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ABSTRACT
This technical report describes the design & implementation of a
constraint-based framework for scheduling & resource allocation in
a disaggregated data center (DDC) where we build logical servers
from disaggregated resources. We show that an Service Level
Objective (SLO)-aware constraint-based solver could improve a
data center’s resource utilization by finding better solutions based
on provided workload characteristics.
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1 INTRODUCTION
Today’s Data Center (DC) architecture follows the server-oriented
model, where a DC is realized with pools of servers. These servers
are made up of tightly integrated hardware (H/W) resources such
as Central Processing Unit (CPU), memory, disks, and network
interfaces. One of the key challenges of this architecture is low
resource utilization [6, 22, 23, 28, 29, 38, 39], as a consequence of
resource stranding (i.e., leftover and unused resources). Resource
stranding occurs due to the mismatch between (fixed) servers’
physical resources and applications’ requirements. For instance, a
server’s compute resources could be exhausted by a CPU-intensive
application while other resources, such as memory and storage, are
still available.

To increase DC efficiency, DC providers usually employ advanced
resource sharing techniques such as virtualization and containers.
These techniques help DC providers to implement a multi-tenant
cloud and perform efficient resource sharing & server consolidation,
thereby improving DC resource utilization and reducing its costs.
However, the benefits of these techniques are limited to servers’
physical boundaries; therefore, DC resources still operate at low
utilization [23, 29, 39]. To tackle this problem, the traditional
server-oriented DC architecture is being challenged by a new
architecture called H/W resource disaggregation [32, 33]. In
this new architecture, the servers’ boundary are broken and
DC’s resources become independent pools of different resource
types. Hardware resource disaggregation provides a foundation
that enables DC providers to perform fine-grained resource
provisioning & scheduling thus more efficiently utilizing their
deployed resources. A DC employing this architecture is called a

∗Both authors contributed equally to the paper.

Disaggregated Data Center (DDC). Fig. 1 illustrates the architecture
of a server-oriented DC and a DDC.

Figure 1: Server-oriented DC vs. Disaggregated DC. The
left and right architectures show server-oriented and
disaggregated models, respectively [32].

2 HARDWARE RESOURCE
DISAGGREGATION

The idea of a disaggregated H/W architecture has captured the
interest of both industry and research communities [32, 33]. In
this architecture, DC resources are realized as resource pools
that are interconnected via the DC’s fast network. Resource
pooling is expected to bring a high level of fluidity, modularity,
and flexibility [42] to the DDC infrastructure. In addition, DDC
allows the composition of logical servers by interconnecting
physical resources from different resource pools. Hardware resource
disaggregation provides a foundation that enables DC providers
to perform fine-grained resource provisioning & scheduling,
resulting in higher efficiency and utilization. In addition, DDC
allows dynamically establishing and adapting the configuration
of provisioned logical servers to precisely match the needs of
particular workloads.

The transformation toward disaggregation of DC resources
is expected to happen gradually [32]. Since there is no de facto
standard for DDC, different communities have proposed somewhat
different levels and types of resource disaggregation [16]. One
example of these proposals is rack-scale design, which is a midpoint
toward realizing datacenter-scale disaggregation [5, 11, 18, 19, 36].
In this case, the disaggregation is restricted to the rack level; hence,
logical servers are built within a rack. However, this rack-scale
design can be extended to include another rack equipped with only
(or mainly) memory resources (i.e.,memory pool). This would result
in a system with a multi-tier memory hierarchy, each of which can
have different characteristics and costs.

Performance degradation is an inevitable part of H/W resource
disaggregation due to the separation introduced among resources.
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However, prior studies [2, 11, 14, 15, 21] have shown that this
performance degradation could be bounded within a reasonable
range under certain conditions. For instance, an application could
achieve acceptable performance if it has access to at least a
certain limited amount of local memory [43] (e.g., sufficient for
the working set in the case of virtual memory), which reduces
the adverse impact of accessing data from a remote memory pool
via the DC’s fast network. Additionally, different resource pools
may contain resources with different capabilities. For instance,
two different memory pools can have different access latencies
for reading/writing data (e.g., Dynamic Random Access Memory
(DRAM) vs. Non-Volatile Memory (NVM)). Therefore, one needs to
consider all of these differences when composing the logical servers
from the different resources to ensure that the resulting logical
servers behave as an integrated system that meets the guaranteed
Quality of Service (QoS) requirements, i.e., those requirements
defined in the Service-Level Agreement (SLA), aka Service Level
Objective (SLO). For example, a customer could specify in the SLO
that 95% percent of its requests should be processed/handled in less
than 1ms (i.e., a defined SLO).

3 SCHEDULING AS THE SECRET SAUCE FOR
BUILDING A DISAGGREGATED DC

Scheduling of workloads in a DC has received some attention
in the literature in recent years, with surveys looking at energy
aspects [40], load balancing techniques [37], Virtual Machine (VM)
allocation & placement in the DC [10, 24], and others [2, 13, 17,
25, 26, 35, 41]. Overcoming the inherent problems of a DC built on
disaggregated resources makes scheduling an essential factor for
cloud providers. This scheduling can be realized at two levels:

(𝑖) Scheduling & placement of data for the execution of
a workload within these logical servers and scheduling
different workloads in a composed logical server (aka
job/task/data scheduling); and

(𝑖𝑖) Scheduling resources from different pools to build a logical
server (aka resource scheduling/allocation).

Jobs/tasks scheduling. Jobs/tasks scheduling focuses on utilizing
the allocated resources efficiently by executing different jobs/tasks
based on their dependency, priority, and data availability/locality.
Smart scheduling in a resource disaggregated DC creates opportu-
nities to increase system performance. Given a one-to-one mapping
between theworkload and a logical host, the execution environment
scheduler takes most of the responsibility for workload scheduling,
including distribution of the workload’s tasks and execution of
each task’s jobs. As a result, the Operating System (OS) and its
corresponding execution environment can be modified to support
scheduling that is aware of resource disaggregation and the details
of remote vs. local resources (e.g., memory) or even different
resource types. As an example, the OS needs to be aware of
the inter-connectivity characteristics (latency and bandwidth) of
the composed logical server to make smart scheduling decisions.
The OS needs to monitor (or be supplied with) the current
state of various inter-connectivity characteristics in (near) real-
time to make meaningful scheduling decisions. In this regard,
Emmanuel Amaro, et al. [2] proposed a memory-aware scheduler
that considers remote & local memory when assigning jobs and
decides how to assign local memory to different jobs.

Resource scheduling/allocation. Resource scheduling/alloca-
tion involves selecting appropriate resources for a specific logical
server based on their characteristics (i.e., technological properties,
topological information, and physical distance) to meet the required
SLOs for a specific workload. A scheduling mechanism must take
into account information about each individual resource (e.g., CPU,
memory, and storage) along with the DC’s network (i.e., link
and switching fabric information). Scheduling mechanisms can
be complex if the mechanism sees and selects every individual
component or simpler when the mechanism only sees and selects
the pool from which a certain resource should be allocated. One
way to reduce the complexity of the core scheduling mechanism
is to make each pool responsible for its internal scheduling,
allowing individual optimization mechanisms per pool; thus,
reducing the complexity of the core scheduling mechanism.
Moreover, scheduling operations should not be static; hence, further
optimization should be possible after allocations have been made.
Some of the aspects that scheduling mechanisms should take
into account are power consumption, resource defragmentation
(i.e., avoiding composing logical systems of resources that are too
scattered), performance, and optimized utilization.

While the benefits of disaggregated environments have been
extensively advocated, one needs to understand how to “carefully”
foster them. When setting up a DC environment, dimensioning
and distribution of resources come hand in hand. In a highly
flexible environment with physical resource distribution, finding
the optimal physical distribution & location of resources is even
more important. For example, distributed resources bring an
associated networking cost, making it necessary to find a balance
between benefit and cost. Consider that separation of memory
and CPU at long distances might be possible, but an expensive
interconnect technology will eat into the potential utilization
benefits. Bulent Abali, et al. [1] has assessed the cost of memory
disaggregation. Moreover, another challenge is to understand and
minimize the risk of correlated failures when placing CPU and
memory pools in two separate chassis. For example, if a chassis
hosting a CPU pool where several (logical) hosts are running,
has a power failure, then all of these hosts will fail, i.e., this
physical co-location induces a correlation of failures in the logically
independent servers. As a result, High Availability (HA) could be a
constraint upon the resource composition mechanism. There are
opportunities to realize different HA methods for a DDC other than
those used in current server-centric DCs.

This technical report focuses on resource scheduling/allocation
and proposes a constraint-based & SLO-aware resource allocation
framework as a potential resource scheduling/allocation mecha-
nism for a DDC. As noted earlier, the proposed framework can
help cloud providers allocate resources in an efficient & economical
way while meeting their customers’ performance requirements
(i.e., SLOs). One can exploit this framework to find a suitable
configuration of different resource pools for a given DC and the
impact of SLA-aware resource allocation on a DCs’s utilization will
be discussed. To realize our goal, a real-world VM dataset [4] for
resource allocation is used. The next section discusses the design
and implementation of our framework. Our source code is publicly
available at:� aliireza/ddc-ra
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4 SLA-AWARE FRAMEWORK FOR DDC
This section explains the models used in our proposed framework.
First, we discuss a new way to map application-level characteristics
(e.g., service time) to a more tangible metric used to allocate
resources (e.g., memory) for logical servers within the DDC. Next,
we explain the DC model based on resource disaggregation that
is developed for the proposed framework. Finally, the section
concludes by summarizing the constraint-based model used to
allocate resources in the proposed framework.

4.1 SLA Model
As was discussed earlier, meeting SLOs can be an arduous task in a
DDC, as resources allocated to a logical server might be physically
separated, hence incurring higher latencies. Moreover, performance
degradation occurs because of the increased separation between
processors and memory. For instance, a processing core allocated
to a logical server in a disaggregated DC might be located in a
compute pool that is physically distant from the logical server’s
memory. Consequently, when the processor needs to access data,
fetching the contents of the memory addresses from a remote
physical location induces additional latency and this may result
in the violation of SLOs. As noted earlier some applications can
still achieve an acceptable response time if they have at least a
certain limited amount of guaranteed local resources. Therefore,
this work assumes that each compute pool will have some local
memory [43]. Moreover, it is assumed that a disaggregated DC is
deployed based on an extended version of the rack-scale design
with multi-tier memory (i.e., memory pools located in the same
rack as the compute pool and memory pools located in other racks).
Realizing an efficient DDC requires redefinition of SLA [20]. With
this in mind, the high-level (application-level) SLOs are broken into
two metrics, as follows:

• SLOLocal specifies the minimum amount of the local
memory required for an application to be allocated from
the local memory (𝑀Local) located within a compute pool:

𝑀Local ≥ SLOLocal (1)

• SLORemote represents the maximum weighted amount of
remote memory which could be required by an application.
In this case, we assume that the memory pool located in the
same rack as the compute pool has a lower access cost. If a
logical server’s memory is allocated from multiple remote
memory pools, we have:∑

𝑖

𝑤𝑖 ·𝑀Remote𝑖 ≤ SLORemote (2)

where𝑤𝑖 denotes the cost of 𝑖th remote memory pool (𝑀Remote𝑖 ).
Section 4.2 elaborates on this.

Breaking/adapting SLO into these two components for a DDC
is essential, as the traditional definitions of SLA/SLO were not
designed for a disaggregated environment.

Extracting metrics. In this work, it is assumed that the allocation
framework receives the secondary SLOs introduced above rather
than the high-level SLO specified by the application. However, a
real-world allocator for DDC could derive these auxiliary metrics
from the application’s memory access pattern, as different resource

pools are expected to be shipped with a customized controller [36].
Additionally, application developers could extract these metrics
from their applications. Some techniques that could help to derive
these metrics (i.e., local and remote SLOs) are:

I. Profilingmemory access pattern:Application developers
could profile & analyze the memory access pattern via
existing tools (e.g., Pin [30], Intel Processor Trace (PT) [31],
and page fault statistics) and then calculate accurate or
overestimated auxiliary SLOs for their applications.

II Emulating disaggregated environment:ADDCprovider
could provide its customers with an emulator that makes
it possible for them to run their applications in different
scenarios to directly calculate the secondary SLOs.

III. Trial period:ADDC provider could offer a trial period to its
customers during which the required memory is uniformly
allocated from all memory tiers. During this period the
customer could measure the SLO violations and extract a
more efficient memory allocation for later use.

IV. Dynamic controller: Alternatively, a DDC provider could
measure the amount of SLO violations and then dynamically
adapt the memory allocation at run-time.

This work assumes that the minimum amount of allocable
memory is limited to 1MB, but this could potentially be reduced
to a smaller size (e.g., 4-kB pages). Such a reduction could reduce
memory fragmentation and thus result in fewer stranded resources
in a disaggregated DC. Additionally, considering 4-kB pages as
the minimum amount of allocable memory would be beneficial if
the local memory of compute pools is expected to be used as an
extension to Last Level Cache (LLC), which could be realized via
page swapping [14].

4.2 Data Center Model
The framework assumes that a DDC is deployed based on an
extended version of the rack-scale design, in which we have three
memory tiers: (𝑖) local memory located within a compute pool,
(𝑖𝑖) a memory pool mounted in the same rack, and (𝑖𝑖𝑖) a memory
pool situated in another rack. Additionally, the proposed model
considers different costs for the different memory tiers (see Table 1),
which will be used to meet the requirements of the remote SLO.

Table 1: Cost of different memory tiers in our framework.

Memory Tier Cost Price ($/GB/hour)
Local (𝐶𝐿𝑜𝑐𝑎𝑙 ) 0 100

Local remote (𝐶LocalRemote) 1 50

Distant remote (𝐶DistantRemote) 2 25

For instance, a logical server that requires 4GB of memory (with
local and remote SLOs equal to 1GB and 4GB, respectively) could
only tolerate at most 1GB of memory allocated from a distant
remote memory pool according to Equations 3 and 4, where𝑀 and
𝐶 stand for the memory size and the memory cost, respectively.
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𝑀Total = 𝑀Local +𝑀LocalRemote +𝑀DistantRemote (3)

𝐶LocalRemote ·𝑀LocalRemote +𝐶DistantRemote ·𝑀DistantRemote

≤ SLORemote (4)

Pool clustering. In the proposed DDCmodel, a rackmight contain
multiple compute and memory pools, any combination of which
could be considered during the allocation. However, considering all
combinations could dramatically increase the time needed to find an
optimal allocation. Therefore, the proposed framework breaks racks
into smaller domains, called clusters, which each bundle a limited
number of pools together, thereby limiting the search space during
allocation. While introducing clusters imposes a new boundary to a
DDC, this could be seen as a middle-ground solution that overcomes
the server-orientedmodel in terms of increasing utilization. To push
the boundary of this middle-ground solution and push its bounds,
it is essential to choose a suitable model to cluster the different
pools. This work considers two types of racks: (𝑖) regular racks and
(𝑖𝑖) memory-only racks. The former contains both compute pools
and memory pools, while the latter only has memory pools. Fig. 2
shows two examples of pool clustering for our rack architecture.
This work focuses solely on the first model (i.e., Fig. 2a), where
every cluster is composed of a compute pool, a memory pool, and
a nonshared distant memory pool.

Compute Pool

Memory Pool

Compute Pool

Memory Pool

Regular
Rack

Memory Pool

Memory Pool

Memory-only
Rack

Cluster

(a) Nonshared distant memory pools.

Memory Pool

Memory Pool

Memory-only
Rack

Clusters

Compute Pool

Memory Pool

Compute Pool

Memory Pool

Regular
Rack

Compute Pool

Memory Pool

Compute Pool

Memory Pool

Regular
Rack

(b) Shared distant memory pools.

Figure 2: Two examples of pool clustering.

4.3 Constraint-based Model
The proposed framework uses a constraint-based solver, called
Gecode [12]. The allocation problem is defined with the following
constraints:

1 Allocating enough memory. The proposed constrained-based
resource allocator has to ensure that a logical server receives
sufficient resources; therefore, we post a constraint in Gecode to
satisfy Eq. 3.

2 Meeting SLOs. To meet the SLOs, we post two additional
constraints to guarantee the local & remote SLOs based on
Equations 1 and 4.

3 Minimizing the price. The framework utilizes different prices
for the different memory tiers (in addition to their cost). It is
assumed that the price of memory increases as it gets closer to
a compute pool, as shown in the third column of Table 1. The
framework tries to minimize the deployment price of a logical
server while meeting its SLOs. Therefore, a new constraint is posted
on the price every time we find a new solution, which forces the
next solution to have a lower price (as per Equations 5). It is worth
mentioning that employing this strategy implicitly increases the
resource utilization in a disaggregated DC, as it tries to use remote
memory pools as much as possible.

price < pricecurrent (5)

Search strategy. The proposed allocator always starts allocating
from the cluster with the maximum utilization to avoid turning
on additional clusters. Additionally, it checks whether there are
sufficient CPU cores available within a cluster for a given logical
server before allocating memory. It is worth noting that at this
stage the non-uniform architecture of the CPUs is not considered;
however, Section 6 briefly elaborates the possibility of performing
topology-aware core & CPU allocation.
First Fit (FF) allocator. To see the impact of meeting SLOs on
the DC’s utilization, the proposed constraint-based allocator is
compared with a simpler heuristic allocator, called First Fit (FF),
which does not consider SLOs during allocation. The FF allocator
starts by allocating memories sequentially in different memory
pools, i.e., it first allocates from the local memory within the
compute pool and then tries other memory tiers.
Implementation. The framework is written in C++ (∼1800 lines
of code). Fig. 3 provides a high-level overview of our design. The
details of each module can be found in the source code at �
aliireza/ddc-ra.

5 EVALUATION
This section demonstrates the effectiveness of the proposed
framework in different scenarios. It starts by describing the
evaluation setup and then continues by presenting our results.

5.1 Setup
To evaluate the proposed framework, a real-world VM distribution
(i.e., frequency histogram) from Microsoft’s Azure cloud is used to
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Figure 3: A high-level overview of our framework. Each box
represents a C++ class.

generate 1000 logical servers with different numbers of CPU cores
and different memory sizes∗ (see Table 2).

Table 2: Resource distribution ofVMs inMicrosoftAzure [4].

#Cores Frequency (%) Memory(GB) Frequency (%)
2 58.2 2 12.1

4 22.9 4 16.5

8 12.0 8 32.8

12 0.1 32 28.7

24 5.6 64 6.4

30 1.2 70 3.6

It is assumed that every logical server requires 10% of its
requested memory to be local (i.e., SLOLocal). In addition, the
SLORemote is randomly generated for each VM based on the
following equation, where 𝛼 is a random number larger than 1:

SLORemote = 𝛼 × (𝑀total − SLOLocal)
= 𝛼 × (𝑀LocalRemote +𝑀DistantRemote)

(6)

The value of 𝛼 directly impacts the solvability of the problem
due to the memory pools’ maximum size and size. For instance, if
we consider a logical server that requires 16GB of remote memory
with SLORemote of 17GB, then our allocator would be unable to
allocate this logical server on a cluster (with costs similar to Table 1)
when the size of a local remote memory pool is smaller than 16GB.
Therefore, we limit the value of 𝛼 to be a random number in the
range of (1, 2). We also ensure that memory pools have sufficient

∗The generated logical servers are available at input.json

space to accommodate the generated logical servers. Table 3 shows
the configuration of the different pools in our evaluation setup.

Table 3: Pools’ configurations. We assume that every
compute pool contains 4 CPU sockets, each of which has 28
cores with 8GB of local memory per socket. However, we
do not consider Non-Uniform Memory Access (NUMA) in
our framework. We specify 0 cores for memory pools, but
they could have some available compute power to be used
by their controller.

Type #Cores Memory (MB)
Compute pool 4 × 28 = 112 4 × 8GB = 32GB

Local remote memory pool 0 128GB

Distant remote memory pool 0 256GB

5.2 Results
Initially, this section focuses on the effectiveness of our proposed
allocator in terms of meeting the required SLOs and finding a
solution with a minimal price. Later, it describes the impact of
our allocator on the utilization of a DDC and its resources.
SLO violations. As discussed earlier, performance degradation is
one of the main challenges in realizing a DDC. Therefore, choosing
an appropriate resource scheduler/allocator becomes an essential
factor. Fig 4 shows the percentage of violations for the FF allocator.
These results demonstrate that using a inappropriate allocator (e.g.,
FF allocator) could cause dramatic performance degradation. It
is important to note that the proposed constraint-based allocator
could always find a suitable allocation that meets the SLOs if there
was any available solution.
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Figure 4: The percentage of logical servers (out of 1000) that
could notmeet their SLO,when allocated using a FFmemory
allocator. The number written above each bar shows the
number of violations.

Price. One of the constraints considered in the proposed model is
minimizing the price for a given logical server. Therefore, the cost
of logical servers for both FF and the proposed constrained-based
allocators are calculated and compared. Fig 5 shows the percentage
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of overpriced logical servers when we use the FF allocator as
opposed to the proposed constrained-based framework. These
results demonstrate that the proposed allocator could always find a
cheaper allocation in cases where the SLO has been met. However,
using the FF allocator could find cheaper allocations since it does
not consider the SLOs — i.e., due to the nature of FF allocation in
which it could allocate all the required memory from the cheapest
memory pool (i.e., distant remote memory pool).
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Figure 5: The percentage of overpriced logical servers (out
of 1000) allocated using a FF memory allocator.

Utilization. The benefits of using a constrained-based resource
allocator in a DDC to find a cheaper SLO-aware solution were
discussed. Additionally, it is important to investigate the impact
of considering SLOs while allocating resources on the utilization
of a disaggregated DC. Fig. 6 compares the utilization of a DDC
in both cases (i.e., SLO-aware vs. non-SLO-aware). Fig. 6a shows
that the FF allocator could always achieve better utilization. In
addition, it could accommodate all of the logical servers in a smaller
cluster (i.e., 50 in FF vs. 68 in our framework). However, when
comparing the memory utilization (see Fig. 6b), it is noticeable
that the FF allocator only reaches a higher utilization for distant
remote memory pools, which is mostly due to the chosen clustering
model (see Fig. 2a). Since different clusters could not share a distant
remote memory pool in the basic pool clustering model, this results
in resource stranding if the other resources in a cluster are already
occupied. However, other models that allow multiple (e.g., two
or more) clusters to share a distant remote memory pool could
potentially achieve better resource utilization. Examining different
clustering models remains as future work.
Execution time. The proposed constrained-based allocator takes
much longer than the FF allocator (i.e., 12.5804 s vs. 0.012 378 s) to
allocate resource for 1000 logical servers in a DDC. However, the
required time to find the solution with a minimal price is under 15
seconds, i.e., quite reasonable.

6 CPU ALLOCATION
The previous sections only considered the availability of cores when
allocating logical servers. As applications typically use multiple
cores for parallelization, the inter-core communication of cores
allocated to a VM/logical server can directly affect the applications’
performance. For instance, real-world servers or CPU blades are
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Figure 6: Datacenter resource utilization when allocating
logical servers using our allocator (i.e., CP) and a first fit
allocator (i.e., FF). The FF allocator could allocate logical
servers on 50 clusters, but we plot the distribution for 68
clusters, which is theminimumnumber of clusters required
to meet the SLO objectives.

often shipped with multiple processors, aka CPU sockets. The cost
of communication between two cores residing on different CPU
sockets is much more expensive than communication between
cores located within a single CPU socket. Additionally, every
processor interconnects multiple cores via a specific network-
on-chip (NoC), which directly impacts the cost of inter-core
communication. The impact of the communication is increasing
since the number of cores is constantly increasing due to the demise
of Dennard scaling [8]. Fig. 7 depicts an example of CPU-to-CPU
and core-to-core interconnects. To achieve optimal performance,
fine-grained CPU & core allocation should be performed and this
should be based on the hardware’s characteristics. Constraint
programming is exploited to introduce a more optimized CPU
allocator that considers the location of cores within a CPU socket.
The proposed CPU allocator could be easily integrated into the
framework introduced earlier. Furthermore, these same techniques
could be extended to consider inter-socket communication and
other important aspects required to achieve high-performance
at high-speed networking [7] (e.g., cache allocation [9]), which
remains as future work.
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(a) CPU sockets topology.
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Figure 7: An example of interconnections between CPUs
and cores in Intel Xeon Scalable processors [27].

6.1 Model
To perform topology-aware core allocation, a CPU die with a
two-dimensional torus interconnect is considered (i.e., similar to
Intel processors∗). The core allocation problem is modeled as a
tile covering problem, in which a set of tiles represent the cores.
Consequently, the objective was to cover a torus topology with a
set of tiles (𝐶𝑖 ) while minimizing their pairwise distance. To solve
this problem, Gecode [12, 34] was used to find the location < 𝑋,𝑌 >

of tiles in a torus topology given a set of constraints described as
follows:

1 Unoccupancy. To assign a tile to a core, we have to ensure
that the selected tile is free in the initial topology; therefore, if a tile
is already occupied in the initial topology, it will be pruned from
the search space. To do so, we restrict at least one of the coordinates
of candidate tiles (i.e., 𝑋 or 𝑌 ) to be different from that of occupied
tiles. If we show the occupied tile with 𝑂 , we have:

∀𝑖,𝑂 : (𝑋𝐶𝑖
= 𝑋𝑂 ∧ 𝑌𝐶𝑖

≠ 𝑌𝑂 ) ∨
(𝑋𝐶𝑖

≠ 𝑋𝑂 ∧ 𝑌𝐶𝑖
= 𝑌𝑂 ) ∨

(𝑋𝐶𝑖
≠ 𝑋𝑂 ∧ 𝑌𝐶𝑖

≠ 𝑌𝑂 )
(7)

∗Although the details of routing in Intel processors are undocumented, we assume
that it is using a typical XY routing algorithm [3]

2 Distinction. To ensure the distinctiveness of the selected tiles,
non-overlapping tiles should be picked. Consequently, at least one
coordinates of every tile pair should differ.

∀𝑖, 𝑗, 𝑖 ≠ 𝑗 : (𝑋𝐶𝑖
≠ 𝑋𝐶 𝑗

) ∨ (𝑌𝐶𝑖
≠ 𝑌𝐶 𝑗

) (8)

3 Minimal distance. The goal of the allocator is to minimize
the distance of inter-core communication. Therefore, the allocator
should select the tiles in such a way that their pairwise distance is
minimal. To satisfy this criterion, a new constraint is posted so that
when a solution is found, it restricts the distance of the next solution
(i.e., 𝑑) to be smaller than the previous neighboring distance (i.e.,
𝑑current).

𝑑 < 𝑑current (9)
The following formula is used to calculate the distance between

two tiles, i.e., 𝑑𝐴𝐵 , where A and B are two different tiles. 𝑛col &
𝑛row show the number of columns & rows in the CPU topology,
respectively.

𝑑𝐴𝐵 = min(𝑛col − |𝑋𝐴 − 𝑋𝐵 |, |𝑋𝐴 − 𝑋𝐵 |)+
min(𝑛row − |𝑌𝐴 − 𝑌𝐵 |, |𝑌𝐴 − 𝑌𝐵 |)

(10)

𝑑 =
∑
𝑖, 𝑗

𝑑𝐶𝑖𝐶 𝑗
(11)

6.2 Search strategy
Finding the optimal tile covering is known to be NP-hard. Therefore,
it is essential to both reduce the search space size and perform the
search efficiently. To do so, multiple optimizations are performed
as follows:
Symmetry breaking. First, one of the symmetries in our core
allocation problem is broken, i.e., ignoring different permutations
of the tiles ({<1,2>, <1,3>} vs. {<1,3>, <1,2>}). To do so, a constraint
that forces the coordinates of the tiles to be in decreasing order is
posted.

∀𝑖 : (𝑋𝐶𝑖
≥ 𝑋𝐶𝑖+1 ) ∨ (𝑌𝐶𝑖

≥ 𝑌𝐶𝑖+1 ) (12)

Branching. Secondly, a problem-aware branching strategy is
picked so that the optimal solution could be found faster during
the search.

• As constraints have been defined to force decreasing order
among coordinates; the variables are assigned from their
maximum possible values.

• The X variables are chosen in a normal order (i.e., first
unassigned) while Y variables are selected based on their
action parameter (i.e., the number of active participation in
the propagation).

6.3 Evaluation
This section illustrates the effectiveness and discusses the scalability
of the proposed CPU allocator.

Allocation. To see the effectiveness of the proposed CPU allocator,
the inter-core communication cost of the cores allocated via the

7
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proposed constrained-based allocator versus a FF core allocator∗ is
compared. Fig 8 shows the results of the allocation for two different
initial conditions where six cores should be allocated on a CPU
with a 4 × 5 torus topology.

Empty CPU Figures 8a and 8b show the results for the case
where the CPU is in its initial state, i.e., no
cores have been allocated yet. The cost of inter-
core communication for FF and constraint-
based allocation are 26 and 25, respectively.

Preoccupied CPU Figures 8c and 8d show the results for a case in
which some of the cores were already allocated.
The cost of inter-core communication for FF
and constraint-based allocation are 34 and 29,
respectively.

(a) CPU 1 - FF. (b) CPU 1 - Our allocator.

(c) CPU 2 - FF. (d) CPU 2 - Our allocator.

Figure 8: An example of CPU allocation performed by our
proposed allocator in a 4 × 5 torus topology. Black and
green boxes show the pre-occupied and allocated cores,
respectively.

By comparing the results in both cases, it can be realized that
the proposed constrained-based allocator finds a better placement
(i.e., with smaller cost), as opposed to the FF allocator. However, the
non-optimality of the solution found by the FF algorithm becomes
more tangible in the second case, where some of the cores are
pre-allocated (i.e., 1 vs. 5).
Scalability. Table 4 shows the time for solving the problem
with different topologies and a different number of cores. For the
evaluation, scenarios with 2, 4, and 8 cores were considered, since
these are typical requirements for VM allocation [4]. In addition,
the evaluation focuses on topologies with a maximum of 49 cores,
which is similar to the currently available CPUs with the maximum

∗FF allocates cores independently and starts from the first core (i.e., top-left
position in a torus topology)

number of cores (i.e., latest Cascade Lake AP chips with 48 cores).
These results demonstrate that increasing the number of required
cores can dramatically increase the solving time due to the search
space explosion. More specifically, the optimal core placement in
a 7 × 7 torus takes around ∼40,000 seconds (i.e., approximately 11
hours). Therefore, minimizing inter-core communication at run-
time might not be possible, which is a reasonable result since tile
covering is an NP-hard problem. Despite this limitation, performing
topology-aware core/CPU allocation could still be useful for several
reasons:

• The scalability evaluation focuses on the largest search
space for a given topology, in which none of the cores
are occupied. However, a real core allocator could use
simpler heuristics/algorithms (e.g., first fit) at first and then
switch to a more advanced core allocator (e.g., the proposed
constrained-based framework) later. It was shown earlier
that the non-optimality of simple heuristics is low when
the CPU is not preoccupied. Additionally, when some of the
cores have already been allocated the search space decreases.

• As optimal core allocation is mostly necessary for time-
critical & high-performance applications; this feature could
be provided on demand for those requests which are willing
to wait longer for a solution.

• Core allocation could be performed using a more straightfor-
ward method at run-time and then be optimized periodically
(e.g., once a week) for the whole DC.

Table 4: Scalability of our proposed CPU allocator. The first
and second columns (i.e., “rows” and “columns”) show the
dimension of a torus topology for a CPU. The third column
signifies the number of required cores for a hypothetical
logical server and the fourth column demonstrates the time
that it takes Gecode to solve the CPU allocation problem.

Rows Columns #Cores Time (s)
4 4 2 0.0002

4 4 4 0.0179

4 4 8 350.6222

5 5 2 0.0002

5 5 4 0.0354

5 5 8 6956.7300

6 6 2 0.0002

6 6 4 0.0550

6 6 8 19795.4200

7 7 2 0.0002

7 7 4 0.0795

7 7 8 39298.7400
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7 CONCLUSION
This technical report demonstrated that an SLO-aware resource
allocator could achieve an acceptable memory utilization if
an appropriate clustering model is employed in DDC while
meeting SLOs. It is essential to highlight that the initial resource
distribution is performed based on workload forecasting. However,
workload patterns likely change over time; hence, physical re-
distribution of resources might be required. Therefore, having
suitable mechanisms to optimize these re-distributions is necessary.
The time required to find an appropriate allocation of resources via
the proposed constrained-based scheduler might be unacceptable
for some scenarios; therefore, evaluating other possible resource
allocators/schedulers that can perform resource selection faster
may be necessary, but remains as future work. However, the main
objective of this report was to show that the scheduler could play a
vital role in a DDC environment to make the logical system operate
within acceptable SLOs while achieving high utilization and lower
cost than not paying attention to the scheduling and allocation.
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