
1NoC Platform Generation Process

System description
(System XML file)

Processes description
C files

NoC System Generator

Hardware Description Files
(.sopc & VHDL)

Software Project
Folders

Driver

System Descr. Header

Scheduler

Code of Processes

Back-End Tools

Figure 1.1.: The Platform Generation Process of the NoC System Generator
and the related files.

Figure 1.1 gives an overview of the platform generation process. The NoC System
Generator requires two inputs. The system description XML file (SD-XML) file, and
a group of processes description C files (PD-C).

The SD-XML file contains the system-level description of the system we want to gen-
erate: a process network, representing the application, together with details regarding

1

1. NoC Platform Generation Process

the NoC-based MPSoC where we want to map the processes of the process network.
It will be described in Section 1.1.2. The PD-C files describe the functionality of
each process of the process network. The NoC System Generator requires at least
one PD-C file for each process of the process network.

From the two inputs, the NoC System Generator produces two outputs: the Hardware
Description Files (HDFs) and the Software Projects. These two outputs can be easily
integrated in commercial FPGA synthesis tools (Altera QSYS and Xilinx XPS) to
generate a working prototype of the system-level model, running on the selected
FPGA.

1.1. Input files

1.1.1. processes description C files (PD-Cs)

The PD-C files are C or C++ files provided by the user, describing the functionality
of the processes (actors) of the process network. PD-C files can be generated by
from a system-level framework such as Simulink or ForSyDe.

1.1.2. System description XML file (SD-XML)

The structure of different parts of the system description XML file are shown in
listing 1.1 and listing 1.2. The first section of listing 1.1, just after the leading
<system> tag, specifies the system parameters and the target FPGA platform. These
parameters define the folder path where to generate the output files, the system name,
the target FPGA manufacturer, the FPGA board type, etc.

The configuration of the hardware is embedded into the <hardware> tag. The first
part (within the <noc> tag) specifies the parameters of the network-on-chip, such as
topology, size, dimension. The framesize parameter defines the maximum size of
any packet of the input and output buffers of the system. Data through the NoC
is currently sent with a bitwidth of 32 bits (bandwidth of the connection between
switches). If all processes in the system communicate one single integer data (or a
float single precision), a framesize of 3 is sufficient (2 headers and 1 flit composed by
32 bits each). If the processes communicate using only one double precision data,
a framesize of 4 is sufficient (2 headers and 2 flits composed by 32 bits each). If
the processes communicate using a vector of 4 double precision data, a framesize of
10 is sufficient (2 headers and 8 flits composed by 32 bits each). The GlobalSync
parameter sets the heartbeat frequency.

The following part of the SD-XML file specifies details of the different NoC nodes.
Each node has its own node element, which describes the hardware connected to that
specific node. The main parameter here is the processing element (PE) connected to

2

1.1. Input files

Listing 1.1: Structure of the System description file of the NoC generator
<?xml version="1.0" encoding="UTF-8"?>
<system name="NoC_2x2">

<!-- Platform specification -->
<parameter name="param1" value="val_1" />
<parameter name="param2" value="val_2" />
...

<hardware>

<noc>
<parameter name="nocType" value="Mesh" />
<parameter name="nocKind" value="2DNoC" />
<parameter name="nrofCols" value="3" />
<parameter name="nrofRows" value="3" />
<parameter name="framesize" value="64"/>
<parameter name="GlobalSync" value="1␣Hz"/>
...

</noc>

<node nr="0" cpu="{nios,tiny}" ... />
<node nr="1" cpu="{nios,tiny}" ... />
...

</hardware>

<software>
...

</software>
</system>

node. Further parameters specify additional hardware connected to the PE, such as
memory, PIO, JTAG, IP blocks, and so on.

The SD-XML file part shown in listing 1.2, — embedded within the <software>
tag — specifies the mapping of the actors of the process network (PD-C files a.k.a.
software processes) to the MPSoC nodes. An example is shown in Listing 1.2, where
four software processes are mapped to three MPSoC nodes. The directory where the
functionlity of the actor (PD-C files) can be found is specified by the Repository tag.
Then every actor (sofware process) is specified by a process tag. An actor (process)
is configured by the process name (name), its model of computation (moc), the PE
on which it runs (node), and the IF-C file name containing the process functionality.
The software processes from which the process receives data and the processes it
sends data to are specified by the source and target tags. This information is
used to assign the input and output buffers to the associated process. The order in

3

1. NoC Platform Generation Process

which the processes are specified here, is also the order of execution on the nodes
(scheduling within a node).

Listing 1.2: Process Declaration within the Target Description File
<software>
<parameter name="Repository" value="D:/NoC/SW" />
<process name="p0" moc="Synchronous" node="0"

sources="{p3}" targets="{p1}"
files="{process_0.c}" />

<process name="p1" moc="Synchronous" node="0"
sources="{p0}" targets="{p2}"
files="{process_1.c}" />

<process name="p2" moc="Synchronous" node="1"
sources="{p1,p3}" targets="{p3}"
files="{process_2.c}" />

<process name="p3" moc="Synchronous" node="2"
sources="{p2}" targets="{p0,p2}"
files="{process_3.c}" />

</software>

1.2. Output files

Both the Hardware Description Files and the Software Projects are used by the
back-end tools provided by the FPGA vendor to create a running system on the
selected FPGA.

1.2.1. The Hardware Description Files (HDFs)

The Hardware Description Files consist of VHDL files that describe the Network-
on-Chip interconnection and the whole system descriptions (PEs, memories, etc)
described through different formats depending on the targeted FPGA vendor. In the
case of Altera FPGAs, the system description is a .qsys file that is processed by the
Altera QSYS tool. In the case of Xilinx FPGAs, the system description is composed
by .mhs and .mss files that are processed by the Xilinx XPS tool. From the HDFs
it is possible to automatically create the bitstream to configure the FPGA using the
FPGA vendor tools.

1.2.2. The Software Projects

Beside the hardware description files, the NoC System Generator creates a software
project for every PE in the NoC. The software project for a specific PE is composed

4

1.2. Output files

by:

• the IF-C files describing the functionality mapped to the specific PE;

• a scheduler, named synchronous_MoC_main.c;

• the System Description Header, named software_configuration.h;

• device drivers.

1.2.2.1. The IF-C files

The IF-C files mapped on the specific process have to be written in a certain way
to work on the generated NoC-based system. The basic structure of a IF-C file is
shown in Listing 1.3. For a detailed example, the examples of the network generator
can be consulted.

Listing 1.3: Structure of the process code provided to the network generator
#include "software_configuration.h"

void p0_init(void)
{
// Perform initializations

// Write initial message to RNI
while (NOC_RNI_STATUS(NOC_RNI_BASE)!=0);
NOC_RNI_SEND(...);

};

void p0_main(void)
{

int recv_value = NOC_RNI_CHK_MSG(...);
if (recv_value > 0)
{

// Read message from RNI
// Process message
// Write message to RNI

while (NOC_RNI_STATUS(NOC_RNI_BASE)!=0);

NOC_RNI_SEND(...);
NOC_RNI_CLEAR(...);

}
else
{
// Absent value

};
};

5

1. NoC Platform Generation Process

Firstly, System Description Header (software_configuration.h) is included. As
described in Section 1.2.2.3, this file loads the network driver and defines a set of helper
functions and macros used in the IF-C file. The IF-C file code continues defining two
functions, scheduled by the scheduler. The first function, px_init(void), is called
once when the process starts executing. It performs the necessary initialization to
guarantee a proper start of the system. As the initialization can be seen as the first
cycle of the synchronous execution, the initial values of delay elements also have
to be sent to the network. This done by the three steps: (1) writing the message
to the send buffer of the RNI, (2) wait until the RNI is ready to send, and (3)
initiate transmission to the network. It is important that the execution time of
the init function is not longer than the heartbeat period. The second function,
px_main(void), is executed once every heartbeat period. The structure of the
px_main(void) file is slightly more complex. Firstly, the RNI is checked if a message
was received. This is done by calling the driver macro NOC_RNI_CHK_MSG. If there was
no message received, this is interpreted as an absent value in the synchronous model
of computation (or a heartbeat violation occurred). In these cases the else branch
is executed. In the case of a message was received, the message is read from the
receive buffer of the RNI, processed and written back to the send buffer of the RNI.
As soon as the RNI is not busy with sending any previous value (NOC_RNI_STATUS),
the transmission can be started. Finally the flag signaling a received message must
be reset by NOC_RNI_CLEAR.

1.2.2.2. The scheduler

The Scheduler (synchronous_MoC_main.c) contains the main() function of the
node’s software. It has two simple functions: Synchronization with the heartbeat
and executing the processes in the correct order. Additionally to the generated files,
the NoC System Generator copies the driver (kth_avalon_noc_rni_regs.h) and
the target code files belonging to the node to the software project folder. (Should we
put an example?)

1.2.2.3. System Description Header

The file software_configuration.h is generated by the network generator. One
of these system descriptions exist for each node. It is a C header file that specifies
the system specific parameters relevant to the software running on the node. To use
the network functionality by a processes, this file must be included in the code. The
device driver is included by the system description header, and it is not necessary to
include it separately. It contains all the PIDs of the processes running in the system,
and names are assigned to the receive and send channel numbers to make their
usage readable, e.g. recv_channel_p0_from_p1 for the channel on which process
0 receives data from process 1. The hardware address of the RNI is mapped to

6

1.2. Output files

NOC_RNI_BASE, which is used to access the NoC with the commands of the device
driver. The names of the nodes’ hardware resources are also mapped to names that
are easier to read, as they contain the node name.

1.2.2.4. Device Driver

The network operations are abstracted by a device driver. In the actual version for
the Altera Nios II processor the driver is a single .h-file called kth_avalon_noc_rni_
regs.h. Before including this file to the source code the base address (NOC_RNI_BASE)
of the RNI must be set. This section describes shortly the macros provided for the
user. The parameter base – used by every command – is the base address of the
RNI.

NOC_RNI_SEND(base,priority,spid,dpid,buf,msg_size) invokes the RNI to send
the message stored in the channel buffer (buf) to its destination process defined
by its PID (dpid). The PID of the sending process is indicated by the spid
parameter. The message size is given by the msg_size parameter and a priority
is assigned by the priority parameter.

NOC_RNI_STATUS(base) checks the status of a the preceding send command.
Returns ’1’ as long the RNI is busy.

NOC_RNI_CHK_MSG(base, channel) checks for a received message channel. Re-
turns ’1’ if there is a new message in the buffer.

NOC_RNI_CLEAR(base, channel_id) clears the ’message received’ flag of the
channel (channel_id). Should always be called after the buffer was read.

NOC_RNI_MSG_LENGTH(base, src) returns the message length of the received
message in the channel indicated by src.

NOC_RNI_DEST_PID(base, src) returns the destination PID of a packet in the
receive buffer src.

NOC_RNI_NODE_NR(base) returns the number of the node on which a process
is running.

NOC_RNI_SRC_PID(base, src) returns the source PID of a packet in the the
receive buffer src.

NOC_RNI_READ_SYNCHRONIZER_FLAG(base) reads the synchronization flag
that indicates the occurrence of a synchronization event on the network.

NOC_RNI_CLEAR_SYNCHRONIZER_FLAG(base) clears the synchronization
flag. This must be done before a new heartbeat occurrence can be registered.

7

1. NoC Platform Generation Process

1.3. Generated NoC performances, power and area
consumption

The generated NoC connects switches with channels which are 32 bits wide. Each
switches is clocked with a 50 MHz clock. Consequently, the NoC has the following
channel bandwidth (b):

b = 32 · 50 = 1600 Mbits
s = 200 MBytes

s (1.1)

In a 2 × 2 NoC this would mean a bisection bandwidth (Bb) equal to 2 · b =
400 MBytes

s

However, if we include the limitation of the current RNI, which can inject 1 packet
every 4 switch cycles (where each switch cycle is 4 clock cycles), we get the following
channel bandwidth:

bwithRNI = 32
4 · 4 · 50 = 100 Mbits

s = 12.5 MBytes
s (1.2)

This limitation has been included in order to reduce the injection rate below the
deflection knee.

8

2Getting Started Tutorial

2.1. Overview

When you start the GUI, the following window appears:

Figure 2.1.: Main window

2.1.1. Main window menus

A list of menus is available on the top. They are described later in the sections listed
below.:

1. File – enable to save and load projects

9

2. Getting Started Tutorial

2. Edit – not used in this tutorial

3. View – switch between SW and HW view

4. Project – not used in this tutorial

5. Analysis – not used in this tutorial

6. Transformations – configure hardware accelerators instead of PEs

7. Generate – generate HW and SW components

8. Tools – not used in this tutorial

9. Help – not used in this tutorial

2.1.2. Quick access buttons

The main window has the following quick access buttons that can be used to quickly
access the most commonly used design steps:

1. Load Project – Opens an existing project

2. New Project – Creates a new project

3. Save Project – Saves the current project1

4. Hardware View – Opens the Hardware View

5. Software View – Opens the Software View

6. Generate HW – Generates all necessary HW files for synthesizing the project
using the backend FPGA tool vendor (Altera Quartus or Xilinx ISE)

7. Generate SW – Generates all necessary SW files for compiling using the backend
FPGA tools SDK

8. Generate All – Generates all necessary HW and SW files for backend synthe-
sis/compilation using the target FPGA tool vendor

1It is suggested to use this button frequently, it should be used before running any Generate
command.

10

2.1. Overview

2.1.3. Information windows

Besides the Buttons and Menus, there are also three information windows:

1. The project window listing all files associated with the project

2. The main information window, having three tabs:

a) The System Tab - displaying the content of the current active system .xml
file, used as intermediate representation of the whole NoC-based MPSoC
system.

b) The Hardware Tab – displaying information and properties (area estimates
etc.) of the target HW implementation.

c) The Software Tab – displaying information and properties (Worst Case
Execution Times etc.) of the target SW implementation.

3. The console window – Displaying the result of the latest command.

2.1.4. A toy example: the Ring system

PE 0 PE 1

PE 2PE 3

P0 P1

P2P3

0 1 2 3

0 1 2 3

0123

0123

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

P0 P1

P2P3

Figure 2.2.: System-level model of the Ring and its implementation on MPSoC

In this first tutorial we will create a very simple system, shown in Figure 2.2. The left
picture represent the functionality of the system using a process network (system-level
model). Each of the four processes sends to the following process an initial value 0.
Then, the receiving process receive the value, increase it by 1 unit, and sends the
result on the following event. So, we expect each process to send (and receive) in
order the values 0,1,2,3,. . . This system is referred to as Ring.

The Ring example will be executed on a platform composed by 4 processors, connected
through a 2× 2 NoC. Each processor will run one of the processes composing the
Ring example, as shown on the right picture in Figure 2.2.

11

2. Getting Started Tutorial

2.2. Design flow

To create a design using ForSyDe NSG, the following design flow should be fol-
lowed:

1. Create Project

a) Select target technology

b) Decide NoC properties (Size, Topology, RNI type etc.)

2. Open Hardware View - Edit HW/node properties

3. Open Software View - Add, place and edit SW processes

4. Generate HW and SW for target platform

5. Synthesize platform for target technology

6. Use target tool SDK (or online system) to compile, download and debug SW.

7. If necessary, repeat steps 3-7 until system performance is satisfactory

2.2.1. Creating a new project

Start the NSG tool double clicking on the Desktop icon, or double clicking on
\Ring2x2\bin\Windows\GUITest.exe. To create a project, follow these steps:

1. click on the New Project quick access button. A new form asking for a project
file name will open;

2. browse to a folder where you want to save the project files. From now on, we
will refer to this folder with the term workspace. A typical workspace can be
a folder such as \Ring2x2\Examples\test\. Before clicking on the Save button,
insert the name of a XML file which will be used as project file, to save your
project configurations. This step is shown in Figure 2.3. Note: the workspace
folder will contain only the XML intermediate format file, not the output files
of the NSG!

3. After pressing the next button, we have to configure some project settings in
the project settings dialog. Configure your project as shown in Figure 2.4. A
short explanation of each field is described in the following list:

a) System Name – It is recommended that the system name has the
same name as the project XML file (see step 2) to avoid problems
during VHDL/FPGA backend compilation.

b) Board – You may only use one of the boards listed in the dropbox menu

12

2.2. Design flow

Figure 2.3.: Creating a new project: workspace

Figure 2.4.: Creating a new project: project settings

c) Target Directory – is the directory where the NSG tool will store/-
generate all the necessary files to create a project for the target FPGA
vendor

13

2. Getting Started Tutorial

d) Software Repository – is the directory from which the NSG tool will
search for the software files describing the functionality of your system.
You could use a custom directory on you PC, but in this first tutorial we
suggest to use the same workspace location you used earlier. Doing so,
the XML file and the C files representing the functionality of the system
will be saved in the same folder, in the workspace.

e) NoC Properties – shows the properties if the NoC interconnection. By
default the properties are configured for a 2× 2 mesh NoC, where a single
PE (Nios or MicroBlaze) is connected. NB: both PEs and NoC properties
can be edited later in the flow.

4. Optional - From the project settings dialog, if you click on the NoC settings
button you can change the NoC interconnection characteristics. NB! Only 3D
and 2D Mesh Type NoCs of Nostrum type are currently available. For this
getting started tutorial, just double check that the settings are the same as
Figure 2.5. Check especially the Maximum Frame Size field: it should be set to
64. If it is not, please change it to 64, so that we’ll have a good margin when
"playing around" with the system. A short description of the of the parameters

Figure 2.5.: Creating a new project: NoC settings

of the NoC which can be customized is in the following list:

a) Topology - Currently, only the Mesh NoC is available, with Dimensionality
2D and 3D.

14

2.2. Design flow

b) Switch Type – Currently, only the Nostrum is available

c) Maximum FrameSize – The largest amount of information (in words) you
ever intend to send over the NoC in this implementation. The minimum
value is 3. The Maximum value is 512. Use 64 (or 42) if you do not know
what value to set.

d) RNI Type – Select Synchronous for Real-Time Heartbeat applications,
and give the Heartbeat Frequency for your system. A small value of 1 Hz
is good for debugging onboard applications. A large value of 10-100 kHz
is good when debugging IPs using VHDL simulations.

e) Layout Style – Currently, only Floating is available.

5. Save the project before you start with next step by pressing the Save Project
button (if there is an asterisk in the System Tab – System* your project has
been modified and needs saving). After you have saved, the main window of
the NSG tool should look as the one in Figure 2.6.

Figure 2.6.: The main window after the project has been created

2.2.2. The Hardware view

Once the project has been initialized we can customize HW and SW configuration
of the NoC-based MPSoC we want to generate. In this part of the tutorial we will

15

2. Getting Started Tutorial

configure the HW part. We recall from Section 2.1.4 and Figure 2.2 that our goal is
to create a multi processor system composed by 4 PEs, connected through
a 2× 2 NoC. To do so, click on the Hardware view button in the main window. The
hardware view form will open, and it will look like Figure 2.7.

Figure 2.7.: The Hardware view form

The figure gives an abstract representation of the platform we want to create. It is
composed by 4 rectangular areas, each of them modeling one of the 4 nodes of the
2× 2 NoC. By default, each node is configured with a Nios/s core, a jtag unit, 8 KB
of on-chip memory (which will contain the code of the application running on the
Nios), and 1 IO, which can be connected to a LED.

We do not have to modify this configuration during this first tutorial, however, if you
double click on one of the rectangular areas representing the node, you will enter
the Node entry form, shown in Figure 2.8, which permits to customize the selected
node.

Through the Node entry form it is possible to include more PEs in the same node, or
to select different processor types (Nios2/s, Nios2/f, Microblaze or Leon3) to create
an heterogeneous MPSoC. It is also possible to configure the size of the on-chip
memory, to increase the number of IOs, or to add your custom IP block in the system.
In this first tutorial we do not need to change the configuration here, so leave it as
shown in Figure 2.8 and close the Node entry form and the Hardware view form, so
that you come back to the main window.

When you are back in the main window, have a look at the Hardware Tab. As shown
in Figure 2.9. This tab is constantly updated every time you change a parameter

16

2.2. Design flow

Figure 2.8.: The Node entry form

Figure 2.9.: Hardware Tab, with estimation of consumed resources for the
system modeled in the HW view

in the Hardware view form, so that you can have an estimation of the resources
required by your design, and avoid to try to compile designs which will not fit on
your target FPGA.

17

2. Getting Started Tutorial

2.2.3. The Software view

Once the configuration of the NoC-based MPSoC has been specified, we have to
describe the functionality that the system should implement and specify how this
functionality is distributed onto the PEs of the MPSoC. This is done using a system-
level design entry, where the system is described in terms of abstract functions and
interconnected blocks. Blocks will be used to specify the execution semantics of the
functionality, which is described through C files. This is done using the Software
view form, which can be accessed pressing the quick access button SW view, shown
in Figure 2.10.

Figure 2.10.: The SW view, where we describe a system in terms of abstract
functions and interconnected blocks

We recall from Section 2.1.4 and Figure 2.2 that our goal is to create a system
composed by four processes (tasks), connected in a circle (as a ring). Each
of the four processes sends an initial value 0 to the next process. The receiveing
process receives the value, increase it by 1 unit, and sends the result on the following
event. In this example, the event is a Heartbeat tick, i.e., each processes will execute
its functionality and send the result to the following process when triggered by a
HeartBeat tick. For debugging purpose, we have selected a HeartBeat frequency of
1Hz, i.e. each process will execute once every second. See the HeartBeat Frequency
setting in Figure 2.5.

The software view provides different blocks (called process templates) on the left
column. Process templates are the blocks which provide the execution semantics
to a specific function. In this case we want a process template which is stimulated

18

2.2. Design flow

to execute on the synchronous HB tick event, and which delivers its result to the
following process on the next HB tick event. This behavior (semantics) is given by
the SMOC process template.

You instantiate a SMOC process by clicking on its template in the left column, then
drag and drop it in the region you would like to have it. The SMOC is released
when you click again. For example, click on the SMOC process template in the
left column, move it to the upper left rectangular region, and click again to release
the process template in that region, reaching the exact same situation shown in
Figure 2.10.

What you are doing here is to map a specific process (task) on a specific node of the
MPSoC platform. In fact, the 4 rectangular regions in the Software view represent
the 4 nodes of the 2 × 2 NoC-based MPSoC created through the Hardware view.
Repeat the previous procedure to add other SMOC process templates in the other
three regions2. You should get the software view looking like Figure 2.11. The lines

Figure 2.11.: Adding SMOC process templates and connecting them

between process templates shown in Figure 2.11 are connectors, showing the flow of
the data through the processes. Click on the connector button on the left column
of the software view, and then click on the right side of the SMOC placed on Node
0 (p0) and click on the left side of the SMOC placed on Node 1 (p1). Continue
connecting p1 to p2, and you will reach the exact same situation as the one drawn
in Figure 2.11. To complete the Ring, continue connecting p2 to p3 and p3 to p0.

2 If you drop SMOC process templates wrongly, you can always click on them and press the Delete
button on your keyboard to delete them.

19

2. Getting Started Tutorial

Once this is done you can save your project clicking on File and then Save, as shown
in Figure 2.12

Figure 2.12.: Saving the SW view

Figure 2.13.: The dialog to describe the functionality of each process/task

20

2.2. Design flow

Figure 2.14.: Customizing the functionality of each process/task

Up to now, we have just described the mapping of processes/tasks onto the NoC-
based MPSoC platform. However we have still to specify the functionality of each
process, which is: receive the input, increase it by one unit, send it to the following
process. This is done by double clicking on the SMOC process templates we have
placed in the four regions of the Software view. For example, if you double click on
the SMOC p0, you will get the form shown in Figure 2.13.

In this form you can specify the functionality of each task, adding your own C
code. Note that the NoC system Generator has created for you already a lot of
code, which is used to synchronize the process execution on the HeartBeat ticks,
automatically send and receive data after being triggered from the HeartBeat tick,
etc. What you need to do now is only to add your own custom functionality. For
example, if you modify the code in the Process Main window as shown in Figure 2.14,
you will add your own functionality (increase by one), plus some other debug print
statements.

Once you have modified the functionality of p0 as shown in Figure 2.14, you can
click on save file. This will save the functionality of the process as a C file in your

21

2. Getting Started Tutorial

Figure 2.15.: Functionality of p0 saved as C file in your workspace

workspace folder, as shown in Figure 2.15.

Modify the other SMOC processes, and coustomize their main C file with the code
provided in Appendix A.

Once you have saved the process functionality for all 4 processes (p0 to p3), close
the Software view to return to the main window. Now you have described the
overall system, and it is time to run the NoC system Generator tool to automatically
generate a working prototype!

Figure 2.16.: Automatically generate HW and SW with the NoC system
Generator

Before you move to the next step, please check that the XML file represented in the
XML Tab of the main window is exactly the same as the one shown in Appendix A.
If it is not, you can edit the XML file manually, or use the HW view and SW view of
the tool to modify it following the steps presented in this guide. Then, from the main
window click on the button Generate 2014. As shown in Figure 2.16, this will generate
the Hardware description files in your Target Directory folder. Please, check that
they have been generated properly. Then, from the main window press the button

22

2.2. Design flow

Generate SW. In the same folder, a new folder containing the software files will be
generated, Again, check that the folder is there before proceeding with the next step.
You can close the NoC system Generator main window now.

2.2.4. Synthesize the platform to FPGA

After the completion of the previous step, we have generated a model/image of the
HW and SW in the target platform’s language. In this specific case it is composed
by:

1. hardware:

a) VHDL files, describing the on-chip interconnection (NoC) coherent with
the user specification;

b) .sopc and/or .qsys files, used by the Altera tool suite to interconnect
resources (Nios2 processors) to peripherals and to the NoC. This files
provide a high level model of the multi processor platform;

c) .qsf file, providing the pin assignment for the selected FPGA board;

2. software:

a) drivers for the multi-processor platform, providing to the user an API to
access the platform services (e.g. send/receive messages)

b) the schedulers (one for each Nios resource) scheduling the execution of
the functionality on the HB event.

Feel free to browse the generated files in the Target Directory.

Initially you will configure the FPGA as a multi-processor platform. This can be
done using the Quartus tool suite.

1. start the Quartus II software double clicking the icon on the Desktop of your
computer. If the icon is not there, click on the Windows start button and
search for Quartus II, then click on the icon;

2. when Quartus opens you can click on the New project wizard button, or simply
select File – new project.

3. in the Directory, Name Top-Level Entity form, shown in Figure 2.17, specify as
working directory your Target Directory, the one containing the output files
of the NSG. As project name and top-level design entity, specify the System
Name you specified in the NSG project (see Section 2.2.1), which is the same
name of the .sopc or .qsys files in the Target Directory. Then press Next;

4. in the Family and Device settings form, select the exact same configuration as
shown in Figure 2.18. Then press Finish;

23

2. Getting Started Tutorial

Figure 2.17.: Specify directory and project name in Quartus II

Figure 2.18.: Target FPGA board settings in Quartus II

5. once you are back in the Quartus main window, click on Tools – License setup
to access the License manager. As shown in the top of Figure 2.19, add the

24

2.2. Design flow

Figure 2.19.: Setup the NSG license in Quartus

Figure 2.20.: Open your project in SOPC Builder

path to the license_nocgen.dat file in the License file field and check that the
Vendor 1BDA Produce 0001 is in the list of licensed functions. You can find
the license_nocgen.dat file in your Final_LAB folder;

6. from the Quartus main window, double click on the project in the window
(shown in Figure 2.20) to open the SOPC Builder;

7. analyze the system (it is also shown in Figure 2.21): it is composed by 4 Nios
processors, each one of them connected to a scratchpad memory and some
peripherals, as specified through the GUI. A NoC component interconnects the
resources. Everything has been created and connected automatically through
the NSG tool in the previous step;

8. click on the Generate button to start the generation of HDL code describing
the modeled system;

25

2. Getting Started Tutorial

Figure 2.21.: SOPC Builder representation of the system modeled through
NSG

9. once the generation is successfully terminated, close (and, if required, save) the
sopc project;

Figure 2.22.: Access the pin planner

10. back again in the Quartus II tool main window, click on Assignment – pin
planner (Figure 2.22). In this window you can notice that the pin assignment
has been done automatically for you, as shown in Figure 2.23. Close this
window after you checked it matches with Figure 2.23;

11. back once again in the Quartus II tool, double click on "compile", shown
in Figure 2.24. This will start the process of generating a bitstream file to
configure the FPGA as a quad-processor platform, in the form of a .sof file.
This operation will take around 10 minutes to complete, so take this occasion
to ask questions or grab a coffee;

26

2.2. Design flow

Figure 2.23.: Pin assignment has been done automatically by NSG

Figure 2.24.: Compile the project with Quartus II

12. once the compilation is successful, you can close the Quartus tool and get ready
to program your FPGA. Check that your FPGA is ON and it is connected
though USB to the PC. Check also that the USB cable is connected with the
Blaster port of your FPGA, and not with the Device one. Then, from the
desktop of your PC, click on the Windows start button and search for NiosII
shell. Open one of this shell and browse to the Target Directory containing

27

2. Getting Started Tutorial

Figure 2.25.: Configure your FPGA as 4 processors system using Nios shell

the Quartus project and a .sof file. Run the command nios2-configure-sof3,
as shown in Figure 2.25. You have successfully configured your FPGA as a
quad-processor system.

2.2.5. Compile, download and debug SW

In this part of tutorial you will use the generated SW (driver, schedulers and IF-C
files). You will compile the C code targeting each processor and download the
compiled code on each of the processors. Once the software is downloaded, the
system is completed and becomes fully functional.

In order to accomplish this step, there are 2 alternatives:

1. use the Nios shell, a command line interface. This alternative is faster and can
be efficiently integrated in a set of scripts, however does not have the benefits
of a user interface;

2. use an Eclipse based environment, to configure the processors one by one;

2.2.5.1. Nios shell

The 4 processors platform generated through the Altera tools is configured using the
following notation:

1. CPU_0_0, jtag_0_0, cpu_id 1, jtag_id 1

2. CPU_1_0, jtag_1_0, cpu_id 2, jtag_id 2
3 Another way to complete this step is to use the programmer tool in Quartus II to program the
FPGA with your brand new .sof file.

28

2.2. Design flow

3. CPU_2_0, jtag_2_0, cpu_id 3, jtag_id 3

4. CPU_3_0, jtag_3_0, cpu_id 0, jtag_id 0

Figure 2.26.: Use Nios shells to compile, download and debug the 4 processors
platform

Open 5 Nios shells (double click on the Desktop icon 5 times, or search it through
the Windwos button). 4 shells will be used to connect to the 4 processors, 1 shell to
execute the commands. As shown in Figure 2.26, for each of the 4 shell dedicated to
one of the processors, run 1 of the following commands:

• to connect to CPU_0_0: nios2-terminal -i 1

• to connect to CPU_1_0: nios2-terminal -i 2

• to connect to CPU_2_0: nios2-terminal -i 3

• to connect to CPU_3_0: nios2-terminal -i 0

You are now connected to the 4 processors through 4 terminals. You will use the
5th shell to compile and download the generated .elf files (the compiled code) on
each processor. First, compile the software files using the run_software.sh script.
You find this file in the Ring_2x2 folder. Copy this file in the folder containing
the generated files (.sopc, .qsys, .sof), which contains also the Software folder.
Open the run_software.sh using a text editor, and check that the field system name
matches your system name. If not, edit it so that it does. Then, use the Nios shell
to browse to the folder, and execute the script through the command:
./run_software.sh -b
The compilation takes a while but it creates a new folder called Software_projects

29

2. Getting Started Tutorial

containing the compiled software (.elf files). Then, to download the compiled
software on the different Nios processors, you use the following commands, in
sequence:

• to download the compiled software to CPU_0_0: nios2-download -g -i 1
<path_to_file>/Node_0_0.elf

• to download the compiled software to CPU_1_0: nios2-download -g -i 2
<path_to_file>/Node_1_0.elf

• to download the compiled software to CPU_2_0: nios2-download -g -i 3
<path_to_file>/Node_2_0.elf

• to download the compiled software to CPU_3_0: nios2-download -g -i 0
<path_to_file>/Node_3_0.elf

where < path_to_file > is the folder path where the .elf files are contained (i.e.
C:\NsG\GeneratedFiles\Software_projects\Node_0_0\Node_0_0.elf). You should
see the system start to run on the 4 terminals.

2.2.5.2. Eclipse based environment

This part is not yet documented.

30

3 Synthesize a Simulink model

3.1. Design flow overview

Step 1
Create your system-level model with Simulink;
Simulate the system using Simulink;
Use the Simulink Embedded Coder to generate C code which models the
functionality of the system;

Step 2
Use the user interface of the NoC System Generator to generate an XML
description of the target platform;
Use the NoC System Generator to:

• generate the HDL and project files enabling Quartus to configure the
FPGA as an HeartBeat compliant multi-processor system;

• generation of process wrappers (main C files scheduling the C code mod-
eling the functionality of the system);

Step 3
Extraction of rt_onestep function from the Embedded Coder generated C
files;
Embed the rt_onestep function in the process wrapper, scheduling its execu-
tion on the HB ticks;

Step 4
Compilation of the HDL for FPGA;
Compilation of the C code for each PE;

Step 5
Configure the FPGA;
Download and run the compiled SW for each PE;
Collect the prototype results and compare with the initial simulation;

31

3. Synthesize a Simulink model

3.2. Step 1

Figure 3.1.: Browse to the right folder with MATLAB

Open MATLAB (search for matlab using the window start button). Using the
"browse for folder" button, indicated in Figure 3.1, browse to the folder named
"Simulink", containing the .mdl and .m files. Double click on the .mdl file to open
the Simulink model. The DSP application used in this case study is taken from a

Figure 3.2.: The Simulink system we will synthesize to a 2 × 2 NoC-based
FPGA

Simulink tutorial, and it is shown in Figure 3.2. A sinusoidal source block generates
a sinusoidal signal. Then, some random noise (generated by a random source block
and filtered through a digital high pass FIR filter) is added to the sinusoidal signal,
creating a noisy signal. The noisy signal is then filtered by a low pass FIR filter,
which removes the noise component.

32

3.2. Step 1

Figure 3.3.: Access the configuration parameters in Simulink

Figure 3.4.: Solver configuration to enable automated synthesis through NSG

In order to synthesize the Simulink model to a NoC-based platform through the NSG
tool, the Simulink system should be simulated using the discrete fixed step solver. To
check that the simulation is properly configured click on Simulation — configuration
parameters, as shown in Figure 3.3. Make sure that everything is configured as in
Figure 3.4, then close this form. Before running the simulation we must configure the

Figure 3.5.: Configure the filters taps

taps of the filter. This is done in MATLAB, writing in the command window (and
consequently running) the init_filter command, as shown in Figure 3.5. Then we
can come back to Simulink and run the simulation for 5 seconds, pressing on the
round green button shown on the top of Figure 3.2.

Figure 3.6 shows the most significant signals of the modeled system. Figure 3.6a
shows the signal produced by the sinusoidal source block. Figure 3.6b the sinusoidal
signal disturbed with noise. Figure 3.6c shows the output signal of the Filter block

33

3. Synthesize a Simulink model

(a) Source output (b) Noise output (c) Filter output

Figure 3.6.: Signals in the modeled system

which is a the sinusoidal signal where the high frequency component (noise) has been
filtered away. You can get the same graphs from your Simulink simulation clicking
on the Scope blocks in the Simulink model.

PE 0 PE 1

PE 2PE 3

Figure 3.7.: Map the Simulink model onto the 4 processors platform

Once you are comfortable (and happy) with the simulation results we start the
synthesis flow to NoC-based MPSoC on FPGA. Our goal is to map the modeled
system onto a 2×2 NoC-based MPSoC, as shown in Figure 3.7. Each subsystem
will be mapped on a different PE of the multi processor system. We recall that the
first subsystem, Source, contains the sinusoidal source block. The second, Noise,
contains the noise generator and the high pass FIR filter. The third, Filter, contains
the low pass FIR filter, while the fourth is just printing out the results (and will be
omitted in this tutorial).

The first step is to use the Embedded Coder to generate generates one rt_onestep
C function for each subsystem, modeling its functionality. This can be done from the
Simulink model, right clicking on each of the 3 subsystems (Source, Noise and Filter),
and selecting C/C++ code — Build subsystem, as shown in Figure 3.8. When a new
folder pop up, just press Build and wait for the process to be completed. Once you
have done this for each of the 3 subsystems the tool will generate 3 folders called
Source_ert_rtw, Noise_ert_rtw, and Filter_ert_rtw, containing the rt_onestep C
function modeling the functionality of each subsystem, as shown in the right column

34

3.2. Step 1

Figure 3.8.: Using the Embedded Coder

Figure 3.9.: Embedded Coder results and zip_ert_functions command

35

3. Synthesize a Simulink model

of Figure 3.9.

Before moving forward, use MATLAB to run the zip_ert_functions function,
running the command in the MATLAB shell as shown in Figure 3.9. This function
simply takes the _ert_rtw folders previously created and zip and rename them. For
example, Source_ert_rtw is zipped and renamed to ert_main_0_0.zip, so that in a
later stage of the flow this functionality is mapped to the PE0, i.e. Node 0 0. Check
in your workspace folder that the 3 .zip files have been created, as shown in the right
column in Figure 3.9. You can close Matlab and Simulink at this point and move on
with the NSG tool to synthesize the system on FPGA.

3.3. Step 2

Figure 3.10.: Open command shell in Windows

Open a command shell (Windows start button, search for cmd), as shown in Fig-
ure 3.10, and browse through the cd command to the folder Simulink\NoCsysGen\.
In this folder you will find an executable named generate_noc_v2013.exe and an
intermediate representation XML file. Theoretically this XML file could have been
created using the GUI of the NSG tool, as we did for the Ring tutorial. However,
to shorten the tutorial time, we already provide you the XML file representing
the 4 processors system where we want to map the Simulink model functionality.
Open the XML file using a editor of your choice (Wordpad, etc.). Check that the
targetDirectory parameter is pointing to the right folder. For example, if your
computer username is frobino and your Simulink folder is on the Desktop, the right
folder is:
C : \Users\frobino\Desktop\Simulink\NoCsysGen\generated_files
The Repository parameter is not used in this case, so you can leave it pointing to

36

3.4. Step 3

a non existing folder. In fact, what we want to do now, is just to generate a HW
representation of the platform together with the process wrappers. Then we will
provide the functions to wrap, but this is done in step 3.

Figure 3.11.: Run NSG in the shell

As shown in Figure 3.11, with the shell in the Simulink\NoCsysGen\ folder, run
the following command:

generate_noc_v2013.exe --sw --hw --version=2014 --noPLL --verbose Cosummit_2x2.xml

This will run the NSG tool and it will create all files needed to generate a 4 processors
SoC on FPGA in the target directory (pointed by the targetDirectory param-
eter in the XML file). You can now close the command shell.

3.4. Step 3

Check that all files have been generated in the Simulink\NoCsysGen\generated_files\
folder. It should look similar to the one shown in Figure 2.16, from the previous
tutorial. If you browse in the generated_files\Software\ folder, you will find 4
folders where the SW part of the process wrappers are implemented. However they
are not wrapping any functionality yet. What we have to do now is to include the
functionality we generated earlier through Simulink and the Embedded Coder in the
process wrappers.

To achieve this goal, browse to the folder containing the ert_main_X_X.zip files
created at the end of Step 1. Following the commands shown in Figure 3.12, unzip
the 3 files in the generated_files\Software\ folder. In addition, copy the provided
final_multi_proc_Simulink2013a.py file in the same folder. You should reach
the situation presented in Figure 3.13a. If the Software folder looks like the one in
Figure 3.13a. double click on the .py file. This script will automatically include the
Simulink C code in the process wrappers, leaving you with 4 folders left, as shown in
Figure 3.13b.

37

3. Synthesize a Simulink model

(a) Unzip ert_main_X_X.zip files... (b) ...to the correct folder.

Figure 3.12.: Unzip ert_main_X_X.zip files to the right folder

(a) Software folder after unzipping files. (b) Software folder after running .py file.

Figure 3.13.: Wrap the Simulink functionality in the process wrappers

3.5. Step 4 and 5

Now it is time to prototype the Simulink model onto FPGA. This step can be
done using the Quartus tool and following the exact same instructions described in
Sections 2.2.4 and compiling the SW using the instructions in Section 2.2.5. When
compiling the software, be careful to use the run_software_simulink.sh script,
instead of the previously provided run_software.sh. In addition, differently from
the previous step, when downloading the code to each PE, it is sufficient to load only
3 PEs using the following 3 commands:

• nios2-download -g -i 1 <path_to_file>/Node_0_0.elf to download the
compiled software to CPU_0_0;

• nios2-download -g -i 2 <path_to_file>/Node_1_0.elf to download the
compiled software to CPU_1_0;

38

3.5. Step 4 and 5

• nios2-download -g -i 3 <path_to_file>/Node_2_0.elf to download the
compiled software to CPU_2_0;

Figure 3.14.: Run NSG in the shell

The result of the emulation are shown in Figure 3.14. The upper left shell is
Node_0_0, emulating the Source block of the Simulink model. As seen from the
output, it generates a sinusoidal signal with values between -1 and +1. The upper
right shell is Node_1_0, emulating the Noise block of the Simulink model. As
seen from the output, the values received are the one sent from the Source block.
The sent values represent the noisy signal, in fact the values are not representing
anymore a sinusoidal signal and sometimes they exceed the values between -1 and
+1. The lower left shell is Node_2_0, emulating the Filter block of the Simulink
model. As seen from the output, the values received are the one sent from the
Noise block. The sent values represent the filtered signal. In fact the values are
representing again a sinusoidal signal and they are most of the time contained between
between -1 and +1 (a bit of noise is still in the signal because of the low order of the
filter).

The upper plot in Figure 3.15 shows the plotted values from Node_0_0 (Source) and
Node_1_0 (Noise). The lower plot in Figure 3.15 shows a comparison between the
output signal of the Simulink model (red line) and the output signal of the prototype
running on 4 PEs (output of Node_3_0 ,Filter).

39

3. Synthesize a Simulink model

Figure 3.15.: Simulated vs emulated results

40

Appendices

41

ARing Tutorial Appendix

Listing A.1: XML description of the Ring system
<?xml version="1.0" encoding="UTF-8"?>
<system name="test2" >

<parameter name="targetDirectory" value="C:/Users/frobino/Desktop/GUITest2/generated_files2" />
<parameter name="targetManufacturer" value="Altera" />
<parameter name="targetManufacturerVersion" value="11.0" />
<parameter name="boardType" value="DE2-115" />
<hardware>

<noc>
<parameter name="nocType" value="Mesh" />
<parameter name="nocKind" value="2DNoC" />
<parameter name="nrofCols" value="2" />
<parameter name="nrofRows" value="2" />
<parameter name="switchType" value="Nostrum" />
<parameter name="rniType" value="Heartbeat" />
<parameter name="LayoutMethod" value="Floating" />
<parameter name="FrameSize" value="64" />
<parameter name="Heartbeat" value="1␣Hz" />

</noc>
<node nr="0" mem_size="8192" jtag="yes" perf_counter="no" pio="{o,1}" noc_irq="no" cpu="{nios,tiny}" />
<node nr="1" mem_size="8192" jtag="yes" perf_counter="no" pio="{o,1}" noc_irq="no" cpu="{nios,tiny}" />
<node nr="2" mem_size="8192" jtag="yes" perf_counter="no" pio="{o,1}" noc_irq="no" cpu="{nios,tiny}" />
<node nr="3" mem_size="8192" jtag="yes" perf_counter="no" pio="{o,1}" noc_irq="no" cpu="{nios,tiny}" />

</hardware>
<software>

<parameter name="Repository" value="C:/Users/frobino/Desktop/GUITest2/Examples/test2" />
<process name="p0" node="0" cpu="0" moc="Synchronous" sources="{p3}" targets="{p1}" files="{p0.c}" />
<process name="p1" node="1" cpu="0" moc="Synchronous" sources="{p0}" targets="{p2}" files="{p1.c}" />
<process name="p2" node="3" cpu="0" moc="Synchronous" sources="{p1}" targets="{p3}" files="{p2.c}" />
<process name="p3" node="2" cpu="0" moc="Synchronous" sources="{p2}" targets="{p0}" files="{p3.c}" />

</software>
</system>

43

A. Ring Tutorial Appendix

Listing A.2: Process main P0
void p0_main(void)
{

(*p0_out0)=0;

int input_p7_value = NOC_RNI_CHK_MSG(NOC_RNI_BASE,recv_channel_p0_from_p3);
alt_printf("P0␣something␣received?:␣%x␣\n",input_p7_value);
if (input_p7_value>0) // Something for me?
{

(*p0_out0)=(*p0_in0)+1;
alt_printf("P0␣received?:␣%x␣\n",(*p0_in0));
SEND(p0_out0);
}

};

Listing A.3: Process main P1
void p1_main(void)
{

(*p1_out0)=0;

int input_p7_value = NOC_RNI_CHK_MSG(NOC_RNI_BASE,recv_channel_p1_from_p0);
alt_printf("P1␣something␣received?:␣%x␣\n",input_p7_value);
if (input_p7_value>0) // Something for me?
{

(*p1_out0)=(*p1_in0)+1;
alt_printf("P1␣received?:␣%x␣\n",(*p1_in0));
SEND(p1_out0);
}

};

Listing A.4: Process main P2
void p2_main(void)
{

(*p2_out0)=0;

int input_p7_value = NOC_RNI_CHK_MSG(NOC_RNI_BASE,recv_channel_p2_from_p1);
alt_printf("P2␣something␣received?:␣%x␣\n",input_p7_value);
if (input_p7_value>0) // Something for me?
{

(*p2_out0)=(*p2_in0)+1;
alt_printf("P2␣received?:␣%x␣\n",(*p2_in0));
SEND(p2_out0);
}

};

44

Listing A.5: Process main P3
void p3_main(void)
{

(*p3_out0)=0;

int input_p7_value = NOC_RNI_CHK_MSG(NOC_RNI_BASE,recv_channel_p3_from_p2);
alt_printf("P3␣something␣received?:␣%x␣\n",input_p7_value);
if (input_p7_value>0) // Something for me?
{

(*p3_out0)=(*p3_in0);
alt_printf("P3␣received?:␣%x␣\n",(*p3_in0));
SEND(p3_out0);
}

};

45

	NoC Platform Generation Process
	Input files
	processes description C files (PD-Cs)
	System description XML file (SD-XML)

	Output files
	The Hardware Description Files (HDFs)
	The Software Projects
	The IF-C files
	The scheduler
	System Description Header
	Device Driver

	Generated NoC performances, power and area consumption

	Getting Started Tutorial
	Overview
	Main window menus
	Quick access buttons
	Information windows
	A toy example: the Ring system

	Design flow
	Creating a new project
	The Hardware view
	The Software view
	Synthesize the platform to FPGA
	Compile, download and debug SW
	Nios shell
	Eclipse based environment

	Synthesize a Simulink model
	Design flow overview
	Step 1
	Step 2
	Step 3
	Step 4 and 5

	Appendices
	Ring Tutorial Appendix

