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Abstract

We prove that the critical value for percolation in the vacant set of the Brownian
excursions process in the unit disc equals π/3. The proof uses the restriction property
and the link to the Schramm-Loewner evolution. We also discuss some connections
with the Brownian interlacements process.

1 Introduction

In this note, we study percolation in the vacant set of a Poisson process of Brownian
excursions in the unit disc D = {z ∈ C : |z| < 1}. We will give the precise definitions in
Section 2, but first we describe the model informally. The Brownian excursion measure µ
on D is supported on Brownian paths starting and ending on ∂D conditioned on staying
inside D in between. On the space of continuous curves starting and ending on ∂D we
then consider a Poisson point process ωβ with intensity measure βµ where β > 0. The
union of the trajectories in ωβ is a random subset of D, the law of which is conformally
invariant. The complement of the union of the trajectories in ωβ is an open random
subset of D which we denote by Vβ. For z ∈ D, let Perc(Vβ,z) be the event that the
component of Vβ containing z is unbounded in the hyperbolic metric on D. Define the
percolation probability as θ(β) = P(Perc(Vβ,z)). This probability is independent of the
choice of z by conformal invariance. Standard arguments show that there is a critical
value βc ∈ [0,∞] such that θ(β) = 0 if β > βc and θ(β) > 0 if β < βc. To be precise, we
define

βc = sup {β > 0 : θ(β) > 0} . (1)

This note computes the value of βc, see Theorem 1.1 below. But first, we discuss
what was previously proved about βc.
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In [ET19], a different property of Vβ was studied, namely that of visibility to infinity.
If there is some θ ∈ [0,2π) such that the line-segment [o,eiθ) (which is an infinite half-
line in the hyperbolic metric) is contained in Vβ, then we say that we have visibility to
infinity from the origin. In [ET19], it was shown that with positive probability, there is
visibility to infinity from the origin if and only if β < π/4. Since visibility to infinity
implies percolation, this gives the bound βc > π/4. Moreover, in [Eli18] it was shown
that βc 6 π/2. Roughly speaking, this was done by comparing the process with a
(conformally invariant) hyperbolic Poisson line process induced by the end-points of the
Brownian excursions, and referring to results in [BJST09].

It turns out that βc lies in the interior of the above mentioned interval [π/4,π/2]. We
have the following theorem1.

Theorem 1.1. The critical value for percolation in Vβ satisfies

βc = π/3.

Moreover, θ(βc) = 0.

A consequence of Theorem 1.1 and the above mentioned result from [ET19] is that
for β ∈ [π/4,π/3), we have θ(β) > 0, but a.s. no visibility to infinity from the origin.

In [ET19], questions regarding visibility were also studied for the Brownian interlace-
ments model. Informally, this is a model created by a Poissonian cloud of double-sided,
infinite Brownian motion paths in Rd. Moreover, it was briefly discussed why the Brow-
nian excursions process in the unit disc can be viewed as the hyperbolic plane analogue
of the Brownian interlacements process. In Section 2.1 we take the opportunity to make
this discussion a bit more detailed. We do this by describing the local picture of the
Brownian excursions process.

The rest of this note is organized as follows. The proof of Theorem 1.1 uses connec-
tions between the Brownian excursions process and the SLEκ(ρ) process. Background
on these processes is given in Section 2. Section 2.1 also contains our discussion about
the local picture of the Brownian excursions process. Finally, in Section 3.1 we give the
short proof of Theorem 1.1.

2 Preliminaries

2.1 Brownian excursions

The Brownian excursion measure µ in the open unit disc D is a σ-finite measure on
trajectories that spend their life time in the unit disk with endpoints on the boundary
∂D, and we now briefly recall one way to construct this measure. See also for instance
[LW00], [Vir03], [Law05] and [LW04].

Let

1An essentially equivalent statement is contained in the heuristic discussion of [QW19], Section 5, but
no proof is given there.
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WD :=
{
w ∈ C([0,Tw],D̄) : w(0),w(Tw) ∈ ∂D, w(t) ∈ D,∀t ∈ (0,Tw)

}
, (2)

and for K b D we let WK be the set of trajectories in WD that hit K. Define W̃D and
W̃K in the same way but with the condition w(0) ∈ ∂D replaced with the condition that
w(0) ∈ D. For w in WD or W̃D we write Xt(w) = w(t).

For x ∈ D, let Px denote the law of complex Brownian motion started at x killed
upon hitting ∂D. Let σr denote the uniform probability measure on B(o,r) and let
Pσr =

∫
x∈∂B(o,r) Pxσr(dx). The Brownian excursion measure µ can be defined as the

weak limit

µ = lim
ε→0

2π

ε
Pσ1−ε , (3)

as explained on p. 127-128 in [Law08].
Write δ for a Dirac mass and define

Ω =

{
ω =

∑
i>0

δ(wi,βi) : (wi,βi) ∈WD × [0,∞), ω(WK × [0,β]) <∞,∀K b D,β > 0

}
.

Then let P denote the law of a Poisson point process on WD×R+ with intensity measure
µ⊗ dβ. For β > 0 and ω =

∑
i>0 δ(wi,βi) ∈ Ω we write

ωβ :=
∑
i>0

δ(wi,βi)1{βi 6 β}, (4)

and note that under P the process ωβ is a Poisson process with intensity measure βµ.
We refer to ωβ as the Brownian excursions process at level β. For β > 0, the Brownian
excursion set at level β is then defined as

BEβ(ω) :=
⋃
βi6β

⋃
s>0

wi(s), ω =
∑
i>0

δ(wi,βi) ∈ Ω, (5)

and we let Vβ = D \ BEβ denote the vacant set. Proposition 5.8 in [Law05] says that µ,
and consequently P, are invariant under the conformal automorphisms of D.

We now discuss how the random set BEβ ∩K can be generated for a compact K in
D. This is what we refer to as ”local picture”.

We first introduce some additional notation. For K b D, let LK(w) = sup{0 < t 6
H∂D : Xt(w) ∈ K} denote the last exit time, with the convention that LK(w) = 0 if w
never hits K. Let HK(w) = inf{t > 0; Xt(w) ∈ K} be the hitting time of K. A point x
is said to be regular for K if Px(HK = 0) = 1. We will assume that all compact sets K
appearing below satisfy the condition that all x ∈ K are regular.

For K b D let eK(dy) denote the equilibrium measure (for Brownian motion in D) of
K, see e.g. Theorem 24.14 in [Kal02]. It is the finite measure supported on ∂K satisfying

Px (X(LK) ∈ dy, 0 < LK) = G(x,y)eK(dy), (6)

where G(x,y) is the Green’s function for Brownian motion in D stopped upon hitting
∂D. We recall that
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G(w,z) =
1

π
log
|1− w̄z|
|w − z|

for w,z ∈ D,

so that in particular

G(o,reiθ) =
log(1/r)

π
for 0 < r < 1 and 0 6 θ < 2π.

Furthermore, the capacity (relative to D) of K b D is denoted by cap(K) and is defined
as the total mass of eK .

The expression for eB(o,r) for 0 < r < 1 is known, but we include a proof for conve-
nience. Using the above and (6), we have

Po
(
X(LB(o,r)) ∈ dy, 0 < LB(o,r)

)
=

log(1/r)

π
eB(o,r)(dy). (7)

On the other hand, by rotational invariance, we have that

Po
(
X(LB(o,r)) ∈ dy, 0 < LB(o,r)

)
= σr(dy), (8)

where σr is the uniform probability measure on ∂B(o,r). From (7) and (8) we get that

eB(o,r)(dy) =
π

log(1/r)
σr(dy). (9)

The capacity of B(o,r) is therefore given by

cap(B(o,r)) =

∫
y∈∂B(o,r)

eB(o,r)(dy) =
π

log(1/r)
. (10)

For K b D, the hitting kernel is defined as

hK(x,dy) = Px(X(HK) ∈ dy,HK <∞).

The equilibrium measure satisfies the following consistency property, see Proposition
24.15 in [Kal02]: If K1 b K2 b D, then

eK1(dy) =

∫
x∈∂K2

hK1(x,dy)eK2(dx). (11)
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We now see that for a measurable set of trajectories A in W̃D and K b D, we have

lim
ε→0

2π

ε
Pσ1−ε ({(Xt+HK

)t>0 ∈ A} ∩ {HK <∞})

= lim
ε→0

2π

ε
Eσ1−ε

[
PX(HK)(A)1{HK <∞}

]
(9)
= lim

ε→0

−2 log(1− ε)
ε

EeB(o,1−ε)

[
PX(HK)(A)1{HK <∞}

]
= lim

ε→0

−2 log(1− ε)
ε

∫
∂B(0,1−ε)

∫
∂K

Py(A)hK(x,dy)eB(o,1−ε)(dx)

= lim
ε→0

−2 log(1− ε)
ε

∫
∂K

Py(A)

∫
∂B(0,1−ε)

hK(x,dy)eB(o,1−ε)(dx)

(11)
= lim

ε→0

−2 log(1− ε)
ε

∫
∂K

Py(A)eK(dy)

= 2

∫
∂K

Py(A)eK(dy) = 2PeK (A). (12)

We have proved the following result.

Proposition 2.1. For K b D, let NK ∼ Po(2βcap(K)) and let ẽK be the normalized
equilibrium measure on K. Conditionally on NK , let (Bi)

NK
i=1 be a collection of indepen-

dent Brownian motions in the unit disk with initial distribution Bi(0) ∼ ẽK . Then the
following distributional equality holds

BEβ ∩K
d
=

NK⋃
i=1

[Bi] ∩K (13)

where [Bi] denotes the trace of the Brownian motion.

There is a similar local description for Brownian interlacements in Rd for d > 3, see
Remark 2.1.3 on p.568 of [Szn13].

2.2 Conformal restriction and SLEκ(ρ)

We recall some facts on restriction measures. See Section 8 of [LSW03] for proofs and
further discussion. Let H = {z : = z > 0} be the complex upper half-plane. Let X−
be the set of closed connected sets K ⊂ H with the property that K ∩ R ⊂ (−∞,0].
Suppose we have a probability measure P on X−. We say that a probability measure
P = PH,0,∞ (on X−) satisfies one-sided conformal restriction with exponent α > 0 if for
any (relatively) compact A such that H \A is simply connected and A ∩ R ⊂ (0,∞),

P (K ∩A = ∅) = ϕ′A(0)α.

Here ϕA : H \ A → H is the conformal map fixing 0 and satisfying ϕA(z) = z + o(z) as
z →∞. A conformally invariant measure defined in some other simply connected domain
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with two marked boundary points is said to satisfy one-sided conformal restriction if its
image in H does so. An important property of restriction measures is that if A is as
above then the law PH,0,∞ conditioned on K ∩A = ∅ is the same as PH\A,0,∞, the latter
defined by push-forward via conformal transformation.

Let Bt standard Brownian motion and for κ > 0, set Ut = Bκt. The SLEκ Loewner
chain is defined by

∂tgt(z) =
2

gt(z)− Ut
, 0 6 t < Tz, g0(z) = z,

where Tz = inf{t > 0 : Im gt(z) = 0}. The SLE curve can then defined by γ(t) =
limy↓0 g

−1
t (Ut + iy) and the corresponding relatively compact hull Kt = {z ∈ H : Tz 6 t}

is the complement of the unbounded connected component of H \ γ[0,t]. We retain this
parametrization also when considering SLE in other domains.

Choosing κ = 8/3 gives the only SLEκ with the restriction property, which in this
case is two-sided. We then have α = 5/8.

Next, consider the SDE

dWt =
√
κdBt −

ρ dt

Vt −Wt
, dVt =

2 dt

Vt −Wt
, (W0,V0) = (w,v) ∈ H× R.

The SLEκ(ρ) Loewner chain started from (w,v) is the Loewner chain driven by Wt as
above. The special v is called force point and we will usually take (w,v) = (0,0+). Care
is needed if ρ is too large and negative, though this is not an issue in the cases we will
consider.

Define

ρ(α) =
−8 + 2

√
1 + 24α

3
, α > 0.

We will need the following two well-known lemmas which link restriction measures with
SLE8/3(ρ) processes.

Lemma 2.2. Let α > 0 and let Kt be the hulls of an SLE8/3(ρ) process with ρ = ρ(α) and
force point 0−. Set K = ∪t>0Kt. Then K satisfies one-sided restriction with exponent
α. In particular, the law of the right-boundary of a restriction measure of exponent α is
that of SLE8/3(ρ), ρ = ρ(α), from 0 to ∞ with force point 0−.

Proof. See, e.g., Theorem 8.4 of [LSW03].

Lemma 2.3. For α > 0, let γ = γ[0,∞) be the trace of the SLE8/3(ρ(α)) path from 0 to
∞ in H with force point 0−. If 0 < α < 1/3 then almost surely γ intersects (−∞, 0) in
a set of dimension d = −(3/8)ρ2 − (7/4)ρ− 1. If α > 1/3 then almost surely γ does not
intersect (−∞, 0).

Proof. See Lemma 8.3 of [LSW03] for the statement about intersection. The dimension
is computed in several places, e.g., in [Sch19].
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Lemma 2.4. The left-filling of a Poissonian process of Brownian excursions with inten-
sity measure πα of the Brownian excursion measure restricted to excursions starting and
ending on the upper semicircle satisfies one-sided conformal restriction with exponent α.

Proof. See, e.g., Theorem 8 of [Wer05] (for multiplicative constant cα) or Theorem 2.12
of [Wu15] which also computes of the constant πα.

Remark 2.5. If ρ < 0 is fixed, then Lemma 2.4 allows us to couple an SLE8/3(ρ), γ1,
with an SLE8/3, γ2, (both in H from 0 to ∞, say) so that γ1 is to the left of γ2 a.s. That
is, γ2 separates γ1 from the positive real line R+ in H. By topology, this implies that for
any fixed crosscut η of H starting and ending on R+, P(γ1 ∩ η 6= ∅) 6 P(γ2 ∩ η 6= ∅).

3 Percolation in the vacant set

3.1 Determining the critical value: Proof of Theorem 1.1

The idea for the lower bound is very simple: consider independent excursion clouds
starting and ending on the upper and lower parts of the unit circle, T±. By Lemma 2.2
and Lemma 2.4 the boundaries of the excursion clouds are independent SLEκ(ρ) curves
from −1 to 1 in D with force points at eπi∓0. The ρ(β) relation is such that the SLEs
intersect the boundary away from−1 and 1 if and only if β < π/3 (Lemma 2.3) and do not
separate o from ∂D with positive probability. The remaining excursions stay with positive
probability in small neighborhoods of −1 and 1. In order to make this argument rigorous,
we need to check a few details, e.g., the intuitive fact that with positive probability at
least one path to the boundary stays open when adding on the additional excursions
after the first excursion cloud has been sampled. This is done in Lemma 3.1 which
provides the lower bound on the critical value. The upper bound is not implied directly
by the fact that the SLEs do not intersect the boundary when β > π/3, but it does follow
easily from this combined with monotonicity and the restriction property, see Lemma 3.2
below.

Lemma 3.1. Suppose the intensity of the Brownian excursion Poisson process ωβ sat-
isfies β < π/3. Then the probability that o is in an infinite component of the vacant set
is strictly positive.

Proof. Let I = {eiθ : θ ∈ [π/4, 3π/4]} and set B−1 = B(−1, 1/10), B1 = B(1, 1/10).
Then define

A = {z ∈ D : =z > 1/20 or z ∈ B−1 ∪B1}.

Then A is a simply connected domain with −1,1 on its boundary. Write γ+ for the
SLEκ(ρ), ρ = ρ(β/π), in D from −1 to 1 corresponding to the excursion cloud starting
and ending on T+. By the choice of ρ the probability that γ+ hits I is strictly positive.
Now, by the restriction property and conformal invariance we have

PD,−1,1(γ
+ ∩ I 6= ∅, γ+ ⊂ A) = PA,−1,1(γ+ ∩ I 6= ∅)PD,−1,1(γ

+ ⊂ A) > 0.
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(Here PD,−1,1 denotes the law of SLE8/3(ρ) in D from −1 to 1.) Let ε > 0 be very small

and set S = Sε = {z ∈ D : dist(z,T−) 6 ε}. Let τ = inf{t > 0 : γ+[0,t] ∩ I 6= ∅}. We
claim that there is a constant c < ∞ such that conditioned on the event {γ+τ ⊂ A},
the probability that γ+ returns to Sε ∩ B−1 after τ is bounded by cε. On the event
that τ = ∞ there is nothing to prove, so we assume τ < ∞. Consider an arbitrary
curve η starting at −1 and ending at a point ζ ∈ I and contained in A. Let Dη be the
component of 0 of D \ η. Then we claim that the probability that an SLE8/3 curve from
ζ to 1 in Dη hits a ball of radius ε centered on T− ∩ B−1 is at most cε2, where c does
not depend on η, and O(ε−1) such balls cover Sε ∩B−1. Indeed, this follows, e.g., from
a slight variation of Proposition 3.2 and Lemma 3.3 in [FL15]. The same bound holds
for γ+ by Remark 2.5.

Also, by reversibility, the analogous estimate holds for the time reversal of γ+ running
from 1 to −1.

Now let E be the event that γ+ stays in A, intersects I and neither γ+ nor its time
reversal returns to Sε ∩ B±1 after first hitting I. For all sufficiently small ε > 0, this
event has positive probability and moreover, on the event E there is a path from 0 to
ζ ∈ I that only intersects γ+ at I and this path does not intersect Sε.

The last observation we need to make is that with positive probability (depending
on ε) the cloud of excursions that either both start and end on T− or start from T− and
end on T+ is contained in Sε. The lemma now follows from independence.

Lemma 3.2. Suppose the intensity of the Brownian excursion Poisson process ωβ sat-
isfies β > π/3. Then the probability that o is in an infinite component of the vacant set
is 0.

Proof. We consider again the cloud of excursions starting and ending on T+. By mono-
tonitcity, the probability that these excursions fail to separate 0 from T+ is smaller than
the probability that those excursions that stay in D := D \ [0,1) fail to separate 0 from
T+. (Here we mean failure to separete as the event that there is a path from 0 to T+ that
stays in D except for the start and end points and that does not intersect an excursion
in D.) The latter probability is bounded above by the probability of the same event con-
ditioned on the excursions staying in D. But the latter probability is 0 by the restriction
property and the fact that SLEκ(ρ), ρ > 1/3, in D from −1 to 1 (understood as a prime
end) a.s. does not intersect T+ except at −1 and 1. Similarly, we can consider excursions
starting and ending on T− to see that almost surely, 0 is separated from T− in D. We
still need to check that −1 and 1 are not on the boundary of the component of 0 in the
vacant set: this follows for instance since the two independent SLE8/3(ρ) processes will
intersect a.s. in any neighborhood of −1 (and 1). We can use the excursions to see this:
in half-plane coordinates, using scale invariance, there is a constant 0 < c < 1 such that
for each dyadic half-annulus An = {2−n 6 |z| < 2−n+1} ∩ H around 0, the probability
that the union of the two sets of excursions starting and ending at R± ∩An and staying
in An separate the boundary components of An is at least c. The claim follows from
independence.

The last two lemmas immediately imply Theorem 1.1.
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