Towards a Modelling and Design Framework for Mixed-Criticality SoCs and Systems-of-Systems

F.Herrera, H. Attarzadeh and I. Sander

KTH Royal Institute of Technology

DSD'13, Santander (Spain), Sept. 26th, 2013

F.Herrera, H. Attarzadeh and I. Sander

・ロ・・合・・モ・・モ・ ヨー のへで Towards a Modelling and Design Framework for Mixed-Critical

Outline

Introduction Design Disciplines related to MCS design Proposed core MCS ontology Open aspects and features for MCS design Conclusions

Introduction

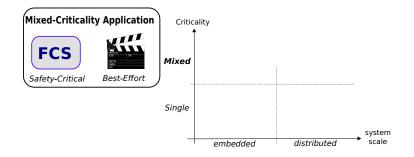
Design Disciplines related to MCS design

Proposed core MCS ontology

Open aspects and features for MCS design

Conclusions

Mixed-Criticality Systems (MCSs)

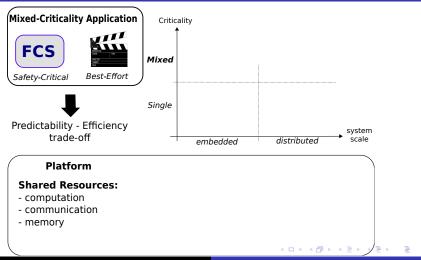

- Integrated suite of hardware, operating system and middleware services and application software that supports the execution of safety-critical, mission-critical, and non-critical software within a single, secure compute platform [Barhorst et al., 2009]
- Core fundational concept in Cyber-Physical Systems [Baruah et al., 2010]

Outline

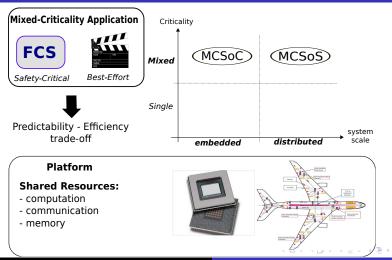
Introduction

Design Disciplines related to MCS design Proposed core MCS ontology Open aspects and features for MCS design Conclusions

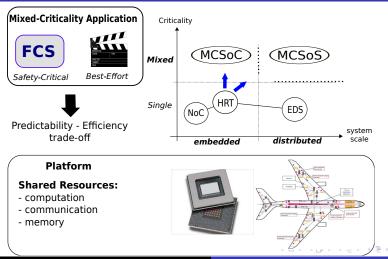
Mixed Criticality Applications

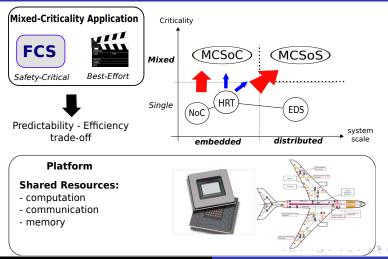


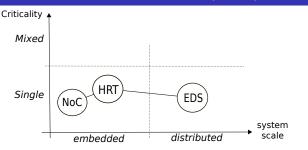
イロン イヨン イヨン イヨン


æ

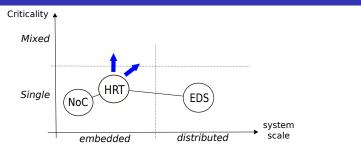
Conclusions


Mixed Criticality Systems


Mixed Criticality System Scales


Current View

Towards a Wider Approach



Extension of Hard Real Time (HRT) Theory

- For Multi-Processors: from [Liu&Lailand, 73] to [David&Burns, 11]
- Consideration of impact of communication resources of the:
 - ▶ NoC [Shi&Burns, 10][Pellizoni et al., RTSSS'09]
 - Embedded Distributed network, e.g. ECU networks [Rajeev et al, 10], MAST2 [Harbour et al.&Burns, 12]

Extension of Hard Real Time theory for MCS

- ▶ Priority-based, Reservation-based (→ Criticality inversion)
- ► New scheduling theory [Baruah et al, 2010], e.g. OCPB
 - criticality \neq priority
 - workloads depend on criticality, i.e. $WCET = f(\chi) \mid \chi \in \mathbb{N}^+$
 - schedulign algorithms: OCPB, CAPA
- Standard IEC 61508, SIL

Other disciplines which should be involved

Model-driven technologies, MDE, MDA (OMG)

- Metamodel, Graphical and standard front-end
- M2T (Correctness-by-construction in SW development), M2M
- Views (Separation-of-Concerns)

System-Level modelling/specification

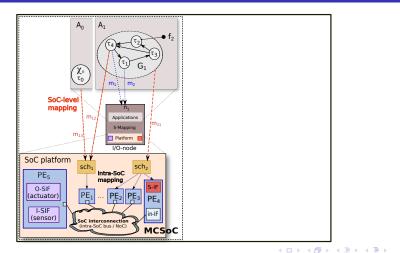
- Abstraction, Concurrency, Heterogeneity
- Models of Computation
- Modelling constraints for Properties (Determinism, Deadlock protection, Boundeness, etc)
- Ptolemy II, Metropolis II, ForSyDe, HetSC, SysteMoC, SystemC-H, ...

・ロン ・回 と ・ 回 と ・ 回 と

Other disciplines which should be involved

Design Space Exploration

- Analytical Techniques
- Simulation-based Techniques
- Joint analytical and simulation-based (JAS) techniques
- Simulation-based Performance Estimation
 - ► ISS, cycle-accurate ISS, RTL simulator
 - Virtualization
 - Native Simulation

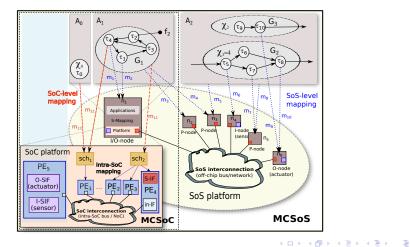

Communication modelling and analysis

- Variety of taxonomies:
 - NoC vs Distributed system
 - Switched vs Packetized
- Variety of standards, domains and architectures
 - Standards: WiDom, CAN, Spacewire, Flexray, TTEthernet, AFDX, etc
- Predictable networks: Main parameter: WCCL
- Other properties: Scalability, Segregation
- Variety of tools
 - NoC simulators: TOPAZ, Nostrum, Noxim
 - DE: MAST2, OMNET, etc..

A bunch of integrating work already done!

- MoC theory and DSE
- MoC and NoC
- MDA and MoC
- MDA and DSE
- ► ...

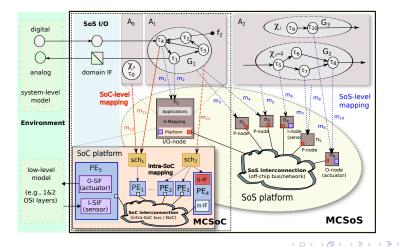
Core Ontology: SoC



F.Herrera, H. Attarzadeh and I. Sander

Towards a Modelling and Design Framework for Mixed-Criticali

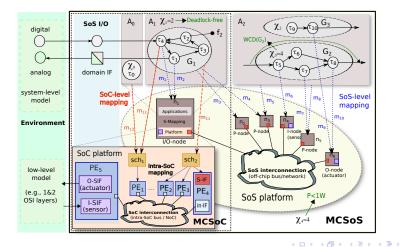
Э


Core Ontology: SoC/SoS

F.Herrera, H. Attarzadeh and I. Sander

Towards a Modelling and Design Framework for Mixed-Criticali

Core Ontology: SoC/SoS (Environment)

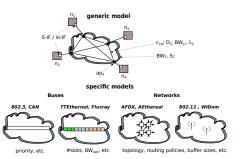


F.Herrera, H. Attarzadeh and I. Sander

Towards a Modelling and Design Framework for Mixed-Criticali

3

Core Ontology: MCSoC/SoS



F.Herrera, H. Attarzadeh and I. Sander

Towards a Modelling and Design Framework for Mixed-Criticali

æ

Multi-level approach

For computation nodes

- abstract level: traffic generators, and statistic collectors
- detailed level: SoC model

For the interconnection

- abstract-level: matrix of P2P links with specific attributes
- detailed-level: specific
 NoC and network models

Open Aspects and Features

Agreed core terminology for modelling elements, e.g. ...

task = a system-level concurrent behaviour?...

Open Aspects and Features

- ► Agreed core terminology for modelling elements, e.g. ...
 - task = a system-level concurrent behaviour?...
 - ... or a software-level concurrent behaviour (thread/process)?

Open Aspects and Features

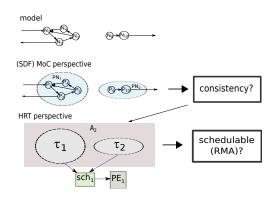
- Agreed core terminology for modelling elements, e.g. . . .
 - task = a system-level concurrent behaviour?...
 - ... or a software-level concurrent behaviour (thread/process)?
- ... only for modelling elements?

(日) (同) (E) (E) (E)

Open Aspects and Features

- Agreed core terminology for modelling elements, e.g. . . .
 - task = a system-level concurrent behaviour?...
 - ... or a software-level concurrent behaviour (thread/process)?
- ... only for modelling elements?
 - actor mapping and actor scheduling [Kumar et al.,12]

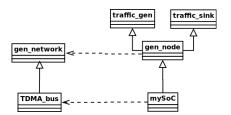
(日) (同) (E) (E) (E)


Open Aspects and Features

► Agreed core terminology for modelling elements, e.g. ...

- task = a system-level concurrent behaviour?...
- ... or a software-level concurrent behaviour (thread/process)?
- ... only for modelling elements?
 - actor mapping and actor scheduling [Kumar et al.,12]
 - Multiprocessor scheduling algorithm → scheduling = allocation + job ordering [David and Burns,11]

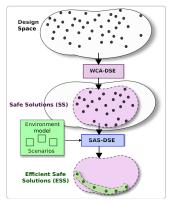
(日) (同) (E) (E) (E)


Open Aspects and Features

Composability of models and techniques

- specifically, hard-real time models and MoCs
- ► combination of constraints and assumptions → properties-by construction and analizability

Multi-level (platform-model) approach

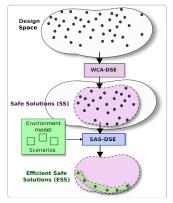


Seamless swap of computation nodes and networks

- at different levels of abstraction (enables gradual refinement and segregation of analysis)
- of different types of physical platforms without having to change sw-level platforms (reuse of RTOS modelling engines, facilitates automated exploration)

Enhanced DSE techniques

- criticality-aware exploration (and optimization)
- Combined static (analytical) and dynamic (simulation-based)
 DSE techniques
- Combine time constraints e.g., throughput and deadlines


[Herrera&Sander, FDL'13]

イロン イヨン イヨン イヨン

3

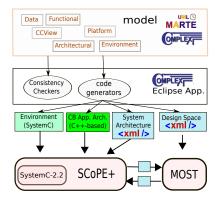
Enhanced DSE techniques

- criticality-aware exploration (and optimization)
- Combined static (analytical) and dynamic (simulation-based)
 DSE techniques
- Combine time constraints e.g., throughput and deadlines
- DSE enabling exploration of scheduling policies plus computation and communication infrastructures

[Herrera&Sander, FDL'13]

Integration of MDA/MDE techniques I

MCSoC/MCSoS metamodel
 MCS ontology


イロト イヨト イヨト イヨト

 standard and graphical front-end,

Integration of MDA/MDE techniques I

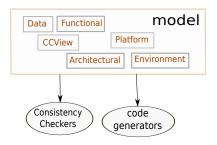
- MCSoC/MCSoS metamodel
 MCS ontology
- standard and graphical front-end,
- integration and automatic generation of executable models...

Integration of MDA/MDE techniques I

- MCSoC/MCSoS metamodel
 MCS ontology
- standard and graphical front-end,
- integration and automatic generation of executable models...
- ...for SoC (e.g., COMPLEX),

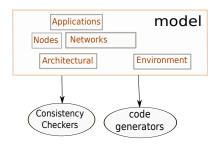
ヘロン 人間 とくほど くほとう

3


Integration of MDA/MDE techniques I

- MCSoC/MCSoS metamodel
 MCS ontology
- standard and graphical front-end,
- integration and automatic generation of executable models...
- ...for SoC (e.g., COMPLEX),
- …for MCSoC/SoS (e.g., [Ebeid et al., UKSim2013])

ヘロン 人間 とくほど くほとう

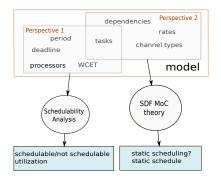

Integration of MDA/MDE techniques: Separation of Concerns

Views (for independent and concurrent development)

 at SoC-level (e.g., UML/MARTE COMPLEX)

Integration of MDA/MDE techniques: Separation of Concerns

Views (for independent and concurrent development)

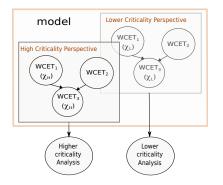

 at SoC-level (e.g., UML/MARTE COMPLEX)

イロン イヨン イヨン イヨン

3

 at NoC/SoS-level, communication centric,

Integration of MDA/MDE techniques: Separation of Concerns


Views (for independent and concurrent development)

- at SoC-level (e.g., UML/MARTE COMPLEX)
- at NoC/SoS-level, communication centric,
- analysis-based (MoC vs HRT)

イロト イヨト イヨト イヨト

3

Integration of MDA/MDE techniques: Separation of Concerns

Views (for independent and concurrent development)

- at SoC-level (e.g., UML/MARTE COMPLEX)
- at NoC/SoS-level, communication centric,
- analysis-based (MoC vs HRT)

イロト イヨト イヨト イヨト

3

 Criticality-aware perspectives

Integration of MDA/MDE techniques: Separation of Concerns

Views (for independent and concurrent development)

- at SoC-level (e.g., UML/MARTE COMPLEX)
- at NoC/SoS-level, communication centric,
- analysis-based (MoC vs HRT)
- Criticality-aware perspectives
- and how to combine them?

Open Aspects and Features

- Tunable platform in terms of resources for predictability and for average-optimization
- Techniques for fast assessment of platform requirements in terms of the aforementioned resources (criticality profile)
- Criticality regarding performance metrics and properties

Conclusions

- Mixed Criticality (MC)
 - a logic consequence of complexity and efficiency,
 - present at different system scales
- MC System (MCS) Design requires:
 - A broader, more interdisciplinary, perspective
 - an important integration effort of existing methodologies
 - developping novel aspects and features
- This paper:
 - has provided a view of the main disciplines to be integrated,
 - proposed a core ontology for MCSoC and MCSoS design,
 - identified novel aspects and features for MCS design regarding MDA integration, criticality-aware DSE, etc

イロン イ部ン イヨン イヨン 三日

Thanks to:

the reviewers, attendees. KTH/ICT Excellence Postdoc position gr nt I-2011-0646 We are willing to collaborate! Contact: fernanhc@kth.se ingo@kth.se

F.Herrera, H. Attarzadeh and I. Sander

◀ㅂ▶ ◀♂▶ ◀콜▶ ◀콜▶ 콜 - 의식은 Towards a Modelling and Design Framework for Mixed-Criticali