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Abstract—In this report, we have focused on how
wireless Ultra Wide-Band (UWB) and camera net-
works can be used to detect and track moving objects.
The aim of the project is to investigate how these
technologies can be integrated into the smart building,
where there are a vast number of applications that can
benefit from accurate position information.

This report describes the theory behind wireless
UWB and camera networks, and image processing
algorithms for detection and tracking using vision in-
formation. The difference between 2D and 3D localiza-
tion has been investigated and a method to perform
3D localization using only two cameras is proposed.
Localization by multiple cameras can be refined using
an Extended Kalman Filter, and this report describes
how this is done. Using MATLAB and a webcam,
we have implemented different background subtraction
algorithms, and then used them for tracking moving
objects. In collaboration with project D4, a method to
fuse the information from a wireless camera network
with an AGV is discussed.

Finally, a new application using a wireless camera
network called “The Smart Illumination System” is
proposed. This application can be used to optimize the
lighting in the smart building, and decrease the energy
consumption and at the same time, make the everyday
life more comfortable.

Index Terms—Wireless Camera Network, UWB, Im-
age Processing, Background Subtraction, Kalman Fil-
ter

I. Introduction
A. Background

INFORMATION technology and electronic devices are
today to a great extent incorporated in our homes

and buildings. The problem however is that many of the
appliances are working independently and were all fitted
after the buildings were constructed. In an effort to save
time and energy, the idea is, with the help of network con-
trolled infrastructure, to get the devices to work together
in an efficient and intelligent way. This would basically
mean that the integrated electronics in the building would
work more efficiently by sharing information, and become
automatically or semi-automatically controlled. Examples
of such devices and controllers that would benefit from
smart integration are: climate control, surveillance, and
domestic robots amongst others.

One of the most important technical problems is to

be able to detect and track moving objects in indoor
environments, which is what we have focused on in this
project. This would result in a vast number of applications
which could be applied in the smart building. For instance,
in climate control, the ability to detect the number of
people in a room could be used to adjust the heating
and ventilation for optimal effect and decreased energy
consumption. In home security, tracking systems would be
a vital part in detecting moving objects and identifying
possible intruders. For controlling domestic robots, it is a
high priority to know the position of the robot and detect
any possible obstructing objects.

B. Problem Formulation

Nowadays, there are several methods and technologies
available for tracking and detecting moving objects. In
this project we have focused on using low power wireless
sensor network (WSN) camera systems and Ultra Wide-
Band (UWB) radio sensors. We have studied these tech-
nologies and found efficient ways of using them to detect
and track moving objects. We have also studied how the
information available from different sources can be fused
to make the system more precise and reliable. There are
several problems and difficulties that should be considered
before implementation, such as: video resolution, system
accuracy, and costs. We have implemented algorithms for
detection and tracking that can be used in a WSN camera
system, using a simple webcam and a computer. After
studied and testing these algorithms, we have proposed
methods on how to use them and ways to solve certain
problems. Finally, with our acquired knowledge, we have
suggested a new application which we can benefit from in
smart buildings.

The rest of the report is organized as follows. In Sections
II and III, we present the theory behind the technologies.
We follow this section by our implementations results
in Section IV. In Section V, we propose methods for
localization and information fusion. Our new application is
presented and discussed in Section VI. Finally, we conclude
the report with discussions and suggestions on future work
in Section VII.
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II. Theory of WSN Camera Systems

A. Wireless Sensor Networks (WSN)
According to Wikipedia a WSN “consists of spatially

distributed autonomous sensors called sensor nodes, with
the ability to cooperatively pass their data through the
network to a main location” [1]. Another definition of a
WSN is a large number of low cost and energy efficient
nodes with sensing, computing, and wireless communica-
tion capabilities [2].

A typical sensor node consists of five different compo-
nents. The first component is the sensor, which has the
ability to measure different conditions in the environment.
Examples of sensors that could be used in a WSN are
microphones, thermometers, pressure sensors, or image
sensors [3]. The choice of sensor depends on the desired
application of the WSN [2]. A microcontroller that pro-
cesses the data from the sensor and a memory are also
components of the sensor node. Another component is a
wireless communication device, to transmit (receive) infor-
mation to (from) other sensor nodes. The last component
is the energy source, e.g., a battery [3]. Depending on
the application the number of sensor nodes deployed in a
WSN could vary from a couple to several hundreds [1].

The purpose of a sensor network is that each sensor node
separately collects data and transmits the information to
a base node, and then often to a central computer, where
all the data is fused [4]. WSN has a wide range of appli-
cations, such as home automation, healthcare monitoring,
and military applications [1].

B. Visual Sensor Network
An example of a wireless sensor network is a visual

sensor network, or wireless camera network, where the
sensor nodes are equipped with cameras [2]. The idea
behind the visual sensor network is to process and fuse
images from a variety of viewpoints, and therefore, extract
more useful information from them rather than from a
single camera. [5].

The difficulty with camera nodes is the amount of
information that the image sensor provides, compared
with sensors such as thermometers or microphones. Most
sensors provide information as 1D data signals, while
image sensors provide 2D data signals that form an image.
As a result, the complexity of processing the information,
and bandwidth needed for communication increases [6].
For many applications, such as detecting and tracking
moving objects, the visual sensor network must be able to
process and transmit information from the camera nodes
in real-time [7]. Also costs and energy consumption has
to be considered depending on the application. If a visual
sensor network is applied in “the smart building” the cost
and energy consumption cannot be very high.

Examples of visual sensor nodes that are available today
are MeshEye, Cyclops, and CMUCam3. As an example
of hardware in a sensor node, the CMUCam3 has a
microcontroller with clock rate of 60 MHz, image sensor

with resolution of 352×288 pixels, and the communication
device has a transfer rate of 250 kbit/s [6].

C. Image Processing in Visual Sensor Networks
Image processing in a visual sensor network could be

performed in different ways. One solution is to send the
gathered images from the camera nodes directly through
the network and then perform processing at a central
computer. The drawback with this method is the amount
of information that has to be sent, which put demands on
the bandwidth of the network [2].

Another method could be to process the images at
camera nodes locally, using the computational capabilities
of the node. By doing this, the total amount of data
that has to be sent through the network decreases, be-
cause the camera node could choose what information to
transmit [6]. If the camera nodes could perform simple
image processing algorithms, only the most important
information has to be communicated. An example of an
image processing algorithm that could be performed at the
camera node is object detection [2]. If no moving objects
are detected there are no reason to transmit the captured
images. The complexity of image processing algorithms
that can be performed at the camera node depends on the
capacity of the microcontroller and available energy. The
selected information from the camera nodes is then fused
together and could be used in more complex processing
algorithms [6].

The techniques used for image processing comes from
the vision computing field. It is important to remember
that many vision computing algorithms has to be cus-
tomized for implementation in a visual sensor network.
The reason is that the algorithms may require much more
powerful processors and memory resources than what is
available at the sensor nodes [8].

D. Object Detection Using Vision Information
As already mentioned, detection of moving objects is

a technique to process the captured images at the sensor
nodes, used in order to reduce the amount of information
that has to be transmitted through the network. There
are many different algorithms on how to perform object
detection using vision information from the camera. The
common approach is to make a difference between back-
ground and foreground. In that way, irrelevant station-
ary objects are ignored since they become parts of the
background and moving objects become parts of the fore-
ground. Three techniques on how to separate background
from foreground are: offline background subtraction, frame
by frame subtraction, and adaptive background estimation
[9].

1) Offline Background Subtraction: When performing
an offline background subtraction, one starts with taking
an image when no moving objects are in the view and save
that image as the background. To find moving objects,
one compares every new image with the saved background
image, by subtracting the background from the new input
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image pixel by pixel. [9].
A mathematical description of offline background sub-

traction is
|In(x, y)−B0(x, y)| > T.

In(x, t) is the color intensity at pixel (x, y), in the input
image frame number n. B0(x, t) is the color intensity at
pixel (x, y), in the background image and T is a threshold.
Now, if the absolute value of the subtraction is larger then
T , the pixel (x, y) will be detected as moving and will
become a part of the foreground. If less than T the pixel
will stay as a part of the background. The threshold value
T is used because of the risk that the background could
slightly vary from image to image and that should not be
detected as motion [10].

One drawback of offline background subtraction is that
it does not take into account that the background can
change. This is especially evident if the camera is placed
outside or near a window, where brightness, time of the
day and weather condition will change the background [9].

2) Frame-by-Frame Subtraction: To handle the problem
with the changing background, we can use a technique
called frame-by-frame subtraction. Instead of having a
static background image for comparison, the solution is
to continuously comparing images to detect motion. This
is done by subtracting the input image with the last
or second to last input image. Certainly, the image will
always change gradually frame by frame creating a noise.
Using a given threshold when comparing pixels, small
changes are ignored and are not detected as movement.
The mathematical description is

|In(x, y)− In−1(x, y)| > T.

Contrary to the static background subtraction, the back-
ground would constantly change to the previous video
frame. As in offline background subtraction if a pixel is
different from the previous image it will become a part
of the foreground [11]. One downside is that if a moving
object comes into the view the algorithm will detect it,
however, if the object then becomes stationary, it will
instantly become a part of the background [9].

3) Adaptive Background Subtraction: One approach to
handle stationary objects is to use an adaptive back-
ground model. In such model, we can incorporate different
changes such as brightness and other scenery changes
at the price of not being able to detect objects that
have been stationary for long time [9]. The adaptive
background subtraction uses a running statistical average
of the intensity at each pixel. If the value of the intensity at
a pixel is significantly different from the average intensity,
the pixel will be marked as a possible moving pixel [12].
The two most general approaches in adaptive background
estimation are parametric estimation and non-parametric
estimation. The difference between those two is that the
parametric estimator assumes that the background is dis-
tributed in a predefined way, while in the non-parametric
case, the background can be distributed arbitrarily [9].

E. Object Tracking Using Vision Information
Once an object has been detected, the next step is

to track the movements of the object. There are many
available approaches for tracking objects. The first issue
to solve is how to represent the moving object. The
most common and intuitive ways representing objects are
points, color, shape, contour, or motion [9]. The choice of
representation does influence the complexity of the image
processing algorithms that can be performed when the
vision information from the sensor nodes is fused. For
example, it would be impossible to perform object or
behavioral recognition, if the object is represented as a
single point at the sensor nodes.

The next step is to select the features of the moving
object. Features of an object are characteristics that make
the object distinguishable from the background and easier
to track. The feature selection is related to the choice of
representation [13].

1) Region Based Tracking: A region based tracking
algorithm tracks objects using variations of image regions
between image frames and matching them with moving
objects. These moving image regions, called blobs, are
generated through background subtraction [14]. These
moving regions can be both represented as a single point
in the centre of the blob or as several points. The blob can
also be represented as a shape.

When detecting an object, an easy feature to distinguish
is color. However, the object should have a clear and
distinct color for the tracking to be efficient. For instance,
in the case of tracking human targets in a building, it is
very unlikely that they all walk around with one specific
color on their shirts, unless you are in a place where people
carries uniform. This is not an issue when tracking targets,
such as a robot since we could paint areas with specific
colors [9].

2) Contour Based Tracking: Contour based tracking is
an algorithm that extracts the contours of the moving
objects and uses them as a representation. An advantage
of this algorithm in comparison to region-based tracking
is that contour based tracking describes objects more
simply, which reduces computational complexity. Another
advantage is that contour based tracking can track objects
even if the object is partly occluded, e.g., if a person
standing behind a couch [14].

3) Shape Recognition: For detecting humans or other
objects with known shape, we could use shape recognition
and therefore, prevent figures that look like humans from
becoming a part of the background when being stationary.
However, the human body has a very complicated shape,
which leads to problems developing efficient algorithms for
recognizing the human body. One solution is to concen-
trate on special parts of the human body that are easier
to recognize. For instance, the legs move much more than
the upper body, etc.

4) Optical Flow: Another way of detecting and tracking
moving objects, that does not involve background sub-
traction is a method called optical flow. The idea behind
optical flow is that all the moving points in the image has
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a flow vector, describing the direction and magnitude of
the motion. The flow vector is calculated by observing the
position of a given point in two consecutive image frames.
In the mathematical description of optical flow we make
the following assumption

I(x, y, t) = I(x+ ∆x, y + ∆y, t+ ∆t).

The assumption says that the pixel (x, y) has moved a
distance (∆x,∆y), between two consecutive image frames.
∆t denotes the time between the two image frames. The
next step is to assume that the distance is small, i.e., the
moving object has not moved far during the time ∆t. As
a result, I(x, y) can be expanded with a Taylor series.
Neglecting the higher order terms results in

I(x+∆x, y+∆y, t+∆t) = I(x, y, t)+∂I

∂x
∆x+∂I

∂y
∆y+∂I

∂t
∆t.

Then, by using (??), we get
∂I

∂x
∆x+ ∂I

∂y
∆y + ∂I

∂t
∆t = 0.

Dividing both sides by ∆t gives
∂I

∂x

∆x
∆t + ∂I

∂y

∆y
∆t + ∂I

∂t

∆t
∆t = 0.

This can be written as

IxVx + IyVy = −It,

where Vx and Vy is the optical flow of I(x, y, t). The
problem is that this equation cannot be solved for the
two variables Vx and Vy. Therefore additional assumptions
have to be introduced to calculate the optical flow .

Lucas-Kanade method is one approach for calculating
the optical flow. This method assumes that the flow is
constant in small regions around each pixel. The method
then uses the optical flow equations and the least square
method in that region, to find the optical flow [15].
Methods for calculating the optical flow has a tendency to
be computationally complex, which could be challenging
in a visual sensor network [11].

5) Filter for noise reduction: There are several situa-
tions where noise can influence the object detection and
tracking. The noise in image acquisition can be seen as
single or a small groups of pixels displayed in a deviant
color compared to their neighboring pixels. Algorithms
such as the offline background subtraction rely on a
static background and a clear foreground when comparing
images. If the background has changed slightly due to,
e.g, lighting, these parts will be interpreted as foreground.
However, by applying a smart filter, the algorithm can
easily eliminate small noises in the images without com-
promising the object detection or tracking. Shadows cast
by the moving object are also a problem for the algorithms
since they cause light changes in greater areas. These
shadows are often much larger than a simple noise and a
standard filter might not be able to remove their effect. In
these cases, one should employ a separate shadow removal
algorithm [11].

III. Theory of UWB Radar Sensor Networks
A. Ultra-Wideband Technology

The Ultra-wideband (UWB) is a high-bandwidth radio
technology, which can be used at very low energy levels
for short-range communications by using a large portion
of the radio spectrum (frequencies lower than 300GHz).
The UWB was traditionally said to be a pulse radio, but
today one defines it as “A transmission from an antenna
for which the emitted signal bandwidth exceeds the lesser
of 500MHz or 20% of the center frequency”. Modern
applications of the technology are seen in various UWB
sensors and radars, which have proven useful in sensor
data collection, object detection, and tracking. In order
to optimize the sensor data, one would connect several
sensors and/or radars together with “a system base node”
in what is called a “UWB sensor network” [16].

B. The UWB Sensors
In object tracking and detection applications, short-

range UWB sensor networks can be used in a typical
indoor environment. This is partly achieved by a technique
called “UWB imaging”, which utilizes radar transmit-
ters (Tx) and receiver antennas (Rx). The radar that is
mostly used for UWB imaging is a synthetic-aperture
radar (SAR), characterized by using the relative motion
between a moving antenna and a stationary transmitter.
The Tx emits a periodical short electromagnetic pulse in
a certain time interval; these pulses are then scattered
at nearby objects and later arrive at the Rx. The delay
between emitted and received pulse is proportional to the
distance the pulse has traveled. In order to produce an
image, readable for people, one needs to merge the pulse
information using migration algorithms. In cases where
a mobile Rx is not possible due to lack of free space,
multiple stationary sensor nodes with transmitting and/or
receiving properties can be used instead. In such network
configurations, objects can be localized by a combination
of range measurements from several sensor nodes [17].

C. Sensor Network Nodes
The construction of a reliable and robust indoor sensor

network depends on the usage of different types of nodes
and clever positioning of them. The basic nodes have
either transmitting or receiving antennas, while the more
sensitive nodes are capable of having one receiving and one
transmitting, or even two receiving antennas in the same
node. The node with two Rx antennas, called “Scouts”, are
very useful for detecting and recognizing the features of the
environment on their own. Multiple scouts are commonly
used for extracting partial maps of their surroundings and
identifying unknown objects in a detailed way. The key
nodes in the sensor network are the so-called “Anchor
Nodes”, which have both Rx and Tx capabilities. The
location of a deployed anchor node is very important since
it serves as a the main transmitting nodes which must be
able to transmit to all Rx-only nodes, thus spanning a
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large volume of the selected environment.
In order to work optimally, all sensor network nodes

need to be synchronized, sometimes only temporary, in
order to cooperate and perform object and environment
detection. In a new unknown environment, every sensor
needs to know their relative position in the environment by
deploying their own local coordinate system. Secondly, the
nodes needs to know where all the other distributed senors
are located relative to themselves. Lastly, the structure
of the unknown environment is to be recognized using
imaging and object recognition methods. When the sur-
roundings of the node has been identified, the node will
relate the information to its own coordinate system. The
quality of the imaging process depends considerably on
the positioning of the deployed nodes. If the anchor nodes
are able to identify the surrounding environment, while Rx
nodes being available simultaneously, then the information
between nodes can flow smoothly. This makes it possible
for real-time processing which is greatly used in the fields
of object tracking [18].

D. UWB versus Continuous Wave Radars
The previous technique is mostly beneficial in search

and rescue environments, e.g. burning buildings or other
catastrophes, although the general technique for object de-
tection and tracking can be applied in other scenarios and
suited for more daily situations e.g. climate control [19].
The UWB radar has some key advantages compared to
continuous wave radars:

1) The wide frequency pulse can easily pass through
obstacles;

2) The pulse duration is very small, which allows for a
high resolution;

3) The short pulse leads to low energy consumption;
4) The UWB radar is able to give an exact position of

a detected object.

E. UWB Imaging of Unknown Environments
In order to create an image of a static environment and

detect crucial objects, the usage of a stationary anchor
node (or several nodes, depending on environment size
etc) and one observer node (double Rx) is sufficient.
While the anchor node is transmitting the radar pulse,
the observer node is moving along either a predesignated
or arbitrary path, collecting data from the backscattered
waves. The natural method for UWB imaging is Time-
of-Arrival (ToA) based localization. While the observer is
moving along the path, the image is gradually being built
and enhanced. In order to produce a valid image, the pulse
velocity is predetermined and the distance between anchor
node and receiver node is always being computed.The ba-
sic principle of migration imaging can be seen in Figure 1.
A transmitted signal is sent from the Tx at [xt, yt], which
later scatters at the object at [x0, y0]. The signal eventually
ends up with a time delay τ at the Rx at variable [xRi, yRi].
Assuming a single reflection, the received signal and the
recorded time delay will create an elliptical location of

Fig. 1. Basic principle of migration imaging [18]

where the object might be. However, the more the observer
moves, the ellipse will change its appearance apart from
one point. This common point is [x0, y0], and it will be
the point that is focused in the image at the correct pixel
position [18].

F. Object Detection Using Stationary UWB Radar Sensors
The previously explained technique requires a moving

receiver node, preferably located on an autonomous vehicle
or set up at a stationary track. The major advantage
with the moving Rx is that the total number of deployed
sensor nodes can be kept down, and resulting in slightly
more energy efficient and less complex implementations.
In cases where a moving Rx node is not preferred, e.g. in
a civil building, several Tx and Rx nodes can be deployed
in total collaboration and still perform accurate tracking
and detection. In such networks, multiple Tx and Rx are
needed in the environment, occasionally together with a
radar sink (depending on the size of the environment). The
sink is used in scenarios where one has a very large area
to cover, and many sensor nodes. In order to save energy,
only a fraction of the nodes are always running. As soon
as an object is detected, the discovering node alerts the
sink which responds by activating the nearby sensors for
optimal object detection. In smaller spaces, such as offices
or domestic house rooms, we have less nodes and hence
the role of the sink becomes less important. To detect
an object and plot its position, the elliptical localization
between two nodes is compared with other nodes in the
network to ultimately find the detected object’s position
in the network [20].

G. 3D Imaging
In order to perform a 3D imaging and positioning, one

would often use several 2D measurements and combine
them into a 3D image. Each measurement would extract
a 2D image of the object with the information on how far
away the object is and where in the plane the object and
its contour lie. The first used measurement would be the
plane which lies closest to the sensor, where the contours
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are extracted and saved. The next measurement will be
a parallel plane which lies a little further back compared
to the first plane. The contours from this plane are now
saved and combined with the first plane’s contours into a
2D image. The following measurements would continue to
step through parallel planes and record the contours until
the whole object has been covered. The end product is
then a 2D image with different contours at specific levels,
and from this image it is now possible to reconstruct a 3D
image of the object using a computer.

To perform 3D imaging this way, one UWB radar will
only 3D map on side of the object, leaving “the back”
of the object undiscovered. A second radar sensor placed
on the other side of the object could then in collaboration
create a complete 3D image of the object covered from two
angles. However, if one is interested in measuring the size
and/or volume of an object it would be most simple to
use three UWB radar sensors and make sure they cover
all necessary angles and fuse the measurement data to
create a complete 3D image of the detected object. The
number of required UWB radars to perform 3D imaging
is ambiguous, and depending on the detail of the 3D map
the number of sensors vary. One sensor might be enough,
but for a more complete 3D image multiple UWB radar
sensors are needed [21].

IV. Implementation of Background Subtraction
Algorithms

To gain a better understanding of image processing
algorithms that could be performed at the senor nodes
in the visual sensor network, we have implemented two
algorithms for detection of moving objects. The methods
that we have focused on is offline background subtraction
and frame-by-frame subtraction. The reason for choosing
these algorithms is that the theory behind them, is rather
simple, and we already have the necessary equipment and
programming skills to implement it. A requirement which
has to be taken into account is that the algorithm must
be suitable for the sensor network node, i.e. low power
consumption. In our case, our computer was much stronger
than the average sensor node, but the recording device
was set to a very high resolution which slowed down the
algorithm.

For the implementation, we used MATLAB environ-
ment and a built-in webcam on an iMac. The webcam’s
settings were limited to a resolution of 1280× 1024 pixels,
and color scheme YCbCr, which had to be converted to
RGB colors in order for MATLAB to work with it. Each
capture frame is saved as three dimensional n × m × 3-
matrix where n = height in pixels , m = weight in pixels,
and 3 = RGB-value. The 3 RGB-values in the third
dimension of the matrix each represent the three colors, 1
being red, 2 green and 3 blue, e.g. the value at (500, 200, 1)
represents the red color level at pixel (500, 200), and
(500, 200, 2), and (500, 200, 3) represent the level of colors
green and blue in that pixel. These values vary between 0 -
255, where 0 is total lack of the color, and 255 is maximum

amount. We use the following notation to show the image

I =

 p(1, 1, RGB) · · · p(1, 1280, RGB)
...

. . .
...

p(1024, 1, RGB) · · · p(1024, 1280, RGB)

 .
A. Offline Background Subtraction

In our implementation, the camera records while MAT-
LAB saves the frames in matrix format. The captured
images are saved in a sequence I0, I1, ..., In−1, In, where n
is the total number of frames. In background subtraction,
the first captured image I0 serves as a reference for the
algorithm. It is therefore important that the reference
image is solely made of the static background. Before the
images are compared, the captured color image needs to
be converted into a grayscale image. Mathematically this
means removing the third dimension of the picture matrix
I. This has been done using a built-in MATLAB function.
The matrix is still of size 1280 × 1024, and each matrix
entry has a value between 0 - 255, where 0 being black,
255 white and everything in between is a shade of gray.

As soon as the second image is captured, the algorithm
investigates each pixel individually through a for-loop and
then compares it with the same pixel in the reference
image. If the pixels vary more than a certain T = threshold
value, the pixel is said to belong to the foreground. If
the variation is less than T, then it is considered as
background.

The equation (1) is the calculation that is performed
at each pixel, P , in the image I. The subscript n denotes
the number of the input frame in the sequence, and the
subscript 0 is the background frame.

|Pn − P0| ≥ T (1)

After each pixel comparison, the algorithm builds up a
new image pixel by pixel. This new image is only black
and white, where pixels belonging to the background being
black, and the foreground being white. Practically, this
means that if a pixel was identified as background, its
pixel value is set to 0, and if it is part of the foreground
the pixel value is set to 255. The new images are kept
in a sequence which can later be displayed as a video.
In Figure 2, we demonstrate the algorithm separating the
background from the moving object in frames 1-4. The
two following frames show our static background with and
without a moving object in original RGB-format.

B. Frame-by-Frame Subtraction
When implementing frame-by-frame subtraction, the

reference image that the algorithm compares the input
image with, will be changed to the previous image in the
sequence at every comparison. The threshold condition
will in this case be

|Pn − Pn−1| ≥ T.

Figure 3 shows that this algorithm does not detect the
moving object as clear, compared with the offline back-
ground subtraction algorithm. However, this algorithm
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Fig. 2. Results of our offline background subtraction algorithm,
together with the static background and object in color

handled changes in the background. One setback with this
algorithm is that if the object does not move much between
frames, the interior of the object will be seen as black. If
the object does not move at all it will disappear, which
was evident during our experiment.

Fig. 3. Results of our frame-by-frame subtraction algorithm

C. Noise Reduction
A background subtraction algorithm will work best,

if there is a strong distinction between background and
foreground with clear black and white images. However,
this is far from reality since the background subtraction
algorithm investigates each pixel individually for color

changes. If the brightness of a room changes during the
process, color of the background would either become
brighter or darker, resulting in a change in pixel values.
If the brightness variation is large enough in a pixel, the
algorithm would interpret it as a movement and hence
color it white in the product image. This is called noise
and can be seen as random white spots in the image
which need to be cleared in order to be able to track the
actual movement. In our MATLAB-implementation, we
created a crude and simple filter with the key ability of
being able to sort out small disturbances without using
much computational power, and hence, being very quick.
The basic principle was to divide the input image into
an even number of equally sized sectors, scaled down by
dividing the original height and width with 128. When
using a 1280 × 1024 pixel image, we divided the image
into sectors of 8 × 10 pixels. The algorithm determines
how many percentages of the sector is white. Now, if more
than 20% of the pixels are white, then the sector is in
the foreground and left untouched. However, if less than
20%, the sector is considered to only contain noise and
belong to the background. The filter then repaints the
white pixels black. After successfully filtering a sector,
the algorithm continues with the adjacent sectors until
the whole image has been filtered. The threshold value in

Fig. 4. Results of our filter for noise reduction

percent is of major importance in the filter, and changing
the value alters the picture significantly. In Figure 4, we
see that small noise elements can easily be filtered out
using a 20% threshold, while larger disturbances remain.
Increasing the threshold to 50% causes the filter to remove
both small noises but also larger ones. However, with
increasing threshold value, the actual object’s contour (the
depicted person in Figure 4) is also being filtered out,
creating a more edgy contour. If the threshold is increased
all the way to 99%, all noise is successfully removed to the
cost of the object’s contour which is greatly compromised
It is clear that the threshold value has to be chosen so
that enough noise is filtered but without compromising
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the detail of the object.

D. Single Object Detection and Tracking
After successfully implementing offline background sub-

traction and a basic filter, we are now ready for the final
implementation of an object detection and tracking algo-
rithm. This program first utilizes our offline background
subtraction in order to make the images in the series into
binary. We could have moved on without the filter, but
since our tracking algorithm scans the image for white
pixels when identifying the object, shadows and noise
would be apparent, and the algorithm could mistakenly
identify a shadow as a real object. Hence, we applied a
99% filter for enhanced performance.

The algorithm itself is very simple and can detect an
object and find its position at the cost of handling only
one object. It starts to search from the image’s upper left
corner pixel and continues to the right until it reaches the
images width. When the algorithm finds a white pixel, it
assigns that pixel the labels: top, left, right and bottom of
the object. Assuming that the first pixel found represents
the object’s top left corner, the algorithm continues to scan
for pixels, and for every pixel found further right or down
of the top left corner pixel, the labels right and bottom
changes. By doing this, we are able to find four corners
from which we then can draw a rectangle in the image,
which contains the object. In the case that the algorithm
finds a pixel further left of the first pixel, it will change
the pixel position as label left. The position of the object is
then calculated as the center of the rectangle, or the mean
value of the top, bottom, left & right labels. In Figure 5,

Fig. 5.

you can see an example of this method, the red dot is
the center of the rectangle and the object’s center pixel
position is shown in the upper left corner. This algorithm
can successfully identify one object and continue to track
it while remaining in the camera’s sight. The downside of
this algorithm is that if a second object were to enter the

image, the algorithm would not be able to tell them apart
and instead detect both objects as one big single one. The
upside with the algorithm is its simplicity and the fact
that it does not need very much computational power.

E. Multiple Object Detection and Tracking

When implementing the tracking algorithm, handling
multiple objects is a much more complex problem. We
focused on handling multiple objects without classifying
the objects, they are just labeled “Object” instead of
having an identity. In our algorithm, we tried to use
distance to separate the objects. If it is a space, in this
case black pixels, between the white pixels of a certain
number the algorithm makes a rectangle around the white
pixels it have found and then begin a new search in the
same frame for more objects. The space can be in both
x or y directions. You can see the result of implementing
this algorithm in Figure 5. However, we noticed that it is
much easier to separate objects in the horizontal direction
because the way that our algorithm searches through the
pixels is that it goes from left to right and then down,
like when reading a book. In the vertical direction, it is
more complicated. If you imagine having two objects and
one is at the upper right corner and one at the lower left
corner, and they are overlapping each other in the vertical
direction. The algorithm will then find the when one to the
upper right first and start to build a rectangle. However,
when it comes down to the left one it still have not finished
the right object but it needs to start apply values to the left
one. Therefore, it needs a way to handle these situations
and keep the data it have found separated. The downside
with using a specified separation distance is that if the
objects get close to each other they become one object. You
cannot set the distance very low because you risk splitting
one big object into smaller ones.

Fig. 6.
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V. Localization and Information Fusion
The purpose of localization is to determine the position

of a moving object. To be able to localize a moving
object, obviously the object first has to be detected and
then tracked, as we have described in earlier sections.
There are three different aspects that has to be considered
for an accurate localization. The first aspect is camera
calibration, which is to define the locations of the camera
nodes relative to each other. Calibration also contains
the orientation of the different camera nodes, that is, the
directions that the cameras are pointing. The next aspect
is synchronizing their readings to ensure that different
cameras are viewing the same scene at the same time. The
third step is to perform an estimation of the position based
on optics and geometry [22]. The first step for localizing
a moving object is to first determine its position in 2D
in each individual camera node. The information of the
positions from the camera nodes is then fused to find the
3D position of the moving object.

The goal of this section is to describe the differences
between localization in 2D and 3D, and to determine
the number of camera nodes that is required to perform
localization. This will lead to a method for localization in
3D.

A. 2D Localization
The image captured by a camera is a 2D representation

of a 3D environment. To find the 2D position of a moving
object, we use the pinhole camera model, which is an
approximation of the most simple camera without lens.
In the model, the rays of light is projected onto a planar
screen called image plane, after passing through a pinhole.
We start with placing the pinhole at the origin and the
image plane perpendicular to the z-axis at a distance
z = f from the origin (f is the focal length). We can now
calculate how a 3D point x = (x, y, z)T is mapped onto the
image plane as a 2D point u = (u, v)T [10]. Figure 7 shows
the geometry of the pinhole model. Looking at Figure 8

Fig. 7. Pinhole camera model

and using simple trigonometric identities, we get

u = f
x

z
. (2)

Fig. 8. Pinhole camera model in the xz-plane

In the same way, we can calculate v

v = f
y

z
. (3)

Therefore, according to [23], we can calculate the projec-
tion of a 3D point onto a 2D image plane as

(x, y, z)T 7→
(
f
x

z
, f
y

z

)T

.

The pinhole camera model can be formulated in a more
general form, that takes into account the pinhole at an
arbitrary position, the image plane orientated arbitrary,
and have non square pixels with skew image plane [10]

u = Px,

where P is called the projection matrix

P = K[R|t],

and K models the cameras intrinsic parameters, which are
focal length, scaling and projection center. The extrinsic
parameters are the orientation R and position t in the
world coordinate system of the camera [24].

Consider a square room, with a camera node located
in the center of the ceiling pointing down. The distance
from the ceiling to the floor is known. Now, if a moving
object is detected by the camera, i.e., a small ball rolling
on the floor, it could be represented as a point in the
image plan with coordinates (u, v)T . Since the distance z is
known, we can use the equations (2) and (3) to obtain the
position (x, y, z)T of the moving object on the floor. This
simple example shows that only one camera is required for
localization of an moving object in 2D.

B. 3D Localization
We continue our example with the square room and a

single camera in the ceiling. If the area of the moving
object is known, e.g., the area for a ball being πr2, then
there is a method of calculating the 3D position. If the
object gets closer to the camera, it will cover more pixels.
If we know the number of pixels that the object is covering
at a certain distance from the camera, we can calculate
a relationship between the number of occluded pixels
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and distance from the camera. Then, with the calculated
distance z, the 3D position can be found with the same
equations as before, using the pinhole model. However, if
the area of the moving object is unknown, this method
cannot be used.

1) Epipolar Geometry: If we consider two cameras that
are viewing a 3D scene, from two different known loca-
tions. This setup creates geometric relations between the
3D point and the 2D points on the image planes. These
geometric relations are called epipolar geometry, and can
be used to determine the 3D position of the moving object
[10].

Figure 9 shows the geometry of two cameras with
parallel image planes IP1 and IP2. Both cameras has focal
length f and are located at a distance b from each other. c1
and c2 are the horizontal distances between the projections
of the 3D point x on the image planes u1 and u2, and
the centers of the image planes. The depth z can now be

Fig. 9. Geometry of two parallel cameras [23]

calculated using trigonometric identities [23]

z = fb

c2 − c1
.

Now, when we have a method to calculate the depth, the
3D position of the object can be determined using the
equations from the 2D localization

x = z
u

f
,

y = z
v

f
.

This shows that to localize a moving object in 3D, the
minimum number of cameras required are two.

However, there are situations where two cameras are
insufficient for determine the 3D position of an moving
object. An obvious situation is if the object is occluded
and not visible for one or both cameras. The solution to
handle this is to deploy more cameras to make sure that
at least two cameras are viewing the moving object at the
same time.

C. Refined Localization using Kalman Filter

When performing object detection and tracking, it is
obviously of high importance to achieve accurate and
precise measurements of the position of the object. By
using measurement from several camera nodes, one would
be able to get a better estimation of the position. The
rising problem is, that when multiple cameras are tracking
an object, each camera will return a separate estimation
of the position of the object. In the optimal situation, all
the cameras would return the same position and agreeing
on that it is the correct one. In reality, however, this
would never occur. This is due to measurement noise,
object shape and movement, etc. For example, a object,
e.g., a human, have different shapes depending on the
viewpoint, which leads to that the returned position will
be different, depending on where the camera is located.
Other factors creating noise is lens distortion, resolution,
and bad background subtraction. Therefore, a method to
fuse the position information from multiple cameras would
refine the localization. One way of doing this is to, first get
an estimation of the 3D location, and then use a Kalman
Filter to track the moving object over this estimation [24].

1) Introduction to Kalman Filter: In linear dynamical
systems where measurements contain noise, it is difficult
for a person to predict what is going to occur in the
near future. However, it is of vital importance to be
able to predict the next state in a model and cancel
out any possible disturbances. To do this, one would use
the Kalman Filter which is a recursive data processing
algorithm that estimates the state of a linear dynamic
system containing noise. With the word state, we mean
a vector containing a certain number of variables which
describe some property of the system. In object tracking
and detection, this vector would usually contain the co-
ordinates and orientation of the object. The methodology
and terms used in the Kalman Filter comes from various
disciplines in mathematics, such as: least mean squares,
probability theory, stochastic system and linear algebra
to name a few. Today, the Kalman Filter is being used
in modern control theory with applications in aircrafts,
manufacturing processes and robots among others [25].

The Kalman Filter estimates the state of the system
by using all the measurements of the system. Those mea-
surements need to be linearly related to the state and they
are often more or less corrupted by various noise. The pro-
cess then the available measurements, both accurate and
inaccurate, together with available data about the initial
values of the state and some probabilistic description of
the system and measurement noises [26].

2) The Kalman Filter data model: The Kalman Filter
assumes that the state xk can be written in terms of the
previous state xk−1, with the linear equation

xk = Fk−1xk−1 + vk−1.

The matrix Fk−1 relates the previous state with the
current state, and vk−1 is the state noise. At time k, the
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measurement zk of the state xk can be written as

zk = Hkxk + wk,

where Hk relates the state with the measurement, and wk

is the measurement noise [9]. The Kalman Filter can then
divided into five steps: (1) state estimate extrapolation, (2)
error covariance extrapolation, (3) Kalman gain, (4) state
estimate update and (5) error covariance update [24].

3) A Basic Model Example: To give the basic idea
of how the Kalman Filter works, we use an example
from R. Negenborn’s master thesis “Robot localization
and Kalman filters - on finding your position in a noisy
world”. The scenario is given as a robot navigating in an
environment where it wants to localize itself. We assume
that the robot has access to all measurements, and that
the robot is subject to noise when it navigates its way
around the environment.

First, we create a model over the robot’s navigation, i.e
the behavior of the system tells us how the location of the
robot changes over time. The system that describes the
true location xk of the robot is

xk = xk−1 + s+ ωk,

where xk depends on the previous location xk−1, the
speed s (assumed to be constant) and a special noise term
ωk. We assume that the noise is a zero-mean, Gaussian
distributed noise, which means that the average value of
the noise is equal to zero. The deviation of the noise is
denoted by σω. In order to use absolute measurements
when estimating the location, we need a description of
how the measurements are related to the true location xk.
To do this, we assume that we have a measurement model
that can describe the relationship between zk and xk as

zk = xk + vk,

where vk is the noise that corrupts the measurements.
Just as with ωk, we assumed that vk is zero on average,
Gaussian distributed and has a deviation of σv.

Now assume that we have the initial estimated state of
the robot’s location, x̂0, and an uncertainty (variance) of
σ2

0 . To make a prediction of the robot’s new position, we
assume that the robot drives for one time step. Using the
system model, we know that the robot’s location will (on
average) change s, and now we can update the estimate
of the location with this knowledge. We calculate the new
location x̂1 at step k = 1 as

x̂1 = x̂0 + s.

In this calculation, we took the noise equal to zero, since
we do not know how much the current state is corrupted
by noise, although we know that it most certainly is.
Additionally, we know that the noise varies around zero
which also justifies ωk being set to zero. We would now like
to update the uncertainty in our new position, and this we
do by calculating σ2

1 that we have in our new estimate as

σ2
1 = σ2

0 + σ2
ω. (4)

If the robot would continue moving without receiving
any absolute measurements, the uncertainty in equation
(4) would increase. What we then need is an absolute
measurement which we use to correct the prediction that
we made. If we now assumed that we make an absolute
measurement z1, then we want to use this measurement
in our estimation of the location. We do this by includ-
ing z1 in a weighted average between the uncertainty in
the observed location from the measurement z1 and the
uncertainty in the estimate that we already had in x̂1

x̂+
1 = σ2

v

σ2
1 + σ2

v

x̂1+ σ2
1

σ2
1 + σ2

v

z1 = x̂1+ σ2
1

σ2
1 + σ2

v

(z1−x̂1). (5)

This has two direct consequences: If the uncertainty σ2
1

in the old estimate is large, then we will include much of
the new measurement in the estimation. However, if the
uncertainty in the measurement, σ2

v is large, then we do
not include much of the new measurement.

The absolute measurements provide independent loca-
tion information and do not depend on earlier location
estimates, hence they reduce the uncertainty in the loca-
tion estimate. We can combine the uncertainty in the old
location estimate with the new measurement, which gives
us the uncertainty σ2,+

1 in the new estimate as

1
σ2,+

1
= 1
σ2

1
+ 1
σ2

v

,

which we can rewrite into

σ2,+
1 = σ2

1 −
σ2

1
σ2

1 + σ2
v

σ2
1 . (6)

We can see in equation (6) that when we add new informa-
tion, the uncertainty decreases in the final estimation. We
now have that σ2,+

1 is actually smaller or equal to both the
old location estimate uncertainty σ2

1 and the measurement
uncertainty σ2

v . If we look closer at equation (5) and (6),
we can see that we have used the same gain K as

K = σ2
1

σ2
1 + σ2

v

. (7)

Using K, we rewrite (5) and (6) into

x̂+
1 = x̂1 +K(z1 − x̂1),

σ2,+
1 = σ2

1 −Kσ2
1 = (1−K)σ2

1 .

The factor K is now the key essence of the Kalman Filter.
It determines how much of the information from a specific
measurement should be used when updating the state
estimate. This then leads to two extreme cases. If the
uncertainty in the last location estimate, σ2

1 , is close to
zero, then K will be close to zero. This means that the
last received measurement is will not be taken into great
account in the state update. If then the measurement
uncertainty, σ2

v , is small then K will approach one. This
suggests to that the measurement will be used in the state
update [25].
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4) Fusing information from multiple cameras: We have
showed how a Kalman Filter can be used to estimate the
position of a robot. Now, we will show how the Kalman
Filter theory can be used to estimate the position of a
moving object, when the information of the position is
gathered from multiple cameras. Let xk = (xk, yk, zk)T be
the position of the object that we want to track at time k.
The information gathered from each of the N cameras can
be denoted as ui

k = (ui
k, v

i
k)T , 0 ≤ i < N . The projection

of the position of the moving object on each image plane
can be written as

ui
k = Pixk + Ei

k,

where Pi is the projection matrix for each camera, and Ei
k

is the noise [24].
When tracking a moving object in 3D from its projec-

tions on the image planes of the cameras, the standard
Kalman Filter cannot be used. The reason is that the
relationship between 3D location xk = (xk, yk, zk)T , and
the projections onto the image planes ui

k = (ui
k, v

i
k)T ,

are non-linear. The problem can be solved by using the
Extended Kalman Filter [24].

5) Extended Kalman Filter: In the Extended Kalman,
Filter the process is written as

xk = fk−1(xk−1) + vk−1,

and the measurement

zk = hk(xk) + wk.

Here, fk−1 and hk, does not have to be linear functions.
The Extended Kalman Filter linearize fk−1 and hk, around
the current state for each time step k [9].

For the Extended Kalman Filter to work, one need to
select a prediction model, that describes the motion of
moving object. To be able to track in real-time, these mod-
els have to be efficient, considering the limited bandwidth
and computational power of a wireless camera network.
For slow moving object with simple motions, a model that
only contains information of the location is enough. More
complex models demands knowledge of the motion of the
object. This is problematic when tracking, e.g., people,
because their movement is often unpredictable. Creating
a prediction model of, e.g., an AGV on the other hand
is achievable, due to the fact that the AGV could have a
predetermined route to follow. Therefore, using a model
of the motion is evident when information of the motion
is available in advance. [2].

D. Localization of an AGV
Project D4 works with navigating an AGV (Au-

tonomous Ground Vehicle) indoors. The problem is that
they need to know their position to be able to navigate
through rooms. Figure 10 shows an example of the map
that the AGV uses to navigate. The red shapes are obsta-
cles which the AGV should avoid, and the dotted path is
the path that the AGV should follow. By using a wireless
camera network, the AGV could be detected and tracked.

By having communication with the AGV through a base
station, the camera network could send the position to the
AGV. Using the obtained the position, the AGV could
localize itself on the map in Figure 10.

D4 reported that obtaining position information at a
frequency of about 2,5 Hz would be good. When imple-
menting our tracking algorithm in MATLAB, we achieved
that we could send coordinates with a frequency of 2
Hz. This however was performed with a resolution of
1280 × 1024 pixels. Such high resolution is not necessary
when detecting and tracking an AGV. By lowering the
resolution, the frequency could be increased several times
and satisfy the required frequency. Also, by using multiple
cameras combined with a Extended Kalman Filter would
make the position information even more precise.

The AGV have a UWB sensor, which could scan the
room for objects, so that it could send information to the
base station about certain objects that maybe are invisible
to the static cameras in the room. Such fusion with
our tracking algorithm and the AGV sending important
information about the situation, could be very useful for
example in a “search and rescue mission”.

Fig. 10. An example of the map that the AGV uses to navigate

VI. New Application - The Smart Illumination
system

A. Existing Applications
Before presenting our own new application of wireless

camera networks, we will start with a survey of existing
interesting applications that we have found. The most
common applications of wireless camera networks that we
have encountered is for surveillance. Instead of having a
human detecting intruders, the camera itself can detect,
trigger an alarm, and then give the position of the intruder.
In surveillance, the wireless camera network can also be
used to detect and study suspicious behavior of people,
e.g., if it looks like someone is stealing something.

Other interesting applications that we have found is for
health care. In the master thesis “Multi-Camera Person
Tracking using Particle Filters” the authors suggests an
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application for monitoring elderly in their homes. The
application uses a wireless camera network to detect ab-
normal behavior and accidents, e.g., if a person has fallen
and lies on the floor. This is done by studying the body
posture of the person. The purpose of this application is
to let elderly live a safe life in their own homes for a longer
time and with minimal assistance [9].

We have also found applications that create intelligent
environments. In the report “Multi-Camera Multi-Person
Tracking for Easyliving” the authors present a system that
can automatically start and stop a DVD when a person
sits or stands up from a couch. The system can also play
the DVD on different displays in the room, depending on
where the person currently is [27].

B. The Smart Illumination system
For our own application we have considered a topic of

current interest: energy consumption and environmental
awareness in a smart building. Our idea is to combine
simple motion detectors and low power wireless camera
networks in order to help the user save both energy and
money, without making everyday life less comfortable.

According to the Swedish Energy Agency, lighting con-
sumes around 20% of the total energy consumption in
domestic homes, which roughly adds up to 4000 SEK/year
in energy costs [28]. Nowadays there are several campaigns
trying to make the public aware of its energy consumption
and give us solutions on how to save both energy and
money. So far, they all involve more or less a sacrifice from
the user, e.g., we are told not to raise the heaters in our
homes too much and instead wear more clothes inside, or
that we should constantly be aware of all the lights we have
in our home and actively turn them on or off when leaving
or entering a room. Although being good advice in terms
of energy consumption, they all comprise our comfort and
it is probably one of the main reason why people do not
give in into environmentalists’ ideas and solution.

With our application, “The Smart Illumination Sys-
tem”, we want to solve the problem with idle lighting in
homes in order to save energy, and in the same time make
everyday life more comfortable. As a part of the smart
building, our application will help the user being more
environmental friendly and save money without basically
doing anything. We know that we should turn off the lights
when we are leaving a room or if we are not directly using
it. However, turning on and off lights is a very impractical
and time consuming thing to do, which in most cases
leads to the lighting being kept on. Perhaps sometimes
we even forget that we left the lights on in a room and
it could be left on for hours, draining energy. There is a
simple solution to this problem existing today that is using
motion detectors to detect when a person is entering a
room, and then activating the light. When there has not
been any motion for a while the system turns off the light.
Our application is a further development of this concept.

The basic principle of what we want to do, with the
help of motion detectors and wireless camera networks, is

to optimize the illumination of a room. When a person is
entering the room, motion detectors will turn the light on.
Then the wireless camera network will track the position of
the person and then adjust the light, depending on where
the person is and what the person is doing. Instead of a
very simple system which can only turn all lights on or off,
our smart system can also dim and individually control
each light source in the home. Each camera is aware of
its position and the layout and structure of the room it
monitors. Using object detection and tracking, the camera
network can determine the position of a person, and with
a pre-programmed map of the room, the wireless camera
network will be able to tell if a person is, e.g., sitting by the
desk reading or watching a movie in the sofa. These special
sections in the room are represented as zones in the pre-
programmed map. Depending on the user’s preference, the
lighting for each zone can be set individually. If the user
would sit down by his desk, then his desktop light will
automatically be turned on. If the user would then move
to the TV couch, the surrounding lights would dim down
in order to give the optimal TV lighting.

The system will of course be able to shut down the lights
whenever the room is empty, and depending on which
direction the person left the room, the adjacent room
will light up in advance. This will prevent the lights from
being turned on and off repeatedly, avoiding the effect of
blinking lights, which is a problem when using only motion
detectors. The system would also have a very intelligent
feature that we have called activity recognition, which will
be able to combine the position with what the person
is doing. For example, if a person would sit in the sofa
reading a book, the system will adjust the light for reading.
However, if the person starts watching TV, still sitting in
the same sofa, the light will change and become optimized
for TV watching. Using information from camera networks
to recognize specific behaviors, such as reading, is usually
far more complicated than just finding the position of a
person. Therefore, this feature of our application would
need more work to develop than the previously mentioned.

With the help of smart object detection and tracking,
the Smart Illumination System would work great in ev-
eryday life with minimal human interacting. When the
system is installed and running, the user will hopefully
use it without even thinking of it, and at the same
time save energy. A question that might have occurred is
about the energy consumption of the cameras, compared
with letting the lights be turned on. The camera node
CMUcam3 that was mentioned earlier, consumes 0,65 W,
which is considerably lower than a standard lightbulb that
consumes 60 W. A corresponding low energy lightbulb use
15 W, which is still higher than the camera node. The
conclusion is that if the Smart Illumination System can
turn off just one, at the moment unnecessary light, there
will be energy savings.

One drawback of our application, is the work that has to
be done installing the system. For example, the zones and
which light that should be active when the user is present,
has to be determined and programmed into the system.
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Optimally, the system would be installed in new buildings,
where cameras can be mounted in places where it does
not bother the user, and the zones can be determined in
advance. The system would be useless and very irritating
if it did not work properly. Just imagine having lights
automatically turned off when needing them.

Our system needs a central computer, which is con-
nected to the electronic devices in the home, i.e., the wire-
less cameras and lights, in order to operate. This central
computer or “brain”, does not have to be big and could be
hidden somewhere in the house. In older houses, it is not
common to have a central computer installed that controls
the house. Lately, there has been a lot of progress in the
field and major energy companies are today discussing the
possibility to have a small computer in the home which
controls, e.g., energy consumption or ventilation, etc. In
the smart illumination system, the wireless cameras will
send the position information to this central computer,
which by knowing the zones can determine which light to
turn on or off. The aim is that the computer should have
an easy-to-use user interface, so that the user can easily
reprogram the zones of the a room, in the case of, e.g., a
refurnishing.

The Smart Illumination System is ahead of its com-
petition, which is normal motion detectors. It might be
that our application is too advanced and too hard to
incorporate in old buildings. However, in new building pro-
ductions, where energy efficiency is an important factor,
the smart illumination system would be easier to install
and incorporate with the rest of the building’s technology.
A wireless camera network in a smart building, can be used
for many other application besides optimizing lighting.
For example, it can be incorporate with other building
functions, such as ventilation, heating, and the usage of
domestic robots.

VII. Discussion
This project has been interesting to work with, because

it has involved many fields, such as image processing and
automation control. The problem formulation we started
with was wide, with many different issues to address. We
have been able to go deeper and implement some parts of
the project, while other parts off the project would take
much more time to completely address. For example, more
knowledge and work from our side, would be necessary
to fully understand how a Extended Kalman Filter could
be implemented in a wireless camera network. On the
other hand, problems like how to perform background
subtraction, have been well described and demonstrated.
Overall, we have gained a better understanding for prob-
lems and possibilities concerning moving object detection
and tracking, using wireless camera networks and UWB
sensors.

If we start with discussing the results of our own imple-
mentations, we found that our algorithms for background
subtraction worked well. With the right choice of threshold
value and a distinct background, the algorithms could
accurately separate the foreground from the background.

The differences between offline background subtraction
and frame-by-frame subtraction was evident during our
testing of the algorithms. With the noise filter we were
able to raise the threshold, and in that way avoid missing
important information about objects and at the same
time reduce noise. We found that the filter could be set
to about 90-99%, without losing any important parts of
the moving object. Although being good results, it is
important to mention that the testing of the algorithms
was performed with a distinct background, not containing
details or strong backlight. This scenario represents the
ideal environment for the algorithms, however, it is not
very realistic. Changes in lighting were evidently a prob-
lem, also if the object color matched the wall too much,
the algorithms would fail to detect that object.

Our tracking algorithm worked well and was efficient.
However, the position information was a not exact, due to
that algorithm calculated the position from the center of
a rectangle who framed the object, and did not consider
the real shape. A further development would, instead
determine the contour of the object, calculate the mass
centrum, and then return that as the position. We where
able to run the algorithm in real-time with a frame rate of
2 fps, with a resolution of 1280 × 1024 on the camera.
A lower resolution would increase the fps significantly.
Our tracking algorithm that could handle multiple object,
did also have a frame rate close to 2 fps, but to make it
precise showed to be difficult. The multiple object tracking
algorithm had two evident flaws: it would sometimes fail to
capture the whole object and its borders, and sometimes
it would make two objects seem as one if they were close
to each other.

Future work would be to produce a more intelligent
algorithm for multiple object tracking. It would also be
interesting to try implementing more mathematically ad-
vance methods for moving object tracking, such as optical
flow and compare it with the background subtraction
algorithms. We would also like to implement an adaptive
background subtraction algorithm, that could tackle some
of the difficulties we found with our implemented algo-
rithms, such as lighting change and varying background.

Another interesting aspect that could be implemented,
is an algorithm for object recognition. For example, a
algorithm that can determine whether the moving object
is a human or AGV, etc. Also an algorithm for behavioral
recognition, which we planned to use in “The Smart
Illumination System”, could be implemented. We see many
applications for behavioral recognition, especially in health
care, detecting when people get ill, or in other emergencies.

The next step would be to create our own wireless cam-
era network, where we could try to fuse multiple cameras.
During this project we only implemented algorithms for
one single camera, and it would have been interesting to
implement tracking algorithms that could use information
from multiple cameras. We have worked with methods on
how to perform 3D localization using multiple cameras.
However, the leap from what we did accomplish, to in re-
ality perform 3D localization in a wireless camera network



D6: OBJECT DETECTION AND TRACKING

was too big. It would also be interesting to implement a
Kalman Filter, to gain a better understanding of how it
works.

Even though the technology for a efficient wireless cam-
era network does exist, we still see potential for further
development. For example, if the cameras could see in the
dark, the wireless camera network could be used during
more hours of the day. Our supervisor has told us that such
a camera is in development. In the smart building, energy
efficiency is an important factor. Therefore, development
smart cameras with low energy consumption, but still with
a high computational power would appeal.

A major issue with realizing this project is the topic of
personal integrity and ethics. Although the intention of
camera networks is harmless, the feeling of being constant
monitored is a major concern for people today. We some-
times hear about protests against increased number of
surveillance cameras in society, so why would there be any
less concern about installing cameras in our homes? There
have been incidents where live video streams from installed
camera networks in retirement homes, accidentally have
been available online for public access. Despite these in-
cidents being rare, the question still remains whether or
not someone is watching you through your own personal
camera network. A possible solution to ensure the video
data being secure is to have the camera network working
offline, i.e. no Internet connection to the central processing
unit or the cameras. To give the network limited storage
memory could also force the network to never save any
data, and instead only process the information once and
then discard it. One could also avoid having cameras in
private rooms, such as personal bedrooms and bathrooms.
However, if people feel that a majority of their rooms are
not suitable for surveillance, then why would they want
to install the system in the first place? These camera
networks are supposed to be a part of the smart building,
but if we only install the camera networks in a few rooms,
we would end up with several independent smart rooms,
and the whole idea with an intelligent home would fall
apart.

For the wireless camera network to become a part of the
future smart building, we need to make people understand
the benefits of a camera network. Once people have real-
ized the possibilities, with the applications of a wireless
camera network, we think that it will become a part of
every home. As with almost all the new technologies, it will
take a while for people to understand what the purpose
is, and what it can be used for. What we arrive at after
this project, is that we see potential for wireless UWB and
camera networks to be incorporated in the smart building.
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