy. (7.4)

Let zij(x, ·) solve

{
divy

(t
A∇yzij

)
= divx(t

(
A∗ − A)eij − tA∇ywij

)
− divy

(t
A∇xwij

)
in Y ,

zij Y -periodic.
(7.5)

Under some additional regularity assumptions on A one can show that, as ε → 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Aijkl

(
·, ·

ε

)
⇀

∫
Y

Aijkl(·, y) dy weakly in L2(Ω),

∂wijk

∂yl

(
·, ·

ε

)
⇀

∫
Y

∂wijk

∂yl
(·, y) dy weakly in L2(Ω),

Astkl

(
·, ·

ε

)
∂wijk

∂yl

(
·, ·

ε

)
⇀

∫
Y

Astkl(·, y)
∂wijk

∂yl
(·, y) dy weakly in L2(Ω),

(7.6)

∂wijk

∂xl

(
·, ·

ε

)
,
∂zijk

∂xl

(
·, ·

ε

)
,
∂zijk

∂yl

(
·, ·

ε

)
are bounded in L2(Ω), (7.7)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

divx
(t

A∇xwij
)(

·, ·
ε

)
, divx

(t
A∇xzij

)(
·, ·

ε

)
, divx

(t
A∇yzij

)(
·, ·

ε

)

and divy
(t

A∇xzij
)(

·, ·
ε

)
are bounded in L2(Ω).

(7.8)

Assuming (7.6)–(7.8), set uε
ij(x) = vε

ij(x, x
ε ) with

vε
ijk(x, y) = δikxj + εwijk(x, y) + ε2zijk(x, y).

Then

∇xvε
ij = eij + ε∇xwij + ε2∇xzij ,
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∇yv
ε
ij = ε∇ywij + ε2∇yzij ,

div
(t

Aε∇uε
ij

)
= divx

(t
A∇xvε

ij

)
+

1
ε

divx
(t

A∇yv
ε
ij

)
+

1
ε

divy
(t

A∇xvε
ij

)
+

1
ε2

divy
(t

A∇yv
ε
ij

)
,

with the convention that the left-hand side is taken at the point x and the right-hand side is taken at the
point (x, x

ε ). Hence, by using (7.3), (7.5) and the same convention, it is easy to check that

div
(t

Aε∇uε
ij

)
= divx

(t
A∗eij

)
+ ε divx

(t
A∇xwij + tA∇yzij

)
+ ε divy

(t
A∇xzij

)
+ ε2 divx

(t
A∇xzij

)
. (7.9)

We define tensors M ε and P ε by

M ε
ijkl(x) =

∂uε
ijk

∂xl
(x)

=
∂vε

ijk

∂xl

(
x,

x

ε

)
+

1
ε

∂vε
ijk

∂yl

(
x,

x

ε

)

= δikδjl +
∂wijk

∂yl

(
x,

x

ε

)
+ ε

∂wijk

∂xl

(
x,

x

ε

)
+ ε

∂zijk

∂yl

(
x,

x

ε

)
+ ε2 ∂zijk

∂xl

(
x,

x

ε

)
,

P ε
ijkl(x) = M ε

ijst(x)Aε
stkl(x)

= Aijkl

(
x,

x

ε

)
+ Astkl

(
x,

x

ε

)(
∂wijs

∂yt

)(
x,

x

ε

)
+ ε

∂wijs

∂xt

(
x,

x

ε

)
+ ε

∂zijs

∂yt

(
x,

x

ε

)

+ ε2 ∂zijs

∂xt

(
x,

x

ε

))
.

It follows from (7.6) and (7.7) that

M ε
ijkl ⇀ Mijkl = δikδjl +

∫
Y

∂wijk

∂yl
dy = δikδjl = Iijkl weakly in L2(Ω),

P ε
ijkl ⇀ Pijkl =

∫
Y

(
Aijkl + Astkl

∂wijs

∂yt

)
dy = A∗

ijkl weakly in L2(Ω).

Moreover, by using (7.9),

(
div P ε)

ijk =
∂P ε

ijkl

∂xl
= divx

(t
A∗eij

)
+ ε divx

(t
A∇xwij + tA∇yzij

)
+ ε divy

(t
A∇xzij

)
+ ε2 divx

(t
A∇xzij

)
,

taken again at the point (x, x
ε ). By virtue of (7.8), (div P ε)ijk is relatively compact in H−1(Ω). Moreover

M ε
ijkl = ∇klu

ε
ij , so that (curl M ε)ijklm = 0. As P = MA∗ = A∗, it follows from Theorem 1 that Aε

H-converges to A∗.
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