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Abstract

This paper deals with numerical behaviour and convergence properties of a recently presented
column generation approach for optimization of so called step-and-shoot radiotherapy treat-
ment plans. The approach and variants of it have been reported to be efficient in practice,
finding near-optimal solutions by generating only a low number of columns.

The impact of different restrictions on the columns in a column generation method is
studied, and numerical results are given for quadratic programs corresponding to three patient
cases. In particular, it is noted that with a bound on the two-norm of the columns, the
method is equivalent to the conjugate-gradient method. Further, the above-mentioned column
generation approach for radiotherapy is obtained by employing a restriction based on the
infinity-norm and non-negativity.

The column generation method has weak convergence properties if restricted to generating
feasible step-and-shoot plans, with a “tailing-off” effect for the objective values. However,
the numerical results demonstrate that, like the conjugate-gradient method, a rapid decrease
of the objective value is obtained in the first few iterations. For the three patient cases, the
restriction on the columns to generate feasible step-and-shoot plans has small effect on the
numerical efficiency.

Key words. column generation, conjugate-gradient method, intensity-modulated radiation
therapy, step-and-shoot delivery

1. Introduction

Optimization is an indispensable tool when planning cancer treatments with intensity-modulated
radiation therapy (IMRT). The objective of IMRT is to determine the values of a set of treatment
parameters associated with the delivery system such that the dose distribution generated in the
patient meets the specified treatment goals. This is closely related to an inverse problem that
can be formulated as a Fredholm equation of the first kind. The IMRT optimization problems
are therefore ill-conditioned with a few dominating degrees of freedom [2,7]. In practice, approx-
imate solutions to the IMRT optimization problems suffice; there are numerous non-negligible

∗Research supported by the Swedish Research Council (VR).
†Optimization and Systems Theory, Department of Mathematics, Royal Institute of Technology (KTH), SE-

100 44 Stockholm, Sweden, (fcar@kth.se); and RaySearch Laboratories, Sveavägen 25, SE-111 34 Stockholm,
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uncertainties and sources of errors in the treatment planning process that make the search for
the optimal solutions unmotivated. In particular, a near-optimal solution that corresponds to a
“simple” treatment plan that can be delivered efficiently and with high accuracy is often preferred
to the complex optimal solution. These characteristics motivate the use of conjugate-gradient
like methods for IMRT optimization [5, 8].

One delivery technique for IMRT treatment plans is called step-and-shoot delivery. A column
generation approach for optimization of plans to be delivered with this technique was introduced
in [16]. Numerical results for this and related approaches demonstrate their capability of finding
near-optimal solutions that utilize only a fraction of the disposable columns [4, 6, 16]. Such
solutions are appealing since it turns out that they represent “simple” treatment plans.

In many approaches to IMRT, so called fluence map optimization problems are formulated
and solved. The solutions to these problems are not feasible with respect to the treatment
parameters so they must be transformed into feasible hardware settings a posteriori, with a
potentially degradation of plan quality. In contrast, direct aperture optimization approaches
to IMRT incorporate the delivery requirements in the problem formulation and thus generate
solutions that can be delivered without any post-processing; see, e.g., [10, 18, 19]. The column
generation approach belongs to this second group of approaches since the generated columns can
be restricted to correspond to feasible hardware settings. An advantage of the column generation
approach to the other IMRT optimization approaches is that the complexity of the treatment
plan can be controlled through the number of columns. This makes the approach ideal for
investigating the non-trivial trade-off between plan quality and treatment complexity.

To our knowledge, no efforts have been conducted to mathematically explain the promising
numerical results obtained with the column generation approaches on IMRT problems. The goal
of this paper is to gain an understanding of why the column generation method works so well
in practice for step-and-shoot optimization problems. This is done by studying the numerical
performance and the convergence properties of the method on quadratic programs (QP) and by
comparing these characteristics to the conjugate-gradient method. Real-life IMRT optimization
problems are often non-quadratic and may even be nonconvex. We limit this paper to quadratic
programs since they capture the core of the structure of the IMRT optimization problems while
being well-studied in the context of conjugate-gradient methods.

Throughout this paper, the objective function is given by f(x) = 1
2xTHx + cTx, where H is

an n × n positive definite symmetric matrix and c is an n-dimensional vector. We denote the
gradient of f at a point x by g(x), i.e., g(x) = Hx + c, the kth iterate by xk and the gradient at
xk by gk.

2. IMRT application

This section is devoted to introducing basic concepts in IMRT to readers not familiar with the
field. Comprehensive introductions to IMRT can be found in, e.g., [1, 20].

The goal of radiation therapy is to generate a dose distribution with high dose concentrated
to the tumor region(s) while sparing the healthy tissue as much as possible. The dose distribution
in the patient is a result of high energy photon fluences generated by a linear accelerator. The
photon fluences emanate from the gantry head which is positioned at different angles relative
the patient. The fluence delivered from one angle is denoted by a beam. For many patient cases,
it is beneficial to use IMRT, i.e., to spatially modulate the fluences of the beams, to generate
high-quality dose distributions. The high dose regions can then be shaped to conform closely to
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the tumor volume, even if nonconvex. A common tool for realizing this modulation is a multileaf
collimator (MLC); see, e.g., [9] for a detailed description. This device is mounted on the gantry
head of the accelerator and consists of several opposed tungsten leaves that block the incident
radiation. The leaves can be positioned with high accuracy to form an aperture, also called a
segment, that shapes the fluence. This paper considers step-and-shoot IMRT, where the fluence
for a beam is given by a weighted sum over the fluences of a few segments. We denote the
segment weights by w. These weights are proportional to the time the segments are exposed to
the photon beam. We say that a step-and-shoot plan is “simple” if it is composed by few, large
and regular segments. Such plans have non-jagged fluence profiles.

Figure 1: The delivery of step-and-shoot treatment plans. The figure illustrates an MLC segment,
the transmitted fluence of the segment and the total dose distribution in one transversal slice of
a prostate case. Note that the dose distribution is the result of nine beam fluences. The fluence
for each beam is given by a weighted sum of the transmitted fluences over the segments of the
beam.

For each beam, the fluence is discretized into a two-dimensional grid of beam elements (bixels)
aligned with the MLC leaves. We denote the fluences of the n bixels of all beams by x. The bixel
widths are set to the width of the MLC leaves to ensure that every leaf pair covers exactly one
row of bixels. By restricting the leaf positions to the bixel boundaries, the transmission of the
fluence through the MLC onto the bixels is essentially binary; for each segment, a bixel is either
exposed to the incident fluence or covered by an MLC leaf. Note that this binary representation
of the transmitted fluence is an approximation, where leakage and scatter effects induced by the
MLC are neglected. The patient volume is discretized into m cubic volume elements (voxels) and
the dose in voxel i is denoted by di. The dose distribution d ∈ IRm is given by d = Px, where P is
the m×n dose kernel matrix. This matrix relates the fluence of each bixel to a dose distribution
in the patient and it is precalculated with a pencil beam algorithm [12]. The dose kernel matrix
has non-negative components and full column rank, and is typically ill-conditioned.
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Figure 1 illustrates the delivery of step-and-shoot plans, with a schematic picture of an MLC
segment, the transmitted fluence and the total dose distribution in a transversal slice of a prostate
case. IMRT optimization problems have a multiobjective nature, with optimization functions
describing the often conflicting treatment goals defined on patient specific regions of interest
(ROIs). The ROIs specify groups of voxels of specific interest for the treatment such as the
tumor or healthy organs. In Figure 1, the tumor ROI is outlined in the center of the patient
slice. It is surrounded by the bladder ROI above and the rectum ROI underneath. Note how
the IMRT treatment plan manages to conform a high dose region (red) to the tumor ROI while
avoiding excessive dose to the bladder and rectum.

3. A column generation method

This section describes a column generation method that can be tailored to step-and-shoot opti-
mization problems. First, unconstrained QP problems are considered. The conjugate-gradient
method is briefly described and an equivalent column generation method is presented. Motivated
by the IMRT application, non-negativity bounds are then added and the generated columns are
restricted to be binary vectors. An illustrative example of the solution process is presented and
the convergence properties of the column generation method are discussed. Finally, a version of
the method that generates feasible step-and-shoot plans is presented.

3.1. The conjugate-gradient method

Consider the unconstrained QP problem

minimize
x∈IRn

1
2xTHx + cTx, (3.1)

with the optimal solution x̂ satisfying g(x̂) = 0. A popular approach for solving large-scale in-
stances of (3.1) is the conjugate-gradient method; see, e.g., [17, chapter 6] for a thorough discus-
sion. The method proceeds in conjugate and linearly independent search directions. For any iter-
ation k, the point xk+1 minimizes f(x) over the Krylov subspaceKk+1 = span{g0,Hg0, . . . ,H

kg0},
which equals the set span{g0, g1, . . . , gk}. This is accomplished by minimizing f(x) in a direction
that is a linear combination of gk and the preceding search direction pk−1 ∈ Kk. The method
converges to the solution of (3.1) in at most n iterations and tends to minimize the objective
function along the directions corresponding to the dominant eigenvalues of H first [8]. When H
has a few large eigenvalues and many small eigenvalues, as often is the case for IMRT optimiza-
tion problems [2], a near-optimal and regular (smooth) solution can be found in few iterations.
This behaviour is desirable for IMRT optimization problems since such solutions are preferable
from a practical viewpoint to the nonsmooth optimal solutions.

3.2. The conjugate-gradient method formulated as a column generation method

For any n× p matrix Q with full row rank, the problem

minimize
x∈IRn, w∈IRp

1
2xTHx + cTx

subject to x−Qw = 0,
(3.2)

is equivalent to (3.1). The reason for considering a formulation on the form (3.2) is that it allows
for including MLC requirements into the problem. With the columns of Q representing feasible
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MLC segments, p may be in the order of 1017 for realistic IMRT problems [16]. It is therefore
unreasonable to form Q explicitly. It is not in our interest to solve (3.2) exactly, but rather to
generate a high-quality solution formed by a subset of the columns of Q.

The idea of column generation is to successively include columns of Q that have potential to
improve the objective function. The column generation method proceeds by alternatively solving
a master problem and a subproblem. The master problem is a restricted version of the original
problem and the purpose of the subproblem is to detect the most promising column of Q not
yet included. This is done by utilizing the current dual variables, here given by the gradient g.
The method may be started with Q empty or with Q consisting of a few predetermined columns,
and it terminates when the optimal value of the subproblem is non-negative. Then, none of the
candidate columns can decrease the objective value (since f is convex), and the optimal solution
to the master problem is optimal also to the original problem. Since the solution should include
only a fraction of the feasible columns, the order of inclusion of the columns is crucial. For a
review of column generation applied to linear programs, see [15].

The column generation method is described in Algorithm 3.1. For the problem (3.2), the
master problem at step k is given by

(MASTERk) minimize
x∈IRn, w∈IRk

1
2xTHx + cTx

subject to x−Qkw = 0,
(3.3)

where Qk is an n × k matrix and w is a k-dimensional vector. The optimality criteria (KKT
conditions [13,14]) to (3.3) are given by QT

kgk = 0 and xk −Qkwk = 0, with gk = Hxk + c. Note

Algorithm 3.1. The column generation method.

g0 ← c;
Solve SUB0 to get q0;
k ← 0;
while qT

kgk < 0
Let Qk+1 = (Qk qk);
k ← k + 1;
Solve MASTERk to get xk, wk, gk;
Solve SUBk to get qk;

end while

that Algorithm 3.1 is designed for starting with an empty Q0, i.e., x0 = 0. If Q0 is nonempty,
the column generation method starts by solving the master problem instead. The subproblem
at step k is given by

(SUBk) minimize
q∈IRn

qTgk

subject to q ∈ Q,
(3.4)

where Q defines the set of feasible columns. Due to the termination criteria of Algorithm 3.1, Q
must be defined such that gk 6= 0 ⇔ qT

kgk < 0 when the column generation method is applied
to problem (3.1).

With Q2 = {q : ||q||2 ≤ 1}, the optimal solution qk of (3.4) is given by qk = −gk/ ||gk||2.
Obviously, gk 6= 0 ⇔ qT

kgk < 0. Analogous to the conjugate-gradient method, each iterate xk
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minimizes f(x) over the subspace spanned by the current negative gradient and the previous
negative gradients, implying that xk ∈ Kk. The solutions xk of (3.3) are thus identical to the
iterates of the conjugate-gradient method applied to (3.1), which results in that the weights wk

are non-negative for any k.
For any Q fulfilling gk 6= 0 ⇔ qT

kgk < 0, Algorithm 3.1 converges to x̂ in at most n steps
(although it might generate different iterates than the conjugate-gradient method). The reason
is that any new column qk satisfying qT

kgk < 0 is linearly independent of the columns of Qk since
QT

kgk = 0. Then, if not finished in less than n steps, Qn has full rank, which implies that the
solution of (3.3) also solves (3.1). One such set is Q∞ = {q : ||q||∞ ≤ 1}, which results in integer
solutions of the subproblem with (qk)i = 1 if (gk)i < 0 and (qk)i = −1 if (gk)i > 0. A numerical
comparison of the column generation method applied to Q∞ and Q2 is presented in Section 5.
In this paper, the master problems are solved with an active-set quasi-Newton method, which is
warm-started in every step with the solution of the previous master problem.

3.3. Inclusion of bound constraints on x

Motivated by the radiation therapy application, non-negativity bounds on x are added and we
get the bound constrained QP problem

minimize
x∈IRn

1
2xTHx + cTx

subject to x ≥ 0,
(3.5)

which describes the fluence map optimization problem with a quadratic objective function. The
unique solution x∗ of (3.5) is defined by x∗ ≥ 0, g(x∗) ≥ 0 and (x∗)Tg(x∗) = 0. The master
problem is modified accordingly,

minimize
x∈IRn, w∈IRk

1
2xTHx + cTx

(MASTERk) subject to x−Qkw = 0,
x ≥ 0.

(3.6)

The optimality criteria of (3.6) are given by QT
k(gk − zk) = 0, zk ≥ 0 and xT

kzk = 0, together
with the feasibility criteria xk−Qkwk = 0 and xk ≥ 0. Solving (3.5) with the column generation
method, Q must be chosen such that the solution qk of the subproblem fulfills

gk ≥ 0 ⇔ qT
kgk ≥ 0. (3.7)

Recall from Section 2 that the transmitted fluence of an MLC segment with respect to the
bixels is essentially binary. This restriction on x can be handled in the subproblem by the feasible
set

Qgreedy = {q : ||q||∞ ≤ 1 and q ≥ 0}, (3.8)

which can be viewed as a restricted version of Q∞. The binary solution of the subproblem with
Qgreedy is given by (qk)i = 1 if (gk)i < 0 and (qk)i = 0 if (gk)i ≥ 0. Hence, (3.7) is satisfied. The
components of qk with values equal to one correspond to exposed bixels, i.e., bixels with no MLC
leaf covering the incident photon beam, while the zero components correspond to bixels covered
by an MLC leaf. To generate feasible MLC segments, additional requirements on the columns
must be added. This will be further discussed in Section 3.5.

The column generation method with Qgreedy does not proceed in Krylov subspaces since qk

is not parallel to gk in general, but it still converges to x∗ in n steps if the master problem is
given by (3.6).
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Proposition 3.1. Algorithm 3.1 applied to (3.6) and (3.4) with Qgreedy solves (3.5) in at most
n iterations.

Proof. For any k, the solution of (3.6) fulfills xk ≥ 0 and xT
kgk = xT

k(gk−zk) = wT
kQ

T
k(gk−zk) = 0.

The feasibility and complementarity conditions of (3.5) are thus always fulfilled. It remains to
show that gk ≥ 0 is obtained in at most n steps.

Now assume that Qk has full column rank. We want to show that, if qT
kgk < 0, then Qk+1 has

full column rank. The solution xk of (3.6) is the unique minimizer in span{q0, . . . , qk−1} ∩ {x :
x ≥ 0} since Qk has full column rank and since f is strictly convex. There exists a qk ∈ Qgreedy

such that qT
kgk < 0, which implies that qk /∈ span{q0, . . . , qk−1} since qk ≥ 0. Extending Qk by

qk thus increases the rank by one. The rank of Q1 is clearly one if g0 6≥ 0 and by induction, we
get that Qk+1 has full column rank if qT

kgk < 0.
In at most n steps, qk is linearly dependent of the columns of Qk since Qn is a square matrix.

But Qk+1 = (Qk qk) not having full column rank implies that qT
kgk ≥ 0 and by (3.7), gk ≥ 0.

3.4. Inclusion of bound constraints on w

To generate feasible step-and-shoot plans, w must be non-negative since the segment weights
cannot be negative. With the master problem given by (3.6), this cannot be guaranteed. For
instance, with x = [0 1]T, q0 = [1 1]T and q1 = [1 0]T, the weight vector becomes w = [1 − 1]T.
This motivates the following master problem with lower bounds on w,

minimize
x∈IRn, w∈IRk

1
2xTHx + cTx

(MASTERk) subject to x−Qkw = 0,
w ≥ 0.

(3.9)

By not allowing negative components in Qk, w ≥ 0 implies that x ≥ 0 and feasibility of (3.5) is
ensured. The optimality criteria of (3.9) are given by QT

kgk = yk, yk ≥ 0 and wT
kyk = 0, together

with the feasibility criteria xk − Qkwk = 0 and wk ≥ 0. A consequence of these optimality
criteria is that as long as there is a negative component in the gradient gk, the columns of Qk+1

are positively independent. To see this, let q be positively dependent on the columns of Qk, i.e.,
let q = Qλ for a λ ≥ 0. Then qTgk = λTQT

kgk ≥ 0 and by (3.7), gk ≥ 0.
Let us define another feasible set of the subproblem,

Qunit = {e1, . . . , en}, (3.10)

where ei is the ith unit vector. With Qunit, the solution of the subproblem is given by qk = ep,
where p = argmini{(gk)i}. It is clear that Qunit ⊂ Qgreedy and that (3.7) holds also for Qunit.
In the context of column generation, Qunit may be interpreted as {q : ||q||1 ≤ 1 and q ≥ 0}, i.e.,
as Qgreedy with the infinity-norm replaced by the one-norm.

Proposition 3.2. Algorithm 3.1 applied to (3.9) and (3.4) with Qunit solves (3.5) in at most n
iterations.

Proof. For any k, the solution of (3.9) fulfills xk ≥ 0 and xT
kgk = wT

kQ
T
kgk = wT

kyk = 0. The
feasibility and complementarity conditions of (3.5) are thus always fulfilled. It remains to show
that gk ≥ 0 is obtained in at most n steps.
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In at most n steps, qk is linearly dependent on the columns of Qk since Qk has n rows. With
unit vectors as columns, linear dependence implies that not all columns are unique and hence qk

is positively dependent on the columns of Qk. As discussed above, this implies that gk ≥ 0.

We denote the approach of solving (3.5) by applying Algorithm 3.1 to (3.9) and (3.4) with Qgreedy

and with Qunit for the greedy strategy and the unit strategy, respectively.
An illustrative example of the solution process of the greedy strategy is the following stairway

problem: Let H = I and let c = −[1 2 . . . 8]T, i.e., f(x) = 1
2 ||x + c||2. The following gradients

and Q4 matrix are generated by the greedy strategy,

G =



−1 7/2 3/2 1/2 0
−2 5/2 1/2 −1/2 0
−3 3/2 −1/2 1/2 0
−4 1/2 −3/2 −1/2 0
−5 −1/2 3/2 1/2 0
−6 −3/2 1/2 −1/2 0
−7 −5/2 −1/2 1/2 0
−8 −7/2 −3/2 −1/2 0


and Q4 =



1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1


, (3.11)

where G = [g0 . . . g4]. The optimal solution x∗ is, of course, given by x∗ = −c = [1 2 . . . 8]T,
with the final weights given by w = [1 4 2 1]T. Figure 2 illustrates the solution process. In
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Figure 2: The greedy strategy applied to the stairway problem. Left: The four iterates with
the optimal solution given by the solid line. Right: The optimal solution displayed as the wiqi

blocks.

each step, the method strives to fulfill QT
k(xk + c) = 0. In other words, the sum over some of the

components in xk determined by the columns of Qk should agree with the sum over the same
components in −c. Although one might expect that the greedy strategy would require n steps to
reach x∗, it takes advantage of the symmetry of the problem as can be seen in the right part of
Figure 2. Instead of generating all eight components of x∗ separately, as the unit strategy would,



3. A column generation method 9

the greedy strategy generates x∗ with four “blocks”. The reason that each block can include
several components of x is the symmetry in c. If the components in c are assigned random
numbers, one expects the greedy strategy to need all n steps. One would, however, expect the
final steps to be devoted to “fine-tuning” the solution.

For general convex QP problems, the greedy strategy is not guaranteed to converge to x∗ in n
steps. The reason is that there might be a point x̃k ∈ span{q0, . . . , qk−1} ∩ {x : x ≥ 0} such that
f(x̃k) < f(xk) for any xk ∈ pos{q0, . . . , qk−1}, where “pos” denotes the positive cone. A vector
q that is positively independent of but linearly dependent on the columns of Qk, while satisfying
qTgk < 0, might therefore be generated in the subproblem. This makes Qn rank-deficient, which
could result in gn 6≥ 0. This cannot happen with Qunit since positive independence implies linear
independence for unit vectors.

To construct a problem that requires more than n steps to converge to the optimal solution x∗
of (3.5) with the greedy strategy, one has to make sure that at least one component of w is zero.
As long as the weight vector is positive, the dual variable yk must be zero to ensure wT

kyk = 0.
Then, a new column qk fulfilling qT

kgk < 0 is linearly independent of the columns of Qk since
QT

kgk = yk = 0, and the optimal solution is found in at most n steps. An example of a convex
QP requiring n+1 steps to converge using the greedy strategy is the following three-dimensional
problem (which was found numerically):

H =

 0.8 6.6 5.2
6.6 60.0 54.7
5.2 54.7 60.0

 and c =

 −14
−122
−118

 . (3.12)

The greedy strategy generates the following iterates,

Q4 =

 1 1 1 0
1 1 0 0
1 0 0 1

 , W =


1.0 0.7 0.6 0
− 0.6 0 0
− − 8.0 10.8
− − − 1.0

 and x∗ =

 10.8
0

1.0

 , (3.13)

where the columns of W are the weight vectors w1, . . . , w4. Note that the weights of the first
two columns are zero at the optimum. The reason is that the second component of x∗ is zero.
The method has been “fooled” to proceed in directions including the second component of x
in the first two iterations, resulting in that two more iterations are required to reach x∗. The
greedy strategy might not converge to x∗ in n steps even if H is the identity matrix, i.e., with
f(x) = 1

2 ||x + c||2. For instance, with c = −[1 1.2 2.7 3.5 4.9]T, the greedy strategy requires
n + 1 steps to converge. The reason is that the weight of the first column, q0 = [1 . . . 1]T, is set
to zero after four steps since all components of x are “covered” by the other columns of Q4.

The number of steps required for the greedy strategy to converge is potentially exponential,
with 2n − 1 steps as the upper limit. Whether there exist convex QP problems that actually
require an exponential number of steps is unknown to us. For the IMRT application, however, it
is the performance of the column generation method in the first few iterations that is of interest.
For practical purposes, only a low number of columns (segments) are allowed in the solution.
Typically, this number is of orders of magnitude less than n.

The initial performance of the unit strategy and the greedy strategy depends on the problem
structure. With x∗ = ep and c < 0, the unit strategy will converge directly if p = argmini{ci},
but the greedy strategy will not. On the contrary, with a uniform and positive x∗, the greedy
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strategy converges in one step while the unit strategy needs all n iterations. The numerical
performance of these two strategies on IMRT problems is demonstrated in Section 5.

3.5. Generating feasible step-and-shoot plans

A solution xk = Qkwk to (3.9) represents a feasible step-and-shoot plan if the columns of Qk

correspond to feasible MLC segments. A segment is generated from a (subset) of a binary column
of Qk in two steps. First, the exposed bixels specified by the column are identified for every bixel
row (leaf pair). Then, for each bixel row, the leaf positions are set to cover all non-exposed bixels.
This implies that the exposed bixels of every bixel row must be contiguous to be realizable by
a leaf pair. We call this requirement the contiguous rows criterion and denote the feasible set
of the subproblem stipulated by this criterion by Qrows. With Qrows, the subproblem can be
separated into smaller problems, where each problem only contains the bixels of one bixel row.
These problems can be solved efficiently by the algorithm presented in [16]. The criteria set
by Qrows are sufficient for some of the MLCs used clinically. Other MLCs require additional
criteria that are not separable in the bixel rows. Then, the subproblem can be formulated as a
shortest-path problem for each beam and feasible segments are generated from the solutions of
these network problems [3, 16].

The unit strategy and the greedy strategy discussed in the previous section “almost” produce
feasible step-and-shoot plans. The unit vector columns produced by the unit strategy results
in feasible segments (in theory), but, in practice, this approach is not viable since too many
segments must be included to generate a solution with many nonzero components. Further, the
transmitted fluence of small segments is hard to model, which results in large uncertainties in the
delivered dose. In contrast, the greedy strategy allows for columns with more than one exposed
bixel. These columns do not, however, correspond to feasible MLC segments in general since it
is not guaranteed that they satisfy the contiguous rows criterion.

Let the method of solving (3.5) by applying Algorithm 3.1 to (3.9) and (3.4) with Qrows be
denoted by the rows strategy. The rows strategy can be seen as a limited version of the greedy
strategy and we do not expect the rows strategy to converge to x∗ in n steps in general. Note
that the rows strategy, which is similar to the column generation approach presented in [16], is
the only approach discussed in this paper that generates feasible step-and-shoot plans.

4. Test problems

Three patient cases are studied; a pancreas case (with 5 beams, 335 bixels and 68040 voxels), a
prostate case (3, 214, 113738) and a head-and-neck case (9, 365, 26775). These cases originate
from clinical cases, but have coarser discretizations of the fluences and the patient volumes. For
each case, the patient volume is partitioned into three ROIs: a target region T , an organs-at-risk
region O and a normal tissue region N .

A simple yet reasonable objective function for IMRT is given by the quadratic function

f(x) = 1
2

∣∣∣∣∣∣D(1/2)(Px− dpres)
∣∣∣∣∣∣2

2
, (4.1)

where dpres ∈ IRm is the prescribed dose distribution and D is an m×m diagonal weight matrix
with positive diagonal entries. The Hessian of (4.1), H = P TDP , is positive definite and typically
ill-conditioned with many eigenvalues clustered near zero.
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Let dpres
i = 1 for i ∈ T and dpres

i = 0 for i ∈ O∪N , i.e., prescribe nonzero uniform dose to the
target region and zero dose to the healthy tissue. It is impossible to replicate this dpres exactly
since depositing dose to the target will, inevitably, lead to nonzero dose in the surrounding
healthy tissue. To prioritize the target and the organs-at-risk, we let Dii = 10 for i ∈ T , Dii = 5
for i ∈ O and Dii = 1 for i ∈ N . We argue that this objective function grasps the mathematical
properties of IMRT problems despite being idealized and not focused on clinical relevance. For
a numerical evaluation of the column generation method on test problems with more emphasis
on clinical relevance, we refer to [4].

5. Numerical results

Figure 3 displays the objective values versus iteration number for different subproblem restrictions
on each of the three patient cases with the objective function defined by (4.1). The objective
value is scaled with the initial objective value for each case.
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Figure 3: The relative objective values versus iteration number for the column generation method
with five different subproblem strategies applied to IMRT optimization problems for a pancreas
case (a), a prostate case (b) and a head-and-neck case (c). The curves with the lowest objective
values correspond to the first two strategies, which are applied to the unconstrained problem
(3.1). The other three strategies are applied to the bound constrained problem (3.5).

The first two strategies, denoted by two-norm and by inf-norm in the figure, correspond to
the column generation method applied to the unconstrained QP problem (3.1) with the feasible



12 A conjugate-gradient based approach for quadratic programming

set of the subproblems defined by Q2 and Q∞, respectively. The objective values are shown
as the curves with the lowest objective values, with dashed lines for the two-norm strategy and
with solid lines for the inf-norm strategy. As discussed in Section 3.2, the two-norm strategy
is equivalent to the conjugate-gradient method. Note that this formulation allows for negative
fluence, which is non-physical.

The objective values of the other three strategies, introduced in Sections 3.4 and 3.5, are
shown with dashed lines for the greedy strategy, solid lines for the rows strategy and dash-dotted
lines for the unit strategy. These strategies are applied to the bound constrained QP problem
(3.5). As can be seen in Figure 3, the optimal values are higher with bounds on x. The reason
is that (3.1) is a relaxation of (3.5) and that the optimal solution x̂ of (3.1) is not feasible with
respect to (3.5) for any of the patient cases. With lower bounds on x, some bixels get zero fluence
at the optimal solutions. The unit strategy is therefore able to converge to x∗ in less than n
steps. This is also the case for the greedy strategy, while the rows strategy fails to reach x∗ in n
steps for all the three cases.

Comparing the objective values in the first few iterations, it is apparent that the unit strategy
initially is inferior to the other strategies. In contrast, the objective values of the solutions
obtained with the rows strategy are very close to the optimal values after rather few iterations.
There is clearly not much to gain after a certain number of iterations, the improvement in
objective value is negligible and the number of columns (segments) will increase if continuing.
The impact of restricting the feasible set of the subproblem from Qgreedy to Qrows to generate
feasible segments is very small in terms of the objective values. For these two feasible sets,
similar results were obtained when a steepest-edge like strategy was applied in the subproblems,
i.e., when only significantly negative elements of the gradient vector were considered in the
subproblem.

The shape of the objective value curves are similar for the rows strategy and the conjugate-
gradient method (two-norm strategy). The appealing properties of the conjugate-gradient method
on ill-conditioned problems seem to be inherited in the column generation approach with Qrows.
Near-optimal solutions are found in very few iterations compared to the problem size. This result
falls well in line with the more clinical results reported in [4,6], where few iterations seem to suf-
fice in order to generate high-quality step-and-shoot plans. As a side note, column generation for
linear programs also exhibits slow convergence combined with the ability of reaching near-optimal
solutions fast. This characteristic is known in the literature as the tailing-off effect [15].

6. Summary and discussion

We have discussed numerical behaviour and convergence properties for a column generation
method applied to convex quadratic programs arising in IMRT. In particular, the impact of
different subproblem restrictions was studied. With a two-norm based restriction, a method
equivalent to the conjugate-gradient method was obtained. Infinity-norm based restrictions were
introduced motivated by the IMRT application. In terms of initial decrease of the objective
value, the column generation method performs similarly to the conjugate-gradient method if
the restriction of the subproblem is based on the infinity-norm. Further restrictions on the
subproblem to generate feasible step-and-shoot IMRT treatment plans, called the rows strategy
approach, has small effect on the efficiency of the method.

One may view the rows strategy approach as a fluence map optimization of “groups of bixels”
defined by the generated columns, with the property that each “group” can be realized by an
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MLC segment. We believe that the efficiency of the rows strategy approach is related to that non-
jagged fluence profiles can generate near-optimal solutions to fluence map optimization problems.

Additional heuristics to produce clinically more relevant and thus acceptable plans may also
be used. Such heuristics include letting the lower bound of w be positive, removing columns with
associated weights at the lower bound and using a perturbed gk in the subproblem to generate
clinically preferable segment shapes. Further, the optimization of the master problem may be
prematurely terminated [11]. Accounting for “second-order” MLC transmission effects such as
leakage and scatter is essential. A sound strategy is to employ an accurate transmission model
when generating a new segment from a binary column. Then, the columns of Q are non-binary
and the dose distribution can be computed from an accurate fluence in the master problem.

Despite incorporating all these heuristic extensions and using non-quadratic objective func-
tions and MLC constraints that do not separate in bixel rows, the numerical results of [4] demon-
strate that high-quality solutions are still obtained in a low number of iterations. Further, in [6],
it is reported that the impact of different MLC constraints on the numerical performance of the
column generation method is small. The column generation method thus performs remarkably
well on step-and-shoot optimization problems even if “perturbed” by heuristics and the numerical
performance is robust with respect to different restrictions on the subproblem. The likeness to
the conjugate-gradient method is, in our opinion, an important explanation for the ability of the
column generation method to take advantage of the fundamental nature of IMRT optimization
problems to find near-optimal step-and-shoot plans with few segments.
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