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Abstract. We consider energy functionals, or Dirichlet forms,
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for a class G of bounded domains 2 C R", with € > 0 a fine structure parameter and with symmetric conductivity matrices
A® = (af;) € LE®N N which are functions only of the first coordinate ; and which are locally uniformly elliptic for each
fixed ¢ > 0. We show that if the functions (of z1) 6§, = 1/af), bf; = af;/af, U 2 2), bj; = aj; — ajai;/af; (G, 2 2)
converge weakly* as measures towards corresponding limit measures b;; as ¢ — 0, if the (1, 1)-coefficient m§; of (AS)™!
is bounded in L,‘OC(R) and if none of its weak* cluster measures has atoms in common with by, ¢ > 2, then the family
J¢ = {J5)neg I'-converges in a local sense towards a naturally defined limit family J = {Jn}neg as € — 0. An alternative
way of formulating the conclusion is to say that the energy densities (A°Vu, Vu) I'-converge in a distributional sense towards
the corresponding limit density.
Writing J§ in terms of Bf = (bj;) it becomes

N 2 N
e _ du . Ou __1__ du du ,.
Jo(u) = /J;(maml + E bl] da; bfl dz + E . da: 9z, bz] dz,
j=2 ij=2

and the definition of Jp, and the limit density (AVu, Vu) is obtained by properly replacing the b3; € Li:(R) by the limit
measures b;; and making sense to everything for v in a certain linear subspace of LE(RM).

1. Introduction

This paper is a natural follow-up of a sequence of papers [7-9] devoted to investigations of I'-
convergence, or H-convergence, of stratified media with singular and/or degenerate material charac-
teristica.

Basically we are interested in linear elliptic problems of the type
—div(A°Vuf) = f in 2,

{ + boundary conditions (1.1)
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(2 ¢ RY bounded, N > 2), where the “conductivity” matrices 4A° = A°(z) = (ai;(x)) are assumed
symmetric, positive definite and to depend on only one of the coordinates (“stratified medium”), say
Af = A%(x). Here € > 01s a small parameter indicating the length scale of the fine structure oscillations
of A%(x). However, no real coupling between ¢ and z is made, in particular no periodicity assumption
is imposed.

As € — 0 the matrices A® are assumed to converge to a limit matrix A in a sense which is supposed
to ensure convergence of the solutions u® towards the solution u of a corresponding limit problem de-
termined by A. It is well-known from the work of F. Murat and L. Tartar (see, e.g., [12,14]), that the
appropriate quantities in this respect are the functions (of z1)

?1“ :
= —,
ayq
as
1y .
= (j>2),
aj
£ £
as a
e 1915 .o
bfj =05 — (i,7 2 2)
ary

and that these should converge weakly (or weakly*) in suitable spaces.

Our convergence assumptions indeed are that the {0f;} (¢,7 > 1) converge weakly* as measures
towards some limit measures b;;. In addition to this we have to require that the (1, 1)-coefficient of the
inverse matrix of A° is locally bounded in L' and that none of its weak* cluster measures has atoms in
common with b;; for i > 2. See Assumptions 1-4 in Section 2 for details.

As to problem (1.1) we shall only be interested in local or interior properties of solutions. Moreover,
it is well-known that the source term f plays no essential role for the convergence of the solutions
u. Therefore everything can be formulated as a question of convergence of the energy functionals, or
Dirichlet forms, associated with the matrices A€, namely

ou ou

N
Jow) = /Q (A*Vu, Vu) dz = Mzzjl /Q ai; 3% 53—:; dz.

For these the relevant convergence concept, in our context, is I'-convergence (see [1,4,10,11]). In the
general case, when af,, . .., ajy do not all vanish, technical difficulties prevent us from working in one
fixed domain (2. Instead, we work simultaneously in a whole class G of domains and with a local version
of I'-convergence formulated for the entire family J* = {J5}neg. See Conditions I'1 and I"2 in Section
2 for the exact definition. Our main result then states that the family J* = {J5} oeg ['-converges in this
local sense towards a certain limit family J = {Jn}neg Which has a natural, but somewhat compliéated,
definition in terms of the measures b;;.

In a preliminary form, our results were stated and proofs indicated in [7]. In that paper we actually
only treated the case of diagonal matrices A°. On the other hand we allowed nonlinear versions of the
problem, with the energy forms of the type

P
dx
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ailfi

N
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for some 1 < p < oo and we worked directly with problems of the form (1.1).

After [7] was written the nonlinear diagonal case has been carefully treated in [2]. We therefore feel no
need to pursue this matter any further here. Instead we concentrate on the linear full matrix case, but then
also take advantage of some technical developments made in [2]. Specifically we find the idea of working
in a BV -setting and using a convergence lemma such as Lemma 3.1 in [2] useful. The corresponding
Iemma which is needed for our purposes is formulated as Lemma 6.2 in Appendix (Section 6).

The organization of the paper is as follows. In Section 2 we give the necessary definitions and assump-
tions in precise forms and also state the main result of I'-convergence. Section 3 contains an approxima-
tion lemma and some estimates needed for the main part of the proof.

The definition of I'-convergence consists of two limit assertions. We call these Condition I'1 and
Condition I"2. We thus have to prove that Conditions I'1 and I'2 are satisfied in our case, and this is
done in Sections 4 and 5 respectively.

Some of the main steps in the proofs in Sections 3-5 consist of applying a couple of general results
related to weak™® convergence of measures (or BV -functions). For convenience we have placed these
general results in an Appendix (Section 6). They are probably not very new but we have not found them
in the literature, except for variants of them occuring in the recent papers [7] (Lemma 4 there) and [2]
(Lemma 3.1).

Some notation used

For vectors z € RN we write z = (21, 2, ..., xn) = (21, &) with ' = (zo,...,zn) € RV We
never use primes for derivatives in this paper.

If 1 is a positive (=nonnegative) measure on an open (or just measurable) set {2 C RN, LP(u; 12)
denotes the usual Banach space of equivalence classes of functions with norm

Nullrguo = </Q fuf? du)l/p

for 1 < p < oo, and the usual supremum norm for p = co. When p = 2 the definition of LP(y; £2) can in
a natural way be extended to the case that p is a positive semi-definite matrix-valued measure and with
the elements of the space being equivalence classes of vector-valued functions; see Appendix.

LE (1; £2) denotes the Frechet space determined by the seminorms |[u| L»(y.;k) for all compact K C 2.
Thus ©® — win L} (1; §2) means that [|u® — u||Le(u;x) — O for each compact K C {2 (¢ — 0).

In case p is Lebesgue measure it is usually deleted from notation, and also {2 may be deleted if it is
clear from the context.

WLP(£2) etc. denote the usual Sobolev spaces.

M (£2) denotes the set of signed Radon measures on {2 C RY, i.e., signed regular Borel measures on
£2 which are finite on compact sets. Weak* convergence pu° — p in M(§2) means that [ @ du® — [ du
for each o € Cy(§2), where C({2) denotes the set of continuous functions in {2 with compact support.
Also, C§°(§2) denotes the set of smooth functions with compact support in §2.

For measures in integrals we use two different notations: sometimes we simply write (e.g.) [ ¢ du,
or [ ¢(z)du(z) while many times it fits better to write [ ¢(x)u(dz). The latter notation is particularly
useful when (as is often the case) working with L°°-functions b® (say) converging towards a measure
b. Then we usually write b°(x) dz, or even b*(dx), for b° considered as a measure (namely the one with
density function b° with respect to Lebesgue measure) and it is then more natural to write, for the limit
measure, b(dz) than to write db(z).
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If b € M(R), R representing the first coordinate axis in RY, we often identify b with its product with
Lebesgue measure in the remaining variables, e.g., we have b(dz) = b(dz1) dz’.

2. Assumptions, definitions and statement of the main result

We shall discuss convergence of conductivity matrices A®(z) = (afj(:ﬁ)){};:l towards a limit matrix
Alx) = (aij(az))%zl in terms of I"-convergence of corresponding energy functionals

N
2 0 .

ot 0x; Ox;

JQ(u)z/Q(AVu, Vu)dzx.

A general assumption will be that the A, A represent material characteristica, e.g., electric con-
ductivities, for stratified or layered media. This means mathematically that they are constant on planes
perpendicular to a certain given direction, which we take to be the e |-direction. Thus A®, A are taken to
depend only on the coordinate zj.

A second main idea is that we allow the limit material, represented by A, to be as general as possible,
e.g., to be singular or degenerate in the sense of having infinite or zero conductivities in certain directions.
Mathematically this will mean that a certain transformed matrix B = $(A), appearing when writing J,
in a different form, has measure-valued entries.

Working in this generality causes considerable technical difficulties, and we were not able to incorpo-
rate, e.g., boundary conditions in our treatment, or even to work in one fixed domain. Therefore we shall
in this paper work only in a local setting, having the data defined in all RY but discussing convergence
questions locally, on bounded domains {2 C R¥. Put in another way, what we are discussing is conver-
gence, in a distributional sense, of the energy densities (A*Vu, Vu). The general arena will be the space
L}, (R™).

Below we list our assumptions, Assumptions 14, in precise forms. We work in N > 2 dimensions
and with a suitable class G of bounded domains 2 C RY (see Definition 2.3). The parameter € > 0 is
restricted to take values only in a sequence of numbers tending to zero, €.g., {1 /nin=12...}.

For the matrices A€, € > 0, we assume first of all uniform ellipticity for fixed €, as follows.

Assumption 1. For each fixed e > 0,
£ € N
A° = A%(zy) = (a55(x1); 4 € Lim@®N

is symmetric and locally uniformly (in ;) elliptic. In other words, A® is symmetric and there exist
positive functions o and 3° on R with 1 Jof, B° € Lig(R) such that

o ()€ < (A%(@1)E,€) < BFanlél @2.1)

forall ¢ € RY and 1 € R.
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The appropriate energy functionals, or Dirichlet forms, corresponding to A® are defined, for any
bounded domain 2 ¢ RY, by

0 a
sz(u):/ (A%(z1)Vu, Vu) dz = Z /a”(xl) e =Hvu[l2Lz(As;9) (2.2)

1,7=1

if u € WWA(0), J5(u) = +oo if u € L2(f2) \ WI2(£2). Then J§ is a convex functional L?(2) —
R U {400}. Composing J§ with the restriction map L% (RY) — L?(£2) it can be viewed also as a map

Jg: L2 (RY) — RU {+o00}.

We shall study I'-convergence of the family J® = {J;}neg towards a corresponding limit family
J = {Jn}neg. The space

WA RN = {u € LE (RY): ulp € WHA(0) forall 2 € G}

can be interpreted as the space of potentials of locally finite energy for A%, € > 0. In fact, I/V1 (RN )=
V¢ for all € > 0 where, generally speaking,

= {ue L} (RY): J5(u) < +ooforall 2 € G}.

We shall introduce also for the limit case a subspace V' C L2 (R™) of potentials of locally finite energy.
It is related to J by

V = {ue L (RY): Jo(u) < +ooforall 2 € G}.

The exact definitions of J and V are complicated and will occupy most of the remaining parts of
this section. Assuming for a moment that J and V have already been defined we may formulate the
appropriate notion of I'-convergence J* — J as € — 0 as follows (cf. [1,4,10,11]).

Condition I'l. Whenever v, u € L2 (R") and v — win L% (R") we have, for each 2 € G,

lim J5(u®) 2 Jo(u). 2.3)

e—0

Condition I"2. For every u € V there exist u® € V¢ such that u* — wu in L2 (R") and such that, for
each 2 € G,

lim J5(u) < Jo(u). (2.4)

To emphasize the distributional character of this I'-convergence we also formulate it in terms of test
functions instead of integration over domains. Define, for nonnegative ¢ € CgO(RN ),

Jo(u) = / N (A*Vu, Vu)pde.
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With a corresponding definition of the limit functional J, we get the following two conditions for distri-
butional ['-convergence.

Condition I'l’. Whenever v%,u € L (RY) and v — u in L2 (RY) we have, for each nonnegative
p € CRM),

lim JE(u®) 2 Jyp(u). (2.5)

e—0

Condition I"2’. For every u € V there exist u® € V¢ such that u* — u in L2 (RN and such that, for
each nonnegative ¢ € C§° (RMY,

lim J5(u) < Jp(w)- (2.6)

The limit functionals J, and J,, can in general not be defined directly in terms of a matrix A(z;) cor-
responding to the A°(z1), because this A may be too singular or degenerate. In the electric conductivity
interpretations the conductivity matrix A relates the electric displacement field D to the electric field
E* by

Df = A°EF, @7
and EF is related to the electric potential u® by
Ef = Vu®.

As we allow A° to be rapidly oscillating as a function of ; some of the components of £° and D may
also be rapidly oscillating. But there are some components which are better behaved than the others.
These are D5, the first component of the displacement field (good behaviour because of the continuity
equation) and %' = (E5,..., Ef), the tangential (to the sheets z; = const) part of the electric field
(good behaviour because they are gradients of US|, =const)-

One main idea lying behind much of the work on stratified media (see [12,14], e.g.) is to express the
“bad” (rapidly varying) quantities in terms of the “good” (slowly varying) ones. Thus we rewrite (2.7)
as, suppressing € > 0, and also the dependence on z, for a moment,

Ey=byDy— ) by,

iz2
D; =by Dy + ZbijEj (>2),
jz2
where
by = —,
ayy
17
byj =bj1 = for j = 2,
aj
a;1a .
bij = agj — Uy fori,j =2
ayy
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Note that aj; = (Aey, e;) > 0 by virtue of the ellipticity of A (see (2.1)).

Setting B = (bij)f,\'j:l the above formulas define a transformation @ taking any symmetric matrix A
with ay| # 0 to a symmetric matrix B = ®(A) with by # 0. This transformation is investigated in more
detail in [9, §2]. In particular, we recall the following [9, Lemma 2.5]. Let M = (m;;) denote the inverse
matrix of A and X\ > 0 the smallest eigenvalue of A (i.e., the largest constant X in the ellipticity estimate
(AL, €) = MNP (€ € RY)). Then

0<by <myu < % (2.8)

bi;1* < muby; (G = 2), (2.9)

20bij| < by + by (4,7 = 2). (2.10)
We also note the identities, when D = AFE,

S i EiEj = (AE, E) = (D, E) = bnDi + Y byEiE; = by D} +(B'E', E'), 2.11)

1,521 i.j22
where we have set B’ = (b;;)i j»2, E' = (E;)i>>. As a further notation, to be used later on, we set
b = (b1j)>2-

It is known that the matrix B’ is elliptic with the same ellipticity constant X as A (see [9, Lemma 2.7]).

To continue our list of assumptions, let B(z;) = ®(A°(z1)). Then our second assumption on A® is
that the coefficients bz?j(:zcl) of B¢(x) converge weakly* as measures towards some measures b;; € M(R)
ase — O

Assumption 2. There exists B € M(R)V*¥ such that
Bf — B weakly* in M(R)V*V (2.12)
ase — 0.

By definition, the weak* convergence (2.12) means that [z l)bfj(xl) dz; — [@(x)bij(dz;) for every
p € Co(Ryand every 1 < 7,7 < N.

Assumption 2 implies in particular that for each bounded interval I there exists a constant C'y < oo
such that

/Ilbfjl dt < Cp (2.13)

forall 1 < 4,7 < N and all € > 0. Our third assumption says that such an estimate holds also for the
(1, 1)-component m5; of M*® = (A® y~!, the inverse matrix of A€:

Assumption 3. For every bounded interval I there exists C'; < oo such that
/Inﬁl(t) dt < Oy (2.14)

foralle > 0.
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In the special case that a5, = -+ = afy = 0 we have m§, = b7, and then (2.14) is a consequence of
(2.12), but in general (2.14) is independent of (2.12) (see Example after Remark 3.3 in [9]).

By (2.14) the sequence of positive functions {mf;}e>0 has various weak* cluster points in M(R).
The final assumption is that atoms of these cluster points do not coincide with atoms of b;; fori = 2.
Precisely:

Assumption 4. Let p denote any weak* cluster point of {mfJ, }e> in M(R). Then, for ¢ > 2, y and by;
have no common atom (point mass), i.e.,

p({t})bs({t}) =0 (2.15)

for every t € R.

Spelling out (2.15) directly in terms of the sequences {mf;}, {bf;} it is found (cf. the proof of
Lemma 6.2, in Appendix) to be equivalent to the following statement.

Assumption 4'. For every bounded interval I and every 77 > O there exists 6 > 0 such that
p

/1 /I Notl<s M1 (B Bs) ds dt < 7 2.16)

for € > 0 small enough, and ¢ > 2.

Here X|s_tj<s = X|s—t|<s(s, t) denotes the characteristic function of the set {(s,t) € R%: |s —t| < §}.
The above finishes the list of assumptions. We immediately deduce from Assumptions 1-4 the follow-

ing.

Lemma 2.1.

(i) Let vy; denote any weak* cluster point in M) of {|b5 j|}5>0, j = 2. Then vy has no atom.
Equivalently, for every t € R and > O there exists 6 > 0 such that

t+4-6
/H 155;()| ds < @2.17)

for € > 0 small enough, and j > 2.
(ii) The statement in Assumption 4' holds with bf; replaced by |b5;| for any i, j 2 2.

Corollary 2.2.
(i) The entries byj, j > 2, of the limit matrix B have no atoms. Moreover, for every bounded interval
I C Rwe have
55D — by (D) (2.18)

ase = 0( =2 2).
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(i) For every bounded interval I C R we have
bi;(I) — biz(1) (2.19)
also when it = j = 1 ori,j > 2, provided by;(dI) = b;;(0I) = 0.

Proof of Lemma 2.1. (i) Keeping ¢ € R fixed we first notice that (2.17) holds for arbitrarily given > 0
when § > 0, & > 0O are small enough if and only if v(;({t}) = O for every weak* cluster point v j of
{165 j]}5>0. This is elementary to verify, using that v;;({t}) = lims_ fttj'é‘s dvy; and approximating the
characteristic function x(;—s, ¢+ by smooth functions. Thus, for (i) it remains to prove (2.17).

By (2.9) and the Cauchy-Schwarz inequality we have

e t+6 12/ rt4s .
/t_6 b5 (s)| ds < (/t_6 m“(s)ds> </t—<5 bjj(s)ds>

Here each factor in the right member is bounded from above by (2.13) and (2.14), and at least one of
them tends to zero as 6 — 0, € — 0 by Assumption 4. Thus the left member tends to zero as § — 0,
g — 0, showing that (2.17) holds.

Statement (ii) in the lemma is an immediate consequence of (2.10).

Part (i) of the corollary can either be seen as a direct consequence of statement (i) in the lemma, or else
be obtained by combining it with Lemma 6.2 in Appendix (choose f* = 1 there). For part (ii) one may
use (2.10) together with Lemma 6.2, applied with f© = 1 and ¢° a primitive function of bf;. Basically,
the corollary should be seen as a consequence of the general principle that weak™* convergence u® — p
of positive Radon measures implies convergence u®(S) — u(S) for every Borel set S with 4(95) = 0
([6, Theorem 1.9.1]). O

1/2

We introduce below two classes of domains. The first one, G, is the class for which the I'-convergence
Conditions I'1 and I"2 are stated, and the second, F, is a countable subclass which generates G and for
which the technical details of our proofs work well.

Definition 2.3.

(i) Let G denote the class of all bounded domains 2 C R such that 042 has Lebesgue measure zero
and, for all 1 < 7 < N, also b; measure zero.
(ii) Choose a countable dense set S C R satisfying
bii(S) =0 (2.20)
forall 1 < ¢ < N and let F be the class of all domains of the form
=L xIhx - xlIp,

where Iy, I, ..., Iy are bounded open intervals with endpoints in S.

We note the following.
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(i) Fcg.
(ii) F is countable.
(iii) F is a basis for the topology of R¥.
(iv) F is an exhaustion of RY in the sense that every compact set is contained in some member of F.

Since the first coordinate x| plays a distinguished role we shall usually write domains {2 in F in the
form

N=1Ix{, (2.21)

where, referring to the previous notation, I = I (for the x;-variable) and =L x--xIycRV-I
(for the 2’ = (z3, ..., zN)-variables).

For later purposes it is convenient to assume that .S is chosen together with a “filtration” consisting of
discrete subsets 5, C .S such that

SicSc---CS, U Sn=25. (2.22)

n=1

One may, e.g., think of S,, = {k27™: k € Z} in the case that S consists of those rational numbers which
have only powers of two in the denominator. The general case may be thought of as a perturbation of
this.

Returning now to the energy functionals we may use (2.11) to express J§ = J;(u®) in terms of the
slowly varying components of E° = Vu® and D® = A°E* as

o) = 1D5 s, + 1B iaqerap (2.23)

for us € WH2(£2), where DS, Ef € L?(£2) are given in terms of u° by

out

Df= =, 2.24
i ;1 i o (2.24)
du’®
B = (Ez's)z';z = <a£13i ) - (2.25)
iz

Here (2.24) can also be written as
ou® ou®
Dibf = — + — bi.. (2.26)
1= 34, ; oz 1j

The above is the clue for defining the limit functionals Jy,. Intuitively, looking at (2.23), they should
be

Jo(u) = HDIH%Z(bu;Q) + ”E/”%,Z(B’;Q) (2.27)
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provided there exist Dy € L2(by1; §2), E' € L*(B'; £2) related to u by

Dby = — + Z 5, - bij, (2.28)

d
E = (——9—) , ,V (2.29)
0T; / j>2

Jo(u) = 400 otherwise. The fields D and F’ should be uniquely determined by u when they exist.

In order to make such a definition of J(u) rigorous we have to make precise sense to (2.28), (2.29).
Since these are local statements we may then assume that {2 € F, so that {2 is of the form (2.21). By
multiplying with test functions and integrating by parts, using that 0b;;/0x; = 0 for j > 2, we replace,
as a first step, (2.28) by its weak formulation

Op Op
Dby (dx +/u————dm+ /u—b-dm =0
/990 b+ [ ug? j§>2j ¥ @)

or, more accurately,
(. D + [ w5 dz+2/(u<xl, @ )) | btde) =0 (230
L2(§2%)

for all p € C§o(£2).
Here the first two terms make unquestionable sense when u € L2(12), Dy € L*(byy; £2). For the last
term to make sense it is necessary that the function

0
f7($1): (u(xla')sa—?(:vl")) 5 (231)
J?] L2(£2))

which apriori is just an L2(I)-function, is integrable with respect to the total variation measure |by;|.
Therefore, v must be in some more restricted space than L?(£2). With by, a measure and D square-
integrable, in particular integrable, with respect to by the term Dby in (2.28) will be at worst a (signed)
measure. Therefore, by (2.28) also 0u/dx; may be expected to be a measure, i.e., u as a function of z;
should be of bounded variation.

By definition, a function f € L'(I) is of bounded variation, f € BV (]), if an estimate

d
‘/f(xl) ﬁ(xl)drcx < Clloll e (2.32)
I g

holds for all p € C§(I). The total variation T'V(f;I) of f on I can then be defined as the smallest
possible constant C' in (2.32).

An equivalent way of expressing that a function f € L(I) is of bounded variation is saying that,
after having extended f by zero outside I, its distributional derivative 1 on R is a signed Radon measure
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(v € M(R)). Then suppu C I and f agrees almost everywhere with the cumulative distribution function
[13,5] of u, i.e., with

F@y) = p((=o00, z11).

This function f is a canonical representative of f in the sense that it is the unique function which agrees
with f almost everywhere and is continuous from the right ( f (zy) = limp\ o f(z1 + h)).

As a convention, whenever a pointwise definition of a function f € BV(]) is required it will be
understood that the right continuous version shall be used. See Appendix (Section 6) for a few more
details concerning functions of bounded variation.

For a function v € L*(2), 2 = I x {2’ € F, a suitable way of expressing that it is of bounded
variation with respect to x| is to say that it satisfies an estimate

0
l/ u——gdaz <
o Oz |

for some constant C and all ¢ € C§°({2). Here

C||80||L°°(1;L2(Q')) (2.33)

12
2
el Loo(r;L2¢2y) = SUp (/ lo(z1, )] dw') .
xel 034

We shall denote the space of functions of bounded variation in this sense by BV (I; L>(£2')) and we equip
it with its natural seminorm. Thus

BV (I; LX($2)) = {u € L*({2): an estimate (2.33) holds for all ¢ € C§°(52)},
with seminorm
|lu||pv = the smallest possible C'in (2.33).

This space BV (I; L?(£2")) is actually identical with the space of those functions I — L?(§2) which,
after possible modification on a nullsubset of I, have finite total variation measured in terms of the norm
of L*(£2). See [3], Appendice, in particular Proposition A.5. However, we shall not need much of the
theory of L?(§2')-valued functions of bounded variation, only the following simple lemma, which in
particular shows that functions in BV (I; L*(§2')) are good enough for (2.30) to make sense.

Lemma 2.4. Let w € BV(I; L>(12)).
(i) For every ¢ € L*(§2') the function
f@y) = (W@, 0,%) 2o (2.34)

is of bounded variation on I with

TV D < |lullav 19l 2y (2.35)
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| F@n] < (17 llull 2y + llull Bv) 191l 2y

for zy € I and f denoting the right continuous version of f.
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(2.36)

(i) For every ¢ € C§°(§2) the function f(z1) = (u(zy, ), Y(x1, )2 is of bounded variation

on 1.

(iii) Foreveryt € I, u has a limit-from-the-right trace Tyu = u]$l: .

(ﬂua w)LZ(.Q') = fll]{% (u(t + h/’ °)a d)) L2(2)
for1p € L2(§2"). Moreover,

I Tvull oy < 1172l g2y + Nl sy

Proof. (i) For p € C§°(D), ¢ € C§(§2") we have, by definition of the space BV,

d /
l/ PED o yutw) da| <l lelloo 11200
o ar

d

This inequality extends by continuity to all ¢ € L2(§2)). Thus, with f as in (2.34),

d
/ "j(m‘)f(mdml
I A

< ullsv llelleo 191l L2

from which we conclude that f € BV (I) with
TV(f; D < llullsy 19l 2
For any z;,1 € I we have
|f@@) = &) STV D.
Integrating with respect to ¢ gives
|F@Ol < fllpgy + TV D.
Since
N llon < el prarean ¥l gy < mI/ZHUHLZ(Q)W”U(Q/)

the last estimate in (i) follows.
(ii) For ¢ € C§°(§2) and any ¢ € Cg°(I) we have, by (2.33),

de(zy) o d(z)
/ d.—mfcmdxl]—‘ /Q @) da

€ L*(12"), defined by the identity

(2.37)
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0h(2)

0
=l /Q S (e ua) da — /Q o) u(m)dx‘
o)
< Nullav ¥l peo 2y + Nlelloo Py < Cllelloo
1 LI(Q)

(C depending on v and u). Thus f € BV(J). ;

(iii) For fixed ¥ € L2(£2") the limit on the right-hand side of (2.37) exists since the dependence on
~ h is of bounded variation, by (i). Clearly this limit is a linear function of 1, and by (2.36) its modulus
is bounded by ([lullsv + 1172 1ull 22 l1¥ll 2¢s2ry- Therefore the right-hand side of (2.37) defines a
bounded linear functional on L2(£2") with norm < ||u|| gy + |I|7"/2||u]| 12(2)- This completes the proof
of the lemma. O

Now, assuming v € BV (J; L2(§2")) the last term in (2.30) makes good sense, the BV (I)-functions
(2.31) occurring there being interpreted pointwise as their right continuous representatives. These are
certainly integrable with respect to the by, being bounded and defined everywhere.

Equation (2.29) is naturally regarded as an identity in L?(B’; £2), for weak derivatives of u. Using
again that 9b;;/dz; = 0 for j > 2 we may therefore express it as

agDi
> /Q (soiEj+u55;>bij<dx) =0

1,522
or, more accurately, as

0p;
) pprn + 2 (u(a:l,o,&f(m,'))mml)biﬂdxl) ~0, (2.38)

1,722 J

to hold for all ¢’ = (pi)i»2 € C(‘)’O(Q)N —!. By similar remarks as above this makes sense when v €
BV (I; L*(£2")).

Clearly D is uniquely determined as an element in L%(b;; §2) by Eq. (2.30) when u is given. Indeed,
Dj exists if and only if the functional A: C§°({2) — R (depending on w) given by

0 5}
A(so)=—/ﬂu—“ida:—§j/1 (u(xl,-),%<xl,->)L(mbl;,-(dxl)
7 2 !

0z j>2

is continuous in the L2(byy; {2)-norm. When this is the case A has a unique extension to L2(byy; $2),
D, € L2(byy; £2) is its Riesz representative and || D1 || 2,2 equals the norm of the functional, namely
WAl 2,00 = sup{A(p): @ € C5°(82), ol 2oy .y < 1} In this way one could avoid mentioning Dy
and write its presence in J(u) as HAH%Z(b“; (2> OF even as

2

— — by R
al'l 2 aiEJ J L2(by ;)%
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Similar remarks apply to £’ it exists if and only if the functional A”: C$°(£2)N~! — R defined by

A/((p)_ Z /(u(ml, , (:L’l, )>L2 ,bi]'(datl)

1,522 (29

is continuous in the L?(B’; £2)-norm. When this is the case E’ is defined to be the Riesz representative of
A in L3(B'; £2) and is uniquely determined as an element of L*(B’; £2). Moreover, || E'|| ;2(g:.) equals
the norm of the functional, namely || A'|| 25,0 = sup{A'(¢'): ¢’ € CeN-L, W'l 2y < 1)
Without mentioning D and E’ the expression (2.27) for J(u) can thus be written

Z axj

2

+ 1V Ul T2 g1y
Lz(bn;ﬂ)*

Jo(u) = '

To sum up, we are now able to define Vy; and J for domains {2 € F, as follows.

Vi = {u € BV (I; L*(§?)): there exist D| € L*(by; §2) and
E' € L¥(B'; 02) satisfying (2.30) and (2.38), respectively }.

If u € Vo, then D; and E’ are uniquely determined by v and we define

Foru € L*(§2)\ Vi we simply set Jo(u) = +o0. Foru € LE (RM), u € Vy naturally means u|p € Vi,
and Jg(u) means Jo(u|n).

Next we want to extend the above definitions to arbitrary domains £2 C R¥ . The particular form (2.21)
of domains in F was useful essentially only to express the relationship between u, Dy, E as in (2.30),
(2.38). It is easy to verify that if u € Vi, N Viy,, with {2y, {2, € F and £2; N §2, # 0, then the fields D,
and E' corresponding to u agree on {21 N f2,. Therefore, given u € LIOC(RN ) and any domain £2 ¢ RV
we can unambigously define V; and Jy; as follows. Write {2 as a union of elements in F, say {2 = | 25,
2; € F and j ranging over some index set. If u € Vi, for all j then we get uniquely defined fields D
and E' in £2. In case D; € L%(b1;$2), E' € L*(B'; 2) we say that u € V; and we define Jp(u) again
by (2.39). Otherwise, or if u ¢ V_Qj for some 7, we say that u ¢ Vi, and put Jo(u) = +oo

The space of potentials of locally finite energy is defined as

V= ﬂ Vo = {ue L} (RY): ug € Vg forall 2 € F}
2eF
={u € L} (RY): Jo(u) < +oo forall 2 € F}.
Here, F can be replaced by G, or any other exhaustion of RY with bounded domains.

When u € V we have global fields Dy € L2 .(b;; RY) and E' € L (B'; RY), which can be defined
directly by global versions of (2.30) and (2.38) to RY . These are

0y
(<p1,D1)Lz(b“;RN)+/RNu S dz +Z/ (U(Svl, , (111, )) bij(dz) =0 (2.40)
)

> L2(RN -1
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and

0y;
/ ] K3
((10 9E )L2(B/;RN) + i]§>2 /]R (U(ZIJI, ')’ -a-:i; (ml’ )) LZ(RN—I)bij(dxl) =0 (241)

respectively, to hold for all p = (1, ¢’) = (¥i)iz1 € Cgo(RN W . Setting
BVige = {u € LE (RY): u|g € BV(I; LA(12)) for all 2 € F}
we can therefore summarize the global versions of the definitions as follows.
Definition 2.5. The space of potentials of locally finite energy is
V = {u € BV there exist D € leoc(b“;RN) and

E' € L2, (B';RY) such that (2.40) and (2.41) hold}.

loc

For u € V and an arbitrary domain £2 C R¥ the energy Jp(u) is given by (2.39), i.e.,
Jo(u) = HDl”zLZ'(b“;Q) + ”E/“Z}Jz(gfﬂy

Finally, we define J,, for nonnegative functions ¢ € C’(‘)’O(RN ). Given such a ¢, setting {2 = {z €
RN: o(x) > 0} and assuming that u € V, for every w € F compactly contained in {2 we define

Jp(u) = sup Y _ c;Jo; (W), (2.42)
j

where the supremum is taken over all step functions 0 < 7, ¢jxp; < ¢ (finite sum) with £2; € F
compactly contained in 2. Here the supremum, and hence J,(u), may be equal to +co. In the case that
u ¢ V,, for some w as above we also set J,(u) = +co.

Now we can state our main result.

Theorem 2.6. Under Assumptions 1-4, J® I'-converges, as € — 0O, towards J in the sense that Condi-
tions I'l and I'2, as well as I'1’ and I'2', hold.

The direct proofs of Conditions I'1 and "2 will be given in Sections 4 and 5, respectively. The next
section is devoted to some auxiliary results needed for these proofs.

3. Some auxiliary results

In this section we prepare for the proofs of Conditions I'1 and I'2 by showing that every u € V can
be approximated by functions which are smooth in the z'-directions and by establishing a representation
formula for these latter (Lemma 3.1). Moreover, a useful estimate is given (Lemma 3.2).

Lemma 3.1. For every u € V there exist u" € V (n > 0) which are smooth in the z'-variables and
which satisfy (i)-(iii) below:
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(i) Asn — 0,

ul —u  in LE (RY),
D] — Dy in L (bi; RY),
E" - E' in L} (B;RY),

foc

with D] and E'" related to u" as in (2.40), (2.41).
(ii) Foreach fixed 2 € F,n>0andi,j 2 2,

du  9%un
7 — L™, .
Wy dmogy < W 3.1)
/ sup |D7(zy, )| b1i(dzy) < oo, (3.2)
I mlegl
oD} 2
/ sup Lzy,2)| bii(dz)) < o0, (3.3)
I zteqy al'l
2 ;7 , 2
s byi(d < oo. 34
J, 5 | aan (8] buntden < oo (3.4
(iii) The following representation formulas express u" in terms of D] and the trace of u" at z; = s,
forany s € R:
u(z) = u"(s, 2’ — b'(s,z1]) + D] (t,z' — b'(t, z11)b11(dt) (3.5)
(s,21]
Jorz 2 s, and
ul(z) = u(s,z’ + b (z1,s]) — / DY (t,z' + b'(z1,t]) b1 (dt) 3.6)
(z1,5}

forz; < s (x = (z,2') € RM).

Remark. The representation formulas in (iii) of the lemma will be used in the proof that Conditions "2
and I'2’ hold (Lemma 5.1). Note that for z € {2 the right members of (3.5), (3.6) may invoke values of
u" and D at points far outside {2 (in the ’-directions). Thus in order to have a representation formula
in §2 it is necessary to start with u € Vjp, for a larger domain {2y, or simply with v € V. This is the
explanation that we do not work in one fixed domain throughout the paper and that, in Condition I"2 for
example, we assume u € V even to deduce (2.4) for one particular domain.

Proof. To prove (i), take v € V and let Dy € L (b1;RN)) and E' € L2 _(B';RN) be the functions

loc loc
occurring in Definition 2.5. We shall approximate u by convolving with standard mollifiers in the «'-

directions.
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Take h = hy_1 € C§° (RN—1y a radially symmetric mollifier satisfying h > 0, Jryv—1 M dx' =1,
supp h C B(0,1) and set, forn > 0,

1 1y
R(Y) = —— h(——).
V=1 \n

Define 4" by
u(z1,2') = (w(zy, ) * h")(2') = /}RN_I w(zy, ' — y R (y) dy,

the convolution of u with A" with respect to the z’-variables, and similarly
D(z1,z") = (Di(z1, ) * A")(2") = /RN_l Di(zy, 2 — yHh"(y") dy/,

E,n(ml,ml) — (EI($1, ) % hn)(fL‘/) — /RN—I E/(l'l,x, _ y/)hn(yl) dyl

Then
u? —u  in L2 (RY), (3.7)
D] — Dy in Lig (b1 RY), (3.8)
E" - E' inL},(B;RY) (3.9)

as 7 — 0. This all follows by standard arguments. Considering, e.g., D and given a small number 6 > 0
we can first approximate D on any {2 € F by a function f € C(‘)’O(RN ) so that

1Dv = fllzzwm < 0
Since f is uniformly continuous the function f7 = f x h" (defined by f™(z;,z') = (f(z1, -) * K7)(z"))

tends to f uniformly in {2, hence also in the L?(by1; £2)-norm, as n — 0. As convolution with A" is a
meanvalue process it decreases L2-norms, so that

1D = 'l 2oy < 1DV = Fll o)

Combining these estimates gives (3.8), and (3.7), (3.9) are proved similarly.
Thus

[ — “”LZ(Q) — 0,

2 2 4
IDY = Dill 2, uop + 1B = E'llz2prny — 0

for any {2 € F, asn — 0. It remains to be checked that the second left member above equals Jo(u7 —u),
namely that D? and E'" are related to u” as in (2.40), (2.41).
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To see that this is the case, choose any test functions ; € C(‘)X’(RN ) and apply (2.40), (2.41) with the
test functions o; € C°(RY) given by

Pi() = (iGon, W@ = [ ey W =2y

Then the resulting equations, after having moved the convolutions from ¢ to u, D} and F’, simply say
that u, D and E'" are related the right way.
The statements in part (ii) of the lemma follow easily from the immediate estimate

+ @] < llglleo [,

' —nsu

|f (@1, 9" dy’
pp h

used with f = w or Dy, g = h" or one of its derivatives and taking into account the facts that, for any
e F,ue L®I; L3(2) (by Lemma 2.4) and Dy € L?(by1; £2).

To prove the representation formula (3.5) in part (iii) of the lemma, another kind of test functions will
be used in (2.40). It is most convenient then to start from the original v and D, because the convolution
with A7 will be built into the test functions we shall use.

Ideally, we would like to take, in place of ¢ in (2.40), the test function

ety = Xean®OR (Y — 2’ + ¢, z1])

because, as a formal computation shows, this would give (3.5). However, that ¢ is not in C’g"(RN ) so we
have to approximate it.
We shall take a doubly indexed approximation family @, € C5°(R™N) given by

Cmn(t, y/) = fm(t)R" (y, — '+ b{n(t, xl]),

where f,, are smooth versions of X(sz,] and b, smooth versions of . Letting ] € C§°(R) denote
one-dimensional mollifiers we may take

1
fm@) = (X(s,m.] * hl/m)(t - 1/m),
which approximate the characteristic function x(s ] from the right, and
1
o, = b« hi/™
ie.,
t/n

v, (dt) = dt /R k™t — T (d7).

We regard b;l as vector-valued measures and hence write, e.g., b;l (t, z1] for its value on the interval (¢, x;].
The dependence on ¢ and x; is of course smooth. We have

b, — b weakly* in M(R) (3.10)

as 1 — o0.
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Let b' = b, — b’ be the decomposition of ¥ into its positive and negative parts. Then we even have
1/
Y, xh/" =Y,
1/
b_ox b — b
weakly* in M(R). Since b has no atom (Corollary 2.2) none of ¥/, and b"_ has atoms, and it follows that
(e m/™) (b 211 = Bt 3]
for each of the signs and for all ¢ ([6, Theorem 1.9.1]). Thus b/, (¢, z1] tends to b/(t, z1] for all £. Since
] = |By % hy/™ — b x B <V kB wm)T
we also conclude that for every 7 € R, p > 0 there exists § > 0 such that
B~ 6,7+68) <p (3.11)

for n large enough.
The above @, are in CgO(RN ), and inserting them into (2.40) gives

0= / / omnDi1b11(d) dy’ + / / ""’”” dtdy’ + / / UV omn - (A8 dyf’
= [[ n @Iy = '+ ) Dicty ot dyf

mt /
+// ult,y f Oy Wy — z' + b, (L, z1]) dt dy’

/
+ // w(t, v frm V'R (y' —x + b (L, z1]) - (—ié%—xl_] dt dy’

+ / / ult, 4 V'R (5 — &' + ot 21]) - (dt) dy, (3.12)

all double integrals taken over RV,

Given 7, the functions f,, h", V'h" above are uniformly bounded (independent of m and n). We can
therefore easily (by dominated convergence, e.g.) pass to the limit with the first term in the last member
of (3.12), letting m,n — oo in an arbitrary fashion:

/ / Fn@®R (5 — o' + Bt 21]) Di(t, g1 (dt) dy/
- / / X ]ORN (Y — & + V't 211) Dy (b Ybr1 (df) dy/’

= D] (t, ' — V' (t, z11)bri(de).

(s,zy]
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For the second term in (3.12) we may pass to the limit first in m, giving

// u(t,y fm(t) W (y' — o' + b (t, 1)) dt dy’

- /u(s, YIR (Y — ' + b, (s, 71]) dy’ — /u(a:l,y')h”(y' —z'ydy'
=u(s,z’ — b (s, z1]) — u"(z1, 2). J

Recall that we always work with right-continuous versions of functions of bounded variation, and it is
easy to see from the way f,,(t) was defined that the factor df,,,(¢)/dt in the integral above picks up the
limit-from-the-right traces of the functions at ¢ = s and ¢ = z;. Letting then n — oo we find that the last
expression tends to

u' (s, 2’ — (s, z1]) — w(z1, &)

The last two terms in (3.12) can, taken together, be written

/ / Wt i) V'R (Y — &' + b (®) dy d (bt 1] — b (¢t z1]). (3.13)

We would like to show that this tends to zero by using Lemma 6.2 in Appendix. The measure b, — &/
tends to zero weak* by (3.10), as n — oo, and (6.15) in Lemma 6.2 is satisfied in view of (3.11) (and
b’ having no atom). Hence to apply Lemma 6.2 we would like to show that the remaining part of (3.13)
is bounded in BV (I), uniformly in m and n, where I is taken to be a fixed interval which contains the
domain of integration with respect to ¢. Then (6.16) will also follow from (3.11).

Thus we look for an estimate

/[ ———dﬁf) o ult, ) fn OV Ry — &' + b, (¢, z1]) dy’ dt]| < C||9]oos (3.14)

to hold for all ¢y € C§°(J) with C independent of m and n. Choosing one component 0k /0z; of V'A"
we have

—————dd)(t) / Oh" r / /
/1 it Jo “(t’y)fm(t)‘a‘;; (v — ' + b, (t, 1) dy' dt

ahn !/ ! / 7
[ [ uc y)—( O fn®) 5 (=3 +bn(t,:c1])) dy' dt

dfim(t) DR ,
- [ o™ ()am-( o+ o) dy
J

db;l(t, .’II]]

didy’.
dt Y

/ / ut, y)z,b(t)fm(t)v' (y o ) -

Here the first term can be estimated by

cletn 5| <Ol

7 lloco
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because u € BV (I; L*(§2')), the second term can be estimated by

oh"
aLIJj

e < cile

Cllull poo;r2y Pl oo 5

and the third similarly (using (3.10) by

JORT |
mwmmmmmmmmkgg 51 < Cll oo

Thus we get the desired estimate (3.14) and Lemma 6.2 shows that (3.13) tends to zero as n — oo,
independent of the behaviour of m.

Returning now to (3.12) and putting the pieces together we find that as m — oo first and n — oo
afterwards we get

0= /( ]D717 (t, 2’ — V'@t 21 ) bn(d) + u' (s, 2" = V' (s, z1]) — u"(z1, 2),
S,y

which is (3.5). Formula (3.6) is proved similarly. This completes the proof of Lemma 3.1. O

Lemma 3.2. Let 2 € F. For any u¢ € W"2(£2) we have
oue|)?

0z

< Jﬁ(us)/mfl(at;)dxl.

LYLL2(02') I

Proof. Let e; = %1,0,...,0) and set & = (A°)~'e;. Then (A°£5,£°) = mS,. Using the Cauchy—
Schwarz inequality for the positive definite form determined by A® we get (pointwise a.e.)

2
= |(e1, Vu&)|* = |(A%¢°, V) [P < (A%€5,€°) (A°Vus, Vuf) = mf, (A°Vus, Vurd).

ou®
0z

Thus, using the Cauchy-Schwarz inequality once more,
2

2

| -/, ) = ([ (]

LYLL2(£27)) ! L2(2) I \Jo

1/2 2

< </ (/ mi,(z1) (A° Vs, Vu©) drc’> dm)

I QI 7/

1/2 2

= </mf1(m1)1/2</ (A°Vuf, Vi) d:v’) dac1>

I Q!

g/m‘?l(azl)dajl// (A*Vu®, Vu®) dz’ dx;
I IJo

ou®

0|

ous
0y

ou®

o0z

([E] > ml)

(.’Zfl, )

2 1/2 2
d:c') d:c1>

- /1 me (@) dzy - Jo),

as desired.
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4. Proof of I'-convergence: Condition ['1

In this section we prove that Conditions I'1 and I'1’ hold under Assumptions 1-4. In fact, Condition
I'1 follows immediately from the lemma below. Condition I"l’ is obtained by applying the lemma to
domains in F, approximating ¢ from below by step functions based on 7 and using the definition (2.42)
of J,,. The easy details of this are omitted.

Lemma 4.1. Let {2 € G, suppose uf, u € L(£2) and

ut —u in LA(0). 4.1)
Then

lim JH(u®) = Jo(u). (4.2)

e—0

Proof. By a standard argument with subsequences we may assume that
Jpu®) £ C < oo, 4.3)

and we only need to prove that (4.2) holds for some subsequence of {}.
From Assumption 1, (2.2), (2.23), (4.3) we see that u¢ € W'2({2) and

“D?HLZ(()TI;Q) < C < oo,

HEe/HLZ(BE';Q) < C <oo.

From Assumption 2 it follows that B — B weakly* in M(£2)N*¥, (2 denoting the closure of 2,
hence that b5, — by, weakly* in M(£2) and B — B’ weakly* in M (YN -DX(N=D We may therefore
apply Lemma 6.1 (Appendix) to conclude that there exist Dy € L*(b11;$2), E' € L3(B'; 2) such that,
for a subsequence,

D§bS, — Dibyy  weakly* in M(2), (4.4)
B'ES’ — B'E'  weakly* in M(@2)W-DXW=D, (4.5)
HDIHLz(b“;ﬁ) < i—i“% ”Dﬂ]LZ(bfl;ﬁ)’ (4.6)
”EI”LZ(B/;—Q—) < il—i»n() HEE'“LZ(BE/;’Q")- (47)

Since 942 has Lebesgue measure zero (and hence bf; measure zero) we can in (4.6) and (4.7) replace 2
by {2.

In view of the expression (2.23) for J5(u®), (4.2) thus follows once we know that || D, “%2(1)“' o T
|E “2LZ(B’~Q) equals Jp(u), i.e., once we know that Dy and E’ obtained in the limits (4.4), (4.5) are
related to u in the right way.

This is a purely local question, hence it is enough to prove it for every subdomain belonging to the
class F. With a change of notation we may as well assume that {2 itself is in . Thus {2 is of the form
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(2.21) and what we then have to show is that u € BV (I; L2(§2")) and that D and E’ are related to u by
(2.30), (2.38).
First, using (4.3) and Lemma 3.2, we have

l/ ua—a—(’?—daz
n 0z

for p € C§°(§2). Since v — u in L2(£2) this shows that u satisfies the same estimate, i.e., u satisfies
(2.33). Thus we conclude that u € BV (I; L2(2)).

Next, the definitions (2.24), (2.25) of Df and E#' can clearly be written in the same form as (2.30),
(2.38), namely

ous

n 0y

ous

0xy

da:l <

Pl oo r,2ry < Cll@ll oo
LI(I;LZ(Q/»H LRIy S ol oo z;r202ry)

0y 01
;DE £ . / E—-—d /( ¢ sy TN 7') bs' d = U, .
(1 ‘)L2<bw9)+ o I+Z I v 0x; ) L") (o0 der =0 @5

jz2

£ § £ 3)‘ &
/ / 1 d 4 9
l2 el s ") a s ° 17 _ .

1,522

for o = (p1,¢) € Cgo(Q)N . We claim that, as ¢ — 0, each term in (4.8), (4.9) converges to the
corresponding term in (2.30), (2.38).
It follows immediately from (4.1), (4.4), (4.5) that

(‘Pl, D?)LZ([)TI;Q) '—’ (‘Pl, Dl)Lz(b“;Q),

(QDI’ EE,)LZ(B&’;Q) - (‘10/, E,)LZ(B’;Q)’

/uagﬂdm—é/u%daz.
o O o 0z

Hence we are left with proving that

/I (ue(mla ')’ ’(p(xla '))LZ(QI)bfj(xl)dxl — /I (u(.’IJI, ')’ @b(xl, ))LZ(Ql)bz](dxl)’ (410)
foranyi > 1,7 = 2,9 € C§°(£2).
Set
Fo@) = (i@, ) Y@, ) gy (4.11)

f(il?l) = (U({IJI, ‘)’ ’l/)(il?l, )) L2

so that assertion (4.10) becomes

[ Frnts@de RN @12)

Here we know from Lemma 2.4 that f € BV (I). We shall use Lemma 6.2 in Appendix to prove (4.12).
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For a.e. 71 € I we have (recall that u® € W12(£2) by (4.3),
dfe ou
@] [ 5
Ty 0
<c[ = o

Thus, for any subinterval (s, Hcl,

0
:c’)'t,b(:r:l,m')d:r'+/ ug(azl,:c')—;b—(azl,:n')dw'
’ 1

')

dz’ —f-C’/ ]u€(:1:1,33)|d:1:

t1dfe ouf
dz < C + Cllef | s sz
L 371 = ml LI((S,t);Ll(_Q’)) ((S’ )v ( ))
ou’
<¢ + Clt = sl 2
=l s iy ()3 42)

Together with Lemma 3.2 and (4.1), (4.3) this implies that

t|dfe 2 t
</ d:El) < C’/ mi(z1)dz; + C|t — s (4.13)
s |dzy s
for (s,t) C 1.
By (4.11) and the Cauchy—-Schwarz inequality
15 ey < el 19l 2y < C, (4.14)
155 = Flloray < v = ull o 19l 2y < Cllw — v || L2 (4.15)

It follows from (4.14), (4.13) and Assumption 3 that { ¢} is bounded in W!(I), hence in BV (I). Using
(4.15) and (4.1) it also follows that f¢ — f in L(I). Thus we conclude that

f&— f weakly* in BV (1), 4.16)

for a subsequence.
Using (2.13) and (4.13) we next find that

([ [
</ /Xm

C//X!a:1 sl<smi(z1) dz 1 |b5;(s)|ds + C6.

2
dxllb (s)[ds)

da:1> (s)lds /!b (s)]ds

This is smaller than any given number n > O when 7,7 > 2 and 6 > 0, € > 0 are small enough, by
Assumption 4’ and (2.10). When ¢ = 1 and j > 2, we write, using (2.9) and Assumption 3,

1/2
/[ Xy —s|<6|bT;(8)|ds < /1 X —s]<sm$1(8) /265 5(s) /2 ds < C< /[ x‘m._skab;j(s)ds)
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so that, using again Assumption 3,
i/2
/I/IX|331—31<51b?j(5)1m?1($1)dxld8<O/Imil(ml)(/IX|$|‘3|<5b§j(S)ds> CL’El

1/2
<C(/jmil(rl)/IXI:I:I——SI<5b;](S)de’E1) ,

which gives the same conclusion as for 7, 5 > 2.
Using the e-version of (2.10), (2.17) and (2.20) it also follows that

t+6
/M |65i(s)] ds < (4.17)

fort € 0 and 6 > 0, € > 0 small enough.
By combining the above with (4.16) and Assumption 2, and using Lemma 6.2 (in Appendix) (4.12)
now follows. This finishes the proof of Lemma 4.1 O
5. Proof of I'-convergence: Condition "2
Here we prove that Conditions I'2 and "2’ hold under Assumptions 1-4. This will follow from
Lemma 5.1. For every u € V there exist u® € I/Vlé’cz(RN ) such that, for each {2 € F,
ut —u  in LX),

Hﬁo J5®) < Ja(u).

Before proving the lemma we deduce Conditions I'2 and "2’ from it. As for Condition ['2, letu € V
and 2 € G be given. Referring to the sets S, in (2.22) we may approximate {2 from outside by, for
example,

{2, = the union of those components of (R \ Sn)N which meet (2.

Then {2 C {2, except for a set of b;; measure zero and Lebesgue measure zero, and 22, {2, C §2. Since
042 has b;; measure zero we conclude that

I, (u) \, Jo(u)

as n — oo. Since the lemma clearly holds for each §2,,, {2, being a finite disjoint union of elements in
F, we conclude that it holds for 2. Condition "2 now follows.

Condition "2’ is obtained in a similar manner, by approximating a given nonnegative ¢ € C’g"(]R{N )
from above by step functions based on . The simple details are omitted.
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Proof of Lemma 5.1. For clarity we split this long and technical proof into subsections, a) to h).

a) Definition of u®
Let u € V. By Lemma 3.1 there exists a sequence " of elements of V, v smooth in the z’ variables,
u? — win L (RN), D] — Dy in L% (b11; RN), E' — E' in L2 (B';RY), when n — 0. Moreover u"

loc i loc loc
is given by the following representation formula:

ul(z) = u"(0, 2 — b'(0, z1]) + o ]D’] (t, ' — ¥'(t, z1])bi1(de) (5.1
,T1

for x € RY with z; > 0, and

u(z) = u" (0,2’ + b'(x1,0]) — /( . D (t,z’ + b (zy, 1) b11(dt) (5.2)

when 1 < 0.

The sequence u® to be constructed in this proof will be defined from a sequence u*™" depending on
three parameters, ¢, n, . Here ¢ > 0 is the same parameter as in J%, 7 > 0 is the smoothing parameter
above (and in Lemma 3.1) and n is an integer parameter corresponding to subdivisions of R into intervals,
in fact the same parameter as in (2.22). The final sequence u® will be obtained by specifying n and 7 as
functions of €. Specifically, it will be defined as

uf = uSmP/p, 5.3)

where the integer parameter p is defined in terms of € by €(p + 1) < £ < E(p) and where £(p) and 7i(p)
are conveniently selected subsequences of € and n.

Note. We will temporarily mix two notations with superscripts. In writing u®, the superscript ¢ is the
final homogenization parameter, while in writing ", or sometimes u!/P where n = 1/p, the superscript

n is the smoothing parameter in the z’-directions (Lemma 3.1). Similarly for D, D} and D; /P We shall
only use the letters indicated above (g, 1, 1/p) and therefore hope that no confusion will arise.

Now to the details. We use the decompositions of R into intervals defined by the sets .S), in (2.22).
Thus we write

R\ S, = UIk’

kez
where I}, = I are open intervals (namely the components of R \ S,), indexed by Z for convenience (we

assume that the .S, are infinite). We may further assume that the .S, are defined so that |I}}| < 1/n for
all k£ and n. Since b;;(S,,) = 0 by (2.20), (2.22) we have

bi(0lp) =0 5.4

for all k£ and n.
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We shall define u®™" by first constructing its field D} with respect to A° (or J), and this will only
depend on n and 7. In fact, we set

D) = xr (z)gr@),

keZ

where the functions 1, = 1" are given by

Prla) = —— 1<Ik> / Dt )by (d) if biy(Ii) > O,

Pe(z) =0 ifbuly) =

Thus D" is a step function with respect to z;, obtained by by-weighted meanvalues. Next we define
us™" by

W) = u? (0,7 — (Y (0, 311) +/ DM (b2 — (%) (¢, 21 1) b5, (dE)
0,z — (b°) (0, — (b® < .
u1(0, 2" — (b (0, z1]) +§Z/MM (@' — (5F) (t, 21]) b5, (dt) (5.5)

for z € RY with z; > 0, and similarly for z; < 0 (see (3.6), (5.2)). Note that only finitely many terms
are nonzero in the last summation.

The function w*™" is smooth in the z’-directions and D{"" is a bounded function in each fixed {2 € F.
Thus we may differentiate (5.5) to obtain

auenn

a @)=~ —() (@1) - Vu'(0,&" — (6°) (0, 21]) + b (@) D (w1, 2)

— (%) (@1) - V'DP(t, 2’ — (6°) (¢, 11) b7, (db),

©,z1]

V/us™ () = V'u(0,5" — (b°) (0, 21]) + /«) ]V’D?’”(t, x' — (b°) (¢, z1]) b5 (db).
, L1

Multiplying the latter relation with (b° Y(z) and adding to the first one gives

Qus™"

@ ) + (&%) (@) - V'ut™ () = bfy (21) D" (@). (5.6)

Relation (5.6) shows that D" is the field related to u=™7 via B® as in (2.26). This means that the
Be-version of (2.40) holds for D] and u*™". With notations as in (5.3) the field Df coupled to u® will
thus finally be

_ am.l/p
D$ =D, .

Since uS™" is differentiable with respect to the 2’/-variables it is also immediate that V'u*™" is in
L%(B*') and represents the field E’ there, i.e., that (2.41) holds with V'u*™7 in place of E', u®™1" in
place of v and b in place of by;. With u® as in (5.3), the corresponding E’-field will thus be V'u®.
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b) General outline of proof
Defining u* and Df as above we shall prove that

u$ —u in LX) ase — 0, (5.7)
En;)llDﬂle(bfl;Q) <Dy ”Lz(bu;{z)’ (5.8)
lim || V| Lo ger. ) = 1 | 2257500)5 (3.9

for each {2 € F. By the above remarks and (2.23), (2.27) this will imply the lemma.

¢) Proof of (5.8)

We first prove (5.8). Let 2 = I x {2’ € F. By (2.22) and the definition of F, the endpoints of I are
in S, for n large enough, say for n > 7. Thus, for fixed n > 7, I is the union of finitely many of the I
plus finitely many points (with no b;; mass).

Applying the Cauchy-Schwarz inequality to the definition of 1y, and D|"" we have

/I 1P} Phutden < /1 {EHERDIRNCED (5.10)
for each 2/ € RV-1 and k. This gives

/I]D?’nizbu(dﬂfl)é/IlD?Izbn(dﬂ?t),
and hence

/QlDT’”lzbu(da:)é/QiD?lzbu(d:c). (5.11)

Since [, |D]"(z1,2")|* dz’ is piecewise constant as a function of ; with jumps only at the partition
points ¢, and since (2.19), (5.4) together with Corollary 2.2 implies that

1) — bui(lg) (5.12)
for each k& we have, for fixed n and 7,

[1D@ i@ — [ 0P @) b

9] 2
as € — 0. Together with (5.11) this shows that

[ 10m@P i@ < [ [Di@)f buee) +1 (5.13)

for e < &(n,n) (say) and n > 7. Later on we will have to redefine 7 and let it depend also on 7,
7 = 7i(n). We take n = 1/p where p is an integer parameter, we write £(p) instead of g(7(1/p), 1/p)
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and 7i(p) instead of 7i(1/p) and we can assume £(p) monotone decreasing. Defining D] = Dlﬁ(p WIP for

Z(p + 1) < £ < E(p), we have by (5.13)
2 7 2,5 1
[ 1pi@f by = [ DT < | D@ e+
o) 0 Q D
Since p — oo as € — 0 this gives, by Lemma 3.1,
En; ; |DS|%65, (da) < /Q |D1[? by1(dz).

So far, £(p), and hence u¢, depends also on {2 € F, and we really have to define uf independently of
£2. Since the family F is countable this can however easily be achieved by passing to a diagonal sequence
for (p). (For the first {2 in an enumeration of F we get a certain sequence (p), for the second {2 we
choose a subsequence of this, for the third we take a further subsequence, etc. The final sequence will be
the diagonal sequence of the family of subsequences selected.) This kind of comment will be in force,
though not repeated, for any redefinition of €(p). Thus we have now proved (5.8)

d) More estimates
In order to prove (5.7) and (5.9) we need some more estimates. First (5.10) gives

b))’ < / |DY(zy, 2)bi(dz) < sup [ |DYGxr, 2| bu(dz)
Iy, ey JIi

g/j sup ID?(mx,Jil)lzbu(diEl),

kx'ef?

/ sup ID?’H(ml,-’IJ')lzbu(dml)=511(Ik)”¢knio S/ sup ]D?(Cﬂl,m/)’zbll(dml)
Ik _,BIE_QI T TE’EQ'

k

andforz; € I, 1 = 0,

o 2 sup/ 41 . 2
/ sup ]Dl’ (3;1,:17)| bii(dzxy) </ sup iDl(acl,a:)l bii(dzy) = C(n) < oo
O,z1] z'es? -1 z'e

(by (3.2)). Therefore, using (5.12)

/ sup | D(zy, z)| b5, (dz1) < C, (5.14)
©,z] '

for £ < &(n,n) (up to a change of C(n) and &(n, n) defined after (5.13)). In particular,
/ | (8, &' — () (¢ 211) "85, (dB) < C) (5.15)
O.z1]

for £ < &(n, n) and for a constant C(n) which corresponds to a domain £2; = I x 2] with £2] sufficiently
enlarged (compared to {2') in all directions. Since also

|u"(0,2" — %) (0,z11)] < sup |u"(0,9")| < o0
yen’
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by (3.1), we immediately deduce from (5.15) and the definition of u*™" that [|u®™7||Leo(n(z; >0 <
C(n). As one obtains similar estimates for z; < 0, it follows that

flus™| Loy < C(m) < 00. (5.16)

Similarly by using analogues of (5.10) with &’ derivatives and by using (3.3) or (3.4) instead of (3.2), we
get \

a e,n,n
= < C(n) < oo, (5.17)
0z |lpeo()
2.7
1 0u < O@) < oo, (5.18)
amiaxj Loo($2)

fori,j > 2 and 0 < € < E(n,n), €(n,n) possibly redefined.

As a final preparatory step we differentiate (5.6) with respect to z;, 1 > 2, to obtain
02ysm ous™" oD
by -V = bf) ——. 5.19
amlami + ( ) aiﬂi 1 aCEi ( )

Here all terms are still in L>°(£2) and are smooth in z'.

e) Reduction of (5.7) and (5.9) to estimates (5.21)—(5.24).
In order to show (5.7) and (5.9), we introduce the intermediate function

u™(z) = u(0, 2" — V' (0,z1]) + DYt 2 =V (¢, 21])bii(de)
0.z1]
W10, —H O,:1) + 3 / (& — b (t, 211)buy () (5.20)
keZ I;O, "Cl]

for z € RY with z; > 0 and similarly for z; < 0. We also set

€,1,7] ous™"

ou U
f;",n,ﬂ = ks ), — , " ,
fij @) ( 32 (z1, ), 5, () )) e

ou™" ou™"
fir}’"(:vl):( 5o @ ) 5 (T -)) :

ou' Ju
n proess 2), — . .
Ben = (5 @) o, (@ ) e

Then

IV Ny = 3 [ £t o,

3,722

[V 2™ LZ(B’.(Z) Z/ nn(fﬁl)bzg(dl’l),

1,722
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|E" HLz(B/ )= = /If?j(wl)bij(dwl)-

1,722
To show (5.7), (5.9), we will prove that

[ — w2y < 1,

H|V’UE’"’7’”%2(BEI;Q) - ”V/UWIHLZ(B' 9)]
for € < &(n,n) and that

lu™T — uT|| Loy < 1,

IV sy = IV Ericp] <

for n > 7(n). (Here again € and 7 are possibly redefined.)
Assuming (5.21) to (5.24) are already proved we will have

£,1n,1

e UHLZ(Q) s

I <™ = ™M 2 + ™7 = u?|| ey + 0" = ull 2
<

Cn 4+ | = ull 2

forn > 7i(n) and € < &(n, 1) or

C
lu® — ull 2 < > + flul/P - ull 20

(5.21)
(5.22)

(5.23)
(5.24)

for (p + 1) < € < &(p). By letting p tend to infinity and by using Lemma 3.1 we get (5.7). Similarly we

will have

HW,“EH%RBE’;Q) - ”EI”%}(B’;Q)‘ = |Hv/ug’mp)’l/p”?y(Be';n) - ”EIHZLz(BI;Q)|

< l“V/“E’ﬁ(p)’l/pHZLZ(Be';m - ]|(E/)l/p“2/;2(3/-rz)] + H[(E/)l/p”%ﬂ(B"Q) — 1E" 25,00

= ||| V'us" P> 1/pHLZ(Bs' o “V,ul/p”LZ(B' ol +IED l/pHLZ(B/ o — 1B 20

< ]I|V'u€’ﬁ(p)’l/pHsz(Bs';Q) _ IIV'uﬁ(p)’l/pllsz(B/;g)l

IV a PPN gy = IV Py + BN Pl iy = 1 2|

2
st IEY e = 1B 2y

by using (5.22), (5.24). Then one gets (5.9) by letting ¢ and p tend to infinity and by using Lemma 3.1.

Thus it remains to prove (5.21) to (5.24).
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f) Proof of (5.23), (5.24)
As for (5.23) we estimate

]/ D?'”(t,w'~b’(t,:v1])bu(dt)—/ D?(t,x'—b’(t,:z:l])b“(dt)’
Ik Ik

1 7 1 !, ]
= ol /, /I (DV(s,2' =¥, m1]) = D] (¢, —b(t,wl]))bu<ds>bn<dt>}
1 P
- bii(k) /1 /1 (DY (¢, 2" = V(s, 1) = DY (t, 2" — b,(t,:El]))b“(ds)b“(dt)‘
k k
1
s bnuk)/z /1 sup V"D (¢, /)| 16T} [bu1 (@s)b11 (@)
ke y'end]

= ') /1 sup [V D],1/)]b11 (40
kY ef

1/2
<lb’<Ik>|bu(Ik>‘/2( | sup lV’D?(t,y’>!2bn<dt>) ,
Iy yen

with (2] large enough. Summing over the finite set of values of k such that I N (0, z,] # 0, denoting by
C a constant which may depend on 7 and using (3.3) and (2.9) we then find that for z; > 0, z; € I,

Ny o0 _ nn Y, .
|u™"(z) — u"(z)] l/(o’ml]D1 (t, " —b'(¢, z1])b1(dt) /

D}tz — b'(t,$1])b11(dt)’
0,z4]

1/2
<O Wb < C S my ()" ( T bjjak)) bu(T)'?
k k

=2

< C< 2}; bll(Ik)> " < > Zk: mll(Ik)bjj(Ik)) v

Jj=z2

1/2
< C(ZZ/Ik /Ik mn(ds)bjj(dt))

Jz2 k

1/2
S C<Z //( Lsup I+1)? X‘S“tk‘f:m“(ds)bﬂ(dt))
FEY AN

which is independent of x and tends to zero as n — co by Assumption 4. A similar estimate is obtained
for z1 < 0,z1 € I. This gives (5.23). By using (3.4) instead of (3.3) one can prove in the same manner
that for fixed , V/u™" — V’u” uniformly as n tends to infinity. Hence also (5.24) is proved.

g) Proof of (5.21)
As for (5.21), recalling (5.16) it is enough to prove that

u®™" — > pointwise a.e. (5.25)
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We look at the definition (5.5) of u®™"7 and (5.20) of ©™". Here we have
u?(0,z" — (6°)'(0, 1]) — w"(0,2" — (0, z1]),

as € — 0, for every z (recall (2.18)). Utilizing the second forms of (5.5) and (5.20) we see that (5.25)
follows if we know that

»/I 0 ]wk (:):’ _ (bf)/(t,xl]) $(dt) — Ve (:l:’ _ b/(t,ﬂil])b]l(dt) (5.26)

I;N(0,x1]

for each k.
To show that (5.26) holds we notice that for fixed «

P (z' — ) (¢, z1]) — Yp(a’ — b/t z1])  weakly* in BV (Iy),

both members regarded as functions of ¢. Indeed, by (2.18) we have pointwise convergence for every ¢,
and we have uniform boundedness of the total variations:

S hela’ — 6 6] l / V(e — (), 211) | (Y (@8]

< C|°YIy)| < € < 0.

Now (5.26) follows immediately from Lemma 6.2 together with Assumptions 2 and 4.

h) Proof of (5.22)
Finally it remains to prove (5.22). Note that

VU2 percy = Z/ FEm @b (@) da,

1,522

IV oy = S / 2@ )b ().

1,722

To show (5.22) we shall apply Lemma 6.2 to each term above. As we know that b;; — b;; weakly* in
M (I) we then have to verify the following, for each 4,7 > 2.

f”‘" Z;" weakly* in BV (), (5.27)
m 77( v

//xlz. s[<6 lb ()| dsdz; — 0, (5.28)

S / X s;<a(s)|b”<s);ds—»o (5.29)

x1€01

ase, 6 — 0.
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Here (5.29) is nothing but (4.17) (which we already have proved). In order to prove (5.27) it is enough
(see Appendix) to prove that

Fi @) — fi" @) (5.30)

for a dense set of values of z, together with proving that

&,1.1
ij
T
dr; (x1)

%
I

By (5.17) and the definitions of f;;™" and fi5", (5.30) follows from

dz; < C(n) < 0. (5.31)

V/'us™ — V'u™"  pointwise a.e.

which is proved in the same way as (5.25) above.
To summarize, in order to prove (5.22) it remains to prove (5.28) and (5.31). Since

2,,E7.7
O ¢ 1)

alL‘la.’L’i

by (5.19) we can differentiate f;;"™"(x) under the integral sign, to obtain

J

dz’.

d aZue,n,n dusmn d , Qusmn aZua,n,n
+
7

. ?,’n,’f] foned P
d:El kY (ml) (o4 afL’laLCi aa:j a.TZi ailtlaa?j

Using the Cauchy—Schwarz inequality several times and (5.17), (5.19), (5.18), (2.9), (2.8), (5.14) and
(2.12), and denoting by C various constants which may change from step to step we estimate, for 6 > 0,

//Xi3~$||<5
rJI

g//X]s—mKé'
IJ1

<C//X / lazua’nmldx'dazllb?(s)[ds+asimi1arteml
D T St L PR Y i

oD
< _ £ i
¢ [ [ xismetes|tion [ |75

a2 £,1n,M
+ S lbraGen] [ |5

22

aD™ | N
<C/I /I/,X]3—$11<5l axi““b”(ml)dxldm ‘bw(s)ids
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DM
<C'/I [L(X|s—m1|<6)2b§1($1)d$/9I af;;

+C Z X|s—z1|<s(mT1(z1) b () ?dz, |b5.(s)| ds + similar terms
1J1 J

£22

2 1/2
fi@nds] o] ds

2 oD™
< C/I [/Ixf3—$1|<6b?1($l)d$1} |b5,(s)| ds| - 2 500

1
1
1/2
+CZ/I [/IXIS—11|<§mil(xl)dml]

£22

1/2
X ‘:/IX13~m1|<6bZ£($1)dxl] |b5;(s)|ds + similar terms

1/2
<C[/f/fX*s—m<am?1<x1>ibfj<s>|dxlds] |

By Assumption 4’ this tends to zero as €, § — 0, proving (5.28).

The proof of (5.31) is obtained by a similar estimate as the above. Indeed, it is just to remove the
factors X|s—z|<s and bf; from the above computations and then at the end invoke Assumption 3 instead
of Assumption 4’ to reach the conclusion that the final member is bounded from above independently of

e > 0 (and n).
This completes the proof of Lemma 5.1.

6. Appendix

This Appendix contains two technical tools of more general nature, but which we have not found
readily available in the literature.

a) Absolute continuity of limit measures

The first result concerns matrices whose entries are measures or, equivalently, matrix-valued measures.
In the scalar case the lemma says that if {u€}.~0 are positive measures, u° — p weakly* as measures
for some measure 1 and we have functions f¢ € L?(u€) which satisfy ||f®||z2¢e) < € < oo, then

there exists f € L?(p) such that, for a subsequence, p° f¢ — pf weakly* as measures and || f]| g S
lim || f¥|| 12(e)- (The same is true with L in place of L2 for 1 < p < oo, but not for p = 1.)

To set up some notation in the matrix context, let X' C RY be compact, p € M(K), f € C(K). We
write

(e f) = /K f@)p(dz)

and denote by uf € M(K) the measure defined by

(ufri) = /I F@)p(udn)
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for any ¢ € C(K).
Let now pi; € M(K) (1 <4, <N), p=(ujlio, € MEONN . Let also f= (),
(<p,) *; with f;, ¢; € C(K). We think of f and ¢ as column vector fields and define

N

<Zuzgfy> ,

i=1
regarded as a column vector with entries in M (K),
N
oD = (1f>0) Z((uf»,so»— S Gustpod = 3 | @@,
i,5=1 1,7=1

We call 4 positive semidefinite if (f, )72,y = Oforall f € C(K YN In this case one can, by comple-
tion and taking quotients, make a Hilbert space L*(u) = L?(u; K) with norm || f H%Z(I-L) = (f, Pz out
of C(K)N. For an open set {2, L?(i) = L*(u; £2) is defined similarly, replacing C(K) with, for example,
Co(§2).

Lemma 6.1. Let K C RY be compact, Pij i € MK) (e >0,1<4,j < N) with p* = (ug;) positive
semidefinite, and let f¢ = (f)}, € L*(u®). If

pf — p weakly* in M(K)N*V, 6.1)

1Nl 2guey < € < 00, (6.2)
then there exists f € L*(u) such that, for a subsequence,

utf& — uf weakly*in MK, 6.3)

£l p2gy < Hm || FE]] a0y 6.4)

Remark. In general there is no convergence f© — f.

Proof. Using (6.2) and the consequence of (6.1) that the total masses of { ufj }e>o are uniformly bounded,

we get, forany @ € C(E)N, (1€ f¢, )| = |(f, D) 2guey < 1 ”Lz(uf)”‘P“Lz(u ey < Cllpl| oo Tt follows
that { 4° f¢}e>0 is bounded in M (K YN hence that there exists v € M(K)" such that, fora subsequence,

uf¢ — v weakly* in ME)V.
For ¢ € C(K)N we then have
v, o) = ;1_% ue e o) = gl_r}}) l(fa, ‘P)Lz(pf)[

< li_n_%) £ p2guey Nl z2guey = Mol 22, (6.5)
& ¥
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where A = lim || f¢|z2(e). It follows that the functional ¢ — (v, ) is continuous in the L*(y)-norm,
hence that there exists f € L?(u) with

v, ) = (@2 = (1fr9)

This implies that

v=npf (6.6)

as measures, proving (6.3).
Inserting next (6.6) into (6.5) and thereafter letting ¢ — f in L*(p) gives (6.4).

b) Convergence of integrals of BV -functions

Let f € L'(I), where I C R is a bounded open interval, and extend f by zero outside I. We say that
f is of bounded variation on I, and write f € BV(), if an estimate | [; F®O @) dt] < Cllglleo holds
for all ¢ € C§°(I) or, equivalently, if the distributional derivative of f on R is a signed Radon measure,
call it p1. Then suppp C T and the cumulative distribution function of n,

= d = d - — ,t, .
Fay= [ waw= [ du=pcood 67

also has distributional derivative equal to 1. Thus, since f@) = f (t) = O for t to the left of I, it follows
that f = f a.e. The function f is the unique representative of f which is continuous from the right (i.e.
f(t) = limpno f(E + h) for every 7). We shall often write df for du, and similarly |df| for the total
variation measure |dy| (or d|ul).

Some expressions for the total variation of f on I are

TV(f; D) = |plD)

n—1
= sup { Z |Ftir1) — f@): alln > 2 and all partitions a < #) <ty <+ <tp < b}
i=1

— sup {] /I FOR ) dt\: o€ D), |l < 1},

where the last one for our purposes may be taken as the definition of T'V(f; I). Since constant functions
have vanishing total variation, TV (f; I) is only a seminorm on BV(I). An appropriate norm is

Wy = Wfllpay + TV D.
As to topblogy on BV(I) we only need the concept of weak* convergence. We say that ffF—=f

weakly* in BV (I) as ¢ — O if and only if u® — o weakly* in M (R), where u, p are the distributional
derivatives of f€, f extended by zero outside I as above, i.e., if and only if

/ﬂ{tpduf—»/Rsodu (6.8)

for every p € Co(R).
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The following criterion for weak* convergence in BV (I) is useful: If

TV(f5; ) < C < oo and
f £(t) — f (t) foreach ¢t in a dense subset of I,

then
f&— f weakly* in BV (I).

To prove the criterion we simply note that the two conditions are equivalent to {4°} being bounded in
norm together with (6.8) holding for every left continuous step function ¢ with jumps allowed only at the
dense set in question. Since any function in C(I) can be uniformly approximated by such step functions,
the weak™ star convergence ¢ — f follows.

Now, to prepare for the main statement, note that any f € BV(J) is bounded and Borel measurable.
Therefore, for any pair f,g € BV(I) the integral [ f dg over any subinterval S C I makes sense once
we have made a choice of a pointwise representative of f (necessary if f and g have common jump
points). As a matter of normalization we shall always in integrals [ f dg understand that f and g are
extended by zero outside [ and are continuous from the right. Denoting by p, v the signed measures
corresponding to f, g as above we thus define

/ fdg =/ fdv.
s s
Setting
R={(steR* s<t teS) (6.9)

we then have, using Fubini’s theorem,
[ 1= [ oo, vty = [[ uas) e = ue i)

Here 1 ® v denotes the product measure of 1 and v. We write the integral above also as [, df ® dg.
The following useful lemma is similar to, and inspired by, Lemma 3.1 in [2].

Lemma 6.2, Let f¢, f, ¢°, g belong to BV(I) and let S C I be a subinterval (not necessarily open).
Then if

f&—f weakly*in BV(I), (6.10)
g — g weakly*in BV () 6.11)

as € — 0 it follows that

/stdgg —>/Sfdg (6.12)

provided any one of the following two equivalent conditions is satisfied.
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(i) For every pair p, v of weak* cluster points of the total variation measures |df€| and |dg®| there

holds

v({t}) =0 foreacht € dS (6.13)
and

u({thv({t}) =0 for eacht € int S. (6.14)

(i) For every n > O there exists § > O such that, for € > 0 small enough,

s+6
/ |dg°t)| <n for eachs € dS (6.15)
s—6

and
/ / Xjt—s|<s |dfS®]|dg" @) < n (6.16)
int S Jint S
Proof. We first notice that (6.14) is equivalent to (6.16) and (6.13) to (6.15). Indeed, let
Aines = {(s,5) € R*: s € int S}

denote the diagonal of int S in RZ. Since p({t}) > 0 for at most countably many points ¢ we have

(1 @ V) (Aints) = /A dp ®@dv = /ims </s:t du(s)) dv(t)

= /S pEHdvy = > u({thr(t).

teint S
Thus (6.14) is equivalent to
(1 ® v)(Aines) = 0. (6.17)

Now (6.17) holding for arbitrary weak* cluster points i, v of |df€], |[dg®| is equivalent to having, for
any given n > 0,

(ldf¢] ® |dg®[)(Ne) <17

for e > 0, § > 0 small enough, where the Nj denote neighbourhoods of Aine s in R? shrinking down to
Aine s as § — 0, e.g., the ones given by

Ns = {(s,1) € (int S)*: |s —t] < 8}.

But this is exactly what (6.16) says. Thus (6.14) and (6.16) are equivz{lent. Similarly, but easier, one sees
that (6.15) is equivalent to (6.13).
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Next we observe that 9 R C Ajp s U(R x 8.5). Clearly (6.13) implies (4 ® v)(R x 0.5) = 0. Combining
with (6.17) it follows that (6.13), (6.14) together imply

(t®v)(oR)=0. (6.18)

Now, to prove (6.12) we write

|1eag = [[ xnariag = [ ar@ag
/Sfdg=//WXRdfdg=/Rdf®dg-

Thus we need to prove that
/ df5®dga——>/df®dg. (6.19)
R R
It is easy to see from (6.10), (6.11) that df* ® dg° — df ® dg weakly* in M (R?), i.e., that
/wdfg ®dg® — /sodf ®dg (6.20)
for all € Co(R?) (or even o € C(R?)). Roughly speaking, this implies df¢ ® dg°(R) — d f ®dg(R),
i.e., (6.19), provided OR has |df| ® |dg|-measure zero (see [6], Theorem 1.9.1 for the case of positive
measures). To be precise, R actually has to have measure zero for all weak* cluster points of |df¢| ®
|dg®|, and this is exactly what (6.18) says.
As to the details, choose a family of smooth functions 0 < s < 1 such that 95 = 1 in a §-

neighbourhood of R, s = O outside a 26-neighbourhood (6 > 0). Then it follows from (6.18), or
directly from (6.15), (6.16), that for every n > 0

/ Ysldf| @ [dgt| < 7 6.21)

for 6 > 0 and £ > 0 small enough.
Using (6.21) we estimate

}/Ra—wwdf&@dgf—/lzdff@dgf

</Rl/151df£|®[dgel<n,

‘/lq(l—%b&)df@dg—/édf@dgl g/R%]dﬂ@Idg‘<%/R¢6ldfgl®ldgel<n.

In the second last inequality we used that, generally speaking, ¢ > O continuous and y, — p weakly*
imply that [ @d|u| < lim, o, [ d|u,], as follows from [ ¢d|u| = sup { [ du: v continuous and
¥l < @}
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Applying (6.20) with ¢ = (1 — ¥s)x R gives
[a-woar @i — [ 1=podf o dg
R R
as € — 0. Thus the above estimates show that

/df€®dg€—/df®dg‘<377
R R

for € > 0 small enough. Since > 0 was arbitrary (6.19) follows.
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