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Abstract

Optimization is of vital importance when performing intensity modulated radiation
therapy to treat cancer tumors. The optimization problem is typically large-scale with
nonlinear objective function and bound constraints on the variables. Our optimization
framework is an existing treatment planning system based on a quasi-Newton sequential
quadratic programming solver. This study investigates the effect on the optimal solu-
tion, and hence treatment outcome, when solving an approximate optimization problem
of lower dimension. The reduction of dimension is based on a spectral decomposition of
an approximation to the Hessian. The Hessian has been observed to be degenerate in
the sense that many eigenvalues are much smaller than the largest ones. This observa-
tion motivates an introduction of eigenvector weights as optimization parameters, and
considering an approximate problem related to the large eigenvalues only.

The eigenvector weight optimizations performed on a prostate patient case show that
a reduction in dimension results in faster initial decline in the objective function, but
the approximate model is in general unable to give an entirely satisfactory final solution.
Another approach, which combined eigenvector weights and bixel weights as variables
is also investigated. Our results indicate that lower objective values than with the con-
ventional starting guess are obtained. However, this advantage is at the expense of the
pre-computational time for the spectral decomposition.

Key words. IMRT, optimization, sequential quadratic programming, quasi-Newton
method

1. Introduction

The goal of external-beam radiation therapy (RT) is to obtain an acceptable balance between
tumor control and complications to the normal tissue surrounding the tumor. In traditional
conformal RT, often referred to as 3D-CRT, the clinician determines the incident beam angles
and shapes the beams with, for example, wedges in order to find an acceptable treatment.
This task is often time-consuming and can be rather difficult, since the possibilities of shaping
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the beams are restricted. The complexity of the task also increases for patients where healthy
organs lie close to and surround the tumor.

These issues motivated the introduction of so called inverse treatment planning, where
the clinician specifies certain characteristics of the desired dose distribution by introducing
objective functions for each region of interest (ROI). The ROIs are certain regions in the
patient that are of specific interest to the treatment, e.g. tumor and critical organs. These
objective functions typically penalize low and non-conformal dose in the tumor and high
dose in the organs at risks (OARs). The objectives can be either physical or biological.
The former describes how well the dose distribution corresponds to a prescribed distribution
while the latter measures clinical outcome based on dose-response models and estimates of
biological parameters. The composite objective function is then minimized by an optimization
algorithm that calculates the optimal fluences profiles of the beams. These fluence profiles
generate a dose distribution as close to the prescribed one as possible. By using a computer
controlled multileaf collimator (MLC), the optimal beam profiles can be delivered with good
precision. The MLC consists of narrow tungsten blocks (leafs), which can be positioned
to shape the transmitted fluence. The desired fluence profile is built by adding up the
transmitted fluence from several setups of the leaves. The MLC delivery of optimized fluence
profiles is called intensity modulated radiation therapy (IMRT), which significantly improves
the dose distribution and facilitates the planning process for the clinician.

In general, the IMRT problem has a non-convex nature, leading to multiple local mini-
mas [3, 10]. Despite this, the most common optimization techniques when solving the IMRT
problem with fixed beam angles are gradient based methods. They are fast compared to
stochastic methods such as simulated annealing and seem to deliver satisfactory treatment
plans although not ensuring global optimality. Moreover, it has been suggested that the
clinical difference between the treatment corresponding to a local minima and the treatment
corresponding to the global minima is negligible [11]. A gradient based method therefore
seems natural when considering the IMRT problem with fixed beam angles and we will use
this kind of solver in this study.

One important issue with IMRT is the computational time required to solve the optimiza-
tion problem. The IMRT problem often has several thousands of variables that are subject
to bound constraints, leading to computationally heavy calculations.

This paper is focused on solving an approximate problem of lower dimension. Such an
approach was introduced in [8]. The motivation for reducing the problem dimension is that
the problem has been observed to be degenerate in the sense that the Hessian of the objective
function has a large number of small eigenvalues and rather few large eigenvalues [2].

We obtain such a dimension reduction by extracting vital information of the Hessian from
a spectral decomposition. The Hessian at the optimum is, naturally, unknown before starting
the optimization. We therefore suggest a scheme for approximating the Hessian, and thereby
its eigenvectors, on beforehand, and then approximately solve the IMRT problem with the
eigenvector weights as variables.

2. Problem formulation

Radiation therapy results in a particle fluence incident on the patient. In this study we will
focus on the most widely used particle type in RT, photons. Other suitable particle types
for RT include electrons, neutrons and light ions.

The clinically relevant part of the patient and the beams are discretized in our model.
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The body is discretized into a number of volume elements, denoted by voxels. Let m be the
number of voxels, and let di, i = 1, . . . ,m, denote the dose in voxel i. Normally m is very
large, often in the order of hundreds of thousands. The dose deposited in the voxels for a
certain particle fluence is given as the weighted sum of so called pencil beam kernels [1]. A
pencil beam kernel describes how the energy distribution from a small area element of a beam
is spread inside the patient due to interactions between the incident particles and the tissue.
The shape of the pencil beam kernel, calculated with Monte Carlo simulations, depend on
particle type, energy of the particles and the electron density of the tissue.

The beam element related to a specific kernel is denoted a bixel and the union of the
beam elements from all beams is referred to as bixels. The pencil beam matrix, denoted by P ,
describes the beam and tissue interaction by relating the bixels to the voxels. One column in
the P matrix represents a kernel from a bixel and the rows represent the voxels. The weights
of the bixels are the optimization variables in the problem we consider and they are denoted
Ξj, j = 1, . . . , n. The dose distribution d(Ξ) is related to the P matrix and the bixel weights
Ξ through the linear relation

d(Ξ) = PΞ. (2.1)

In this study we consider a typical IMRT problem with physical objective functions only.
As mentioned in the introduction, the underlying idea with physical objectives is to give
a uniform dose of adequate dose level to the tumor and low dose to the healthy tissues.
Denoting such an objective function by F (d) we obtain the optimization problem

minimize
d∈IRm, Ξ∈IRn

F (d)

subject to d = PΞ,
Ξ ≥ 0.

(2.2)

In addition to the constraints given in (2.2) there may be other constraints present, such as
prescribing that the average dose in a region of the patient must not exceed a certain level.
However, these constraints are normally rather few, and no such constraints are included in
the problems studied in this paper. We may eliminate d from (2.2) by (2.1) and write

minimize
Ξ∈IRn

F (PΞ)

subject to Ξ ≥ 0.
(2.3)

The objective function F in (2.2) and (2.3) may be composed by a number of different
objective functions. In our setting, F is a weighted sum of K objectives F k, k = 1, . . . ,K,
where objective k is assigned weight wk, k = 1, . . . ,K. The weights are set by the clinician
before starting the optimization. The idea is to set high weight on the tumor-related objec-
tives and on the objectives tied to the most critical healthy organs, while low weight should
be given to the objectives of the least important risk organs. The process of picking adequate
values of these weights is a trial-and-error process, where the weight factors have no direct
clinical meaning. If the optimal dose distribution is not good enough, the clinician has to
change the weight factors and start the optimization again. An alternative and more flexible
approach of ranking the significance of the objectives has been proposed in [6].

However, in this project the conventional weight factor approach will be used. F (d) is
then given by

F (d) =
N

∑

k=1

wkF k(d). (2.4)
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The objectives F k(d) measure penalties for a given dose distribution d. In this paper, three
types of physical least-squares type objectives are used, (i) uniform dose; (ii) max(min) dose;
and (iii) max(min) dose volume histogram (DVH). They all penalize deviation from desired
dose levels quadratically. Uniform dose penalizes all voxels in the addressed ROI from the
desired level, while max(min) dose penalizes only the voxels exceeding (falling short of) the
prescribed dose level dk. For a certain ROI r and objective k, F k(d) for max(min) dose can
be described by

F k(d) =
1

2

∑

i∈V r

f(di, d
k)

(

di − dk

dk

)2

∆vk
i , (2.5)

where f(di, d
k) = H(di−dk) for the max dose function, the opposite for the min dose function

and f(di, d
k) = 1 for the uniform dose function, H(·) is the Heaviside function, V r denotes

the voxels included in ROI r, di is the dose in voxel i and ∆vk
i is the relative volume of voxel

i.
A max(min) DVH objective function acts like a max(min) dose function, with an addition

of a volume constraint. The objective is introduced from the requirement that only a fraction
η of the voxels of a ROI should fulfill the dose prescription dk. If we introduce V r

η (d) as

V r
η (d) = {i : voxel i ∈ {(1 − η) voxels in ROI r with lowest (highest) dose}}, (2.6)

we may write

F k(d) =
1

2

∑

i∈V r
η

(d)

f(di, d
k)

(

di − dk

dk

)2

∆vk
i , (2.7)

with the same notation as in (2.5). Note that the index set V r
η (d) depends on the dose

distribution. This means that the function F k(d) of (2.7) is not continuously differentiable.
This discontinuity may be eliminated by introducing binary variables [9]. Since we are
interested in using gradient based techniques and want to avoid unnecessary complexity,
we model this function by a local penalty function instead. This means that the set V r

η (d) is
updated in each iteration, based on the current dose d.

3. Description of the patient case

The patient studied in this project is a patient with a prostate tumor, irradiated by seven
beams and a total of 1633 bixels. Since the prostate is situated between the bladder and
rectum, which are sensitive to radiation, this case requires very precise dose delivery. In
addition to the tumor itself and the important risk organs, a planning target volume (PTV)
is included in the problem formulation. The PTV consists of the tumor volume extended
by a small margin surrounding the tumor. The reason for introducing the PTV is that the
exact location of the tumor is uncertain due to set-up errors and motion of the organs. The
margin added to the tumor is large enough to assure that the tumor stays inside the PTV
throughout the treatment.

The objective functions and their weights for all ROIs considered are listed in Table 1.
Note that the property of uniform dose distribution in the tumor is emphasized by putting
high weights on these objectives. It is also clear that the prostate and the PTV are the
important ROIs, the main objective is to remove the tumor, not to spare the risk organs.
As seen on the weight factors, rectum is considered to be slightly more important than the
bladder since the complications are more severe in the former. A representative slice of the
patient, outlining the ROIs included in Table 1, is shown in Figure 1.
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ROI Prostate PTV Rectum Bladder Fem Heads

Function Type Uniform Min DVH Max DVH Max DVH Max Dose
Weight 40 30 5 10 1

Dose Level (Gy) 80 74 40 40 40
Fraction η - 0.95 0.45 0.55 -

Function Type Min Dose Max DVH Max DVH Max DVH
Weight 30 10 5 1

Dose Level (Gy) 71 60 65 28
Fraction η - 0.20 0.25 0.45

Function Type Uniform Max DVH Max DVH
Weight 20 10 7

Dose Level (Gy) 80 75 75
Fraction η - 0.05 0.10

Table 1: Specification of the objective functions for each ROI.

Bladder

Prostate

Rectum

PTV

Fem  
Head

Fem  
Head

Figure 1: Slice of the patient showing the contours of the ROIs.

4. Optimization framework

A quasi-Newton sequential quadratic programming method is used to solve the optimization
problems in this study. More specifically, we use ORBIT1 [7], which adds optimization

functionality to the treatment planning system Pinnacle3r2. ORBIT is coupled to the

quasi-Newton sequential quadratic programming solver NPSOLr3 [4].

5. Approximation of the Hessian

We are interested in considering the optimization problem as a problem in Ξ only, i.e., on
the form (2.3). The max(min) dose function is continuously differentiable, but not twice

1ORBIT is a product of RaySearch Laboratories.
2Pinnacle3r is a registered trademark of Philips Medical Systems.
3NPSOLr is a registered trademark of Stanford University.
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continuously differentiable, see (5.2). This discontinuity of the Hessian can be removed by
adding slack variables. With objective functions given by uniform dose or max(min) dose,
(2.3) may be reformulated as a pure quadratic programming problem by introducing slack
variables. The number of voxels is however too large for this to be a viable strategy, if
an active-set type strategy is to be used. As the tool available in this study is based on
NPSOL, which in turn is based on an active-set type quadratic program solver, we stick to
the formulation (2.3).

We denote by H(Ξ) the second derivative matrix of the objective function with respect
to Ξ, i.e.,

H(Ξ) = ∇2
ΞΞF (d(Ξ)) = P T∇2

ddF (d(Ξ))P. (5.1)

To simplify the notation, we denote ∇2
ddF (d(Ξ)) by F ′′.

For the max(min) dose objective function, given by (2.5), the second-derivative matrix is
not defined when di(Ξ) = dk for some i. If di(Ξ) 6= dk, i = 1, . . . ,m, we obtain

F ′′
ij =

{ ∑

k(w
k∆vk

i )/(dk)2 if i = j and f(di, d
k) > 0

0 otherwise.
(5.2)

It follows from (5.2) that F ′′ is a diagonal matrix, which is discontinuous if di = dk for some
i, i = 1, . . . ,m. Expression (5.2) describes F ′′ for the max(min) DVH objective as well, as
long as the DVH function is approximated with a local penalty method in every iteration.

Our approach for approximating the Hessian of the objective function is to form the
matrix P TDP , where D is an approximation of F ′′, where an estimate of significant voxels is
made. This estimation is based on the observation that the vast majority of the voxels i in
objective k fulfill f(di, d

k) = 0 after a few iterations, i.e. their dose prescriptions are fulfilled
and they do not contribute to the composite objective function. This leads to many zeros in
the diagonal of F ′′, especially near the optimum. On the other hand, voxels located in areas
in or near the intersection between tumors and the critical OARs, will violate their prescribed
dose levels more frequently. The diagonal elements of D for such voxels are given by the non-
zero elements of (5.2). The D matrix contains much less nonzero elements than F ′′, making it
faster to compute P TDP than P TF ′′P . The curvature information in the Hessian is however
reduced when using D instead of F ′′. The choice of the non-zero diagonal elements in D is
therefore a tradeoff between computational time and preserving vital curvature information.
Including the voxels in the tumor and in two or three OARs turned out to be a viable strategy
when building D.

With physical least-square objectives, the structure of P TDP and P TP will be similar
since D is diagonal. The P TP matrix, which describes the overlap of the kernels, is band-
diagonal. The main diagonal corresponds to overlap between kernels within one beam, while
the off-diagonal bands correspond to the interaction between kernels from different beams.
The number of bands in P TP therefore equals the number of incident beams. Furthermore
are the elements along the diagonal in the P TP matrix much larger than the off-diagonal
elements, since the overlap between bixels within one beam includes more voxels. The left
part of Figure 2 shows this distinctive band-diagonal structure of P TDP . Note that the
number of beams for the patient plan, which is seven, equals the number of elliptic bodies
along the main diagonal.

In the right part of Figure 2 it can be seen that an elliptic body, arising from the inter-
action between two beams, is composed by small non-zero regions arranged in a symmetric
pattern. The size of such a region quantifies the interaction between kernels from two bixel
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0 

Figure 2: Left: The approximation of the Hessian showing the band-diagonal structure. Each
elliptic body originates from the interaction between two beams. Right: Details of one of the
off-diagonal elliptic bodies.

rows, and the orientation and shape of a region indicate the relative angle between the ker-
nels, i.e. beams, interacting. It turns out that a circular region corresponds to perpendicular
beams while an oval transverse region corresponds to opposite beams. As seen in the diag-
onal, an oval region along the diagonal corresponds to the interaction between bixels within
one beam (beams parallel). This clear structure of P TDP indicates that it might be possible
to construct the P TDP matrix without having to calculate the interaction between different
kernels.

6. Reduction of dimension

From above, we see that the approximate Hessian may be expressed as P TDP , where D is a
positive semidefinite diagonal m × m matrix with zero diagonal elements for non-significant
voxels.

The n×n matrix P TP describes the kernel overlap in the voxels. Since a kernel is spread
in the tissue, both kernels within one beam as well as kernels from different beams will overlap
in the voxels. A small change in energy in one kernel can then be compensated by changing
the energy in another or many other kernels. This redundancy makes the P TP matrix
degenerate. It was observed in [2] that the Hessian often has few significant eigenvalues at
the optimum and that the Hessian at optimum is more degenerated than P TP itself. The
objective function thus increases the amount of degeneracy of the problem.

We suggest using this information to form a lower-dimensional problem based on the
the eigenvalue decomposition of P TDP , or equivalently, the singular value decomposition of
D1/2P , i.e.,

D1/2P = UΣV T , (6.1)

where the columns of V (eigenvectors) correspond to fluence shapes and the columns of U to
dose shapes. The singular value matrix Σ is rectangular, Σ = (ST 0T)T, where S is a diagonal
n × n matrix containing all the eigenvalues. Both U and V are orthogonal according to the
SVD [5]. The left part of Figure 3 shows the eigenvalues of D1/2P . It turns out that more
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than 80% of the eigenvalues are smaller than one tenth of the largest one.
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Figure 3: Left: All eigenvalues of D1/2P scaled relative the largest eigenvalue. Right: The
beam profiles of the four dominant eigenvectors of D1/2P .

The right half of Figure 3 indicates that the eigenvectors have positive components as
well as negative components. An exception is the eigenvector corresponding to the largest
eigenvalue, denoted by Eigenvector 1 in Figure 3. This eigenvector has a Gaussian-like shape.
The next eigenvector, corresponding to the second largest eigenvalue, has two extreme points.
We observe that the shape of the dominant eigenvectors are smooth and remind of basic
tones, while the non-dominant eigenvectors show high-frequency patterns. The dominant
eigenvectors furthermore solve the main conflicts between the objective functions as was
discussed in [2].

These observations indicate that the eigenvectors could be used as optimization param-
eters. We introduce variables ξ that represent the weight of the eigenvectors. Any fluence
shape Ξ is then given by

Ξ = V ξ. (6.2)

The eigenvector matrix V acts as a transformation matrix between the two variable sets.
With the new variables ξ, the curvature of the approximate Hessian is given by the diagonal
matrix

H(ξ) = V TP TDPV = STS. (6.3)

The bixel weight optimization problem (2.3) can be transformed with (6.2) to the eigen-
vector weight optimization problem

minimize
ξ∈IRn

F (PV ξ)

subject to V ξ ≥ 0.
(6.4)

The choice of D affects V , but since all columns of V are used in (6.4), this dependence is
irrelevant. Now the n bound constraints on Ξ have been replaced by n linear constraints on
ξ, to assure non-negative fluence. The linear inequalities are harder to treat for NPSOL than
bounds, so this problem formulation is less useful than (2.3). To improve the usefulness of
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(6.4), we need to reduce the problem dimension. We study the curvature of the Hessian to
motivate such a reduction.

The degeneracy of the IMRT problem implies that the optimization problem can be
approximated by p terms, with p � n. We get an approximation to the curvature with

H(ξ) = V T
p P TDPVp = ST

pSp, (6.5)

where Vp is a matrix consisting of the p dominant eigenvectors and Sp is a p × p diagonal
matrix, with the p dominant eigenvalues along the diagonal. The approximation in (6.5)
is accurate as long as the n − p smallest eigenvalues to D1/2P are much smaller than the p
dominant ones. This indicates that it might be possible to reduce the problem dimension and
optimize p eigenvector weights without deteriorating the solution significantly. We suggest
selecting the p first columns of V to obtain the p-dimensional optimization problem

minimize
ξp∈IRp

F (PVpξp)

subject to Vpξp ≥ 0.
(6.6)

In this situation, the properties of Vp depend on the choice of the weight matrix D as well
as the dimension p. It is important to have a good choice of D for (6.6) to be a suitable
approximate problem to (2.3) and (6.4). We expect that the reduction of the number of
variables will compensate for the increase in optimization time induced by the general linear
constraints. With a low value of p, each iteration should be at least as fast for (6.6) as for
(2.3).

The focus will be on solving (6.6) for different values of p and comparing the solutions to
the one obtained for the bixel weight optimization problem (2.3).

7. Eigenvector weight optimization

An advantage when optimizing eigenvector weights is that the Hessian of the reduced dimen-
sion is given directly from (6.5). The quasi-Newton SQP method can therefore be initialized
with a good Hessian approximation with no extra effort. When optimizing bixel weights, the
initial Hessian approximation is set by NPSOL as a multiple of the identity matrix. The cur-
vature approximation is therefore not as accurate when solving (2.3) as when solving (6.6).
Work is in progress to solve (2.3) with a more accurate Hessian, but in this study the identity
matrix was used as initial Hessian when solving (2.3).

7.1. Initializing the eigenvector weights

When solving (2.3), the general idea is to set the initial value of all bixel weights, Ξ0, to the
same value, i.e. to start with a homogeneous fluence. This value is scaled so that the average
dose in the tumor equals the largest prescribed dose level. Our strategy when setting the
initial eigenvector weights, ξ0, is to generate a starting point that lies as close to the bixel
weight starting point as possible. This is done by solving the system

Vpξ0 = Ξ0. (7.1)

The system (7.1) is over-determined when p < n, so the initial point Vpξ0 does not equal
Ξ0. Our experiences however showed that the starting point ξ0, obtained from (7.1), was
comparable in the sense that the initial value of the objective function was similar when
using Vpξ0 and Ξ0. When p < n, it is important to check that ξ0 is feasible, i.e. that
Vpξ0 ≥ 0.
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7.2. Results

Table 2 shows the objective values f and the optimization times t for different values of p
after 25 iterations of (6.6) with the SQP method. The values in the table are related to the
objective value fbixel and optimization time tbixel of (2.3) after 25 iterations. The upper limit
of iterations is set to 25, since 25 iterations is the default setting in ORBIT for similar plans.
This default setting is due to the empiricial observation that 25 iterations are sufficient for
ORBIT to produce a satisfactory plan for such problems. The notation “∗” in the table means
that the optimal solution was found in less than 25 iterations. If no “∗” is present next to the
figure, the optimization went 25 iterations without reaching optimum and the value shown is
the value obtained after 25 iterations. It should be pointed out that the optimization times
given in Table 2 and Figure 5 are the times it takes from the beginning of the first iteration
until optimum or 25 iterations is reached. The time to calculate the approximation of the
Hessian ( 20s) and to extract the eigenvalues from this Hessian ( 25s), are not included. The
pre-computational time is thus 45 seconds longer when solving (6.6) than when solving (2.3).
It is clear in Table 2 that there is no p such that both f/fbixel and t/tbixel are less than one.

p 20 30 50 75 100 150 200

f/fbixel 104∗ 58.5∗ 32.8∗ 20.4∗ 12.8∗ 6.55∗ 4.40∗

t/tbixel 0.29 0.33 0.48 0.51 0.71 0.81 0.90

p 300 400 500 600 750 1000 1633

f/fbixel 2.36 1.82 1.34 1.04 0.77 0.57 0.39
t/tbixel 1.22 1.34 1.32 1.42 1.61 2.13 5.65

Table 2: The objective values and optimization times for eigenvector weight optimization after
25 iterations relative fbixel and tbixel respectively. The ∗ notation points out optimizations
where optimum was found in less than 25 iterations.

To reach a lower objective value in 25 iterations with (6.6) than with (2.3), the value of p
must be large, leading to a longer optimization time. When p is large, the linear inequalities
will affect the computational time considerably. If p is small the optimization is fast, but
the objective values obtained for the reduced dimension problems are then much higher than
fbixel. The information excluded when reducing the problem dimension seems to be vital to
be able to generate a good dose distribution. When optimizing all eigenvector weights, the
objective value is lower than the value for the bixel weight optimization. The reason is that
a more accurate Hessian is used when solving the former problem.

Figure 4 shows the DVH after 25 iterations for the PTV, rectum and bladder for the bixel
weight optimization and for the eigenvector weight optimization with p = 100 and p = 1633
(all eigenvectors) respectively. When using all eigenvectors, the DVH for the eigenvector
optimization is better than the DVH for the bixel weight optimization. The risk organs
get similar dose distributions, although slightly lower dose is delivered with the eigenvectors
approach, but the dose distribution in the PTV is much more conformal when optimizing
the eigenvector weights. With only 100 eigenvectors, the dose distribution achieved is much
worse than the one obtained with bixel weight optimization. The bladder receives more
high dose and rectum has much more voxels receiving a dose of 50 Gy or higher with the
eigenvector approach. Furthermore, the dose to the PTV is much less conformal than with
the bixel weight approach. Apparently, 100 eigenvectors cannot generate a satisfactory dose
distribution. An observation in Figure 4 is that relatively many voxels in the bladder receives
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Figure 4: Dose volume histogram for the bixel weight optimization compared to an eigen-
vector weight optimization. The +, o and ∗ marks in the figures point out the objective
functions for the PTV, rectum and the bladder respectively. Left: With 100 eigenvector
weights. Right: With all eigenvector weights.

high dose. This is due to an overlap between the bladder and the PTV, leading to a conflict
in the objective for voxels included in both these ROIs.

The results so far indicate that eigenvectors cannot both speed up the optimization and
improve the dose distribution at the same time. This is visualized in the left half of Figure
5, which shows the objective value as a function of optimization time for (2.3) and for (6.6)
with p = 100, p = 400 and p = 750. A small p generates a steep decline in the objective in
the beginning, but then the curve flattens out and the objective stops decreasing after a few
iterations. For a bigger value of p, the situation is the opposite. The curve lies above the
bixel weight curve initially, but decreases faster and the objective is in fact lower after about
two minutes. The curve corresponding to p = 400 lies below the bixel weight curve the first
two minutes, but then it flattens out and lies above the bixel weight curve.

This behavior of fast initial decline motivates the use of both eigenvector weights and
bixel weights as variables to solve the same optimization problem. This approach and the
results obtained are described in the next section.

8. Using both bixel weights and eigenvector weights as variables

The idea is to solve (6.6) with a relatively small value of p in a few (five) iterations, and
then use this solution as an initial estimate for solving the original problem (2.3). The right
half of Figure 5 shows the objective value as a function of optimization time for (2.3) with
a conventional starting point and with three improved starting points. These new starting
points equal the solution after five iterations of (6.6) with p = 300, p = 400 and p = 500
respectively. Again, the calculation time of the eigenvectors is excluded in the figure. The
small bumps in the three curves with the new starting points indicate where the optimization
parameters are changed. When changing from (6.6) to (2.3), the curvature information will
change and the bixel weights will have some problems finding a good search direction in
the first iteration after the change, resulting in a small bump in the curve. The three new
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Figure 5: The relative objective value as a function of optimization time. Left: For the
bixel weight optimization and three optimizations with eigenvector weights. Right: For the
bixel weight optimization with a conventional starting point and with three starting points
generated with eigenvector weight optimization.

starting points all generate curves that lie below the curve obtained with the conventional
starting guess. The objective value fbixel is passed with the new approach after 83 − 85% of
tbixel for all three starting points. The combination of eigenvector weights and bixel weights
thus improves the optimization by finding a good dose distribution faster.

Although our approach gives a faster decline in objective function value, the conventional
approach is still superior due to our intial computational cost for the approximate Hessian and
the associated singular values. The computation of the singular values is made in Matlab. For
our approach to become superior, this computational time would have to be reduced, either
by computing only the relevant part of the singular value decomposition, or by approximating
the relevant singular vectors.

9. Summary and discussion

An approximation of the Hessian to the IMRT problem with physical least-square objective
functions has been calculated and a spectral decomposition extracting the eigenvalues and
the eigenvectors of the approximation has been performed. The considered IMRT problem is
degenerate in the sense that a majority of the eigenvalues are much smaller than the dominant
ones. The dominant eigenvectors, i.e. the eigenvectors corresponding to large eigenvalues,
are smooth and remind of basic tones with few extreme points.

The degeneracy of the problem was used to reduce the problem dimension. By introducing
eigenvector weights as variables to the dominant eigenvectors, the dimension of the bixel
weight optimization problem was reduced and the problem was reformulated. The IMRT
problem of a prostate patient case was then optimized with the SQP solver NPSOL, and
the results for eigenvector weight optimization and bixel weight optimization were compared.
With few eigenvectors present, the resulting optimization problem was solved faster than the
original one. However, the resulting dose distribution was not entirely satisfactory. With
many eigenvector weights included in the parameter set, the objective value was lower than
the one obtained with bixel weights, but the optimization time was increased due to the
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introduction of computationally heavy linear inequalities.
Finally, an idea of combining bixel weights and eigenvector weights was tested. The

strategy was to take advantage of the fast initial decline in the objective function that was
achieved with eigenvector weights, and then use the solution as starting point to the bixel
weight optimization problem. With this approach, the objective value declined faster than
with the original starting guess. The total calculational time was however increased, since
the pre-computation of the approximation of the Hessian and of the spectral decomposition
was longer than the time gained.

For our approach to become a competitive alternative, the pre-computational time for
the approximate Hessian and its associated singular values would have to be reduced. In our
experiments, we have used a straightforward computation of the singular values in Matlab.
We find it highly encouraging that the approximate optimization problem gives a faster
initial decline in objective function value. This implies that finding alternative optimization
parameters, other than bixel weights, is an area worth further study. In addition, one may
consider less computationally expensive alternatives to the singular value decomposition for
computing a basis for the relevant subspace. In our forthcoming research, we intend to
investigate such alternatives, also in conjunction with other types of optimization methods,
e.g., interior methods.
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