NoC Platform Generation Process

System description Processes description
(System XML file) C files

!

NoC System Generator

Hardware Description Files Software Project
(.sopc & VHDL) Folders
—>| Driver Il‘

H| System Descr. Headerll‘

4>| Scheduler Il‘

_’| Code of Processes I%

Back-End Tools

Figure 1.1.: The Platform Generation Process of the NoC System Generator
and the related files.

Figure 1.1 gives an overview of the platform generation process. The NoC System
Generator requires two inputs. The system description XML file (SD-XML) file, and
a group of processes description C files (PD-C).

The SD-XML file contains the system-level description of the system we want to gen-
erate: a process network, representing the application, together with details regarding

1. NoC Platform Generation Process

the NoC-based MPSoC where we want to map the processes of the process network.
It will be described in Section 1.1.2. The PD-C files describe the functionality of
each process of the process network. The NoC System Generator requires at least
one PD-C file for each process of the process network.

From the two inputs, the NoC System Generator produces two outputs: the Hardware
Description Files (HDFs) and the Software Projects. These two outputs can be easily
integrated in commercial FPGA synthesis tools (Altera QSYS and Xilinx XPS) to
generate a working prototype of the system-level model, running on the selected
FPGA.

1.1. Input files

1.1.1. processes description C files (PD-Cs)

The PD-C files are C or C++ files provided by the user, describing the functionality
of the processes (actors) of the process network. PD-C files can be generated by
from a system-level framework such as Simulink or ForSyDe.

1.1.2. System description XML file (SD-XML)

The structure of different parts of the system description XML file are shown in
listing 1.1 and listing 1.2. The first section of listing 1.1, just after the leading
<system> tag, specifies the system parameters and the target FPGA platform. These
parameters define the folder path where to generate the output files, the system name,
the target FPGA manufacturer, the FPGA board type, etc.

The configuration of the hardware is embedded into the <hardware> tag. The first
part (within the <noc> tag) specifies the parameters of the network-on-chip, such as
topology, size, dimension. The framesize parameter defines the maximum size of
any packet of the input and output buffers of the system. Data through the NoC
is currently sent with a bitwidth of 32 bits (bandwidth of the connection between
switches). If all processes in the system communicate one single integer data (or a
float single precision), a framesize of 3 is sufficient (2 headers and 1 flit composed by
32 bits each). If the processes communicate using only one double precision data,
a framesize of 4 is sufficient (2 headers and 2 flits composed by 32 bits each). If
the processes communicate using a vector of 4 double precision data, a framesize of
10 is sufficient (2 headers and 8 flits composed by 32 bits each). The GlobalSync
parameter sets the heartbeat frequency.

The following part of the SD-XML file specifies details of the different NoC nodes.
Each node has its own node element, which describes the hardware connected to that
specific node. The main parameter here is the processing element (PE) connected to

1.1. Input files

Listing 1.1: Structure of the System description file of the NoC generator

<?7xml version="1.0" encoding="UTF-8"7>
<system name="NoC_2x2">

<!-- Platform specification -—>
<parameter name="paraml" value="val_1" />
<parameter name="param2" value="val_2" />

<hardware>

<noc>
<parameter name="nocType" value="Mesh" />
<parameter name="nocKind" value="2DNoC" />
<parameter name="nrofCols" value="3" />
<parameter name="nrofRows" value="3" />
<parameter name="framesize" value="64"/>
<parameter name="GlobalSync" value="1 Hz"/>

</noc>
<node nr="0" cpu="{nios,tiny}" ... />
<node nr="1" cpu="{nios,tiny}" ... />
</hardware>
<software>

</software>
</system>

node. Further parameters specify additional hardware connected to the PE, such as
memory, PIO, JTAG, IP blocks, and so on.

The SD-XML file part shown in listing 1.2, — embedded within the <software>
tag — specifies the mapping of the actors of the process network (PD-C files a.k.a.
software processes) to the MPSoC nodes. An example is shown in Listing 1.2, where
four software processes are mapped to three MPSoC nodes. The directory where the
functionlity of the actor (PD-C files) can be found is specified by the Repository tag.
Then every actor (sofware process) is specified by a process tag. An actor (process)
is configured by the process name (name), its model of computation (moc), the PE
on which it runs (node), and the IF-C file name containing the process functionality.
The software processes from which the process receives data and the processes it
sends data to are specified by the source and target tags. This information is
used to assign the input and output buffers to the associated process. The order in

1. NoC Platform Generation Process

which the processes are specified here, is also the order of execution on the nodes
(scheduling within a node).

Listing 1.2: Process Declaration within the Target Description File

<software>
<parameter name="Repository" value="D:/NoC/SW" />
<process name="p0" moc="Synchronous" node="0"
sources="{p3}" targets="{p1}"
files="{process_0.c}" />
<process name="pl" moc="Synchronous" node="0"
sources="{p0}" targets="{p2}"
files="{process_1.c}" />
<process name="p2" moc="Synchronous" node="1"
sources="{p1,p3}" targets="{p3}"
files="{process_2.c}" />
<process name="p3" moc="Synchronous" node="2"
sources="{p2}" targets="{p0,p2}"
files="{process_3.c}" />
</software>

1.2. Output files

Both the Hardware Description Files and the Software Projects are used by the
back-end tools provided by the FPGA vendor to create a running system on the
selected FPGA.

1.2.1. The Hardware Description Files (HDFs)

The Hardware Description Files consist of VHDL files that describe the Network-
on-Chip interconnection and the whole system descriptions (PEs, memories, etc)
described through different formats depending on the targeted FPGA vendor. In the
case of Altera FPGAs, the system description is a .qsys file that is processed by the
Altera QSYS tool. In the case of Xilinx FPGAs, the system description is composed
by .mhs and .mss files that are processed by the Xilinx XPS tool. From the HDFs
it is possible to automatically create the bitstream to configure the FPGA using the
FPGA vendor tools.

1.2.2. The Software Projects

Beside the hardware description files, the NoC System Generator creates a software
project for every PE in the NoC. The software project for a specific PE is composed

1.2. Output files

the IF-C files describing the functionality mapped to the specific PE;

a scheduler, named synchronous_MoC_main. c;

the System Description Header, named software_configuration.h;

device drivers.

1.2.2.1. The IF-C files

The IF-C files mapped on the specific process have to be written in a certain way
to work on the generated NoC-based system. The basic structure of a IF-C file is
shown in Listing 1.3. For a detailed example, the examples of the network generator
can be consulted.

Listing 1.3: Structure of the process code provided to the network generator

#include "software_configuration.h"

void pO_init(void)
{

// Perform initializations

// Write initial message to RNI
while (NOC_RNI_STATUS(NOC_RNI_BASE)!=0);
NOC_RNI_SEND(...);

s

void pO_main(void)
{
int recv_value = NOC_RNI_CHK_MSG(...);
if (recv_value > 0)
{
// Read message from RNI
// Process message
// Write message to RNI

while (NOC_RNI_STATUS(NOC_RNI_BASE)!=0);

NOC_RNI_SEND(...);
NOC_RNI_CLEAR(...);

}

else

{
// Absent value

};

};

1. NoC Platform Generation Process

Firstly, System Description Header (software_configuration.h) is included. As
described in Section 1.2.2.3, this file loads the network driver and defines a set of helper
functions and macros used in the IF-C file. The IF-C file code continues defining two
functions, scheduled by the scheduler. The first function, px_init(void), is called
once when the process starts executing. It performs the necessary initialization to
guarantee a proper start of the system. As the initialization can be seen as the first
cycle of the synchronous execution, the initial values of delay elements also have
to be sent to the network. This done by the three steps: (1) writing the message
to the send buffer of the RNI, (2) wait until the RNI is ready to send, and (3)
initiate transmission to the network. It is important that the execution time of
the init function is not longer than the heartbeat period. The second function,
px_main(void), is executed once every heartbeat period. The structure of the
px_main(void) file is slightly more complex. Firstly, the RNI is checked if a message
was received. This is done by calling the driver macro NOC_RNI_CHK_MSG. If there was
no message received, this is interpreted as an absent value in the synchronous model
of computation (or a heartbeat violation occurred). In these cases the else branch
is executed. In the case of a message was received, the message is read from the
receive buffer of the RNI, processed and written back to the send buffer of the RNI.
As soon as the RNI is not busy with sending any previous value (NOC_RNI_STATUS),
the transmission can be started. Finally the flag signaling a received message must
be reset by NOC_RNI_CLEAR.

1.2.2.2. The scheduler

The Scheduler (synchronous_MoC_main.c) contains the main() function of the
node’s software. It has two simple functions: Synchronization with the heartbeat
and executing the processes in the correct order. Additionally to the generated files,
the NoC System Generator copies the driver (kth_avalon_noc_rni_regs.h) and
the target code files belonging to the node to the software project folder. (Should we
put an example?)

1.2.2.3. System Description Header

The file software_configuration.h is generated by the network generator. One
of these system descriptions exist for each node. It is a C header file that specifies
the system specific parameters relevant to the software running on the node. To use
the network functionality by a processes, this file must be included in the code. The
device driver is included by the system description header, and it is not necessary to
include it separately. It contains all the PIDs of the processes running in the system,
and names are assigned to the receive and send channel numbers to make their
usage readable, e.g. recv_channel pO_from_p1l for the channel on which process
0 receives data from process 1. The hardware address of the RNI is mapped to

1.2. Output files

NOC_RNI_BASE, which is used to access the NoC with the commands of the device
driver. The names of the nodes’ hardware resources are also mapped to names that
are easier to read, as they contain the node name.

1.2.2.4. Device Driver

The network operations are abstracted by a device driver. In the actual version for
the Altera Nios II processor the driver is a single .h-file called kth_avalon_noc_rni_
regs.h. Before including this file to the source code the base address (NOC_RNI_BASE)
of the RNI must be set. This section describes shortly the macros provided for the
user. The parameter base — used by every command — is the base address of the
RNI.

NOC_RNI_SEND(base,priority,spid,dpid,buf,msg_size) invokes the RNI to send
the message stored in the channel buffer (buf) to its destination process defined
by its PID (dpid). The PID of the sending process is indicated by the spid
parameter. The message size is given by the msg_size parameter and a priority
is assigned by the priority parameter.

NOC_RNI_STATUS(base) checks the status of a the preceding send command.
Returns "1’ as long the RNI is busy.

NOC_RNI_CHK_MSG(base, channel) checks for a received message channel. Re-
turns "1’ if there is a new message in the buffer.

NOC_RNI_CLEAR(base, channel_id) clears the 'message received’ flag of the
channel (channel_id). Should always be called after the buffer was read.

NOC_RNI_MSG_LENGTH(base, src) returns the message length of the received
message in the channel indicated by src.

NOC_RNI_DEST_PID(base, src) returns the destination PID of a packet in the
receive buffer src.

NOC_RNI_NODE_NR(base) returns the number of the node on which a process

is running.

NOC_RNI_SRC_PID(base, src) returns the source PID of a packet in the the

receive buffer src.

NOC_RNI_READ_SYNCHRONIZER_FLAG(base) reads the synchronization flag
that indicates the occurrence of a synchronization event on the network.

NOC_RNI_CLEAR_SYNCHRONIZER_FLAG(base) clears the synchronization
flag. This must be done before a new heartbeat occurrence can be registered.

1. NoC Platform Generation Process

1.3. Generated NoC performances, power and area
consumption

The generated NoC connects switches with channels which are 32 bits wide. Each
switches is clocked with a 50 MHz clock. Consequently, the NoC has the following
channel bandwidth (b):

Mbits

MB
— 200 ytes

b=32-50 = 1600 (1.1)

In a 2 x 2 NoC this would mean a bisection bandwidth (Bb) equal to 2 -b =
400 MBytes
S

However, if we include the limitation of the current RNI, which can inject 1 packet
every 4 switch cycles (where each switch cycle is 4 clock cycles), we get the following
channel bandwidth:

Mbits MBytes

32
bwithrNT = — - 50 = 100 =125

1.2
4.4 S S (1.2)

This limitation has been included in order to reduce the injection rate below the
deflection knee.

Getting Started Tutorial

2.1. Overview

When you start the GUI, the following window appears:

File Edit View Project Analysis Transformations Generate Tools Help
-
[e38 Project Directory (Not Selected Load Froject System ‘ e | Soﬁwm‘

New Project

Save Project

Hardware View
Software View
Generate 2014
Generate HW

Generate SW

I

Generate All

4 [0] »

Waming: No Xiirux Design Tool available

] Compiling | i |

Figure 2.1.: Main window

2.1.1. Main window menus

A list of menus is available on the top. They are described later in the sections listed
below.:

1. File — enable to save and load projects

2. Getting Started Tutorial

2. Edit — not used in this tutorial

3. View — switch between SW and HW view

4. Project — not used in this tutorial

5. Analysis — not used in this tutorial

6. Transformations — configure hardware accelerators instead of PEs
7. Generate — generate HW and SW components

8. Tools — not used in this tutorial

9. Help — not used in this tutorial

2.1.2. Quick access buttons

The main window has the following quick access buttons that can be used to quickly
access the most commonly used design steps:

1. Load Project — Opens an existing project

2. New Project — Creates a new project

3. Save Project — Saves the current project!

4. Hardware View — Opens the Hardware View
5. Software View — Opens the Software View

6. Generate HW — Generates all necessary HW files for synthesizing the project
using the backend FPGA tool vendor (Altera Quartus or Xilinx ISE)

7. Generate SW — Generates all necessary SW files for compiling using the backend
FPGA tools SDK

8. Generate All — Generates all necessary HW and SW files for backend synthe-
sis/compilation using the target FPGA tool vendor

Tt is suggested to use this button frequently, it should be used before running any Generate
command.

10

2.1. Overview

2.1.3. Information windows

Besides the Buttons and Menus, there are also three information windows:

1. The project window listing all files associated with the project

2. The main information window, having three tabs:

a) The System Tab - displaying the content of the current active system .xml
file, used as intermediate representation of the whole NoC-based MPSoC

system.

b) The Hardware Tab — displaying information and properties (area estimates

etc.) of the target HW implementation.

¢) The Software Tab — displaying information and properties (Worst Case

Execution Times etc.) of the target SW implementation.

3. The console window — Displaying the result of the latest command.

2.1.4. A toy example: the Ring system

® |- ®

PE O PE 1

: I

¥

PE 3 « PE 2

Figure 2.2.: System-level model of the Ring and its implementation on MPSoC

In this first tutorial we will create a very simple system, shown in Figure 2.2. The left
picture represent the functionality of the system using a process network (system-level
model). Each of the four processes sends to the following process an initial value 0.
Then, the receiving process receive the value, increase it by 1 unit, and sends the
result on the following event. So, we expect each process to send (and receive) in

order the values 0,1,2,3,... This system is referred to as Ring.

The Ring example will be executed on a platform composed by 4 processors, connected
through a 2 x 2 NoC. Each processor will run one of the processes composing the

Ring example, as shown on the right picture in Figure 2.2.

11

2. Getting Started Tutorial

2.2. Design flow

To create a design using ForSyDe NSG, the following design flow should be fol-
lowed:

1. Create Project
a) Select target technology
b) Decide NoC properties (Size, Topology, RNI type etc.)
2. Open Hardware View - Edit HW /node properties
3. Open Software View - Add, place and edit SW processes
4. Generate HW and SW for target platform
5. Synthesize platform for target technology
6. Use target tool SDK (or online system) to compile, download and debug SW.

7. If necessary, repeat steps 3-7 until system performance is satisfactory

2.2.1. Creating a new project

Start the NSG tool double clicking on the Desktop icon, or double clicking on
\Ring2x2\bin\ Windows\ GUITest.exe. To create a project, follow these steps:

1. click on the New Project quick access button. A new form asking for a project
file name will open;

2. browse to a folder where you want to save the project files. From now on, we
will refer to this folder with the term workspace. A typical workspace can be
a folder such as \Ring2x2\Examples\test\. Before clicking on the Save button,
insert the name of a XML file which will be used as project file, to save your
project configurations. This step is shown in Figure 2.3. Note: the workspace
folder will contain only the XML intermediate format file, not the output files
of the NSG!

3. After pressing the next button, we have to configure some project settings in
the project settings dialog. Configure your project as shown in Figure 2.4. A
short explanation of each field is described in the following list:

a) System Name — It is recommended that the system name has the
same name as the project XML file (see step 2) to avoid problems
during VHDL /FPGA backend compilation.

b) Board — You may only use one of the boards listed in the dropbox menu

12

2.2. Design flow

File Edit View
-

#- Project Directory (Mot Selected]

Project Analysis

Transformation:

s Generate Tools Help

Lond Project | | S¥otem | Hardware [Software |

a5 Set Project and Working Directory

= =

=

Project Fie Name

-
o) Select Project File

%o 1. « GUITestZ » Examples » test3 ~ [49| [Search test3
C:\Usersrobin \Deskiop\ G Test2\ Examples test 3 test 1mi —~
Organize * New folder = @
4 Favorites Name Date modified Type
Conce B Dty No s match your sech.
& Downloads

Generate Al

< T] »

] Recent Places

i Libraries

Waming: Ne Xiirs Design Todl availzble

[F Documents
&) Music
[Pictures

B videos

File name:

Save as type: | xml fles (*xmi)

Compiling

= Hide Folders

Figure 2.3.:

Creating a new project: workspace

RNI Type
Synchronous/Heartbeat
Agynchronous

Compiling |

NoC Topalogy NoC Dimensions
@ Tous () General #Cals
Dimensionality #Rows
@ 1D @ 3D
a2 ProjectSettingsDialog I =]

Router/Switch Type —

Nostrum ©) Nostrum GS

- System Name test3
Round Robin
) Fault Tolerant
FPGA Technology () Xilinx

Board DE2-115

Tool Version 11.0

Target Direclory € \Users'frobino\Desktop*G Ul Test Z\generated_files3

Browse...

Software Repository C:\Users'frobino"Desktop'G Ul Test2\Examples'test3

MNoC Properties

Type

Size
Topology
Switch Type
RNI Type
Layout

2DNoC "
e Mol Settings
Mesh

Mostrum

Heartbeat

Floating

Browse.

S

Figure 2.4.: Creating a new project: project settings

c) Target Directory — is the directory where the NSG tool will store/-
generate all the necessary files to create a project for the target FPGA

vendor

13

2. Getting Started Tutorial

d) Software Repository — is the directory from which the NSG tool will
search for the software files describing the functionality of your system.
You could use a custom directory on you PC, but in this first tutorial we
suggest to use the same workspace location you used earlier. Doing so,
the XML file and the C files representing the functionality of the system
will be saved in the same folder, in the workspace.

e) NoC Properties — shows the properties if the NoC interconnection. By
default the properties are configured for a 2 x 2 mesh NoC, where a single
PE (Nios or MicroBlaze) is connected. NB: both PEs and NoC properties
can be edited later in the flow.

4. Optional - From the project settings dialog, if you click on the NoC settings
button you can change the NoC interconnection characteristics. NB! Only 3D
and 2D Mesh Type NoCs of Nostrum type are currently available. For this
getting started tutorial, just double check that the settings are the same as
Figure 2.5. Check especially the Maximum Frame Size field: it should be set to
64. If it is not, please change it to 64, so that we’ll have a good margin when
"playing around" with the system. A short description of the of the parameters

NoC Settings 2=
MoC Topalogy NoC Dimensions
@ Mesh © Tous @ General #Cols 2
Dimensionality # Rows 2
® 1D @ 20 ® 3D
= @ % |
Router/Switch Type Madmum FrameSize
@ Mostrum) Nostrum GS 4]
) Round Robin Heartheat Frequency
) Fault Tolerant 1Hz
Board DEZ2-115 -
RNI Type Layout Style
@ Synchronous/Heartbeat @ Foating) Fixed
(© Asynchronous lererated files3 [Browse.. |
- | - s s
NoC Settings
Topology |Mesh
Switch Type |Mostrum
RNI Type |Heartbeat
Layout |Floating
l Accept | Cancel |
Compiling |

Figure 2.5.: Creating a new project: NoC settings

of the NoC which can be customized is in the following list:

a) Topology - Currently, only the Mesh NoC is available, with Dimensionality

2D and 3D.

14

2.2. Design flow

b) Switch Type — Currently, only the Nostrum is available

¢) Maximum FrameSize — The largest amount of information (in words) you
ever intend to send over the NoC in this implementation. The minimum
value is 3. The Maximum value is 512. Use 64 (or 42) if you do not know
what value to set.

d) RNI Type — Select Synchronous for Real-Time Heartbeat applications,
and give the Heartbeat Frequency for your system. A small value of 1 Hz
is good for debugging onboard applications. A large value of 10-100 kHz
is good when debugging IPs using VHDL simulations.

e) Layout Style — Currently, only Floating is available.

5. Save the project before you start with next step by pressing the Save Project
button (if there is an asterisk in the System Tab — System™ your project has
been modified and needs saving). After you have saved, the main window of
the NSG tool should look as the one in Figure 2.6.

- ForSyDe/NoC System Generator v2013 (0,

File Edit View Project Analysis Transformations Generate Tools Help
-
&l Project Directory (Not Selected] System | Hardware | Software|
<Txml version="1.0" encoding="UTF-8"7> =
<system name="test3" >
<parameter name="targetDirectory" value="C:/Users/frobino/Desktop/GUITest2/generatec
b - " value Al
‘parameter name="targetMamfacturer" value="Altera" /=
<parameter name="targetManufacturerVersion" value="11.0" /> E
<parameter name="boardTvpe" value="DE2-115" />
bk
“<noc>
<parameter name="nocType" value="Mesh" /> b
_ S "
Ea——— <parameter nzme—“nocKde \a}ue—FPNoC J=
<parameter name="nrofCols" value="2" />
<parameter name="nrofRows" vale="2" />
<parameter name="switchType" value="Nostrum" />
<parameter name="rniType" valie="Heartbeat" />
<parameter name="LayoutMethod" value="Floating" /> i
< m | * 4| m »
>SaveProject
Compiling |

Figure 2.6.: The main window after the project has been created

2.2.2. The Hardware view

Once the project has been initialized we can customize HW and SW configuration
of the NoC-based MPSoC we want to generate. In this part of the tutorial we will

15

2. Getting Started Tutorial

configure the HW part. We recall from Section 2.1.4 and Figure 2.2 that our goal is
to create a multi processor system composed by 4 PEs, connected through
a 2 x2 NoC. To do so, click on the Hardware view button in the main window. The
hardware view form will open, and it will look like Figure 2.7.

File...
LAYER D |3 /00)

Onchip Onchip
BKB 8KB
Qutput(1 JTAG Output(1) JTAG
HNios Nios
Tiny Tiny
Onchip Onchip
8KB 8KB
Output(1 JTAG Output(1) JTAG
Nios Nios
Tiry Tiny

Figure 2.7.: The Hardware view form

The figure gives an abstract representation of the platform we want to create. It is
composed by 4 rectangular areas, each of them modeling one of the 4 nodes of the
2 x 2 NoC. By default, each node is configured with a Nios/s core, a jtag unit, 8 KB
of on-chip memory (which will contain the code of the application running on the
Nios), and 1 1O, which can be connected to a LED.

We do not have to modify this configuration during this first tutorial, however, if you
double click on one of the rectangular areas representing the node, you will enter
the Node entry form, shown in Figure 2.8, which permits to customize the selected
node.

Through the Node entry form it is possible to include more PEs in the same node, or
to select different processor types (Nios2/s, Nios2/f, Microblaze or Leon3) to create
an heterogeneous MPSoC. It is also possible to configure the size of the on-chip
memory, to increase the number of IOs, or to add your custom IP block in the system.
In this first tutorial we do not need to change the configuration here, so leave it as
shown in Figure 2.8 and close the Node entry form and the Hardware view form, so
that you come back to the main window.

When you are back in the main window, have a look at the Hardware Tab. As shown
in Figure 2.9. This tab is constantly updated every time you change a parameter

16

2.2. Design flow

PIE L gEee

MNode Number

Processor Type(s)
Sizes)

FFU

Memory
Type(s)

Size(s)

JTAG Debug

Performance Counter

Use NoC IRQ

o #
Nios = (None} ~ (None} - PIO Typels) Outpt = (Nore) + (Nome} =
Tiny - - - Sizels) 1
©) Yes @ No ©) Yes @ No ©) Yes @ No Connect to
IP_Block(s) Pathto IP_Block
Onchip - (None) -~ (None) - | Browss.
8132 - - - Browse...
Browse...
@ Yes ©) No Ethemet) Yes @ No
() Yes @ MNo Use © Yes @ No
©) Yes @ No
Accept l Cancel

Figure 2.8.: The Node entry form

File Edit View Project Analysis Transformations Generate Tools Help
[R
Project Directory (Not Selected) Load Project ‘Syﬂa'n‘ Hardwars |Soﬂware|
Altera EP4CE115F29C7 - LUTs: 114430 Memory: 3888 EKbits -~
Estimated Consumed Resources:
| Node | Cpu | Cpu Type | Area | Memory |
I # 1 #1 | (LUTs) | (Bytes) |
| 0| o | {nios,tiny} | 2000 | 8192 | |7
| 11 o | {nios,tiny} | 2000 | 8192 |
Generate 2014 t + + + + +
| 2 | o | {nios,tiny} | 2000 | 8192 |
I 31 o | {nios,tiny} | 2000 | g19z2 |
Gogepieiie) | + : + + + +
B = | NoC - Switches | 4 x 325 | o |
< i v meme | ~ RNIs 14 x 4000 | 1024 | -
»>SaveProject
Compiling |

Figure 2.9.: Hardware Tab, with estimation of consumed resources for the
system modeled in the HW view

in the Hardware view form, so that you can have an estimation of the resources
required by your design, and avoid to try to compile designs which will not fit on
your target FPGA.

17

2. Getting Started Tutorial

2.2.3. The Software view

Once the configuration of the NoC-based MPSoC has been specified, we have to
describe the functionality that the system should implement and specify how this
functionality is distributed onto the PEs of the MPSoC. This is done using a system-
level design entry, where the system is described in terms of abstract functions and
interconnected blocks. Blocks will be used to specify the execution semantics of the
functionality, which is described through C files. This is done using the Software
view form, which can be accessed pressing the quick access button SW view, shown
in Figure 2.10.

—

File.. Generate.. Execution Order.. Transformations...

.
—
SMOC
SMOC =

Code

——

Connector

Inport D

D Outport

Figure 2.10.: The SW view, where we describe a system in terms of abstract
functions and interconnected blocks

We recall from Section 2.1.4 and Figure 2.2 that our goal is to create a system
composed by four processes (tasks), connected in a circle (as a ring). Each
of the four processes sends an initial value 0 to the next process. The receiveing
process receives the value, increase it by 1 unit, and sends the result on the following
event. In this example, the event is a Heartbeat tick, i.e., each processes will execute
its functionality and send the result to the following process when triggered by a
HeartBeat tick. For debugging purpose, we have selected a HeartBeat frequency of
1Hz, i.e. each process will execute once every second. See the HeartBeat Frequency
setting in Figure 2.5.

The software view provides different blocks (called process templates) on the left
column. Process templates are the blocks which provide the execution semantics
to a specific function. In this case we want a process template which is stimulated

18

2.2. Design flow

to execute on the synchronous HB tick event, and which delivers its result to the
following process on the next HB tick event. This behavior (semantics) is given by
the SMOC process template.

You instantiate a SMOC process by clicking on its template in the left column, then
drag and drop it in the region you would like to have it. The SMOC is released
when you click again. For example, click on the SMOC process template in the
left column, move it to the upper left rectangular region, and click again to release
the process template in that region, reaching the exact same situation shown in
Figure 2.10.

What you are doing here is to map a specific process (task) on a specific node of the
MPSoC platform. In fact, the 4 rectangular regions in the Software view represent
the 4 nodes of the 2 x 2 NoC-based MPSoC created through the Hardware view.
Repeat the previous procedure to add other SMOC process templates in the other
three regions®. You should get the software view looking like Figure 2.11. The lines

o SoftwareViewDialog (5]
File.. Generate.. Execution Order.. Transformations...
pl pl

sMoC sMoc

SMOC

Code
p3
Connector SMOC
A
Inport D
D Outpaort

Figure 2.11.: Adding SMOC process templates and connecting them

between process templates shown in Figure 2.11 are connectors, showing the flow of
the data through the processes. Click on the connector button on the left column
of the software view, and then click on the right side of the SMOC placed on Node
0 (p0) and click on the left side of the SMOC placed on Node 1 (pl). Continue
connecting pl to p2, and you will reach the exact same situation as the one drawn
in Figure 2.11. To complete the Ring, continue connecting p2 to p3 and p3 to pO.

2 If you drop SMOC process templates wrongly, you can always click on them and press the Delete
button on your keyboard to delete them.

19

2. Getting Started Tutorial

Once this is done you can save your project clicking on File and then Save, as shown
in Figure 2.12

File.. | Generate.. Execution Order.. Transformations..

Mew... pi
1
ezl hoc sMoc
‘ Save.. |
Save As...

Figure 2.12.: Saving the SW view

Process Name File Name {unsaved changes) Mare file(s) ta include/copy when compiling - ("h.".c)
p0 ple
Node Nr Cpu Nr Source Langauge
0 0 @c SystemC () Haskel
Hardware Requirements Channels
[] FIO -
51 UART/DEBUGGER E Charnel Name el el Channet Type Cpointer Variable Nams
[l giggzlgch_couwTER n d o 0 ot o it p0_outD
— recv_channel_pll_from_p3 IN - nt 0_nD
Include Filefs) - h) = S o
Process Intialization (Embedded Code)
i -
i
il ™ Define reset. ie.. process initialization values
i
i
void pO_init{void)
i
(*p0_outD)=0:
SEND(p0_outD);
H -

Process Main (Embedded Code)
i
i

i * Define the process main cycle function
i

i
void pU_main(void)

(*p0_outD)=(*p0_inD):
SEND(pD_outD)

e —

Figure 2.13.: The dialog to describe the functionality of each process/task

20

2.2. Design flow

L .
o) Synchronous/Heartbeat MoC Dial ol e

Process Name File Name (unsaved changes) More file(s) to include/copy when compiling - "h.”.c)

p0 plc

Node Nr Cpu Nr Source Langauge

0 0 @cC SystemC Haske

Hardware Requirements Channels

[C] PIO

| UART/DEBUGGER ‘él Channel Name g:;‘i g?ua;zel Channel Type C-pointer Variable Name

[] PERFORMANCE_COUNTER =

Bl ETHERNET i end_channel_p0 _to_p ouT |r_| |\nt ‘pﬂ_oum |
recv_channel_p0_from_p3 IN - |\m ‘pﬂ_\nﬂ |

Include Filels) - (*h)

Process Initialization (Embedded Code)

" o
i+ B
1" Define reset, i.e., process initialization values

i+

"
void pO_init(void)
i

m

(*p0_out0)=0:

SEND(p0_outD);

x -
Process Main (Embedded Code)

i+ -
"
void p0_main(void)

(*p0_out0)=0:

intinput_p7_value = NOC_RNI_CHK_MSG(NOC_RNI_BASE recv_channel_p0_from_p3):
alt_printf("P0 something received?: %x \n".input_p7_value);
if (input_p7_value>0) [/ Something for me?

{

m

(p0_outD)=Cp0_in0)+1:
alt_printf("P0 received?: %x \n"(*p0_in0)):
SEND(p0_outl),

[l - H i l

Figure 2.14.: Customizing the functionality of each process/task

Up to now, we have just described the mapping of processes/tasks onto the NoC-
based MPSoC platform. However we have still to specify the functionality of each
process, which is: receive the input, increase it by one unit, send it to the following
process. This is done by double clicking on the SMOC process templates we have
placed in the four regions of the Software view. For example, if you double click on
the SMOC p0, you will get the form shown in Figure 2.13.

In this form you can specify the functionality of each task, adding your own C
code. Note that the NoC system Generator has created for you already a lot of
code, which is used to synchronize the process execution on the HeartBeat ticks,
automatically send and receive data after being triggered from the HeartBeat tick,
etc. What you need to do now is only to add your own custom functionality. For
example, if you modify the code in the Process Main window as shown in Figure 2.14,
you will add your own functionality (increase by one), plus some other debug print
statements.

Once you have modified the functionality of p0 as shown in Figure 2.14, you can
click on save file. This will save the functionality of the process as a C file in your

21

2. Getting Started Tutorial

-
@Uv . » GUITest2 » Examples b test3 w | 43 [l Search testa Jo)
Orgenize * Includeinlibray v Sharewith v Bum Newfolder = 0 @
A Favorites il Name Date modified Type Size
B Desktop L] & p0.c 2014-05-0210:41 C Source File 4KB
& Downloads] test3xml 2014-05-0210:32 XML Document 2KB
\ % Recent Places
|
|| 5 Libraries L

Figure 2.15.: Functionality of p0 saved as C file in your workspace

workspace folder, as shown in Figure 2.15.

Modify the other SMOC processes, and coustomize their main C file with the code
provided in Appendix A.

Once you have saved the process functionality for all 4 processes (p0 to p3), close
the Software view to return to the main window. Now you have described the
overall system, and it is time to run the NoC system Generator tool to automatically
generate a working prototype!

B =
Fie Edit View Project Analysis Tranformations Generate Tools Help
ol - [=
Projct Drectay (ot Selected] Syetem [Tiardrare | Sorwas -
2beied,) @le | » GUITest? » generated files » [#3][Search gen)
</noc
New Project or . 8
<node nr="0" mem_size=| Organize ¥ Include in library ¥ Share with + Burn New folder = o
. g ny
P Desktop ~ Name ’ Date modified Type
& Downloads
. | kth_avalon_2DNoC_ 2@ 201405021044 File folder
%l Recent Places
[testBugsf 201405021044 QSFFile
ardare View
" [testt.qsys 2014-05-0210:44 QSYSFile
Cparameter pame=Repol) (5 Liberies 513 w:y 201405021044 SDCFil
v | I Tou B | [P b .
<process neme="pl" nodfl)y || testB.sopc 21405021044 SOPC File
<process name="p2" nodf| = L | tesiael 21405021044 TCLFile
Generate HW <process name="p3" nod{ B Videos
<software> L
8 Computer
- - = Generale Al e &, Local Disk (C)
e Removable Disk |
Cresting timing constraint fl test3 sde i target drectory £ frobino (Vug.kth
Creating pinning constraint and synthesis flow file test 31l in target directory &2 students (Wug.kt
- Local Disk (@)
e “C:\Users\frobinc Disktop G Test 2\generated _fies2\keh_avalon_2DNoC_2e2x g’
5 apps (hug.kthse| |
Cresting devioe drverfor kin_avalon_2DNoC_2<2xc1 -
Ingartiate User IP Blocks 2 ww-students
NoC Generation Completed
[Sy r— a2 A, C
l & items
Compiling |

Figure 2.16.: Automatically generate HW and SW with the NoC system
Generator

Before you move to the next step, please check that the XML file represented in the
XML Tab of the main window is exactly the same as the one shown in Appendix A.
If it is not, you can edit the XML file manually, or use the HW view and SW view of
the tool to modify it following the steps presented in this guide. Then, from the main
window click on the button Generate 2014. As shown in Figure 2.16, this will generate
the Hardware description files in your Target Directory folder. Please, check that
they have been generated properly. Then, from the main window press the button

22

2.2. Design flow

Generate SW. In the same folder, a new folder containing the software files will be
generated, Again, check that the folder is there before proceeding with the next step.
You can close the NoC system Generator main window now.

2.2.4. Synthesize the platform to FPGA

After the completion of the previous step, we have generated a model/image of the
HW and SW in the target platform’s language. In this specific case it is composed
by:

1. hardware:

a) VHDL files, describing the on-chip interconnection (NoC) coherent with
the user specification;

b) .sopc and/or .gsys files, used by the Altera tool suite to interconnect
resources (Nios2 processors) to peripherals and to the NoC. This files
provide a high level model of the multi processor platform;

c) .qgsf file, providing the pin assignment for the selected FPGA board;
2. software:

a) drivers for the multi-processor platform, providing to the user an API to
access the platform services (e.g. send/receive messages)

b) the schedulers (one for each Nios resource) scheduling the execution of
the functionality on the HB event.

Feel free to browse the generated files in the Target Directory.

Initially you will configure the FPGA as a multi-processor platform. This can be
done using the Quartus tool suite.

1. start the Quartus II software double clicking the icon on the Desktop of your
computer. If the icon is not there, click on the Windows start button and
search for Quartus II, then click on the icon;

2. when Quartus opens you can click on the New project wizard button, or simply
select File — new project.

3. in the Directory, Name Top-Level Entity form, shown in Figure 2.17, specify as
working directory your Target Directory, the one containing the output files
of the NSG. As project name and top-level design entity, specify the System
Name you specified in the NSG project (see Section 2.2.1), which is the same
name of the .sopc or .gsys files in the Target Directory. Then press Next;

4. in the Family and Device settings form, select the exact same configuration as
shown in Figure 2.18. Then press Finish;

23

2. Getting Started Tutorial

Directory, Name, Top-Level Entity [page 1 of 5]

What is the working directory for this project?

C:fUsers/frobino/Desktop/GUITest2/generated _files3 [1]
What is the name of this project?

test3] =
What is the name of the top-evel design entity for this project? This name is case sensitive and must exactly match the entity name in the design file.

test3 [ee]

[<tk |[det> J[Esh |[cancel |[mep |

Figure 2.17.: Specify directory and project name in Quartus I1

Family & Device Settings [page 3 of 5]

Select the family and device you want to target for compilation.

Device family Show in "Available devices' list

Eamily: Cydone IV E ~] Padege: [any -]
Devices: |AII i | Pin count: [Any ']

Target device Speed grade: [Any -]

(@) Auto device selected by the Fitter Show advanced devices

@ Specific device selected in 'Available devices' list [[] HardCopy compatible anly

Other: nfa

Ayailable devices:

HName Core Voltage LEs I.Iser 1/0s Embedded multiplier 9-bit elements PLI ~
EP4CE115F2318L 1.0V 11448 281 532
-
EP4CE115F23C8 v 114480 529 3981312 332
EPACE115F29C3L 1.0v 114480 529 3981312 532 4
EP4CE115F29CoL 1.ov 114480 529 3981312 532 4
EP4CE115F2917 v 114480 529 3981312 532 4 D
EPACE115F2918L 1.0v 114480 529 3981312 532 4 &7
< m »

Companion device

HardCopy: |

[] Limit DSP & RAM to HardCopy device resources

[<pox | [met> J[gosh |[concel [[b |

Figure 2.18.: Target FPGA board settings in Quartus I1

5. once you are back in the Quartus main window, click on Tools — License setup
to access the License manager. As shown in the top of Figure 2.19, add the

24

2.2. Design flow

]

Category:

4 General License Setup

EDA Tool Options
Fonts License file: @liclict kth.se; C:\Users\tmpuser01\DesktopiFinal_LABYicense_nocgen.dat [I]
Headers & Footers Settings
Internet Connectivity [Use LM_LICEMSE_FILE varisble: @licLict.kth.se I
Libraries Current license
License Setup)) [Web License Update]
Preferred Text Editor License Type: Full Version
'T'roooclsssélgtﬁngs Expiration: 10-ul-2022 Begin 30-day Grace Period
Host ID Type: System ID
4 Messages
Suppression Host ID Value: B09c50 [wait for floating licenses
E;:;S Licensed AMPP /MegaCore functions:
Vendor Product -
| Altera (GAFT) C2H Compiler {(D012) 2013.07
| Altera (6AFT) Legacy DDR2 SDRAM Memory Controll... 2022.07 F
Altera (6AFT) Legacy DDR/DDR2 Shared Library (00... 2022.07
f Altera (6AFT) DR 11 SRAM Controller (0044) 202207
Altera (6AFT) SerialLite IT {00AD) 2022.07
Altera (BAFT) RLDRAM IT Memory Controller (DOAC) — 2022.07
Altera (BAFT) DDR High Performance Memory Contr... 2022.07
Altera (GAFT) DDR.2 High Performance Memory Cont... 2022.07 =
Altera (6AFT) DDR.3 High Performance Memory Cont... 2022.07
Altera (6AFT) FIR. Compiler I (00D8) 202207 \
Altera (6AFT) FIR Compiler (0012) 202207 |
| Altera (6AFT) NCO Compiler (0014) 2022.07
ll Altera (AFT) FFT/IFFT (0034) 2022.07
Altera (BAFT) Legacy DDR SDRAM Memory Controlle... 2022.07 R
1BDA 0001 2014.05 2
4 | 1 | r

Figure 2.19.: Setup the NSG license in Quartus

Project Navigator & X

Entity
Cyclone IV E: EP4CE115F29CT
test3 .

Figure 2.20.: Open your project in SOPC Builder

path to the license_nocgen.dat file in the License file field and check that the
Vendor 1BDA Produce 0001 is in the list of licensed functions. You can find
the license_nocgen.dat file in your Final LAB folder;

. from the Quartus main window, double click on the project in the window
(shown in Figure 2.20) to open the SOPC Builder;

analyze the system (it is also shown in Figure 2.21): it is composed by 4 Nios
processors, each one of them connected to a scratchpad memory and some
peripherals, as specified through the GUL. A NoC component interconnects the
resources. Everything has been created and connected automatically through
the NSG tool in the previous step;

click on the Generate button to start the generation of HDL code describing
the modeled system;

25

2. Getting Started Tutorial

F}J Altera SOPC Builder - test3.sopc® (C\Users\frobinc\DesktophC

File Edit Module System View Tools Niosll Help

System Contents | Sysiem Generation|

Component Liorary Target Clock Seftings.
3 3¢/ | Device Famiy:Cycone VE = | | Name Source MHz
Project sys_clk External 50,0 -
1 New component..
NoC
Library
- Avalon Verification Sute S —— — Description Clock Base End IRQ
Bridges and Adapters.
Debug Components E cpu_0_0 Mios Il Processor [k -
Digital Signal Processing instruction_master |Avalon Wemory happed Master sys_clk
Interface Protocols ——————| data_master \Avalon Memory Mapped Master el 120 0 180 31 =
Legacy Components jtag_debug_module \Avalon Memory Mapped Slave [clk] 0x0000e800 |0x0000eEEE L
& Memories and Memory Controller: Bl jtag_uart_0_0 HTAG UART [clk]
Werlin Components ——— avalon_jiag_slave Avalon Wemory Happed Slave sys_clk 000004050 [0x00004057
& Peripherals. B pio_0_0 PIO (Paraliel V0] ekl
PLL — 51 |Avalon Memory Mapped Slave sys_clk 0x00002000 |0x0000200%
) Processor Addions. B onchip_memory_0_0 On-Chip Memory (RAM or ROM) [clkt]
#-Processors 81 |Avalon Memory Mapped Slave sys_clk 0x00040000 (0x00041£5E
“BLS B cpu_1_0 Hios Il Processor o]
Video and Image Processing (—< instruction_master |Avalon Memory Mapped Master sys_clk
FiP——y) ————— dnta master union iemars anned aster ietet 120 0 T 2
| Edit. + add.. X Rremove | | I Ean.. | a|V¥v | x Fiter: Default

‘i, Warning: cpu_0_0: Custom Instruction components can be edited through the Component Editor.
i\, Warning: cpu_1_0: Custom hnstruction components can be edited through the Component Editor
%, Warning: cpu_2_0: Custom hstruction components can be edited through the Component Editor.
4\, Warning: cpu_3_0: Custom hstruction components can be edited through the Component Editor
@ info: onchip_memaory_0_0: User is required to provide memory infiziization fiis for memory .
@ Info: anchip_memary_0_0: Memory wil be intialized from onchip_memory_0_0 hex

1ot b 100 a4 i tislization flas

[o) oo

>

Figure 2.21.: SOPC Builder representation of the system modeled through
NSG

9. once the generation is successfully terminated, close (and, if required, save) the
sopc project;

@ Quartus I - G/Users/frobino/Desktop/GUTest2/generated files3/test3 - test3 W

File Edit View Project | Assignments | Processing Tools Window Help =

ODeE ﬁ =] 3:2'? Device...

Project Navigator & Settings... Ctrl+Shift+E

Entity TimeQuest Timing Analyzer Wizard. ..
Cydone IV E: EPACEL15

g

Assignment Editor Ctrl+5hift+a
Pin Planner Ctrl+5hift+N

Remove Assignments...

Figure 2.22.: Access the pin planner

10. back again in the Quartus II tool main window, click on Assignment — pin
planner (Figure 2.22). In this window you can notice that the pin assignment
has been done automatically for you, as shown in Figure 2.23. Close this
window after you checked it matches with Figure 2.23;

11. back once again in the Quartus II tool, double click on "compile", shown
in Figure 2.24. This will start the process of generating a bitstream file to
configure the FPGA as a quad-processor platform, in the form of a .sof file.
This operation will take around 10 minutes to complete, so take this occasion
to ask questions or grab a coffee;

26

2.2. Design flow

Epin Planner - Ci/Users/frobino/Desktop/GUITe
File Edit View Processing Tools Window Hep &
Groups @ X Top View - Wirz Bond
Mamed: * - Cydone IV E - EP4CET115F25CT
Node Name
[E <<NEW aroup s
‘3]
]
< [l »
X Named: = - Edit: X ~/| |Fi|her:[Pins:aH -
=
Mode Name Direction Location Rezerved I/0 Bank WREF Group IO Standard
0 sys_ck Unknown PIN_Y2 2 B2_NO 2.5V (default)
reset_n Unknown PIN_M23 [B&_MN2 2.5V (default)
<<new node x>
HH
)
L]
i
£
[
v =« i b
0% 00:00:00

Figure 2.23.: Pin assignment has been done automatically

Tasks B X

Flow: [Cumpilaﬁun -] [Customize...

Task
Compile Des.ign|
B analysis & Synthesis
P Fitter (Place & Route)
P Assembler (Generate programming files)
P TimeQuest Timing Analysis
P EDA Netlist Writer
@ Program Device (Open Programmer)

Figure 2.24.: Compile the project with Quartus II

12. once the compilation is successful, you can close the Quartus

by NSG

tool and get ready

to program your FPGA. Check that your FPGA is ON and it is connected
though USB to the PC. Check also that the USB cable is connected with the
Blaster port of your FPGA, and not with the Device one. Then, from the
desktop of your PC, click on the Windows start button and search for NiosII
shell. Open one of this shell and browse to the Target Directory containing

27

2. Getting Started Tutorial

i s Nio 105 110:p1. tce] L N === = ===

bhash-3.1%

bash-2.1% nios2—configure—sof
Searching for SOF file:

i

n .
test3.zof

Info:
Info: RBunning Quartus II Programmer
Info: Command: quartus_pgm ——no_bhanner —mode=jtag —o p;test3_sof
Info: Using programming cable "USB-Blaster [USB-BA1"
Info: Using programming file test3.sof with checkszum BxBBAE?7217 for device EP4CE
115F2901
Started Programmer operation at Fri May 02 11:45%:1% 2614
Configuring device index 1
Device 1 contains JIAG ID code BxB2BF78DD
Configuration succeeded — 1 dewvice{s?» configured
Successfully performed operation<s>
Ended Programmer operation at Fri May B2 11:45:26 20814
Quartus II Programmer was successful. B errors. B warnings
Info: Peak virtual memory: 138 megabytes
Processing ended: Fri May B2 11:4%:26 2614
: Elapsed time: B@:808:0%
: Total CPU time <on all processors): BA:BA:@1

Figure 2.25.: Configure your FPGA as J processors system using Nios shell

the Quartus project and a .sof file. Run the command nios2-configure-sof?,
as shown in Figure 2.25. You have successfully configured your FPGA as a
quad-processor system.

2.2.5. Compile, download and debug SW

In this part of tutorial you will use the generated SW (driver, schedulers and IF-C
files). You will compile the C code targeting each processor and download the
compiled code on each of the processors. Once the software is downloaded, the
system is completed and becomes fully functional.

In order to accomplish this step, there are 2 alternatives:

1. use the Nios shell, a command line interface. This alternative is faster and can
be efficiently integrated in a set of scripts, however does not have the benefits
of a user interface;

2. use an Eclipse based environment, to configure the processors one by one;

2.2.5.1. Nios shell
The 4 processors platform generated through the Altera tools is configured using the
following notation:

1. CPU_0_0, jtag_0_0, cpu_id 1, jtag_id 1

2. CPU_1_0, jtag_1_0, cpu_id 2, jtag id 2

3 Another way to complete this step is to use the programmer tool in Quartus II to program the
FPGA with your brand new .sof file.

28

2.2. Design flow

3. CPU_2 0, jtag 2 0, cpu_id 3, jtag_id 3
4. CPU_3_0, jtag 3_0, cpu_id 0, jtag_id O

—la] x '@ Altera Nios 11 EDS 11.0sp1

JIAG UART on cable
St

ance 1
to terminate>

tera Nios I EDS 11.0sp1 [gecd]

-0 pitestd.sof

h checksun BxBOES?217 for device EP4CH
ri May B2 11:45:19 20814

F78DD
eviceds) configured

11:45:26 2014
1_Programner errors, @ varnings
virtual meno;

Figure 2.26.: Use Nios shells to compile, download and debug the 4 processors
platform

Open 5 Nios shells (double click on the Desktop icon 5 times, or search it through
the Windwos button). 4 shells will be used to connect to the 4 processors, 1 shell to
execute the commands. As shown in Figure 2.26, for each of the 4 shell dedicated to
one of the processors, run 1 of the following commands:

e to connect to CPU 0 0: nios2-terminal -i 1
e to connect to CPU_1 0: nios2-terminal -i 2
e to connect to CPU_2 0: nios2-terminal -i 3
e to connect to CPU 3 0: nios2-terminal -i 0

You are now connected to the 4 processors through 4 terminals. You will use the
5th shell to compile and download the generated .elf files (the compiled code) on
each processor. First, compile the software files using the run__software.sh script.
You find this file in the Ring_2x2 folder. Copy this file in the folder containing
the generated files (.sopc, .gsys, .sof), which contains also the Software folder.
Open the run_ software.sh using a text editor, and check that the field system name
matches your system name. If not, edit it so that it does. Then, use the Nios shell
to browse to the folder, and execute the script through the command:
./run_software.sh -b

The compilation takes a while but it creates a new folder called Software_ projects

29

2. Getting Started Tutorial

containing the compiled software (.elf files). Then, to download the compiled
software on the different Nios processors, you use the following commands, in
sequence:

e to download the compiled software to CPU_0_0: nios2-download -g -i 1
<path_to_file>/Node_0_0.elf

e to download the compiled software to CPU_1_0: nios2-download -g -i 2
<path_to_file>/Node_1_0.elf

e to download the compiled software to CPU_2_0: nios2-download -g -i 3
<path_to_file>/Node_2_0.elf

e to download the compiled software to CPU_3_0: nios2-download -g -i 0
<path_to_file>/Node_3_0.elf

where < path_to__file > is the folder path where the .elf files are contained (i.e.
C:\NsG\GeneratedFiles\Software_projects\Node_0_0\Node_0_0.elf). You should
see the system start to run on the 4 terminals.

2.2.5.2. Eclipse based environment

This part is not yet documented.

30

Synthesize a Simulink model

3.1. Design flow overview

Step 1
Create your system-level model with Simulink;
Simulate the system using Simulink;
Use the Simulink Embedded Coder to generate C code which models the
functionality of the system:;

Step 2
Use the user interface of the NoC System Generator to generate an XML
description of the target platform;
Use the NoC System Generator to:

e generate the HDL and project files enabling Quartus to configure the
FPGA as an HeartBeat compliant multi-processor system;

e generation of process wrappers (main C files scheduling the C code mod-
eling the functionality of the system);

Step 3
Extraction of rt_onestep function from the Embedded Coder generated C
files;
Embed the rt_onestep function in the process wrapper, scheduling its execu-
tion on the HB ticks;

Step 4
Compilation of the HDL for FPGA;
Compilation of the C code for each PE;

Step 5
Configure the FPGA;
Download and run the compiled SW for each PE;
Collect the prototype results and compare with the initial simulation;

31

3. Synthesize a Simulink model

3.2. Step 1

U MaTLaE R20

Lk HI]:I (b [Find Files & E i, New Variatle
£ open variable =

New New Open |{-|Compare Import Save
Seript ~ Data Workspace L7 Clear Workspace

FILE VARIABLE
<@ = 55| L. » C » Users » frobino » Desktop » Simulink2 »
Current Folder

Narnd Browse for folder

MoCsysGen
%l fir_filter.mdl
) init_filter.m
ﬂ zip_ert_functicns.m

Figure 3.1.: Browse to the right folder with MATLAB

Open MATLAB (search for matlab using the window start button). Using the
"browse for folder" button, indicated in Figure 3.1, browse to the folder named
"Simulink", containing the .mdl and .m files. Double click on the .mdl file to open
the Simulink model. The DSP application used in this case study is taken from a

= | E |
By fir_filker p =3 —— e o =]

File Edit View Display Diagram Simulation Analysis Code Tools Help

E-8 ¢ BEe-=E 4® P ®- » @ ~| @~
fir_fiter

@ |[Zalfir_filter » -
@

EZ

=3

-

Scope2

outt 1 ‘m ‘m ‘E
L L =

Fitter
—b

ToWorkspace:

-

Scopel

»

Ready 100% FixedStepDiscrete

Figure 3.2.: The Simulink system we will synthesize to a 2 x 2 NoC-based
FPGA

Simulink tutorial, and it is shown in Figure 3.2. A sinusoidal source block generates
a sinusoidal signal. Then, some random noise (generated by a random source block
and filtered through a digital high pass FIR filter) is added to the sinusoidal signal,
creating a noisy signal. The noisy signal is then filtered by a low pass FIR filter,
which removes the noise component.

32

3.2. Step 1

- | 5 |
#y, fir filter 4 - § — N —
File Edit View Display Diagram [Simulation | Analysis Code Tools Help
% Update Diagram CrleD
-8 @ Ol @ = » -| g~
E g @ Model Configuration Parameters Ctrl+E 9 =
M 1

Figure 3.3.: Access the configuration parameters in Simulink

(&} Configuration Parameters: fir filter/Configuration (Active) -]
Select: Simulation time il
Start time: 0.0 Stop time: 5
Data Import/Export
* Optimization Solver options
> Diagnostics
Hardware Implementation Type: [F\xedfstep '] Solver: [d\screte (no continuous states) -
Model Referencing
* simulation Target Fixed-step size (fundamental sample time): 0.001

Code Generation

Tasking and sample time options

Periodic sample time constraint: lunconstralned ']

Tasking mode for periodic sample times: [Auto ']

[7] Automatically handle rate transition for data transfer

[Higher priority value indicates higher task priority

Figure 3.4.: Solver configuration to enable automated synthesis through NSG

In order to synthesize the Simulink model to a NoC-based platform through the NSG
tool, the Simulink system should be simulated using the discrete fixed step solver. To
check that the simulation is properly configured click on Simulation — configuration
parameters, as shown in Figure 3.3. Make sure that everything is configured as in
Figure 3.4, then close this form. Before running the simulation we must configure the

i i - -)
@ H ﬁ {5 @ @2 @ Search Documentation PB

@ ED:' | [Find Files
Mew New Open Ij_-'?:l Compare VARIABLE | CODE | SIMULINK | ENVIRONMENT | RESOURCES
il - -

Script - - - - -
FILE

<@ 5= v v Users v frobing ¢ Desktop b Simulink2 » v 0

Current Folder (UMl Command Window

Mame =
MeCsysGen
[*& fir_filter.mdl
f] init_filter.m
ﬂ zip_ert_functions.m

hipassMum
lopassMum

>> init_filter

f{>>|

Figure 3.5.: Configure the filters taps

taps of the filter. This is done in MATLAB, writing in the command window (and
consequently running) the init_filter command, as shown in Figure 3.5. Then we
can come back to Simulink and run the simulation for 5 seconds, pressing on the
round green button shown on the top of Figure 3.2.

Figure 3.6 shows the most significant signals of the modeled system. Figure 3.6a
shows the signal produced by the sinusoidal source block. Figure 3.6b the sinusoidal
signal disturbed with noise. Figure 3.6¢ shows the output signal of the Filter block

33

3. Synthesize a Simulink model

(a) Source output (b) Noise output (c) Filter output

Figure 3.6.: Signals in the modeled system

which is a the sinusoidal signal where the high frequency component (noise) has been
filtered away. You can get the same graphs from your Simulink simulation clicking
on the Scope blocks in the Simulink model.

Source Source with noise
Outt In1 Outt In1 Outl P D
4 Output
Source sin . Noise . Filter :

Figure 3.7.: Map the Simulink model onto the 4 processors platform

Once you are comfortable (and happy) with the simulation results we start the
synthesis flow to NoC-based MPSoC on FPGA. Our goal is to map the modeled
system onto a 2x 2 NoC-based MPSoC, as shown in Figure 3.7. Each subsystem
will be mapped on a different PE of the multi processor system. We recall that the
first subsystem, Source, contains the sinusoidal source block. The second, Noise,
contains the noise generator and the high pass FIR filter. The third, Filter, contains
the low pass FIR filter, while the fourth is just printing out the results (and will be
omitted in this tutorial).

The first step is to use the Embedded Coder to generate generates one rt_onestep
C function for each subsystem, modeling its functionality. This can be done from the
Simulink model, right clicking on each of the 3 subsystems (Source, Noise and Filter),
and selecting C/C++ code — Build subsystem, as shown in Figure 3.8. When a new
folder pop up, just press Build and wait for the process to be completed. Once you
have done this for each of the 8 subsystems the tool will generate 3 folders called
Source__ert_ rtw, Noise_ert_ rtw, and Filter_ert_ rtw, containing the rt_onestep C
function modeling the functionality of each subsystem, as shown in the right column

34

3.2. Step 1

o fir_filter UpEN In New 13 r - Ol B
Open In New Window
File Edit Viey Tools Help
& Cut Chrl+X ~ AsA
= o
R TR R e @~ @
fir_filter Paste Crl+V
Comment Cut Ctrl+ Shift+X -
Delete Del
Find Referenced Variables...
Subsystem & Model Reference 3
=3
Format [| |
R &L Fli 2 j
otate ip) |
Arrange 3 |
On Mask » In1Qut1 4’@
Library Link 3 Scope
Sour Filter
Signals & Ports 3
>
Requirements 3 Y —
Coverage 3
Model Advisor 3
» Fixed Peint Tool...
Ready C/C++ Code v [l Build This Subsystem Discrete

Figure 3.8.: Using the Embedded Coder

Iﬂ Lz, new variable

- - -
FILE VARIABLE

@0‘“‘\"&“&"‘3' CODE | SIMULINK | ENVIRONMENT | RESOURCES

-

<o EE | Ly G v Users b frobino » Desktop » Simulink2 »

Current Folder

Workspace ®

#%#% Created executable: ../Filter0.exe

#%##%# Creating HTML report file Filter0 codeger
¥> zip_ert_functions

fross | -
<[l r 1

MName = @ New to MATLABT Watch this Video, see Examples, or read Getting Start] | Name =
FilterD_ert_rtw . | | £l scopeData P
NoCsysGen #%% Writing source file Filterd.c (@] buildinfo <
Noise_ert_rtw #%#% Writing header file Filter0_private.h 1E| buildOpts 4
slprj . EE hipasshum <
Source_ert_rtw ### Writing source file Filter0 data.c {1 lopasshium “
L4 ert_main 0. 0.zip ### Writing source file ert main.c tH simout 9
[y ert_main 1 0zip . - %temp\ataMakeﬁla !
ﬁ;m—e%a:-:-o'z'p ### TLC code generation complete. tout 9
|1, Fitet0.zip ##%¥ Creating project marker file: rtw_proj.tn
%l fir_filter.mdl #%##% Evaluating PostCodeGenCommand specified i
| fir_filter.mdl.r2010b .
ﬂiﬂjiﬂm #%% Processing Template Makefile: C:\Program . - -
(57 Woise.exe #%#% Creating FilterO.mk from C:\Program File:s
_i;Noise.zip ### Building Filter0: .\FilterO.bat Command History & I
Source.exe EH%-- 2014-03-19
1) Sourcezip C:\Users\frobino\Desktop\Simulink2\Filter0_ez init Filter
zip_ert_functions.m Zip ;rt Funct
init filter.m (MATLAB S ¥ C:\Users\frobino\Desktop\5imulink2\Filter0_ex [
C:/PROGRA~1/MATLAB/R2013a\sys\lcc\bin\lce -
€: /PROGRA~1/MATLAB/R2013a\sys'\ Lec\bin\lce —c init_filter
C:/PROGRA~1/MATLAB/R2013a\sys\lec\bin\lee -c zip ert_funcy
C:/PROGRA~1/MATLRB/R2013a\sys\lee\bin\leclnk B-%-- 2014-03-19

init_filter

Successful completion of build procedure |7|[|@-3-- 2014-05-12

init_filter
zip _ert_func

i »

Figure 3.9.: Embedded Coder results and zip__ert _functions command

35

3. Synthesize a Simulink model

of Figure 3.9.

Before moving forward, use MATLAB to run the zip_ert_functions function,
running the command in the MATLAB shell as shown in Figure 3.9. This function
simply takes the _ert_ rtw folders previously created and zip and rename them. For
example, Source_ert_rtw is zipped and renamed to ert_main_0_0.zip, so that in a
later stage of the flow this functionality is mapped to the PEQ, i.e. Node 0 0. Check
in your workspace folder that the 3 .zip files have been created, as shown in the right
column in Figure 3.9. You can close Matlab and Simulink at this point and move on
with the NSG tool to synthesize the system on FPGA.

3.3. Step 2

Programs (1)
B8 cmd.exe
Files (66)
| Fitter0.mic
|] Maise.mk
|| Seurce.mk
|| libhal_bsp.a
|‘h alt_sys_wrappers.h
|é alt_fentl.c
|| libhal_bsp.a
|& alt_sys_wrappers.h
& att_fentl.c
| libhal_bsp.a
|ﬂ alt_sys_wrappers.h
|.§ alt_fentlc
|| libhal_bsp.a

2 See mare results

|cmd x| Logoff | » |

Figure 3.10.: Open command shell in Windows

Open a command shell (Windows start button, search for cmd), as shown in Fig-
ure 3.10, and browse through the cd command to the folder Simulink\NoCsysGen)\.
In this folder you will find an executable named generate_noc_v2013.exe and an
intermediate representation XML file. Theoretically this XML file could have been
created using the GUI of the NSG tool, as we did for the Ring tutorial. However,
to shorten the tutorial time, we already provide you the XML file representing
the 4 processors system where we want to map the Simulink model functionality.
Open the XML file using a editor of your choice (Wordpad, etc.). Check that the
targetDirectory parameter is pointing to the right folder. For example, if your
computer username is frobino and your Simulink folder is on the Desktop, the right
folder is:

C : \Users\ frobino\ Desktop\Simulink\NoC'sysGen\generated__ files

The Repository parameter is not used in this case, so you can leave it pointing to

36

3.4. Step 3

a non existing folder. In fact, what we want to do now, is just to generate a HW
representation of the platform together with the process wrappers. Then we will
provide the functions to wrap, but this is done in step 3.

BN C\Windows\system32\cmd.exe | S

Microsoft Windows [Uersion 6.1.76811
Copyright (c> 2809 Microsoft Corporation. All rights reserved.

C:sUserssfrobino?cd DesktopsSimulink2~MoCsysGen

C:sUserssfrobinosDesktopsSimulink2%HoCsysGentgenerate_noc_v2B@13.exe —sw —hu —

version=2014 ——noPLL ——verboze Cosummit_2x2.xml_

Figure 3.11.: Run NSG in the shell

As shown in Figure 3.11, with the shell in the Simulink\ NoCsysGen\ folder, run
the following command:

generate_noc_v2013.exe --sw --hw --version=2014 --noPLL --verbose Cosummit_2x2.xml

This will run the NSG tool and it will create all files needed to generate a 4 processors
SoC on FPGA in the target directory (pointed by the targetDirectory param-
eter in the XML file). You can now close the command shell.

3.4. Step 3

Check that all files have been generated in the Simulink\ NoC'sysGen\generated__files\
folder. It should look similar to the one shown in Figure 2.16, from the previous
tutorial. If you browse in the generated_ files\Software\ folder, you will find 4
folders where the SW part of the process wrappers are implemented. However they
are not wrapping any functionality yet. What we have to do now is to include the
functionality we generated earlier through Simulink and the Embedded Coder in the
process wrappers.

To achieve this goal, browse to the folder containing the ert__main_X_X.zip files
created at the end of Step 1. Following the commands shown in Figure 3.12, unzip
the 3 files in the generated__files\Software\ folder. In addition, copy the provided
final_multi_proc_Simulink2013a.py file in the same folder. You should reach
the situation presented in Figure 3.13a. If the Software folder looks like the one in
Figure 3.13a. double click on the .py file. This script will automatically include the
Simulink C code in the process wrappers, leaving you with 4 folders left, as shown in
Figure 3.13b.

37

3. Synthesize a Simulink model

(S
) | Extract Compressed (Zipped) Folders
Select a Destination and Extract Files
—~ — Files wil be extracted to this folder
@U" v Simulink2 »
s\frobino\D: :_main_0_0 Browse...
Organize ¥ [Open v Sharewith Bum Newfolder
= [T Show extracted files when complete
- Name
I7 Favorites
Ml Desktop Filter)_ert_rtw
18 Downloads MoCsysGen
i Recent Places MNoise_ert_rtw
slprj
4 Libraries Source_ert_rtw
| Documents (1) ert non
o Music 1 e Open
[Pictures 3 e Open in new window
n

(a) Unzip ert_main_X_X.zip files... (b) ...to the correct folder.

Figure 3.12.: Unzip ert_main_X_X.zip files to the right folder

.&
» SimulinkZ » MoCsysGen » generated_files » Software »

Uv‘ . » Simulink2 » NoCsysGen » generated files » Software »
Organize « | | Open = Share with = Burn New folder
" Name = Organize ¥4 Open ~ Share with + Burn MNew folder
i Favorites =
-
Pl Desktop . ert_main_0_0 - Favorites [
& Downloads ert_main_1_0 Bl Desktop Node_0_0
%l Recent Places | ert_main_2.0 4 Downloads 3 Node 1.0
. Mode 0.0 5| Recent Places MNode 2 0
I 4 Libraries Mode_1_0 Node 3 0
| Documents Mode 2 0 4 Libraries || creste-elfs.sh
J‘- Music . Node 3 0 3 Documents | create-hex-files.sh
I [Pictures |] create-elfssh & Music | @ final_multi_proc_Simulink2013a.py
B videos | create-hex-files.sh =] Pictures
7 final_multi_proc_Simulink2013a.py B Videos LAEN T | 3

(a) Software folder after unzipping files. (b) Software folder after running .py file.

Figure 3.13.: Wrap the Simulink functionality in the process wrappers

3.5. Step4 and 5

Now it is time to prototype the Simulink model onto FPGA. This step can be
done using the Quartus tool and following the exact same instructions described in
Sections 2.2.4 and compiling the SW using the instructions in Section 2.2.5. When
compiling the software, be careful to use the run_software_simulink.sh script,
instead of the previously provided run_software.sh. In addition, differently from
the previous step, when downloading the code to each PE, it is sufficient to load only
3 PEs using the following 3 commands:

e nios2-download -g -i 1 <path_to_file>/Node_0_0.elf to download the
compiled software to CPU_0_ 0;

e nios2-download -g -i 2 <path_to_file>/Node_1_0.elf to download the
compiled software to CPU_1_0;

38

3.5. Step 4 and 5

e nios2-download -g -i 3 <path_to_file>/Node_2_0.elf to download the
compiled software to CPU_2_0;

@8 Altera Nios I EDS 11.05p1 [gcs G Altera Nios T EDS 11.0sp1 [gecd]

[P1 Nothing received
[P1 Nothing received

P1 value received: 8.800008
P1 value sent: B.843682
b button . PL value received: 0.453990
P1 value 9.440711
P1 value 0_sa017
IllF1 value sent: 8.770153
0_987688
9.947172

P2 Nothing
P2 Nothin.
P2 Nothis

g ed
ng received
ng received

Lelf
device 1, instance @x82

Lelf
device 1. instance @xB1i

Figure 3.14.: Run NSG in the shell

The result of the emulation are shown in Figure 3.14. The upper left shell is
Node 0_ 0, emulating the Source block of the Simulink model. As seen from the
output, it generates a sinusoidal signal with values between -1 and +1. The upper
right shell is Node_1_0, emulating the Noise block of the Simulink model. As
seen from the output, the values received are the one sent from the Source block.
The sent values represent the noisy signal, in fact the values are not representing
anymore a sinusoidal signal and sometimes they exceed the values between -1 and
+1. The lower left shell is Node_2_ 0, emulating the Filter block of the Simulink
model. As seen from the output, the values received are the one sent from the
Noise block. The sent values represent the filtered signal. In fact the values are
representing again a sinusoidal signal and they are most of the time contained between
between -1 and +1 (a bit of noise is still in the signal because of the low order of the
filter).

The upper plot in Figure 3.15 shows the plotted values from Node_0_0 (Source) and
Node_1_0 (Noise). The lower plot in Figure 3.15 shows a comparison between the
output signal of the Simulink model (red line) and the output signal of the prototype
running on 4 PEs (output of Node_3_0 ,Filter).

39

. Synthesize a Simulink model

Source and Source with noise

4 T T T T T T T

_2 | 1 | 1 | 1 |
a a 10 15 20 25 aa 35

Cwtput with 1 processor and 4 processors

40

45

Z T T T T T T T

Figure 3.15.: Simulated vs emulated results

40

40

45

Appendices

41

Ring Tutorial Appendix

Listing A.1: XML description of the Ring system

<?xml version="1.0" encoding="UTF-8"7>
<system name="test2" >

<parameter
<parameter name="targetManufacturer" value="Altera" />
<parameter name="targetManufacturerVersion" value="11.0" />
<parameter name="boardType" value="DE2-115" />
<hardware>
<noc>
<parameter name="nocType" value="Mesh" />
<parameter name="nocKind" value="2DNoC" />
<parameter name="nrofCols" value="2" />
<parameter name="nrofRows" value="2" />
<parameter name="switchType" value="Nostrum" />
<parameter name="rniType" value="Heartbeat" />
<parameter name="LayoutMethod" value="Floating" />
<parameter name="FrameSize" value="64" />
<parameter name="Heartbeat" value="1 Hz" />
</noc>
<node nr="0" mem_size="8192" jtag="yes" perf_counter="no" pio="{o,1}"
<node nr="1" mem_size="8192" jtag="yes" perf_counter="no" pio="{o,1}"
<node nr="2" mem_size="8192" jtag="yes" perf_counter="no" pio="{o,1}"
<node nr="3" mem_size="8192" jtag="yes" perf_counter="no" pio="{o,1}"
</hardware>
<software>

noc_irq="no

noc_irg="no"
noc_irqg="no"
noc_irg="no"

name="targetDirectory" value="C:/Users/frobino/Desktop/GUITest2/generated_files2" />

cpu="{nios,tiny}"
cpu="{nios,tiny}"
cpu="{nios,tiny}"
cpu="{nios, tiny}"

<parameter name="Repository" value="C:/Users/frobino/Desktop/GUITest2/Examples/test2" />

<process name="p0" node="0"
<process name="pl" node="1"
<process name="p2" node="3"
<process name="p3" node="2"
</software>
</system>

cpu= non
cpu= non
cpu= non
cpu= non

moc="Synchronous"
moc="Synchronous"
moc="Synchronous"
moc="Synchronous"

sources="{p3}"
sources="{p0}"
sources="{p1}"
sources="{p2}"

targets="{p1}"
targets="{p2}"
targets="{p3}"
targets="{p0}"

files="{p0.
files="{pl.
files="{p2.
files="{p3.

43

c}"
c}ll
c}"
c"

/>

/>
/>

/>

/>
/>

A. Ring Tutorial Appendix

Listing A.2: Process main PO

void pO_main(void)

{
(*p0_out0)=0;

int input_p7_value = NOC_RNI_CHK_MSG(NDC_RNI_BASE,recv_channel_pO_from_pS);
alt_printf ("PO_something received?: %x, \n",input_p7_value);

if (input_p7_value>0) // Something for me?

{

(*p0_out0)=(*p0_in0)+1;
alt_printf ("PO_received?: %z, \n", (*p0_in0)) ;
SEND (p0O_out0) ;
}
};

Listing A.3: Process main P1

void pl_main(void)

{
(*p1_out0)=0;

int input_p7_value = NOC_RNI_CHK_MSG(NOC_RNI_BASE,recv_channel_pil_from_pO) ;
alt_printf ("P1_ something received?: %x \n",input_p7_value);

if (input_p7_value>0) // Something for me?

{

(*xpl_out0)=(*pl_in0)+1;
alt_printf ("P1l received?: %x, \n", (*p1_in0));
SEND(p1_out0) ;
}
};

Listing A.4: Process main P2

void p2_main(void)

{
(*p2_out0)=0;

int input_p7_value = NOC_RNI_CHK_MSG(NOC_RNI_BASE,recv_channel_p2_from_pl);
alt_printf ("P2_ something received?: %x, \n",input_p7_value);

if (input_p7_value>0) // Something for me?

{

(*p2_out0)=(*p2_in0)+1;
alt_printf ("P2 received?: %x, \n", (*p2_in0));
SEND (p2_out0) ;
}
};

44

Listing A.5: Process main P3

void p3_main(void)

{
(*p3_out0)=0;

int input_p7_value = NOC_RNI_CHK_MSG(NOC_RNI_BASE,recv_channel_p3_from_p2);
alt_printf ("P3_ something received?: %x,\n",input_p7_value);

if (input_p7_value>0) // Something for me?

{

(*p3_out0)=(*p3_1in0) ;
alt_printf ("P3_ received?: %x, \n", (*p3_in0));
SEND (p3_out0) ;
}
};

45

	NoC Platform Generation Process
	Input files
	processes description C files (PD-Cs)
	System description XML file (SD-XML)

	Output files
	The Hardware Description Files (HDFs)
	The Software Projects
	The IF-C files
	The scheduler
	System Description Header
	Device Driver

	Generated NoC performances, power and area consumption

	Getting Started Tutorial
	Overview
	Main window menus
	Quick access buttons
	Information windows
	A toy example: the Ring system

	Design flow
	Creating a new project
	The Hardware view
	The Software view
	Synthesize the platform to FPGA
	Compile, download and debug SW
	Nios shell
	Eclipse based environment

	Synthesize a Simulink model
	Design flow overview
	Step 1
	Step 2
	Step 3
	Step 4 and 5

	Appendices
	Ring Tutorial Appendix

