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Preface

The present compendium has been developed by Euhanna Ghadimi, Yuzhe Xu, and Carlo Fischione during
2011 and 2012 for the course EL2745 Principles of Wireless Sensor Networks, given at KTH Royal Institute
of Technology, Stockholm. In many cases exercises have beenborrowed from other sources. In these cases, the
original source has been cited.
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1 Introductory Exercises: Sensor Modeling, Random Variables and Optimiza-
tion Theory

EXERCISE 1.1 Gaussian Q function

(a) Consider a random variableX having a Gaussian distribution with zero mean and unit variance. The
probability thatX is larger thanx, or distribution function, is

P(X > x) = Q(x) =

∫ ∞

x

1√
2π

e−t2/2dt ,

whereQ(·) is called the Q function. Plot the distribution function in the variablex. Recalling that a
function is convex when the second derivative is strictly positive, find a region ofx in which the function
is convex.

(b) Consider a Gaussian random variableX ∼ N (µ, σ) of averageµ and standard deviationσ. Such a random
variable has a distribution function given by a translated and reshaped Q function:

Q

(

x− µ

σ

)

.

Discuss about convexity region of this function.

(c) A function f is log-concave iff(x) > 0 and for allx in its domain−logf(x) is convex. Show that the
twice differentiable functionQ is log-concave.

EXERCISE 1.2 Binary hypothesis testing: application of the Q function

Assume a couple of sensor nodes are randomly deployed in a region of interest and are connected to a sink.
The task of each sensor is to detect if an event happened or not, namely taking a binary decision. Each sensor
measures noisy signals from the environment and whenever the measured signal is strong enough the sensor
will decide that an event has occurred. We assume that the measurement noises at sensori are identically
and independently distributed (i.i.d) and follows a Gaussian distributionni ∼ N (0, 1). The binary hypothesis
testing problem for sensori is as follows:

H1 : si = ai + ni

H0 : si = ni

wheresi is the measured signal at sensori, andai ∈ R+ is the signal amplitude associated to the event. Assume
that all sensors use a common thresholdτ to detect the event, i.e., if the measured signal at sensori is larger
thanτ , then the sensor will decide that the event happened and willreport this decision to the sink.

(a) Characterize the probability offalse alarmpf , namely the probability that a local sensor decides that there
was an event while there was not one.

(b) Characterize the probability ofdetectingan eventpd, namely the probability that an event occurs and the
sensor detects it correctly.

EXERCISE 1.3 Miscellanea of discrete random variables (Ex.3.24 in [1])
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Let X be a real-valued random variable that takes discrete valuesin {a1, a2. . . . , an} wherea1 < a2 < · · · <
an, with probabilityP(X = ai) = pi, ∀i = 1, 2, . . . , n. Characterize each of following functions ofp = [pi]
{p ∈ R

n
+|1Tp = 1} (where1 is the all ones vector) and determine wether the function is convex or concave.

(a) Expectation:EX.

(b) Distribution function:P(X ≥ α).

(c) Probability of interval:P(α ≤ X ≤ β).

(d) Negative entropy distribution:
∑n

i=1 pilogpi.

(e) Variance:varX = E(X − EX)2.

(f) Quartile: quartile(X) = inf{β |P(X ≤ β) ≥ 0.5}.

EXERCISE 1.4 Amplitude quantization

Figure 1.4.1: (a)A three-bit Analog to Digital (A/D) converter assigns voltage in the range[−1, 1] to one of
eight integers between0 and7. For example, all inputs having values lying between0.5 and0.75 are assigned
the integer value six and, upon conversion back to an analog value, they all become0.625. The width of a
single quantization interval∆ is 2/2B .

The analog-to-digital (A/D) conversion is a standard operation performed in sensors and many electronic de-
vices. Itworks as follows: Consider a sensor that samples a bandlimited continuos time signals(t). According
to sampling theory, if the sensor samples the signal fast enough at timenTs, wheren is the sample number and
Ts is the sampling time, it can be recovered without error from its sampless(nTs), n ∈ {. . . ,−1, 0, 1, . . . }.
The processing of the data further requires that the sensor samples be quantized: analog values are converted
into digital form. The computational round-off prevents signal amplitudes from being converted with no errors
into a binary number representation.

In general, in A/D conversion, the signal is assumed to lie within a predefined range. Assuming we can scale
the signal without affecting the information it expresses,we will define this range to be[−1, 1]. Furthermore,
the A/D converter assigns amplitude values in this range to aset of integers. AB-bit converter produces one
of the integers{0, 1, . . . , 2B − 1} for each sampled input. Figure 1.4.1 shows how a three-bit A/D converter
assigns input values to the integers. We define a quantization interval to be the range of values assigned to the
same integer. Thus, for our example three-bit A/D converter, the quantization interval∆ is 0.25; in general, it
is 2/2B .

Since values lying anywhere within a quantization intervalare assigned the same value for processing, the
original amplitude value is recovered with errors. The D/A converter, which is the device that converts integers
to amplitudes, assigns an amplitude equal to the value lyinghalfway in the quantization interval. The integer
6 would be assigned to the amplitude0.625 in this scheme. The error introduced by converting a signal from
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analog to digital form by sampling and amplitude quantization then back again would be half the quantization
interval for each amplitude value. Thus, the so-called A/D error equals half the width of a quantization interval:
1/2B . As we have fixed the input-amplitude range, the more bits available in the A/D converter, the smaller the
quantization error.

(a) (b)

Figure 1.4.2: (a) Shows a signal going through the analog-to-digital, where B is the number of bits used in the
A/D conversion process (3 in the case depicted here). First it is sampled (b), then amplitude-quantized to three
bits. Note how the sampled signal waveform becomes distorted after amplitude quantization. For example the
two signal values between 0.5 and 0.75 become 0.625. This distortion is irreversible; it can be reduced (but not
eliminated) by using more bits in the A/D converter.

To analyze the amplitude quantization error more deeply, weneed to compute the signal-to-noise ratio,
which is the ratio of the signal power and the quantization error power. Assuming the signal is a sinusoid, the
signal power is the square of the root mean square (rms) amplitude:power(s) = (1/

√
2)2 = 1/2. Figure 1.4.2

shows the details of a single quantization interval.
Its width is ∆ and the quantization error is denoted byǫ. To find the power in the quantization error,

we note that no matter into which quantization interval the signal’s value falls, the error will have the same
characteristics. To calculate thermsvalue, we must square the error and average it over the interval.

rms(ǫ) =

√

√

√

√

1

∆

∫ ∆
2

−∆
2

ǫ2 dǫ =

(

∆2

12

)1/2

Since the quantization interval width for aB-bit converter equals2/2B = 21−B , we find that the signal-to-
noise ratio for the analog-to-digital conversion process equals

SNR =
1
2

22(1−B)

12

=
3

2
22B = 6B + 10 log 1.5dB

Thus, every bit increase in the A/D converter yields a 6 dB increase in the signal-to-noise ratio. The constant
term10 log 1.5 equals1.76.

(a) This derivation assumed the signal’s amplitude lay in the range[−1, 1]. What would the amplitude quanti-
zation signal-to-noise ratio be if it lay in the range[−A,A]?

(b) How many bits would be required in the A/D converter to ensure that the maximum amplitude quantization
error was less than60 db smaller than the signal’s peak value?

(c) Music on a CD is stored to 16-bit accuracy. To what signal-to-noise ratio does this correspond?
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EXERCISE 1.5 Accelerometer system design and system scale estimate (Ex.4.1 in [2])

An accelerometer is a sensor that measures acceleration. Consider the design of an accelerometer that is in-
tended to meet specific acceleration sensitivity goals overa specific bandwidth given a position sensor sensitiv-
ity. The designer may adjust mass, spring constant, proof mass value, and resonance quality factor to achieve
these goals.

(a) Consider an accelerometer with an electronic displacement sensor having a position sensitivity of1pm/(Hz)1/2.
For a target acceleration sensitivity of10−5 m/s2/(Hz)1/2 in the bandwidth from0.001 to 100 Hz, find the
largest sensor resonance frequency that may meet this objective while ignoring the effect of thermal noise.

(b) Now, include the effect of thermal noise and compute the required proof mass value for this accelerometer
for Q values of1, 100, and104 (consider parametersKb = 1.38 × 10−23 andT = 300).

(c) If this mass were to be composed of a planar Si structure, of thickness 1µ, what would be the required area
of this structure.

EXERCISE 1.6 Signal dependent temperature coefficients (Ex.4.4 in [2])

A silicon pressure microsensor system employs a piezoresistive strain sensor for diaphragm deflection having
a sensitivity to displacement ofα = 1V/µ (at T = 300K). Further, this displacement is related to pressure
with a pressure-dependent deflection of K =0.01µ/N/m2 . This is followed by an amplifier having a gain
G = 10 (at T = 300K). This amplifier further shows an input-referred offset potential,Voffset = 0 at 300K.
Each of these characteristics include temperature coefficients. These temperature coefficients are listed here:
α 10−2/K
K 10−4/K
G −10−3/K
Voffset −10µV/K

(a) Consider that the pressure sensor is exposed to no pressure difference. Find an expression for its output
signal for temperature. Compute the temperature coefficient that describes the operation.

(b) Consider that the pressure sensor is exposed to a pressure difference signal of0.1 N/m2. Find an expression
for its output signal for temperature and plot this. Estimate the temperature coefficient that describes its
operation at the specific temperatures in the neighborhood of 250K and350K.

(c) Consider that the pressure sensor is exposed to a pressure difference signal of10 N/m2. Find an expression
for its output signal for temperature and plot this. Estimate the temperature coefficient that describes its
operation at the specific temperatures in the neighborhood of 250K and350K.
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2 Programming Wireless Sensor Networks

EXERCISE 2.1 Hello world

Implement a Hello world program in TinyOS. Implement a timerand toggle the blue LED every 2 sec.

EXERCISE 2.2 Counter

Implement a counter using 3 LEDs. Use binary code to count-upevery 1 seconds. Change the application to
reset after it reaches 7.

EXERCISE 2.3 Ping Pong

(a) Develop an application where two sensor nodes start to exchange a message in a ping pong manner. For
this task you are not allowed to use Node IDs. (hint: probablyyou need to use broadcast message once.
then upon receiving the message use unicast to ping pong message between sender and receiver.)

(b) Change the application such that only two nodes out of many nodes can ping pong. (hint: you might use a
sequence number inside the packet!)

EXERCISE 2.4 Dissemination Protocol

(a) The task is propagating a command in the sensor network. The command could be toggling a LED. Node
ID 1 every 10 second sends a command to turn ON/OFF a selected LEDs. Receivers act accordingly and
re-broadcast the command.

(b) How to avoid redundant commands? (hint: use a sequence counter to detect duplicate commands).
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3 Wireless Channel

EXERCISE 3.1 The noisy sensor (Ex.14.6 in [2])

Sensor nodes are laid out on a square grid of spacingd as reported in Figure 3.1.1. Propagation losses go as the
second power of distance. The source to be detected has a Gaussian distribution with zero mean and variance
σ2
n. The source is measured at each sensor by a noisy measurementhaving an independent Additive White

Gaussian Noise (AWGN) with varianceσ2
S . Sensor node1 is malfunctioning, producing noise variance10σ2

n .
The two best nodes in terms of SNR cooperate to provide estimates of the source.

(a) Sketch the region of source locations over which node (1) will be among the two best nodes, assuming a
long sequence of measurements are made of the source.

(b) For a single measurement, approximate the likelihood that a source at position(0.25d, 0) will result in
better SNR at sensor5 than at sensor1.

12 3 4

5

6

Figure 3.1.1: A sensor network.

EXERCISE 3.2 Radio power optimization

Consider the following model describing the required energy E(A,B) to send a packet from node A to node B:
E(A,B) = d(A,B)α. Here,d(A,B) is the distance between node A and B andα is a system parameter with
α > 2. Assume that we are allowed to place a number of equidistant relay nodes between source node S and
destination node T. Here, relay nodes serve as intermediatenodes to route packets from S to T. For instance, if
S and T would use relay nodes A and B, the message would be sent from S to A, from A to B and finally from
B to T.

(a) What is the ideal number of relay nodes in order to send a message from S to T with minimum energy
consumption?

(b) How much energy would be consumed in the optimal case of the previous item?

(c) Assume now an energy model which determines the energy required to send a message from A to B as
E(A,B) = d(A,B)α + c, with c > 0. Argue why this energy model is more realistic.

(d) Prove under the modified energy model introduced in previous item that there exists an optimal numbern
of equidistant intermediate nodes between S and D that minimizes the overall energy consumption when
using these intermediate nodes in order to route a packet from S to T. [Assumen as a continuous variable
for simplicity].

(e) Derive a closed-form expression on how much energy will be consumed when using this optimal number
n of relay nodes. [Assumen as a continuous variable for simplicity].
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Figure 3.7.1: 2-state Markov chain describing to Gilbert Elliott model.

EXERCISE 3.3 Density of a Function of a Random Variable: the Rayleigh channel

Suppose thatx has a chi-square distribution with the density

f(x) =
1

2n/2Γ(n/2)
xn/2−1e−x/2U(x),

where

Γ(a+ 1) =

∫ ∞

0
xae−xdx

is the gamma function andU(x) = 1 for x ≥ 0 andU(x) = 0 otherwise. For a new random variabley =
√
x

compute its density function.

EXERCISE 3.4 Deriving the Density of a Function of a Random Variable: The step windowing

For a random variablex with density functionfx, compute the density function ofy = xU(x), where

U(x) =

{

1 x ≥ 0
0 otherwise

EXERCISE 3.5 Deriving the Density of a Function of a Random Variable: The shadow fading

A log-normal distribution is a continuous probability distribution of a random variable whose logarithm has a
Normal distribution. Ifx is a random variable with a normal distribution, theny = exp(x) has a log-normal
distribution. Forx ∼ N (µ, σ), compute the density function ofy = exp(x).

EXERCISE 3.6 Mean and Variance of Log-normal Distribution

Forx ∼ N (µ, σ), compute mean and variance ofy = exp(x).

EXERCISE 3.7 Gillbert-Elliott Model for Wireless Channels
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The Gillbert-Elliott model is a 2-state Markov chain to model the wireless channel behavior when sending
packet losses. This model consists of two channel states denoted as Good and Bad with corresponding error
probabilities. In Fig. 3.7.1 each state may introduce errors for independent events with state dependent error
rates1 − k in the good and1 − h in the bad state. In our framework, we interpret the event as the arrival of a
packet and an error as a packet loss.

(a) Based on the given error rates and transition probabilitiesp andr, formulateπG andπB to be the stationary
state probabilities of being in each state.

(b) Obtain error ratepE in stationary state.

(c) Consider the Average Error Length (AEL) and Average number of Packet Drops (APD) as two statistics of
channel. DeriveπG andπB .

EXERCISE 3.8 Gillbert-Elliott model application

We have two sensor nodes that share a wireless channel. The state of the channel follows the Gillbert-Elliott
model. Suppose that the transition probabilities in Fig. 3.7.1 arep = 10−5 andr = 10−1.

(a) Find the average length of an error burst.

(b) Obtain the average length of an error-free sequence of message transmission.

(c) Assume that the error probability in Good and Bad states is negligible and almost sure, respectively. Com-
pute the average message loss rate of the channel.
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Figure 4.1.1: Gray-coded 8-PAM.

4 Physical Layer

EXERCISE 4.1 Gray Code (Ex.6.5 in [2])

The property of the Gray code is that the code-words of adjacent symbols only differ in one bit. For example,
the code words of 8-PAM (pulse amplitude modulation) symbols are as illustrated inFigure 4.1.1. This results
in a minimum expected number of bit errors per symbol error, in conditions of low symbol error probability.
Devise a Gray code for 16-QAM (quadrature amplitude modulation) symbols.

EXERCISE 4.2 Network reconfiguration (Ex.14.7 in [2])

A rectangular grid is also used for relaying packets. For theelectronics used, it costs two times the energy of
a hop among nearest neighbors (separated by distanced) to hop diagonally across the square (e.g. node2 to
5) and eight times the energy to go a distance of 2d in one hop (e.g. node 2 to 3). In normal operation, packet
dropping rates are negligible and routes that use the least energy are chosen.

(a) Considering only energy consumption, at what packet dropping rate is it better to consider using two
diagonal hops to move around a malfunctioning node?

(b) Now suppose delay constraints are such that we can only tolerate the probability of needing three transmis-
sion attempts being less than0.01. In this case, what error rate is acceptable, assuming packing dropping
events are independent?

EXERCISE 4.3 Bit error probability for BPSK over AWGN channels

Compute the probability of error for binary phase shift keying (BPSK) with Additive white Gaussian noise
(AWGN) channel model.

EXERCISE 4.4 Bit error probability for QPSK over AWGN channels

Compute the probability of error for Quadrature phase-shift keying (QPSK) modulation with Additive white
Gaussian noise (AWGN) channel model.

EXERCISE 4.5 Error probability for4-PAM over AWGN channels

Compute the probability of error for Pulse amplitude modulation (PAM) with Additive white Gaussian noise
(AWGN) channel model.
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EXERCISE 4.6 Average error probability for Rayleigh fading

Compute the average probability of error for a Rayleigh fading channel given the error probability of AWGN
channel model.

EXERCISE 4.7 Detection in a Rayleigh fading channel

In a Rayleigh fading channel the detection of symbolx from y is based on the sign of the real sufficient statistic

r = |h|x+ z,

wherez ∼ N (0, N0/2). It means that, If the transmitted symbol isx = ±a, then, for a given value ofh, the
error probability of detectingx is

Q

(

a|h|
√

N0/2

)

= Q
(

√

2|h|2SNR
)

,

where SNR= a2/N0 is the average received signal-to-noise ratio per symbol time (note that we normalized
the channel gain such thatE[|h|2] = 1.) For Rayleigh fading when|h| has Rayleigh distribution with mean0
and variance1, calculate the average probability of error. Approximate the solution for high SNR regions.

EXERCISE 4.8 Average error probability for log-normal fading

Consider a log-normal wireless channel with AWGN receiver noise. We know that the probability of error in
AWGN is

Q(γ) = Pr{x > γ} =

∫ ∞

γ

1√
2π

e−t2/2dt

The average probability of error with respect to the log-normal distribution is the average ofQ(γ) with
respect to the log-normal distribution. It is difficult to compute becauseQ is highly non linear. Suppose to
perform a Stirling approximation of theQ function, which is

E {f(θ)} ∼ 2

3
f(µ) +

1

6
f(µ+

√
3σ) +

1

6
f(µ−

√
3σ)

wheref(θ) is any function of a random variableθ having meanµ and varianceσ2. Compute the average
probability of error of log-normal channel by using the Stirling approximation.

EXERCISE 4.9 Probability of error at the message level

In a WSN communication platform, consider a Rayleigh Channel over a AWGN receiver noise. The message
is a frame of sizef bits and is composed of the preamble, network payload, and a CRC code.

(a) Computep the probability that the message is correctly received.

(b) Assume that the received signal level at the receiver decays inversely with the squared of the distance, i.e.,

SNR≈ αEb

N0d2
.

For messages of size10 bits and the valuesEb/N0 = 100 andα = 0.1, compute the farthest distance to
deploy a receiver such that the probability of successfullymessage reception is at leastp = 0.910 ≈ 0.35.
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EXERCISE 4.10 The rate2/3 parity check code

A parity check code forms a modulo 2 sum of information bits and then appends this bit as the parity check.
Consider, e.g., a scheme in which there are two information bits and one party bit. The codewords are then
the set000, 011, 101, and101, which have even parity, while the odd-parity possibilities 001, 010, 100 and111
are excluded. There are four code-words and thus two bits of information, compared with the eight uncoded
possibilities which would take three bits to represent. Thecode rate is thus2/3. Suppose this coding scheme
is used in conjunction with binary phase shift keying (BPSK). Compute the coding gain assumingML soft
coding.

EXERCISE 4.11 Hard vs. soft decisions (Ex.6.7 in [2])

In previous exercise, if hard-decisions are used instead ofsoft-decisions, answer to the following questions:

(a) How many errors can the code detect and correct, respectively?

(b) Compute the error probability, i.e., the probability that the decoder cannot make the correct decision.

(c) Compare the error probability with that resulting from soft-decisions.
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5 Medium Access Control

EXERCISE 5.1 Slotted Aloha

In this exercise we analyze the Slotted Aloha when the numberof stationsn is not exactly known. In each time
slot each station transmits with probabilityp. The probability that the slot can be used (i.e. the probability that
exactly one station transmits) is

Pr(success) = n · p(1− p)n−1 .

If n is fixed, we can maximize the above expression and get the optimalp. Now assume that the only thing
we know aboutn is A ≤ n ≤ B, with A andB being two known constants.

(a) What is the value ofp that maximizesPr(success) for the worstn ∈ [A,B]?

(b) What is this “worst case optimal” value forp if A = 100 andB = 200?

EXERCISE 5.2 ARQ Ex.8.10 in [2]

Consider a simple ARQ scheme through a single transmission link of data rateR. The ARQ scheme works
as follows. The sender transmits a data packet across the link. Once the receiver receives the whole packet, it
checks if data have been corrupted. If there is no error, a packet is sent to the sender to acknowledge the correct
reception of the data packet. If there is an error, an ARQ is sent for a retransmission. The sender resends the
packet immediately after it receives the ARQ packet. Assumethe lengths of data and ARQ packets areL and
LARQ respectively, and the propagation delay along the link istd . Neglect the turn-around time at the sender
and the receiver. Suppose that the probability the data packet is corrupted during transmission isPe and ARQ
packets are always correctly received.

(a) Determine the average number of transmissions requiredfor a packet to be correctly received.

(b) Find the average delay a packet experiences. The delay isdefined as the time interval between the start of
the first packet transmission and the end of the correct packet reception, and note that it does not include
the transmission of the last acknowledgement packet.

EXERCISE 5.3 Analysis of CSMA based MAC in WSNs

In this exercise we evaluate the performance of slotted CSMAprotocol with fixed contention window size.
Such mechanism is supported by protocols such as IEEE 802.15.4 in non-beacon enabled mode.

Assume a network ofN sensors with a single channel and all the nodes are in the communication range of
each other. The nodes use slotted CSMA scheme with fixed contention sizeM . Nodes sense the channel and
if the channel is free they enter to the contention round. In contention round each node draws a random slot
number in[1,M ] using uniform distribution and sets its counter with this integer number. In successive slots
timestslot each contender counts down until when its counter expires then it senses the channel and if there is
no transmission in the channel it will send the packet immediately at beginning of the next slot. Assumetd is
the required time to transmit the data packet.tslot is determined by physical layer parameters like propagation
time of the packet (it also called vulnerable time) which is defined by the distance between the nodes. In this
exercisetdata depends on data length is assumed to be much larger thantslot. Each contention round will finish
by a packet transmission that might be either successful or collided. Collision happens if at least two nodes
draw the same minimum slot number, otherwise the transmission would be successful.
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(a) DefinePs as the probability of having a successful transmission after a contention round withM maximum
window size andN contenders. Also denoteps(m) as the probability of success at slotm. Findps(m) and
Ps.

(b) Similarly denotePc as the probability of collision after contention round andpc(m) as the probability of
collision at slotm. Propose an analytical model to calculatePc andpc(m). Note that based on our system
model, a collision happens at slotm, if at least two sensors pick the same slotm to transmit given that
nobody has selected a smaller slot.

EXERCISE 5.4 MAC optimization for distributed estimation

ConsiderN nodes randomly deployed in a field. A node periodically checks with periodS if there is an event
of interest. Whenever nodek detects such an eventxk, it starts broadcasting a monitoring messagemk(xk),
which is called “state vector”, to a fusion center. Nodes uses the slotted Alhoa medium access control protocol
and transmit over the same wireless channel. In particular,each node transmitsmk(xk) in a randomly chosen
time slot within the range[1, S] units whereS is the total number of slots per second. The node transmits a
message within the slot boundaries following any slot. Hence, each node starts transmission with probability

τ =
z

S
, 0 < τ < 1 ,

wherez is the rate of state vector transmissions per second. The probability that a node does not start trans-
mission is1 − τ . Collision at the fusion center happens when two nodes simultaneously transmit in a time
slot.

The state vector transmission interval isTu = 1/z. Each node wants to minimize the state vector transmis-
sion interval so to have often and more reliable informationabout the event of interest. However, this increases
the collision probability.

(a) Pose an optimization problem which copes with such a tradeoff and argue if it is a convex one.

(b) Calculate the optimal rate of state vector transmissions per second that minimizesTu.

EXERCISE 5.5 Broadcast

Three students discuss the broadcasting problem with collision detection in graphs of constant diameter. Student
A claims that there is a deterministic protocol that allows to broadcast messages of lengthl in timeO(l). He
says that it is possible since all nodes act synchronously and can detect collisions, which allows to transmit
information one bit per round (slot) using the collision detection mechanism, i.e. detecting a transmission or
collision in a slot means bit1, detecting a free channel means0. Student B says that this is not possible because
he can prove the existence of a lower bound ofΩ(log n) for deterministic algorithms, which can be much larger
than the length of a messagel in general. He says that this can be done in the same way as for the lower bound
of n for the deterministic broadcast without collision detection for graphs of diameter2, i.e. using golden and
blue nodes in the middle layer. Student C claims that A’s ideaworks in principle but all nodes need to know the
lengthl of the message. Who is right?

(a) If you believe A is right, give an algorithm that performsthe broadcast.

(b) If you believe B is right, give a proof.

(c) If you believe C is right, describe an algorithm given that all nodes know the message lengthl and explain
why the message lengthl is needed.
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EXERCISE 5.6 M/M/1 queues (Ex.8.9 in [2])

Consider the infinite lengthM/M/1 queue.

(a) Given that the probability ofn customers in the queue isp(n) = (1− ρ)ρn, whereρ = λ/µ , show that the
average number of customers in the queue is

N = E (n) =

∞
∑

n=0

np(n) =
ρ

1− ρ

.

(b) PlotN as a function ofρ when0 ≤ ρ < 1 . What happens whenρ ≥ 1 ?

(c) Find the average delay that customers experience and theaverage waiting time that customers spend in
queue. (Hint: use Little’s theorem.)
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6 Routing

EXERCISE 6.1 Shortest path routing: Bellman-Ford algorithm (Ex.8.4 in [2])

The network topology of Figure 6.1.1 is used to illustrate the Bellman-Ford algorithm for finding the shortest
route to a node. In the figure, the number beside a node serves as the label for the node, and the number near
an arc indicates the length of the arc. For instance, the arc connecting nodes 1 and 2 has length 1. Definedij to
be the length of the direct arc connecting nodesi andj . If there is no direct arc connecting the two nodes, we
setdij = ∞ . By doing this,dij has meaning for any pair of nodesi andj in the network.

1 1

3

2 5

6

4

1

5 4 3

1

1

10

 

Figure 6.1.1: A simple network.

Consider node 1 as the destination node. The shortest path from nodei to node 1 that traverses at most
h arcs and goes through node 1 only once is called a shortest (≤ h ) walk, and its length is denoted byDh

i .
Note there are two special cases. If all paths between nodei and 1 consist of more thenh arcs,Dh

i = ∞. By
convention,Dh

1 = 0 for anyh.

(a) DetermineD0
i for i = 1, 2, . . . , 6. Finddij for all possiblei, j = 1, 2, . . . , 6.

(b) The following iteration is used to generate the subsequent shortest walks:

Dh+1
i = min

j
[dij +Dh

j ] for alli 6= 1

DetermineD1
i for i 6= 1.

(c) Use the iteration equation in (b) to computeD2
i , D3

i ,. . . for i 6= 1. Stop the iteration whenDh+1
i = Dh

i ,
for all i 6= 1 . The minimum distance from nodei to node 1 isDh

i in the last iteration.

EXERCISE 6.2 Shortest path routing: Dijkstra algorithm (Ex.8.5 in [2])

We will use Figure 6.1.1 to illustrate the Dijkstra algorithm for finding the shortest route to a destination node.
The length of the direct arc connecting nodesi andj is defined to bedij . For a detailed description of the figure
and the definition ofdij , refer to previous exercise. Denote byP the set of nodes whose shortest path to the
destination node is known, and denote byDj the current shortest distance from nodej to the destination node.
Note that only when nodej belongs to the setP can we sayDj is the true shortest distance. Choose node1 as
the destination node. Initially, setP = {1} , D1 = 0, andDj = ∞ for j 6= 1.

(a) UpdateDj for j 6= 1 using the following equation

Dj = min[Dj , dj1] .
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(b) Findi such that

Di = min
j /∈P

[Dj ]

updateP := P ∪ {i}.

(c) UpdateDj for j /∈ P by the following equation

Dj := min[Dj ,Di + dji]

in which i is thei obtained in (b).

(d) Go back and compute steps (b) and (c) recursively untilP contains all the nodes in the network. The
resultingDj is the shortest distance from nodej to node1.

EXERCISE 6.3 Shortest path routing in WSNs
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Figure 6.3.1: A sample WSN topology. Node 1 is the sink and link qualities (PRR) are depicted on each arc

One way of building routing tree in WSNs is based on ETX. ETX stands for expected number of transmissions.
The Idea is to make a minimum spanning tree (MST) minimizing the expected number of transmissions for
each node. This is done based on MAC layer functionalities (e.g., PRR). With PRR for each link between
(i, j) nodes have a good estimate of packet reception rate from other party and hence can measure the temporal
reliability of the link. Note that PRR is directional and therate of packet reception for links(i, j) and(j, i) can
be different. Having the values of PRR of direct neighbors available at each node, in a recursive fashion nodes
can build a routing tree that minimizes the expected number of transmissions to the sink.

(a) Develop a sketch of the algorithm and the required equations to build the routing tree based on ETX metric.

(b) Consider Figure 6.3.1 and assume the PRR is bidirectional (links are undirected) where the values of the
PRR are given on the arcs. Find the MST based on ETX metric.

EXERCISE 6.4 Anycast routing over WSNs
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Figure 6.3.1:Initial graph with link probabilities annotated. Each neighbor i of nodes provides its ETX[i] to
s.

In WSNs, the expected number of transmissions of a node (ETX)is a routing metric, namely a metric used by
a node to take the decision over which path the node routes packets. Denote by ETX[s] the expected number of
transmissions required for nodes to send a packet to the destinationD. LetNs, Ps andpi be the neighbors set
of s, parent set ofs and probability of successful transmission from nodes to neighboring nodei, respectively.
Given ETX[i] andpi for all i ∈ Ns, ETX ats is defined as

ETX[s] = min
i∈Ns

{

ETX[i] +
1

pi

}

and the parent set ofs is defined asPs = {i} ,wherei is the neighbor that minimizes ETX[s] above. Note that
thePs has one component.

Now we want to extend this scheme to consider multiple parents. Figure 5.6.1 illustrates such network. The
routing scenario is as follows. Nodes looks at its parents setPs = {1 . . . n} as an ordered set. It broadcasts a
packet to all the parents and waits for an acknowledgement (ack) packet. If parent1 receives the packet (with
probability p1) then node1 will forward the packet toD (with cost ETX[1]). Now if node1 fails to receive
the packet and node2 receives it, then node2 will forward it. So within this scheme nodei is allowed to
forward a packet if 1) it successfully receives the packet from s with probabilitypi and 2) if all the nodes with
higher priority1, . . . , i− 1 fail to get the packet. Assume that an efficient message passing scheme handles this
structure.

(a) Calculate the new ETX metric fors and a given ordered set of parentsPs = {1 . . . n}. [hint: first you can
calculate the probability that a packet froms is received by at least one of the parents. Then, conditioned
on that you are in one of the parents (the first hop transmission is successful), calculate the average ETX
from one of the parents to the destination.]

(b) In Figure 5.6.1, assume thats has3 neighbors with success probabilities(p1, p2, p3) = (1/2, 1/3, 1) and
ETX of (2, 2, 4), respectively. Calculate the ETX[s] for two cases: with single parent and three parents
with priority order (1, 2, 3).

(c) For the second case of the previous point, find the optimalparent set (note that there are23 − 1 possible
parent sets) that minimizes ETX[s].

EXERCISE 6.5 Spanning tree (Ex.8.7 in [2])

Find all possible spanning trees for the two graphs in Figure6.4.1 subject to the constraint that node 1 must be
the root. Determine the number of nodes N and arcs A in each of these spanning trees. Can you see a relation
between N and A?
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Figure 6.4.1: Spanning tree.

EXERCISE 6.6 Directed diffusion (Ex.8.8 in [2])

Consider the situation in Figure 6.6.1. The solid lines represent transmission links between nodes, and dashed
lines indicate boundaries of tiers. Here node A wants to transmit to node D. Suppose the transmission takes the
branches within the same tier with one third of the probability of branches in the next tier, and the packets do
not back-track. Determine the likelihood of packets flowingthrough node B and C to reach D.

A

C

B

D

 

Figure 6.6.1: Directed diffusion.
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7 Detection

EXERCISE 7.1 Binary choice in Gaussian noise

A signal voltagez can be zero (hypothesisH0) or k (hypothesisH1), each hypothesis with a probability1/2,
The voltage measurement is perturbed by additive white Gaussian noise (AWGN) of varianceσ2. Compute the
decision threshold for MAP criterion, and the error probabilities Pr(D1|H0) andPr(D0|H1), whereD1 means
thatH1 was decided, andD0 meansH0 was decided.

EXERCISE 7.2 Binary hypothesis test and SNR (Ex.5.2 in [2])

Consider the binary choice in Gaussian noise, as shown in previous exercise with the threshold ofk/2, the SNR
is also maximized at the decision point. Since the possible signal values are known, the maximization of SNR
means that the hypothesized noise powerE[n2(t)] is minimized when the decision boundaries are optimally
chosen. Prove that SNR is maximized when the threshold isk/2.

EXERCISE 7.3 MAP and the LRT (Ex.5.4 in [2])

Show that the MAP decision rule is equivalent to the likelihood ratio test.

EXERCISE 7.4 Binary decisions with unequal a priori probabilities( Ex.5.5 in [2])

For the binary choice in Gaussian noise in Exercise 1, compute the threshold when the probabilities ofH0 and
H1 are 1/3 and 2/3 respectively.

EXERCISE 7.5 Detection of known mean in Gaussian noise (Example D.1 in [6])

The simplest possible problem is to decide whether there is aknown meanA in an observed signal or not:

H0 : yk = ek ,

H1 : yk = sk + ek .

Suppose to detect a general known signalsk observed with Gaussian noise asyk = sk + ek. Using a matched
filter defined as

ȳ =
1

N

N−1
∑

k=0

yksk = A+ ē ,

show that

A =
1

N

N−1
∑

k=0

s2k

andē ∼ N (0, σ2/N). Here we assume that
∑

sk = 1.

EXERCISE 7.6 Fault detection
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Suppose to detect a signalsk observed with Gaussian noise asyk = sk + ek, whereek ∼ N (0, σ2). Assume
there exist fault alarms for the signal, that is, the alarms occur when the measurement of signal beyond the
interval [−3σ, 3σ]. Here assume thatsk equals 0 withp0 = 0.9, andt = 3σ as fault withpt = 0.1. Find the
probability of the correct fault alarms.

EXERCISE 7.7 Optimal Data Fusion in Multiple Sensor Detection Systems [7]

Let consider a binary hypothesis problem with the followingtwo hypotheses:H0 signal is absent,H1 signal is
present. The priori probabilities of the two hypotheses aredenoted byPr(H0) = P0 andPr(H1) = P1. Assume
that there aren detectors and the observations at each detector are denotedby yi, i = 1, . . . , n. Furthermore,
assume that the observations are statistically independent and that the conditional probability density function
is denoted byp(yi|Hj), i = 1, . . . , n, while j = 1, 2. Each detector employs a decision rulegi(yi) to make a
decisionui, i = 1, . . . , n, where

ui =

{

−1 if H0 is declared
+1 if H1 is declared

We denote the probabilities of the false alarm and miss of each detector byPFi andPMi respectively. After pro-
cessing the observations locally, the decisionsui are transmitted to the data fusion center. The data fusion center
determines the overall decision for the systemu based on the individual decisions, i.e.,u = f(u1, . . . , un).

1. Show that

log
Pr(H1|u)
Pr(H0|u)

= log
P1

P0
+
∑

S+

log
1− PMi

PFi

+
∑

S−

log
PMi

1− PFi

,

whereS+ is the set of alli such thatui = +1 andS− is the set of alli such thatui = −1.

2. Find the optimum data fusion rule using likelihood ratio.

EXERCISE 7.8 Counting Rule [8]

Consider the same situation in Exercise 7. An alternative scheme would be that the fusion center counting the
number of detections made by local sensors and then comparing it with a thresholdT :

Λ =
∑

S+

ui
H1

≷
H0

T ,

which is called “counting rule”. Now assume that each sensorhas the samePFi = Pf andPMi = Pm, find the
probability of false alarmPF and detectionPD at the fusion center level.

EXERCISE 7.9 Matched filter and SNR (Ex.5.12 in [2])

Prove the matched filter maximizes the output SNR and computethe maximum output SNR as a function of
the energy of the signals(t) andN0.

EXERCISE 7.10 Binary hypothesis testing and mutual information (Ex.5.3 in [2])

Consider the binary choice in Gaussian noise, as shown in Exercise 1. Whenk = 1 and the variance of the
Gaussian distribution is1, show numerically that the mutual information is maximizedwhenγ = 0.5.
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8 Estimation

EXERCISE 8.1

Given a vector of random variablesY that is related to another vector of random variablesX, describe briefly
what is the best linear estimator of X if one observes an outcome ofY .

EXERCISE 8.2 MMSE estimator

In many situations, one has to estimatex from some noisy measurementsy that are a linear function ofx plus
some noise. LetX be a vector of random variables having zero mean. Suppose that Y is a vector of random
variables related toX such that ifx is an outcome ofX, then an outcome ofY is y = Hx+ v, whereH is a
constant matrix andv is a zero mean Gaussian noise having covarianceRv, with v independent ofX. Then,
the MMSE estimate ofX is given thatY = y is

P−1x̂ = HR−1
v y

with error covariance
P−1 = R−1

X +HTR−1
v H .

Now, consider a network ofn sensors. LetX be a random variables observed by each sensor by the noisy
measurementyi = Hix + vi andi = 1, . . . , n, where all the noises are uncorrelated with each other and with
X. Let the estimate based on all the measurement bex̂ and letx̂i the estimate based on only the measurement
yi. Then,

P−1x̂ =

n
∑

i=1

P−1
i x̂i

whereP is the estimate error covariance corresponding tox̂ andPi is the estimate error covariance correspond-
ing to x̂i, with

P−1 =
n
∑

i=1

P−1
i − (n− 1)R−1

X .

The above estimators, by the assumption thatHi is the i-th row of the matrixH, give the same estimate. Assume
thatRX andRv are diagonal matrixes. Motivate wether the first estimator requires more computations than the
second estimator and suggest which one is best for a sensor network.

EXERCISE 8.3 Mean square (MS) estimation (Ex.5.21 in [2])

Let X be a real-valued RV with a pdf offX(x) . Find an estimatêx such that the mean square error ofx by x̂
is minimized when no observation is available.

EXERCISE 8.4 Distributed MMSE estimator

We would like to estimate a vector of unknown constant parametersx ∈ R
m using a network ofn distributed

sensors. Each sensor makes a noisy measurement

yi = Hix+ vi i = 1, . . . , n.

WhereHi is an known matrix relating the unknown parameter to the measurement,vi is a Gaussian noise with
zero average and covariance matrixRvi . Moreovervi’s are assumed statistically independent noises. In vector
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notation one can formulatey = Hx + v, wherey, H andv aren × 1 vectors ofyi, Hi andvi. Show that the
maximum likelihood (or MMSE) estimate ofx giveny is

x̂ =

(

n
∑

i=1

HT
i R

−1
vi Hi

)−1 n
∑

i=1

HT
i R

−1
vi yi .

EXERCISE 8.5 Cramér-Rao bound (Ex.5.27 in [2])

Let X be the sample mean fromn independent Gaussian random variablesX1,X2, . . . ,Xn with Gaussian
distributionN(θ, σ2) . Assumeσ2 is known. First, derive the Cramér-Rao bound. Then, show that X is the
most efficient unbiased estimate forθ (i.e. it attains the right-hand-side of the Cramér-Rao bound.)

EXERCISE 8.6 ML estimates of mean and variance of Gaussian random variables (Ex.5.28 in [2])

Considern independent random samples from a Gaussian distributionN(µ, σ2) . Let θ = (µ, σ) , that is
θ1 = µ andθ2 = σ. Find the Maximum-Likelihood (ML) estimates ofµ andσ.

EXERCISE 8.7 Distributed detection/estimation

A set ofN nodes is randomly deployed on a field. Every node makes observations on an unknown parameter
θ ∈ [−1, 1]. The observations are corrupted by an additive noise

xk = θ + vk, k = 1, 2, . . . , N ,

wherevk is the noise, which is modeled as a random variable. These random variables are assumed to be
independent and identically distributed and with zero mean. In particular, they are uniformly distributed over
[−1, 1], with a probability distribution function (pdf)

p(v) =
1

2
, if v ∈ [−1, 1] .

To get an accurate estimate of the parameterθ, each node reports its observations to a fusion centre. However,
due to message losses and medium access control protocol, each node is allowed to transmit a message com-
posed only by one bit. In other words, each node reports a messagemk(xk) ∈ {0, 1} to the fusion center. The
bit of the message is chosen as

mk(xk) =

{

1, if xk ≥ 0
0, if xk < 0 .

(a) Find the expectationE(mk) and variance of the one-bit messageE(mk −E(mk))
2 for nodek.

(b) Prove thatE(mk −E(mk))
2 is bounded above. Find the upper bound.

(c) Suppose that the fusion center uses a final fusion function f and estimator̂θ to decide upon the parameter
given by

θ̂ := f(m1, . . . ,mN ) =
2

N

N
∑

k=1

mk − 1 .

FindE(θ̂) andE(θ̂ − θ)2.
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Figure 8.8.1: A grid of sensor nodes.

(d) Suppose we want the variance of estimateθ̂ less thanǫ. What is the minimum number of nodesN to
deploy so that such a variance bound is satisfied?

EXERCISE 8.8 Distributed detection, MAC, and routing

Sensor nodes are laid out on a square grid of spacingd, as depicted in Figure 8.8.1. Ever sensor wants to detect
a common source.

(a) Suppose that the source signal has a Gaussian distribution with zero mean and with varianceσ2
S. More-

over, every sensor measures such a signal with an additive Gaussian noise of zero average and variance
σ2
n. If the measured signal is positive, the sensor decides for hypothesisH0, otherwise the sensor decides

for hypothesisH1. Based on the measured signal, characterize the probability of false alarm and the
probability of miss detection per every sensor.

(b) Now, suppose that the source signal is constant and has a powerS. Such a signal power is received at
every sensor with an attenuation given byr2i , whereri is the distance between the source and sensori.
Sensor node1 is malfunctioning, producing noise variance10σ2

n . The two best nodes in terms of SNR
will cooperate to provide estimates of the source. Characterize the region of source locations over which
node (1) will be among the two best nodes.

(c) The grid depicted in Figure 8.8.1 is also used for relaying. Assume it costs two times the energy of a hop
among nearest neighbors (separated by distanced) to hop diagonally across the square (e.g. node2 to 5)
and eight times the energy to go a distance of 2d in one hop (e.g. node 2 to 3). Letp be the packet loss
probability. Characterizep for which it is better to consider using two diagonal hops to move around the
malfunctioning node.

(d) Under the same assumption of the previous item, suppose that there is an ARQ protocol, but the delay
constraints are such that we can only tolerate three retransmission attempts. Let0.99 be the probability
of having up to three retransmissions. Assuming packing dropping events are independent, characterize
the constraint that probability of packet losses per transmission should satifsy.

EXERCISE 8.9 Unknown mean in Gaussian noise (Example C.1 in [6])
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Consider an unknown mean in Gaussian noise,

yk = θ + ek, ek ∈ N (0, σ2) .

Find the mean and variance of the sample average. Show that the sample average is the minimum variance
estimator.

Hint: use the CRLB.

EXERCISE 8.10 Moments method (Example C.9 and C.10 in [6] )

The method of moments is general not efficient and thus inferior to the ML method. However, in many cases
it is easier to derive and implement. For Gaussian mixtures,the MLE does not lead to analytical solutions so
numerical algorithms have to applied directly to the definitions, where whole data vector has to be used. Using
the method of moments, closed expressions can be derived as functions of reduced data statics.

The key idea is to estimate the firstp moments of data, and match these to the analytical moments ofthe
parametric distributionp(y|θ):

µi =E[yik] = gi(θ) , i = 1, 2, . . . , p

µ̂i =
1

N

N
∑

k=1

yik , i = 1, 2, . . . , p

µ =g(θ) ,

θ̂ =g−1(µ̂) .

Now consider a Gaussian mixture

p(y|θ) = αN (y; 0, σ2
1) + (1− α)N (y; 0, σ2

2),

where
θ = (α, σ2

1 , σ
2
2)

T .

Assume that thoseσ are known. Using the method of moments, find the estimation ofα. If the variances are
unknown, find the estimation ofθ.
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9 Positioning and Localization

EXERCISE 9.1 Timing Offset and GPS (Ex.9.1 in [2])

GPS uses a constellation of 24 satellites and their ground stations as reference points to calculate positions
accurate to a matter of meters. Suppose we find our distance measurements from three satellites to be 18 000,
19 000, and 20 000 km respectively. Collectively this placesthe location at either of the two points where the
20 000 km sphere cuts through the circle that is the intersection of the 18 000 and 19 000 km spheres. Thus
by ranging from three satellites we can narrow our position to just two points in space. To decide which one
is our true location we could make a fourth measurement. However, usually one of the two points is a non-
possible answer (either too far from Earth or moving at an impossible velocity) and can be rejected without a
measurement. Now apply the above principle of location in a two-dimensional space. Assume that pointsA,
B, andC are reference points with known locations, respectively at(x1, y1), (x2, y2), and(x3, y3), and that
the unknown position is3.0 meters from pointA, 4.0 meters from pointB, and5.0 meters from pointC

(a) Suppose that accurate measurements are available. Thenthe three measurements can be used to uniquely
determine the position. Let(x1, y1) = (0, 3.0), (x2, y2) = (4.0, 0), (x3, y3) = (4.0, 3.0). Find the
position.

(b) Now assume that all measurements include a single timingoffset that corresponds to an error of0.5 m. In
other words, the position is observed to be3.5 m from pointA, 4.5 m from pointB, and5.5 m from point
C. Develop a generic procedure to find the true position.

EXERCISE 9.2 Linearizing GPS Equations (Ex.9.2 in [2])

In order to find position using the GPS system, we need to know the location of at least three satellites and
the distance to each of those satellites. Assume that the three satellites are located respectively at(x1, y1, z1),
(x2, y2, z2), and(x3, y3, z3), and that the distance between us and the three satellites are respectivelyd1, d2, d3.
The following nonlinear system of equations needs to be solved,

(x− x1)
2 + (y − y1)

2 + (z − z1)
2 = d21

(x− x2)
2 + (y − y2)

2 + (z − z2)
2 = d22

(x− x3)
2 + (y − y3)

2 + (z − z3)
2 = d23

(9.2)

Obviously linearization is desirable in this case. Assume that the reference point is(0, 0, 0). Prove that the
resulting system after linearizing (9.2) is

2





x1 y1 z1
x2 y2 z2
x3 y3 y3









x
y
z



 =





x21 + y21 + z21 − d21
x22 + y22 + z22 − d22
x23 + y23 + z23 − d23





EXERCISE 9.3 Averaging to reduce error in TOA (Ex.9.3 in [2])

TOA is based upon the measurement of the arrival time of a signal transmitted from the to-be-located object to
several reference nodes. For radio signals, the distance isct, wherec is the velocity of light andt is time of
travel from the object to the reference node. This measurement thus indicates the object is on a circle of radius
ct, centered at the reference node. There is always a need for atleast three reference nodes to determine the
location of the object correctly. The disadvantage of this technique is that processing delays and non-line-of-
sight propagation can cause error, resulting in mistakes inthe TOA estimation. Assume that t is a Gaussian
distributed RV with mean at the real time of arrivalt and a varianceδt.
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(a) Find the mean and variance of the resulting range of the object.

(b) Now assume that independent multiple measurements of range are available. That is,t(n), n = 1, 2, 3, ..,
is the measured time of arrival from the reference node to theto-be-located object, at time instantn. Show
that multiple measurements help to reduce the error in the resulting range of the object.

EXERCISE 9.4 Weighted centroid computation (Ex.9.9 in [2])

Three beacons are located ata = (1, 1), b = (1,−1), andc = (−1, 1). The received powers from nodesa,
b, andc are1.2, 1.5, and1.7 respectively. Calculate the unknown position of the receiver through a weighted
centroid computation.

EXERCISE 9.5 Collaborative multilateration

Consider Figure 9.5.1, suppose nodeU can estimate ranges only for nodesA, C, andV , and nodeV can
estimate ranges only for nodesB, D, andU , where the unknown locations areU andV . One can begin with an
initial guess at the position ofU from either the centroids of the known positions in immediate range, or via the
topology. Then multilateration is performed using the locations of all neighbors (estimated or known) to refine
the positions, in a sequence that proceeds until locations stabilize. Compute the first estimate of the positions
of U(u0) andV (n0) as the centroids of the nodes they can hear that have known position. Then iteratively
calculate by multilateration the positions in the orderu1, n1 assuming perfect range measurements.

A=(1,1)

B=(1,-1)

C=(-1,1)

D=(-1,-1)

U=(.5,.5)

V=(-.5,-.5)

Figure 9.5.1: Four node multilateration.

EXERCISE 9.6 Linearization of angle of arrival (AOA) location determination (Ex.9.11 in [2])

The intersection of the angles from two or more sites may be used to provide an unknown location in the plane.
For this triangulation problem, denote the position of the two known nodes asri = [ xi yi ]T , i = 1, 2, and
the unknown node’s position asr = [ x y ]T . The bearing angles can be expressed as

θi = fi(r, ri) + ni, i = 1, 2, (9.6)

whereni is the angle measurement error, and the functionfi() is defined as

fi(r, ri) = arctan

(

x− xi
y − yi

)

, i = 1, 2. (9.6)
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After collecting angle measurements from known nodes, the unknown node’s position can be found by solving
the nonlinear system of equations

θ1 = arctan
(

x−x1
y−y1

)

+ n1

θ2 = arctan
(

x−x2
y−y2

)

+ n2

(9.6)

This triangulation problem can alternatively be solved by linearizing thefi() function by expanding it in a
Taylor series around a reference point, denoted byr0. Once the equation system is linearized, the ML estimator
is used to provide the following unknown node position estimate

r̂ = r0 +
(

GTN−1G
)−1

GTN−1

[

θ1 − f1(r0)
θ2 − f2(r0)

]

= r0 +G−1

[

θ1 − f1(r0)
θ2 − f2(r0)

]

. (9.6)

Matrix N = E[nn′] is the measurement error covariance matrix, and matrixG is the matrix of the resulting
equation system after linearizing (9.6). MatrixG is equal to

G =

[

(y0 − y1)/d
2
01 −(x0 − x1)/d

2
01

(y0 − y2)/d
2
02 −(x0 − x2)/d

2
02

]

,

where angleθ0i = fi(r0), i = 1, 2, andd0i is the distance between thei th node andr0. Givenr0 = [ 0 0 ]T ,
r1 = [ −3 4 ]T , r2 = [ 4 3 ]T , θ1 = 45◦, θ2 = 135◦, and

N =

[

1 0
0 0.9

]

.

Use equation (9.6) to find the unknown node’s position. Comment on the accuracy of the results.
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10 Time Synchronization

EXERCISE 10.1 TOA with low-cost clocks (Ex.9.4 in [2])

In order to make accurate range measurements in a GPS system,the receiver and satellite both need clocks that
can be synchronized down to the nanosecond, which potentially could require atomic clocks not only on all the
satellites, but also in the receivers. However, atomic clocks are far too expensive for everyday consumer use.
GPS sidesteps this problem by measuring the distance to fourinstead of the minimum three located satellites.
Every satellite contains an expensive atomic clock, but thereceiver uses an ordinary quartz clock, which it
constantly resets. With four range measurements, the receiver can easily calculate the necessary adjustment
that will cause the four spheres to intersect at one point. Based on this, it resets its clock to be in sync with
the satellite’s atomic clock, thus providing time as well aslocation. Explain mathematically how this fourth
measurement provides these benefits.

EXERCISE 10.2 Time difference of arrival (TDOA) in a two-dimensional space (Ex.9.5 in [2])

TOA requires that all the reference nodes and the receiver have precise synchronized clocks and the transmitted
signals be labeled with time stamps. TDOA measurements remove the requirement of an accurate clock at
the receiver. Assume that five reference nodes have known positions (0, 0), (−1,−1), (0, 1), (3, 1), and(1, 4)
respectively. We choose(0, 0) as the reference sensor for differential time-delays whichare defined as

t1r = t1 − tr =
rs1 − rs2

v
,

wherev is the velocity of propagation,rsi is the distance between the unknown node and theith node. Further
assume thatt12 = −1.4s, t13 = 0.4s, t14 = −1.6s, andt15 = −2.6s.

(a) Find the unknown location(xt, yt).

(b) Now assume that the propagation speed is known as 1.8 m/s.Find the unknown location(xt, yt).

EXERCISE 10.3 TDOA in a three-dimensional space (Ex.9.6 in [2])

Now assume that five reference nodes are known at(0, 3, 0), (6, 0, 0), (3, 4, 0), (−4,−3, 0), and(0, 0,−8)
respectively. Also,t12 = 0s, t13 = 1s, t14 = 0.7s, t15 = 0.7s, andt16 = 1.7s. The velocity of propagation is
v.

(a) Find the unknown location(xt, yt, zt) using (9.10) from lecture notes.

(b) Now assume that the propagation speed is known to be 8.7 m/s. Find the unknown location(xt, yt, zt)
using (9.12) from lecture notes.

EXERCISE 10.4 Ex.9.3 in [3]

Consider two nodes, where the current time at node A is1100 and the current time at node B is1000. Node A’s
clock progresses by1.01 time units once every1 s and node B’s clock progresses by0.99 time units once every
1 s. Explain the terms clock offset, clock rate, and clock skewusing this concrete example. Are these clocks
fast or slow and why?
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EXERCISE 10.5 Ex.9.4 in [3]

Assume that two nodes have a maximum drift rate from the real time of100 ppm each. Your goal is to synchro-
nize their clocks such that their relative offset does not exceed1 s. What is the necessary re-synchronization
interval?

EXERCISE 10.6 Ex.9.6 in [3]

A network of five nodes is synchronized to an external reference time with maximum errors of1, 3, 4, 1, and2
time units, respectively. What is the maximum precision that can be obtained in this network?

EXERCISE 10.7 Ex.9.7 in [3]

Node A sends a synchronization request to node B at3150 (on node A’s clock). At3250, node A receives the
reply from node B with a times-tamp of3120.

(a) What is node A’s clock offset with respect to the time at node B (you can ignore any processing delays at
either node)?

(b) Is node A’s clock going too slow or too fast?

(c) How should node A adjust the clock?

EXERCISE 10.8 Ex.9.8 in [3]

Node A issues a synchronization request simultaneously to nodes B, C, and D(Figure 10.8.1). Assume that
nodes B, C, and D are all perfectly synchronized to each other. Explain why the offsets between node A and
the three other nodes may still differ?

Node B
2(B)

1t

t2(D)

t4(D)t4(C)t4(B)

t3(C)t2(C)

t3(B)

t3(D)

Node A

Node C

Node D

t

Figure 10.8.1: Pairwise synchronization with multiple neighboring nodes.
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11 Networked Control Systems

EXERCISE 11.1 Matrix Exponential

LetA be ann×n real or complex matrix. The exponential ofA, denoted byeA or exp(A), is then×n matrix.
FindeA using two different way, where

A =

[

0 1
0 0

]

.

EXERCISE 11.2 Stability

Given a bi-dimensional state space system
Xt+1 = ΦXt ,

1. show how to compute the eigenvalues ofΦ.

2. make some comments on the relationship between the eigenvalues ofΦ and the stability.

EXERCISE 11.3 Modeling

Model the dynamics of a coordinated turn (circle movement) using Cartesian and polar velocity. Here we
assume that the turn rateω is piecewise constant.

EXERCISE 11.4 Linearized Discretization

In some cases, of which tracking with constant turn rate is one example, the state space model can be discretized
exactly by solving sampling formula

x(t+ T ) = x(t) +

∫ t+T

t
a(x(τ))dτ ,

analytically. The solution can be written as

x(t+ T ) = f(x(t)) .

Using this method, discretize the models in Ex:11.3.

EXERCISE 11.5 Modeling of the Temperature Control

Assume that in winter, you’d like to keep the temperature in the room warm automatically by controlling a
house heating system. LetTi, To andTr denote the temperature inside, outside and radiator. Thus the process
model can be simplified as

Ṫi =α1(Tr − Ti) + α2(To − Ti)

Ṫr =α3(u− Tr) .

1. Model the dynamics in standard state space form. Here assume that the outside temperature is aroud
zero,To = 0.
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2. Assume that the sampling time is h, model the continuous state space form to the discrete time standard
form.

EXERCISE 11.6 PID Controller

One heuristic tuning method for PID controller is formally known as the Ziegler-Nichols method. In this
method, theKi andKd gains are first set to zero. TheKp gain is increased until it reaches the ultimate gain,G,
at which the output of the loop starts to oscillate.G and the oscillation periodTG are used to set the gains, let
Kp = 0.60G, Ki = 2Kp/TG andKd = KpTG/8. Now consider the system in Ex: 11.3 and the step response
plot shown in Fig. 11.6.1. FindTG, then design the PID controller for the system in continuousspace using
Ziegler-Nichols method. Here assume thatG = 10.

0 2 4 6 8 10 12 14 16 18
0
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Figure 11.6.1: The step response for PID controller withKp = 12.

EXERCISE 11.7 Stability of Networked Control Systems with Network-induced Delay.

ZO H

A ctuator

h

sensor

C ontro l 

N etwork

C ontinuous 

T im e P lant

D iscre te  T im e

C ontro lle r

C ontro l 

N etwork

Figure 11.7.1: Networked Control System with communication delay.

Consider the Networked Control Systems (NCS) in Figure 11.7.1. The system consists of a continuous plant

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

,
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and a discrete controller
u(kh) = −Kx(kh), k = 0, 1, 2, . . . ,

whereA ∈ R, B ∈ R, C ∈ R.
LetA = 0, B = I. Illustrate the stability properties of the system as function of the network delaysτsc and

τca under the assumptions thatτsc + τca ≤ h and thath = 1/K.

EXERCISE 11.8 Control with time-varying delay

A process with transfer function

P (z) =
z

z − 0.5

is controlled by the PI-controller

C(z) = Kp +Ki
z

z − 1

whereKp = 0.2 andKi = 0.1. The control is performed over a wireless sensor network, asshown in
Figure 11.10.1. Due to retransmission of dropped packets, the network induces time-varying delays. How large
can the maximum delay be, so that the closed loop system is stable?

ZOH G(s) 

Sample 

P(z)

WSN 

C(z) 

Figure 11.8.1: Closed loop system for Problem 11.2.

EXERCISE 11.9 Stability of Networked Control Systems with Packet Losses.

Consider the Networked Control System in Figure 11.9.1. It is assumed that the network is present only from
the plant to the controller. The state space plant model is

[

ẋ1
ẋ2

]

=

[

1 1
0 −1

] [

x1
x2

]

+

[

0
0.1

]

u

y =
[

1 0
]

[

x1
x2

]

.
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Figure 11.9.1: Networked Control System with packet losses.

The feedback controller isu(kh) = −Kx(kh), whereK = [20, 9].
Suppose that packets sent over the network are received at rate r = 1 − p, wherep is the packet loss rate,

and that the system is sampled at rateh = 0.3s. What is the lower bound on reception rater that still guarantee
the stability of the system?

EXERCISE 11.10 Networked Control System

Plant

Controller

 !" # $!%&!"'

(

Figure 11.10.1: Closed loop system over a WSN.

Consider the Networked Control System (NCS) in Fig. 11.10.1. The system consists of a continuous plant

ẋ(t) = Ax(t) +Bu(t) (11.10a)

y(t) = Cx(t) , (11.10b)

whereA = a, B = 1, C = 1. The system is sampled with sampling timeh, and the discrete controller is given
by

u(kh) = −Kx(kh), k = 0, 1, 2, . . . ,

whereK is a constant.

(a) Suppose that the sensor network has a medium access control and routing protocols that introduce a delay
τ ≤ h. Derive a sampled system corresponding to Eq.(11.10) with azero-order-hold.

(b) Under the same assumption above that the sensor network introduces a delayτ ≤ h, give an augmented
state-space description of the closed loop system so to account for such a delay.
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(c) Under the same assumption above that the sensor network introduces a delayτ ≤ h, characterize the
conditions for which the closed loop system becomes unstable [Hint: no need of computing numbers,
equations will be enough]

(d) Now, suppose that the network does not induce any delay, but unfortunately introduces packet losses with
probabilityp. Let r = 1−p be the probability of successful packet reception. Give anddiscuss sufficient
conditions for which the closed loop system is stable. If these conditions are not satisfied, discuss what
can be done at the network level or at the controller level so to still ensure closed loop stability.

EXERCISE 11.11 Energy-Efficient Control of NCS over IEEE 802.15.4 Networks[5].

Consider the Networked control system over IEEE 802.15.4 network composed of3 control loops depicted
in the Figure 11.11, where each process is scalar of the formẋi = aixi + biui, i = 1, 2, 3, and where the

Actuator Process

Actuator Process

Controller
Controller

PANC

Node 1

Node 2

Node 3

IEEE 802.15.4

Controller
Process

Figure 11.11.1: NCS over IEEE 802.15.4 network.

communication from the sensor nodes to the Personal Area Network Coordinator (PANC) is allowed only
during the Guaranteed Time Slot (GTS) portion of the super-frame. Assume that there are no time delays, i.e.
the transmissions from sensori to the PANC and the respective control updatesui are performed at the same
instantt = Ti,k and that each node can transmit only a packet per super-frame.

At eacht = Ti,k, nodei sends the values ofxi(Ti,k) andti,k+1 to the PANC, wherexi(Ti,k) is the measure-
ment of the output of processi at timet = Ti,k, andti,k+1 is the time by which the next transmission from node
i must be performed. The controlleri updates the control inputui with ui = −kixi(Ti,k) and it keeps it con-
stant in the time interval[Ti,k, Ti,k+1). The transmissions are performed according to a self-triggered sampler
that predicts the time in which the condition|ei(t)| := |xi(Ti,k) − xi(t)| ≤ δi is violated. The self-triggered
sampler has the expression

ti,k+1 = Ti,k +
1

|ai|
ln

(

1 +
|ai|δi

|ai − biki||xi(Ti,k)|

)

. (11.11)

Consider the numerical values of the described NCS as in the following table wherexi,0 denotes the initial
condition of the processi. Determine:

(a) The values ofk1 such that practical-stability of the loop #1 is ensured.

(b) The values ofδ2 such that that practical-stability of the loop #2 is ensured.
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ai bi ki δi xi,0
Loop #1 2 1 ? 1

2 5
Loop #2 3 -2 -2 ? 8
Loop #3 2 1

2 6 1
2 ?

(c) The values ofx3,0 such that that practical-stability of the loop #3 is ensured.

(d) For each control loop, find an upper-bound of the the practical-stability region sizeεi.
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12 Scheduling

EXERCISE 12.1 Scheduling in Smart Grids

The latest wireless network, 3GPP Long Term Evolution (LTE), is used to transmit the measurements obtained
by a smart grid. Every time slot, LTE need to allocate resources forN users in time- and frequency- domain.
Assume that in each time slot, LTE hasNTTI×NRB transmission resources, whereNTTI is the number in time
domain andNRB the number in frequency domain. Now, assume that each transmission resource can be used
by one user only in one time slot. And the utility can be definedasR(c)

i,j for slot used by userc in time i and
frequencyj. Now pose the scheduler design by an optimization problem bymaximize the sum of the utility of
the transmission resources.

Since LTE transmits data flows not only in a smart grid but alsofor public use in a wide area, we would
like choose a utility function in the scheduling problem so to give the highest value to messages from the
devices in smart grid. Assume that the devices in smart grid have following features: constant data updating
rates, equivalent data packets lengths, and approximatelyinvariant channel qualities. Design a suitable utility
function.
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13 Security

EXERCISE 13.1 The Caesar code (Ex.14.1 in [2])

The Virginère family of codes for the alphabet is specified by

ci = mi + ki mod 26 ,

wheremi is the numerical index of the letter in the alphabet (e.g.,B = 2), andki is a component of a key of
lengthd. Whend goes to infinity and the key is chosen randomly, this is the Vernam code, otherwise known as
the one-time pad. When d=1, this is one of the26 possible Caesar ciphers. Typically it is broken by brute-force
attacks. All possible keys are applied to the cipher text andthe message that makes sense is selected. More
precisely, a message that matches the statistical properties of the occurrences of letters and sequences of letters
in a natural language is selected as being correct. Knowing that a Caesar code was employed, decode:

NBCMCMYUMS

EXERCISE 13.2 Unicity distance (Ex.14.2 in [2])

The length of text required to uniquely decode enciphered text when keys are randomly generated is known as
the unicity distance. Denoting byH(K) the entropy of the key and byD the redundancy of the text, then the
unicity distance is defined as

H(K)

D
.

There are26! possible substitution ciphers for a26-letter alphabet, while the redundancy of English expressed
usinglog 10 is 0.7. What length of text is sufficient to uniquely decode any substitution cipher? What does this
say about the security of such ciphers?

EXERCISE 13.3 Euclid’s Algorithm (Ex.14.3 in [2])

Euclid’s algorithm can be used to find the greatest common divisor (gcd) of two integersa andb. Supposea > b
and let{qi} and{ri} be integer quotients and remainders respectively. The algorithm rests on two principles.
First, if b dividesa, thengcd(a,b) = b. Second, ifa = qb + r, thengcd(a,b) = gcd(b, r). One can find
gcd(a,b) by repeatedly applying the second relation:

a = q0b+ r1 0 ≤ r1 < |b|
b = q1r1 + r2 0 ≤ r2 < r1
r1 = q2r2 + r3 0 ≤ r3 < r2
...
rk = qk+1rk+1 + rk+2 0 ≤ rk+2 < rk+1

.

The process continues until one finds an integern such thatrn + 1 = 0, then rn = gcd(a,b). Find
gcd(10480, 3920).

EXERCISE 13.4 Factoring products of primes (Ex.14.4 in [2])

42



Two ways to decode a public key system are to try out all possible keys or to attempt to factorn = pq wherep
andq are both primes. Letp(x) denote the number of primes less than or equal tox. We have

lim
x → ∞

π(x)

x/ ln(x)
= 1, hence π(x) ≈ x

lnx
for large x.

Quadratic sieve factoring is the most efficient known algorithm for factoring primes less than about110 decimal
digits long (well within the range of keys in common use). Itscomplexity is sub exponential, in this case

O(e(lnn)1/2(ln lnn)1/2)

Forn = 264 andn = 2128 determine the relative effort of running through the primesless than n or applying
quadratic sieve factoring.

EXERCISE 13.5 Hash functions and sensing (Ex.14.5 in [2])

In message authentication codes, a family of hash functionshk wherek is the secret key, are employed. The
properties of good families are:

(1) Ease of computation ofhk(x), given k.

(2) Compression of an inputx of arbitrary length into a sequence of fixed length, n.

(3) Even given many text-message-authentication-code pairs (xi, hk(xi)) it is computationally infeasible to
compute any text-message-authentication-code pair(x, hk(x)) for a new inputx not equal toxi.

(a) What brute force attacks could result in determination of the hash function, and what is a simple counter-
measure?

(b) How is hash function compression similar to and different from the mapping of data from the physical
world into a decision by a sensor node?

EXERCISE 13.6 Fighting infection (Ex.14.8 in [2])

Suppose nodes face a constant probability p of being infected (e.g., malfunctioning, taken over) in every time
epoch. A mobile agent can visit1/100 of the nodes in each epoch and fix/replace them if they are infected. It
is further desired that less than1/100 of the data produced by nodes be corrupted. Determine the maximum
tolerable infection probability if (a) nodes simply reporttheir own data or (b) three nearby nodes with identical
access to the data perform a majority vote.

EXERCISE 13.7 Information theft (Ex.14.9 in [2])

The compression approach in a sensor network has implications both for scalability and vulnerability to in-
formation theft. Consider the network depicted in Figure 13.7.1 Tier1 produces100 data per node; differing
levels of compression are applied. Calculate the volume of data at risk when a node is compromised at any of
the three levels with the following data compression schemes

(a) Tier 1 does no compression; tier 2 reduces the union of inputs to 10 units; tier 3 reduces union of inputs to
1 unit.
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1

2
3

Figure 13.7.1: Three-tier network.

(b) Tier 1 compresses to 20 units through a hardwired algorithm; tier 2 to 5 units; tier 3 to 1 unit.

(c) Tiers 1 and 2 do no compression; tier 3 reduces to 1 unit.

EXERCISE 13.8 Physical security (Ex.14.10 in [2])

An important component in the overall security of a system isthe difficulty of physical access for theft or
tampering. A rule of thumb is that the electronic and physical security means should present comparable
difficulty to would-be attackers, and should have cost commensurate with the value of what is being protected.
Comment on the applicability/usefulness of the following systems for uses in ubiquitous small sensor nodes,
nodes with cameras, gateways (including those in vehicles), aggregation points, CAs: tamper-detection devices,
hardened casing, security bolts, security port for key updates, camouflage/embedding in structures, secured
room, secured facility and redundant systems

EXERCISE 13.9 People and data reliability (Ex.14.11 in [2])

Data reliability will depend also on the users/applications just as security depends on human involvement.
List the ways in which confidence (trust/reputation) is gained among people and comment on how reputation
systems for people fit into the overall system integrity for asensor network.
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1 Introductory exercises

SOLUTION 1.1

Random variables

(a) For a zero mean Gaussian distribution

P(X > x) = Q(x) =

∫ ∞

x

1√
2π

e−t2/2dt ,

one can verify that the function is continuous inx ∈ (−∞, +∞). Moreover, the first derivative is

Q
′

x =
−1√
2π

e−
x2

2 ,

and the second derivative is

Q
′′

x =
x√
2π

e−
x2

2 ≥ 0 ,

for x ≥ 0. So the function is convex forx ≥ 0.

(b) For the function

Q

(

x− µ

σ

)

=

∫ ∞

x

1√
2πσ2

· e−
(t−µ)2

2σ2 dt

A derivation similar to the previous exercise yields

Q
′′

(

x− µ

σ

)

=
x− µ

σ2
√
2πσ2

· e−
(x−µ)2

2σ2 ≥ 0 for x ≥ µ

(c) We prove thatQ function in its entire domain is log-concave. According to the definition, a functionf is
log-concave iff(x) > 0 and for allx in its domain, logf is concave. Supposef is twice differentiable
entirely its domainx ∈ R, so

∇2logf(x) =
f

′′

(x) · f(x)− f
′

(x)2

f2(x)

We conclude thatf is log-concave if and only iff
′′

(x) · f(x) ≤ f
′

(x)2. ForQ(x), in previous exercise we
computed the second derivative

f
′′

(x) =
x√
2π

e−
x2

2 < 0

for x < 0. Moreover,f(x) ≥ 0 for all x which indicates that the inequality holds forx < 0. What remains
to show is that the inequality also holds forx > 0. For the case of Gaussian function the basic inequality
reduces to

xe−
x2

2 ·
∫ ∞

x
e−

t2

2 dt ≤ e−x2
.

Hence
∫ ∞

x
e−

t2

2 dt ≤ e−
x2

2

x

To prove this inequality, remember the following general result for convex functions

g(t) ≥ g(x) + g
′

(x)(t− x) .
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We now apply the above inequality forg(t) = t2/2, so we have

t2

2
≥ x2

2
+ x(t− x) = xt− x2

2
.

So, multiplying by−1 and taking exponential we will yield

e−
t2

2 ≤ e−xt+x2

2 .

Now take the integral and conclude

∫ ∞

x
e−

t2

2 dt ≤
∫ ∞

x
e−xt · e

x2

2 dt =
e−x2

x
· e

x2

2 =
e−

x2

2

x
.

SOLUTION 1.2

Application ofQ(·) function
Recalling the definition ofpf as the probability offalse alarmandpd as the probability ofdetection, we

have

(a)

pf = P(si > τ |H0) =

∫ ∞

τ

1√
2π

e−
t2

2 dt = Q(τ)

(b)

pd = P(si > τ |H1) =

∫ ∞

τ

1√
2π

e−
(t−ai)

2

2 dt = Q(τ − ai)

SOLUTION 1.3

(Ex. 3.24 in [1]) In each case we investigate the given function based on variable{p ∈ R
n
+|1Tp = 1}.

(a) Ex = a1p1 + a2p2 + · · ·+ anpn is a linear function ofp, hence it is both convex and concave.

(b) P(X ≥ α). Let j = min{ai >= α}, and thenP(X ≥ α) =
∑n

i=j pi, is a linear function ofp and, hence
is convex and concave.

(c) P(α ≤ X ≤ β). Let j = min{ai >= α}, andk = max{i|ai ≤ β}. ThenP(α ≤ X ≤ β) =
∑k

i=j pi, is a
linear function ofp and, hence is convex and concave.

(d)
∑n

i=1 pi logpi. We knowp logp is a convex ofp onR+ (assuming0 log0 = 0), so
∑

i pi logpi is convex.
Note that the function is not concave. To check this we consider an example, wheren = 2, p = [1, 0] and
p

′

= [0, 1]. The function value at both pointsp andp
′

is equal to0. Now consider the convex combination
[0.5, 0.5] has function value log(1/2) < 0. Indeed this is against concavity inequality.

(e) varX = E(X − EX)2. We have

varX = EX2 − (EX)2 =
n
∑

i=1

pia
2
i − (

n
∑

i=1

piai)
2,

So varX is a concave quadratic function ofp. The function is not convex. For example consider the
casen = 2, a1 = 0, a2 = 1. BothX1 with probabilities[p1, p2] = [1/4, 3/4] andX2 with [p1, p2] =
[3/4, 1/4] lie in probability simplex and we havevarX1 = varX2 = 3/16. But the convex combination
X3 = 1/2X1 + 1/2X2 with probabilities[p1, p2] = [1/2, 1/2] has a variancevarX3 = 1/4 > 3/16. This
contradicts convex inequality.
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(f) quartile(X) = inf{β |P(X ≤ β) ≥ 0.5}. This function is piecewise constant, So it is not continuous.
Therefore,quartile(X) is not convex nor concave. To see this, consider an example with n = 2 and
probability simplexp1 + p2 = 1. We have

f(p) =

{

a2 for p1 ∈ [0, 1/2)
a1 for p1 ∈ [1/2, 1]

SOLUTION 1.4

Amplitude Quantization

(a) The signal-to-noise ratio does not depend on the signal amplitude. With an A/D range of[−A,A], the
quantization interval∆ = 2A/2B and the signal’s rms value (again assuming it is a sinusoid) isA/

√
2.

(b) Solving2−B = .001 results inB = 10 bits.

(c) A 16-bit A/D converter yields a SNR of6× 16 + 10 log 1.5 = 97.8dB.

SOLUTION 1.5

Accelerometer system design and system scale estimate

(a)

10−5 = 10−12/(1/ω2
0) forω < ωo. Thus, ω2

0 = 107 and ω0 = 3.16×103 rad/sec = 504 Hz.

(b)

TNEA ≡
√

4kbTωO

MQ
=

√

4× 1.38× 10−23 × 300× 3160

MQ
= 7.23 × 10−9

√

1

MQ

For TNEA =10−5,
√

1
MQ = 1.38 × 103;MQ = 5.2× 10−7 Thus, forQ = 1, M = 0.52 µkg= 0.52mg

for Q = 100, M = 5.2 × 10−9 kg= 5.2µg

for Q = 10, 000, M = 5.2 × 10−11 kg= 0.052µg

(c) ForQ = 1

0.52mg/2.33 gm/cm3 = 2.23 × 10−4 cm2

At t = 1µ = 10−4 cm; A = 2.23cm2.

SOLUTION 1.6

Signal dependent temperature coefficients

(a) Voffset = 10µV × 10−4(300K − T)

Vout = 0 + Voffset = 10µV × 10−4(300K − T)

Temperature coefficient is10−4/K

48



(b) Voffset = 10µV(300K − T)

α = 1V/µ(1 + 10−2T )

K = 0.01µ/N/m2(1 + 10−4T)

G = 10(1 − 10−3T )

Vout = PinαKG+GVoffset

Now,

250K: −6.2 × 10−5

350K: −8.3 × 10−5

(c) Voffset = 10µV(300K − T)

α = 1V/µ(1 + 10−2T )

K = 0.01µ/N/m2(1 + 10−4T)

G = 10(1 − 10−3T )

Vout = PinαKG+GVoffset

Now,

250K: −5.2 × 10−3

350K: −7.3 × 10−3
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event void button_handler( button_state_t state ) { 
        
    if ( state == BUTTON_PRESSED && sendflag == TRUE ) { 
  sendflag = FALSE; 
           // send the first packet with broadcast 
  msg->senderId = TOS_NODE_ID; 
  msg->counter = counter; 
  broadcast_message(&msg);//forward message 
  }//end_if 
       } 

 (a) Broadcast

event message_t* Receive.receive(message_t* msg) {     
          
   newmsg->senderId = TOS_NODE_ID; 
      newmsg->counter = msg->counter+1; 
 newmsg->receiverId = msg->senderId; 
 unicast_message(&newmsg); 
    } 

 (b) Unicast

Figure 2.3.1: (a) Pseudo code for initiating “ping pong” message. As it is shown, the first node uses broadcast
to initiate the transmission. (b) Code for receiving message “handler”. After receiving a message “exchange”
the node addresses and resend the message by using unicast.

2 Programming Wireless Sensor Networks

SOLUTION 2.1

Hello world
Before starting the solutions, let us review some basic concepts for TinyOS programming.

SOLUTION 2.2

Counter

SOLUTION 2.3

Ping Pong

SOLUTION 2.4

Dissemination Protocol
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every 10 seconds{  
cmd = random_cmmand(); //get a random command  
lastSeqNum++; //increase seq num  
interprete_command(cmd); //handle command  
broadcast_command(cmd); //forward to surrounding nodes  
} 

 
(a) Sink NodeId=1

broadcast_msg_handler(packet* msg){  
if( msg->seqNum > lastSeqNum){  
lastSeqNum = msg->seqNum; //store seq num  
interprete_command(msg->cmd); //handle command 
broadcast_message(msg); //forward msg  
}  
} 

 (b) Receiver NodeId !=1

Figure 2.4.1: (a) Pseudo code for dissemination protocol. Sink node every 10 seconds picks a random command
and broadcasts it to surrounding nodes. (b) Node i, after receiving new message interprets the command and
rebroadcasts it.

3 Wireless Channel

SOLUTION 3.1

The noisy sensor

(a) Let ri be the distance from the source to a node, and letS be the signal power. Then for node 1 to be
involved in a decision rather than some other node one must have

S

10r21
>

S

r2i
or

ri
r1

>
√
10

For reasons of symmetry one need only consider the all-positive quadrant with node1 as the origin. For a
source at position(x, 0) equal SNR is obtained with respect to node3

d− x

x
=

√
10 or x = d/4.16 .

For node2 the result is
d+ x

x
=

√
10 or x = d/2.16 .

Similarly for node4 one solves

2d− x

x
=

√
10 or x = d/2.08 .

Node5 turns out to have the second tightest constraint on the x-axis:

d2 + x2

x2
= 10 or x = d/3 .

Thus, node1 is only among the two best nodes ifx < d/3. The situation is symmetric with respect to the
y-axis, with nodes 2 and 6 being better fory > d/3. Now consider the position(x, x); nodes2 and5 will
have the same SNR as node1 if

(d+ x)2 + x2

2x2
= 10 or d2 + 2xd− 18x2 = 0;
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solving the quadratic equation,x = d/3.35. The node diagonally opposite producesx = d/4.16 while
nodes6 and3 produce a tighter result withx = d/5.35.

(b) For a source at position(0.25d, 0) the respective SNRs for nodes5 and1 areS/1.0625d2σ2
n andS/0.625d2σ2

n.
Thus the ratio in signal normalized noise variances is1.7, or put another way, the standard deviation is1.3
times as large for node5 as node1. There are a variety of ways to approximate the likelihood that a given
measurement will be lower at node5 than node1. One is to simulate; another is to divide both normalized
noise distributions into bins of equal size, with events in the same bin assigned equal likelihood of being
larger or smaller. The likelihoods of being in particular bins are easily obtained from the Q-function table.
Normalize the noise variance for node1 to be so that the standard deviation for node5 is 1.3. Then, the
probability that the absolute value of the noise at node 1 is less than the noise at node5 is approximately
given by the sum ofP (1 in bin i)(1/2 P (5 in bin i)+P (5 larger than bini)). Thus, with bin sizes ofσ1/2
(taking both positive and negative values) we obtain (with the last one being the rest of the distribution):

Bin P (1 in bin) P (5 in bin) P (5 bigger)
1 .383 .300 .700
2 .300 .248 .452
3 .184 .204 .248
4 .088 .124 .124
5 .017 .070 .054
6 .012 .054 . . .

HenceP (1 less than5) =.383(.15 + .7) + .3(.124 + .452) + .184(.102 + .248) + .088(.062 + .124) +
.017(.035 + .054) + .012(.027) = 0.62.

SOLUTION 3.2

Power optimization

(a) If we considerk ≥ 0 and the intermediate nodes are equidistant, then the sum of required energy between
source and destination consideringk intermediate node is as follows

E = (k + 1)

(

d

k + 1

)α

= dα(k + 1)1−α

since1 − α < 0 if k increasesE decreases and in limit point, whenk goes to infinityE goes to zero. So
there is no optimal number of nodes to minimize the energy consumption (infinity number of nodes here
makes the energy to be zero).

(b) Based on part (a), if we consider a number of nodes that tends to∞ as optimal solution, the energy
consumption goes to zero.

(c) A new model of energy consumption with the constant valueis more realistic:E(A,B) = d(A,B)α + C.
If we put this new formula in the limit computed in part (a), the minimum required energy for transmission
would be a value greater than zero and it is more reasonable, because in real world it is impossible to send
data without any energy consumption.

(d) We have

E = (k + 1)

(

d

k + 1

)α

+ (k + 1)C .

By taking the derivative

dE

dk
=

(

d

k + 1

)α

−
(

d

k + 1

)α

α+ C =

(

d

k + 1

)α

(1− α) + C
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and putting it to zero, we have:

k = d

(

α− 1

C

) 1
α

− 1

which is the optimal number of intermediate nodes that minimizes the overall energy consumption.

(e) If we put the computed value ofk in previous case into the energy consumption equation (of previous
section), the following closed form can be achieved:

E(S, T ) = (k + 1)

(

d

k + 1

)α

+ (k + 1)C

k = d

(

α− 1

C

)
1
α

− 1

so

E(S, T ) = αd

(

C

α− 1

)
α−1
α

.

SOLUTION 3.3

Deriving the Density of a Function of a Random Variable: Rayleigh fading
We use the method from [4] on the calculation of pdf for functions of one random variable. Assumey be

a function ofx with known distribution and pdffx(x). To find fy(y) for a specificy, we solvey = g(x).
Denoting its real roots byxn,

y = g(x1) = · · · = g(xn) = · · · .
From [4], it can be shown that

fy(y) =
fx(x1)

|g′(x1)|
+ · · ·+ fx(xn)

|g′(xn)|
+ · · · ,

whereg′(x) is the derivative ofg(x).
Fory =

√
x andg′(x) = 1/(2

√
x), the equationy =

√
x has a single solutionx = y2 for y > 0 and no

solution fory < 0. Hence

fy(y) = 2yfx(y
2)U(y). (3.3)

Suppose thatx has a chi-square density as

f(x) =
1

2n/2Γ(n/2)
xn/2−1e−x/2U(x),

andy =
√
x. In this case, (3.3) yields

fy(y) =
2

2n/2Γ(n/2)
yn−1e−y2/2U(y).

This function is called the chi density withn degree of freedom. In special case, forn = 2, we obtain Rayleigh
densityfy(y) = ye−y2/2U(y).

SOLUTION 3.4
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Deriving the Density of a Function of a Random Variable: Stepwindowing
Let y = xU(x) andg′(x) = U(x). Clearly,fy(y) = 0 andFy(y) = 0 for y < 0. if y > 0, then the

equationy = xU(x) has a single solutionx1 = y. Hence

fy(y) = fx(y) Fy(y) = Fx(y) y > 0.

ThusFy(y) is discontinuous aty = 0 with discontinuityFy(0
+)− Fy(0

−) = Fx(0). Hence,

fy(y) = fx(y)U(y) + Fx(0)δ(y)

SOLUTION 3.5

Deriving the Density of a Function of a Random Variable: Shadow fading
We havey = exp(x) andg′(x) = exp(x). If y > 0, then the equationy = ex has the single solution

x = ln y. Therefore

fy(y) =
1

y
fx(ln y) y > 0.

If y < 0, thenfy(y) = 0. Now if x ∼ N (µ, σ2), then

fy(y) =
1

σy
√
2π

e−(ln y−µ)2/2σ2
.

This density is called log-normal and it is the standard model for the shadow fading, namely the slow variation
of the wireless channel.

SOLUTION 3.6

Mean and Variance of Log-normal Distribution
Forx ∼ N (µ, σ), the expected value ofy = exp(x), which has a log-normal distribution, is

E { y} =

∫ +∞

−∞
yf(y)dy =

∫ +∞

−∞

y

σy
√
2π

e−(ln y−µ)2/2σ2
dy = eµ+σ2/2

The variance ofy = exp(x) is

E { y2} − E 2{ y} =

∫ +∞

−∞
(y − µ)2f(y)dy =

∫ +∞

−∞

(y − µ)2

σy
√
2π

e−(ln y−µ)2/2σ2
dy = (eσ

2 − 1)e2µ+σ2

SOLUTION 3.7

Gillbert-Elliot model for the wireless channels

(a) Steady state probabilities are derived via the steady-state equations

πG + πB = 1,

πG = (1− p)πG + rπB

which yields

πG =
r

p+ r

and
πB = 1− r

p+ r
=

p

p+ r
.
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(b) steady state errorpE = (1− k)πG + (1− h)πB .

(c) we determiner = 1/AEL andpE = APD. From section (a) and (b) we havep = pEr/(h− pE). Having
r andp the stationary probabilitiesπG andπB are in order.

SOLUTION 3.8

Gillbert-Elliot Channel

(a) The average length of an error burst is the same as the average time of staying in the bad state. The
probability of an error burst of lengtht is the same as the probability of staying in bad state for an interval
of lengtht, which is equal to

Pr{error burst of lengtht} = (1− r)t−1r.

Average error burst length is

AEL =
∑

t≥1

tPr{error burst of lengtht} =
∑

t

t(1− r)t−1r =
1

r
= 10.

(b) Similar to the last part, the average length of an error-free sequence of bits is the average time of staying in
good state, which is

AEFL =
∑

t≥1

tPr{error-free sequence of lengtht} =
∑

t

t(1− p)t−1p =
1

p
= 105.

(c) Looking at the system as a Markov chain, the stationary probability of being in the bad state is

πB =
p

p+ r
=

10−5

10−1 + 10−5
=

1

104 + 1
≈ 10−4.

moreover, message loss rate is given based on the stationaryprobability of errorpE = (1 − h)πB + (1 −
k)πG. Sincek ≈ 1 andh ≈ 0, thenpE ≈ πB ≈ 10−4.
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4 Physical Layer

SOLUTION 4.1

Gray Code. Using the mirror imaging several times, one example (of many) of the Gray code is as 4.1.1

 

 

 

 

Figure 4.1.1: Gray-coded 16-QAM.

SOLUTION 4.2

Network reconfiguration

(a) The alternate route will be selected if the expected number of transmissions into and out of the malfunc-
tioning node is2 or greater. Let the packet dropping probability bep. The last successful transmission will
have probability(1− p). Then the expected number of transmissions is

1(1 − p) + 2p(1− p) + 3p2(1− p) + · · · = 2

Solving above equality we have

∞
∑

i=0

(i+ 1)pi(1− p) =
1

1− p
= 2 ,

and hence,p = 0.5.

(b) The probability of requiring less than or equal to3 transmissions is

(1− p) + p(1− p) + p2(1− p) = 0.99

This is a cubic inp and can be solved in any number of ways. A probability of0.2 is close. Thus the delay
requirement leads more quickly to choice of alternative paths in this example.
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SOLUTION 4.3

Bit error probability for BPSK over AWGN channels
The general form for BPSK follows the equation:

sn(t) =

√

2Eb

Tb
cos(2πft+ π(1 − n)), n = 0, 1.

This yields two phases0 andπ. Specifically, binary data is often conveyed via the following signals:

s0(t) =

√

2Eb

Tb
cos(2πft+ π) = −

√

2Eb

Tb
cos(2πft)

s1(t) =

√

2Eb

Tb
cos(2πft)

Hence, the signal-space can be represented by

φ(t) =

√

2

Tb
cos(2πft)

where1 is represented by
√
Ebφ(t) and0 is represented by−√

Ebφ(t). Now we comment on the channel
model. The transmitted signal that gets corrupted by noisen typically refereed as added white Gausssian noise.
It is called white since the spectrum of the noise is flat for all frequencies. Moreover, the values of the noisen
follows a zero mean gaussian probability distribution function with varianceσ2 = N0/2 . So for above model,
the received signal take the form

y(t) = s0(t) + n

y(t) = s1(t) + n

The conditional probability distribution function (PDF) of y for the two cases are:

f(y|s0) =
1√
πN0

e
− (y+

√
Eb)

2

N0

f(y|s1) =
1√
πN0

e
− (y−

√
Eb)

2

N0

Assuming thats0 ands1 are equally probable, the threshold0 forms the optimal decision boundary. Therefore,
if the received signaly is greater than0, then the receiver assumess1 was transmitted and vise versa. With this
threshold the probability of error givens1 is transmitted is

p(e|s1) =
1√
πN0

∫ 0

−∞
e
− (y−

√
Eb)

2

N0 dy =
1√
π

∫ ∞
√

Eb
N0

e−z2dz = Q

(

√

2Eb

N0

)

=
1

2
erfc

(

√

Eb

N0

)

,

where erfc(x) = 2√
π

∫∞
x e−x2

dx is the complementary error function. Similarly, the probability of error given
s0 is transmitted is

p(e|s0) =
1√
πN0

∫ ∞

0
e
− (y+

√
Eb)

2

N0 dy =
1√
π

∫ ∞
√

Eb
N0

e−z2dz = Q

(

√

2Eb

N0

)

=
1

2
erfc

(

√

Eb

N0

)

.

Hence, the total probability of error is

Pb = p(s1)p(e|s1) + p(s0)p(e|s0) =
1

2
erfc

(

√

Eb

N0

)

.

Note that the probabilitiesp(s0) andp(s1) are equally likely.
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SOLUTION 4.4

Bit error probability for QPSK over AWGN channels
The general form for QPSK follows the equation:

sn(t) =

√

2Eb

Tb
cos(2πft+ π(2n − 1)/4), n = 1, · · · 4.

In this case, the signal space can be constructed using only two basis functions:

φ1(t) =

√

2

Tb
cos(2πft)

φ2(t) =

√

2

Tb
sin(2πft)

The first basis function is used as the in-phase component of the signal and the second as the quadrature
component of the signal. Hence, the signal constellation consists of the signal-space4 points

(

±
√

Eb/2,±
√

Eb/2
)

The factors of1/2 indicate that the total power is split equally between the two carriers. Comparing these
basis functions with that for BPSK shows clearly how QPSK canbe viewed as two independent BPSK signals.
Although QPSK can be viewed as a quaternary modulation, it iseasier to see it as two independently modulated
quadrature carriers. With this interpretation, the even (or odd) bits are used to modulate the in-phase component
of the carrier, while the odd (or even) bits are used to modulate the quadrature-phase component of the carrier.
BPSK is used on both carriers and they can be independently demodulated. As a result, the probability of
bit-error for QPSK is the same as for BPSK:

Pb = Q

(

√

2Eb

N0

)

=
1

2
erfc

(

√

Eb

N0

)

.

However, in order to achieve the same bit-error probabilityas BPSK, QPSK uses twice the power (since two
bits are transmitted simultaneously). The symbol error rate is given by:

Ps = 1− (1− Pb)
2 = 2Q

(

√

2Eb

N0

)

−Q2

(

√

2Eb

N0

)

If the signal-to-noise ratio is high (as is necessary for practical QPSK systems) the probability of symbol error
may be approximated:

Ps ∼ 2Q

(

√

2Eb

N0

)

.

SOLUTION 4.5

Error probability for 4-PAM over AWGN channels
Signal sets are designed to maximize the minimum distance between the points in signal space, subject to

peak and average power constraints. This is because the low error rates is desired. The symbol error probability
is closely approximated by

P (e) ∼ Ndmin
Q

(

dmin√
2N0

)

,
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whereNdmin
is the average number of nearest neighbors at the minimum distance. Pulse amplitude modulation

(PAM) is effected by multiplying a rectangular pulse of duration T by one ofM equally spaced voltage levels
symmetric about the origin. It can be easily shown that this symmetry minimizes the peak and average power,
without affecting the error probability. In the particularcase of4-PAM, the signals are given by

S00 =
√

E/5φ1(t),s01 = 3
√

E/5φ1(t), s10 = −
√

E/5φ1(t),s11 = −3
√

E/5φ1(t),

whereφ1(t) =
√

1/T , 0 ≤ t ≤ 1T . Clearly, the average energy isE = [(2)(E/5) + (2)(9E/5)]/4, and
the squared minimum distance is4E/5. Heres00 ands10 have two neighbors at the minimum distance, while
s11 ands01 have only one. ThusNdmin

= 1.5. Also, the most likely error is to cross only into the neighboring
region, for which the bit labels differ in only one position.Thus a symbol error results in only one of the two
bits being in error. Consequently, the symbol error rate is

P (e) ∼ 1.5Q

(

√

2E

5N0

)

= 1.5Q

(

√

4Eb

5N0

)

,

and bit error rate

Pb(e) ∼ 0.75Q

(

√

4Eb

5N0

)

,

where,

Eb = energy per bit=
E

log2 M
=

E

2
.

SOLUTION 4.6

Average error probability for Rayleigh fading
Let P (γ) be the probability of error for a digital modulation as a function of Eb/N0, γ, in the Gaussian

channel. Let the channel amplitude be denoted by the random variableα, and let the average SNR normalized
per bit be denoted byγ⋆ = E[α2]Eb/N0. Then to obtainP (e) for a Rayleigh fading channelP (γ) must be
integrated over the probability that a givenγ is encountered:

P (e) =

∫ ∞

0
P (γ)p(γ)dγ,

For Rayleigh fading,

p(γ) =
1

γ⋆
e−γ/γ⋆

.

In the case of coherent BPSK, the integration can actually becomputed yielding

P (e) =
1

2

[

1−
√

γ⋆

1 + γ⋆

]

.

At high SNR like OQPSK systems, the approximation(1 + x)1/2 ∼ 1 + x/2 can be used, giving

P (e) ∼ 1

4γ⋆

compared withP (e) = Q(
√
2γ⋆) for the Gaussian channels.
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SOLUTION 4.7

Detection in a Rayleigh fading channel
We have

P (e) = E[Q(
√

2|h|2SNR)],

=

∫ ∞

0
e−x

∫ ∞
√

2xSNR

1√
2π

e−t2/2 dtdx =
1√
2π

∫ ∞

0

∫ t2/(2SNR)

0
e−t2/2e−xdxdt

=
1√
2π

∫ ∞

0
e−t2/2

(

1− e−t2/(2SNR)
)

dt =
1

2
+

1√
2π

∫ ∞

0
e−t2(1+1/SNR)/2dt

=
1

2

(

1−
√

SNR
1 + SNR

)

,

In the first step we take into account that|h| is a Rayleigh random variable; i.e., it has the densityx
σ2 e

−x2

2σ2

and hence its squared magnitude|h|2 is exponentially distributed with density1σ2 e
−x
σ2 , x ≥ 0. Remember that

according to the question assumptionsσ = 1. Moreover, the third step follows from changing the order of
integration.

Now, for large SNR, Taylor series expansion yields
√

SNR
1 + SNR

= 1− 1

2SNR
+O

(

1

SNR2

)

∼ 1− 1

2SNR

which implies

P (e) ∼ 1

4SNR
.

SOLUTION 4.8

Average error probability for Log-normal fading
First, we present a short summary of the Stirling approximation. A natural way of approximating a function

is using the Taylor expansion. Specially, for a functionf(θ) of a random variableθ having meanµ and variance
σ2, using the Taylor expansion about the mean we have

f(θ) = f(µ) + (θ − µ)f ′(µ) +
1

2
(θ − µ)2f ′′(µ) + · · · .

By taking expectation

E {f(θ)} ∼ f(µ) +
1

2
f ′(µ)σ2.

However, in Stirling approximation one can start with thesedifferences

f(θ) = f(µ) + (θ − µ)
f(µ+ h)− f(µ− h)

2h
+

1

2
(θ − µ)2

f(µ+ h)− 2f(µ) + f(µ− h)

h2
+ · · · ,

then, taking the expectation we have

E f(θ) ∼ f(µ) +
1

2

f(µ+ h)− 2f(µ) + f(µ− h)

h2
σ2.

It has been shown thath =
√
3 yields a good result. So we obtainQ(γ). Given a log-normal random variable

z with meanµz and varianceσ2
z , we calculate the average probability of error as the average ofQ(γ). Namely,

E {Q(z)} ∼ 2

3
Q(µz) +

1

6
Q(µz +

√
3σz) +

1

6
Q(µz −

√
3σz).
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SOLUTION 4.9

Probability of error at the message level.

(a) Given the bit error probabilityP (e), the probability of successfully receiving a message is

p = (1− P (e))f .

For Rayleigh fading, from Exercise 4.7 we have

P (e) ≈ 1

4SNR
.

(b) To have a message reception probability of at leastp > 0.35, it is required that

(

1− 1

4SNR

)f

> 0.910

By substitutingf = 10, and

SNR=
αEb

N0d2
=

10

d2

in inequality above we obtain
(

1− d2

40

)10

> (0.9)10 =⇒ d ≤ 2.

SOLUTION 4.10

The rate2/3 parity check code. A sequence of threePSK symbols can be represented by vertices of a cube,
with each coordinate axis corresponding to signal space forindividual PSK symbols. This is illustrated in
Figure 4.10.1, using the convention that a1 indicates a positive coordinate, while a0 represents a negative
coordinate. Clearly, the squared minimum distance is now8E, compared with4E for uncodedPSK. Hence
Eb/N0 performance has improved by2× 2/3 = 4/3 or 1.25dB.

 3

 1

 2

!!!

""!

011

"!"

Figure 4.10.1:2/3 parity check code.

SOLUTION 4.11

Hard vs. soft decisions.

(a) The Hamming distance is 2. The code can detect one error and cannot correct any errors.
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(b) Since it cannot tolerate any errors, the error probability is

pe = 1− p3

where

p = 1−Q

( √
E/2

√

N0/2

)

= 1−Q

(

√

2Eb/3√
2N0

)

= 1−Q

(

√

Eb

3N0

)

(c) If theQ(·) in previous part is very small, the error probability can be approximated as

pe = 3Q

(

√

Eb

3N0

)

The error probability for soft-decisions is

pe = Q

(

√

8Eb

3N0

)

which is lower than the error probability with hard-decisions.
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5 Medium Access Control

SOLUTION 5.1

Slotted Aloha.
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Ex.5.1) p* maximizes the min{P(p,A), P(p,B)}

p=1/A

p=1/B

p*: intrsec point. Ps(A,p)=Ps(B,p)

1/B<p<p*

p*<p<1/A

Figure 5.1.1: maximum worst-case success probability in Slotted Aloha is achieved for the pointp⋆ fulfilling
P (p⋆, A) = P (p⋆, B).

(a) We define the functionP : R2 → R as

P (p, n) := Pr(success) = n · p(1− p)n−1 .

For a fixedp, P (p, n) is monotone increasing forn ≤ −1/ln(1 − p) and monotone decreasing forn ≥
−1/ln(1 − p) and thereforeP (p, n) is minimized either atn = A or atn = B for n ∈ [A,B]. Therefore,
we have to find

p⋆ = arg max
p

(min{P (p,A), P (p,B)}) .

For a fixedn, P (p, n) is monotone increasing forp ≤ 1/n and monotone decreasing forp ≥ 1/n (for
p ∈ [0, 1]). Furthermore,P (1/A,A) ≥ P (1/A,B) andP (1/B,B) ≥ P (1/B,A) for B ≥ A + 1 and
therefore the intersection betweenP (p,A) andP (p,B) is between the maxima ofP (p,A) andP (p,B),
respectively. Thusp⋆ is found whereP (p⋆, A) = P (p⋆, B). Therefore,

A · p⋆ · (1− p⋆)A−1 = B · p⋆ · (1− p⋆)B−1

A

B
= (1− p⋆)B−1−(A−1) = (1− p⋆)B−A

p⋆ = 1− B−A

√

A

B

Figure 5.1.1 plotsP (p, n) versus number of nodesn ∈ [A,B], whereA = 100 andB = 200 and the
optimalp⋆ that maximizes min{P (p,A), P (p,B)}.

Note:another explanation of the maxima for the worst case isas following. The worst case for success
probability P (p, n) w.r.t. n happens when eithern = A andn = B. On the other hand, for such cases
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p⋆ = 1/n is the maximizer. Now assume if we pickp = 1/A but it happen thatn = B is the worst case then
if we decreasep⋆ toward1/B will increaseP (p, n = B). Similarly, if we choosep⋆ = 1/B and it happen
that worst case success probability is forP (p, n = A), then increasingp⋆ toward 1/A is maximizing
P (p, n = A). Consequently, To be sure that we have picked the bestp⋆ for the worst case ofn we find it
whenP (p⋆, A) = P (p⋆, B). Moreover, One can check thatp⋆ = 1− B−A

√

A/B is in [1/B, 1/A].

(b) ForA = 100 andB = 200, we get

p⋆ = 0.006908 =
1

144.8
.

SOLUTION 5.2

ARQ

(a) That the packet is correctly received after n transmissions is to say that there aren− 1 corrupted transmis-
sions and 1 correct transmission. The probability is thus given by

Pn = (1− Pe)P
n−1
e .

The average number of transmissions required for a correct reception is

N =

∞
∑

n=0

nPn =

∞
∑

n=1

n(1− Pe)P
n−1
e = (1− Pe)

d

dPe

∞
∑

n=1

Pn
e

= (1− Pe)
d

dPe

( Pe

1− Pe

)

=
1

1− Pe

(b) Since there are a total number ofN data packet transmission andN − 1 acknowledgement packet trans-
missions, the average delay experienced by a packet is

D =
(L

R
+ td

)

N +
(LARQ

R
+ td

)

(N − 1) ,

whereN is the average number of transmissions from (a).

SOLUTION 5.3

Analysis of CSMA based MAC in WSNs

(a) Consider a contention round with lengthM and total number of sensorsN . Let xn denotes the selected
slot of noden. ps(m) is the probability of having a successful transmission at slot m which happens when
a node selects slotm and rest of the nodes select greater slots.Ps is the probability of success over the
entire contention round and is obtained by the summation over ps(m)

Ps =

M
∑

m=1

ps(m) =

M
∑

m=1

N
∑

n=1

Prob{xn = m, xj > m ∀j 6= n}

=
M
∑

m=1

(

N

1

)

1

M

(

1− m

M

)N−1
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(b) Denotepc(m) as the probability of collision at slotm then

pc(m) = Prob{xn ≥ m, ∀n} ·
[

1− Prob{xn = m, xj > m∀j 6= n|xn ≥ m ∀n}

− Prob{xn ≥ m+ 1|xn ≥ m, ∀n}
]

=
1

MN

[

(M −m+ 1)N − (N +M −m) · (M −m)N−1
]

Which is essentially one minus the probability of having successful or idle slots. Also the probability of
having collision after contention round can be formulated in a similar way as success case. i.e.,

Pc =

M
∑

m=1

pc(m) = 1− Ps.

SOLUTION 5.4

MAC optimization for a distributed estimation application

1. for this tradeoff of transmission rate and success probability we can minimize the state vector transmis-
sion interval normalized by state vector success probability. Hence we have

minimize f(z) =
Tu

Ps(z)
=

1

zPs(z)

wherePs(z) is the probability of success given that a node is sending in current slot.Ps(z) = (1−τ)N−1

, whereτ = z/S.

2. The problem is convex forτ ∈ [0, 1]. This is because computing in0 and1 the function tends to infinity,
it is continuous and down-ward oriented in between, and in that interval there is only one critical point:
By taking first derivative off(z), we have

f ′(z) =

(

1
z

(1− z
S )

N−1

)′

=

(

z(1− 1

S
)N−1

)−2 (

(1− z

S
)N−2(1− z

S
− (N − 1)

z

S
)
)

= 0

which givesz⋆ = S/N . This is also the point that solved the minimization problem.

SOLUTION 5.5

Broadcast. Student A is right. An exemplary algorithm: Source originating the broadcast: Transform the
message m as follows: Replace a1 with 10 and append11 at the end and at the front of a message, i.e. message
m = 10110 becomes messagem′ = 11 10010100 11. Transmit ”Hello" in roundi if bit i of m′ is 1. If a
node is not the source it waits until it detects twice a non-free channel for two consecutive rounds. It decodes
a non-free channel as1 and a free channel as0. It can easily reconstruct the messagem by ignoring11 at the
beginning and end and replacing10 with 1 for the bits received in between the first received11 and the second
11. As soon as a node decoded the entire messagem, it starts to transmit the samem′ in the same way as the
source.

SOLUTION 5.6

M/M/1 queue
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(a) The average number of customers in the queue is

N =

∞
∑

n=0

np(n) =

∞
∑

n=0

n(1− ρ)ρn = (1− ρ)ρ
d

dρ

∞
∑

n=1

ρn

,

(1− ρ)ρ
d

dρ

( ρ

1− ρ

)

=
ρ

1− ρ
.

(b) The plot is shown in Figure 5.6.1. The average number of customers in the queue will become unbounded
whenρ ≥ 1.

(c) From Little’s theorem, the average delay experienced bycustomers is

D =
N

λ
=

1

µ− λ
.

The average service time experience by customers is1/µ . Therefore, the average waiting time is

w = D − 1

µ
=

λ

µ− λ
.

Figure 5.6.1: Average number of customers in the queue as a function ofρ
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6 Routing

SOLUTION 6.1

Shortest path routing: Bellman-Ford algorithm.

(a) One can see that

D0
i =

{

0 i = 0
∞ otherwise

anddij is described by the following matrix, in which the element ati-th row andj-th column isdij :

[dij ] =

















0 1 5 ∞ ∞ ∞
1 0 1 ∞ 10 ∞
5 1 0 4 ∞ ∞
∞ ∞ 4 0 1 3
∞ 10 ∞ 3 0 1
∞ ∞ ∞ 3 1 0

















.

(b) From what we have in (a), we can determine

D1
i =







1 i = 2
5 i = 3
∞ i = 4, 5,and6 .

.

(c) Continue the iterations, forh = 2 going forward:

h Dh
1 Dh

2 Dh
3 Dh

4 Dh
5 Dh

6

1 0 1 5 ∞ ∞ ∞
2 0 1 2 9 11 ∞
3 0 1 2 6 10 12

4 0 1 2 6 7 9

5 0 1 2 6 7 8

6 0 1 2 6 7 8

The minimum distance from nodei to node 1 is determined whenh = 6, since there is no change in the
table from the previous iteration.

SOLUTION 6.2

Dijkestra. The iteration is illustrated in the following steps:

Step 1:

Dj =







1 j = 2
5 j = 3
∞ j = 4, 5,and6,

i = 2, P = {1, 2} .

Step 2:

Dj =







2 j = 3
11 j = 5
∞ j = 4,and6,

i = 3, P = {1, 2, 3} .
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Step 3:

Dj =







6 j = 4
11 j = 5
∞ j = 6,

i = 4, P = {1, 2, 3, 4} .

Step 4:

Dj =

{

7 j = 5
9 j = 6

i = 5, P = {1, 2, 3, 4, 5} .

Step 5:

Dj = 8 j = 6

i = 6, P = {1, 2, 3, 4, 5, 6} .

SOLUTION 6.3

Shortest path routing in WSNs

0.9 
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  3 2 

  4    5 

  6 
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0.6 

Figure 6.3.1: A sample topology of the WSN. Node 1 is the sink and link qualities(PRR) are depicted on each
arcs

(a) Denote ETX[xi] as the expected number of transmissions required for nodexi to send a packet to the sink.
Also, denoteNi andPi as the neighbors set and parent of nodei, respectively. Then given PRR(i, j) as the
packet reception rate fromi to j, One can formulate ETX[xi] as

ETX[xi] = min
j∈Ni

{

ETX[xj ] +
1

PRR(i, j)

}

andPi = {xj} wherexj is the neighbor that minimizes the ETX[xi]. ETX[x1] = 0 wherex1 is the
sink. Starting from the sink, nodes put their ETX equal by infinity. Then sink propagates its ETX value
to one hop neighbors, they update their ETX and broadcast their values. Whenever a node receives a ETX
message from a neighbor, it checks if the value differs from the previous reported value. If so they update
their ETX and parent node (if it happens) and broadcast theirETX. It can be proved that this algorithm
constructs a MST and converges in a couple of iterations (as long as PRR values remain unchanged).
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(b) According to Figure 6.3.1 nodes update their ETX as following

ETX[1] = 0

node 3:

ETX[3] = min

{

1

0.9
, 1 + ETX[2]

}

= min{1.1,∞} = 1.1, P3 = {1}.

node 2:

ETX[2] = min

{

1

0.8
, 1 + ETX[3]

}

= min{1.25, 2.1} = 1.25, P2 = {1}.

Note that here we assumed node 2 receives the ETX[3] before computing its value.

node 4:

ETX[4] = min

{

1

0.5
+ ETX[3],

1

0.6
+ ETX[5],

1

0.7
+ ETX[6]

}

= min{3.1, ∞, ∞} = 3.1, P4 = {3}.

node 5:

ETX[5] = min

{

1

0.8
+ ETX[2],

1

0.6
+ ETX[4],

1

0.5
+ ETX[6]

}

= min{2.5, 4.77, ∞} = 2.5, P5 = {2}.

node 6:

ETX[6] = min

{

1

0.7
+ ETX[4],

1

0.5
+ ETX[5]

}

= min{4.53, 4.5} = 3.5, P6 = {5}.

in next iteration all the ETX values will remain unchanged and the algorithm converges. The set ofP ’s
builds the topology.

SOLUTION 6.4

Anycast routing in WSNs

(a) We calculate the new ETX metric fors and a given ordered set of parentsPs = {1 . . . n}. The
probability of success in this structure is given by

Psuccess= 1−
∏

i∈Ps

(1− pi).

Hence, the average number of TX to reach one hop neighborhoodis given by ETX1[s] = 1/Psuccess.
The second part corresponds to the average cost to reach the destination. This average is given by

ETX2[s] =
∑

i∈Ps

Pr(i is forwader|success at first hop)ETX[i]

where

Pr(i is forwader|success at first hop) =
pi
∏i−1

j=1(1− pj)

Psuccess
,

which is the probability that nodei receives successfully froms and all the parents prior thani, i.e.,
1, . . . i− 1 fail. Remember we condition this probability that at least one of the parents receives success-
fully. In total, ETX[s] for a given ordered set of parentsPs = {1 . . . n} is as following

ETX[s] = ETX1[s] + ETX2[s].
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(b) ETX with one parent (traditional ETX) for the example is ETX[s] = 1/0.5 + 2 = 4 and Ps = {1}.
For the case of multi-parents, ETX[s]{1,2,3} = 3.66.

(c) To find optimal parent set, one needs to calculate ETX for all subsets of neighbors (here 7 subsets) as
the parent set. But there is a useful result: the optimal parent set is an ordered set of parents where the
neighbors are sorted based on the increasing order of their ETX. So for this example this set can be either
{1} or {1, 2}, or {1,2,3}. If we calculate the ETX based on section (a) withdifferent parent sets as input
we will get ETX[s]{1} = 4, ETX[s]{1,2} = 3.5, ETX[s]{1,2,3} = 3.66. So the optimal ETX[s]=3.5 with
parent setP⋆

s = {1, 2}.

SOLUTION 6.6

Spanning Tree

(a) There are 3 spanning trees with node 1 as the root.

 

Figure 6.6.1: N=4, A=3.

(b) There are 5 spanning trees with node 1 as the root.

 

Figure 6.6.2: N=5, A=4. The following relation holds:N = A+ 1.

SOLUTION 6.6

Directed diffusionFirst compute the probability of choosing particular pathsfor data exiting a node.
The probability of transmission taking place on each branchis listed in the Figure 6.6.2. Therefore the

likelihood of transmission flowing through B and C are 241/1344 and 1103/1344 respectively. Notice that there
is bi-directional flow of packets along one link, and here onemust invoke the rule against back-tracking to
compute the output flows for the two nodes it connects.
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Figure 6.6.1: The probability of choosing a particular pathfor data exiting a node

7 Detection

SOLUTION 7.1

Binary choice in Gaussian noise. The decision thresholdγ is chosen under the MAP criterion so thatPr(z|H1) =
Pr(z|H0), i.e., equal error probabilities result. Due to the equal prior probabilities, this is also the ML thresh-
old. The threshold is obviouslyk/2 due to the symmetry of Gaussian distribution, with the errorprobability
being the area of the tail past the threshold. In this case it is

∫ ∞

k/2

1

σ
√
2π

e−x2/2σ2
dx = Q

(

k

2σ

)

.

Notice that what determines the error probability is the ratio of the voltage difference between the two hypoth-
esis to the expected noise amplitude, and not the absolute voltage levels.

SOLUTION 7.2

Binary hypothesis test and SNR. The power of the hypothesized noise as a function of the thresholdγ is

E[n2(γ)] = (−k)2 Pr(D1|H0) + (k)2 Pr(D0|H1) =
k2

2

[∫ ∞

γ

1

σ
√
2π

e
−x2

2σ2 dx+

∫ γ

−∞

1

σ
√
2π

e
−(x−k)2

2σ2 dx

]

.

The SNR maximum occurs when we let theE[n2(γ)] minimum, whiledE[n2(γ)]/dγ = 0. Thus,

dE[n2(γ)]/dγ =
k2

2

(

− 1

σ
√
2π

e
−γ2

2σ2 +
1

σ
√
2π

e
−(γ−k)2

2σ2

)

:= 0 ,

γ =
k

2
.

Furthermore, we should check whetherd2E[n2(γ)]/dγ2 > 0, whenγ = k/2, to guarantee it is the minimum.
The derivatived2E[n2(γ)]/dγ2 can be obtained by

d2E[n2(γ)]/dγ2 =
k2

2

[

1

σ
√
2π

(

k

σ2
e−

−(γ−k)2

2σ2 − γ

σ2
e−

−(γ−k)2

2σ2 +
γ

σ2
e−

−γ2

2σ2

)]

.

Thus, whenγ = k/2, d2E[n2(γ)]/dγ2 > 0.

71



A

C

B

D1/2 

1/2 

1/8 

3/8 

1/4 

1/4 

1/4 

1/24 

1/24 

1/24 

1/24 

129/1344 

129/1344 

1/168 

5/32 

1103/1344 

241/1344 

319/672 

Figure 6.6.2: Probability of transmission for each branch

SOLUTION 7.3

MAP and the LRTThe MAP decision rule is based on ifPr(s1|z) > Pr(s0|z) . This criterion can be rewritten
as

Pr(s1, z)

Pr(z)
>

Pr(s0, z)

Pr(z)
.

SincePr(z) shows up on both sides, it can be discarded. It can expressed as

Pr(z|s1) Pr(s1) > Pr(z|s0) Pr(s0) .

This is equivalent to the likelihood ratio test

Pr(z|s1)
Pr(z|s0)

>
Pr(s0)

Pr(s1)
.

SOLUTION 7.4

Binary decisions with unequal a priori probabilitiesThe likelihood ratio test is

exp
(

−(z−k)2

2σ2

)

exp
(

−z2

2σ2

) >
1

2

exp

( −1

2σ2
(−2kz + k2)

)

> 2

z >
2σ2 ln 2− k2

−2k

The threshold is thus

γ =
2σ2 ln 2− k2

−2k
.
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SOLUTION 7.5

Since the signal and noise are independent, the results can be obtained as

A =
1

N

N−1
∑

k=0

s2k ,

while ē is

ē =
1

N

N−1
∑

k=0

skek ,

in which ek ∼ N (0, σ2). Thusē ∼ N (0, σ2/N).

SOLUTION 7.6

The probability can be obtained asPr(|sk| = t|yk /∈ [−3σ, 3σ]), which can be obtained as

Pr(|sk| = t|yk /∈ [−3σ, 3σ]) =
Pr(|sk| = t, yk /∈ [−3σ, 3σ])

Pr(yk /∈ [−3σ, 3σ])
,

where
Pr(|sk| = t, yk /∈ [−3σ, 3σ]) = ptQ(0) ,

and

Pr(yk /∈ [−3σ, 3σ]) =Pr(|sk| = t, yk /∈ [−3σ, 3σ]) + Pr(|sk| = 0, yk /∈ [−3σ, 3σ])

=ptQ(0) + 2p0Q(3) ,

in whichQ(·) isQ function of the normal distribution.

SOLUTION 7.7

Optimal Data Fusion in Multiple Sensor Detection Systems

1. We have

Pr(H1|u) =
Pr(H1,u)

Pr(u)
=

P1

Pr(u)

∏

S+

Pr(ui = +1|H1)
∏

S−

Pr(ui = −1|H1)

=
P1

Pr(u)

∏

S+

(1− PMi)
∏

S−

PMi .

In a similar manner,

Pr(H0|u) =
P0

Pr(u)

∏

S+

(1− PFi)
∏

S−

PFi .

Thus, we have that

log
Pr(H1|u)
Pr(H0|u)

= log
P1

P0
+
∑

S+

log
1− PMi

PFi

+
∑

S−

log
PMi

1− PFi

.
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2. In this case, using Bayes rule to express the conditional probabilities, we can obtain the log-likelihood
ratio test as

log
Pr(H1|u)
Pr(H0|u)

H1

≷
H0

0 .

Therefore using the result obtained in previous subproblem, the data fusion rule is expressed as

f(u1, . . . , un) =

{

1 if a0 +
∑n

i=1 aiui > 0
−1 otherwise

where the optimum weights are given by

a0 = log
P1

P0

ai =







log
1−PMi
PFi

ifui = +1

log
1−PFi
PMi

ifui = −1

SOLUTION 7.8

Counting RuleAt the fusion center level, the probability of false alarmPF is

PF =

∞
∑

N=T

Pr(N) Pr(Λ ≥ T |N,H0) ,

where

Pr(Λ ≥ T |N,H0) =
N
∑

i=T

(

i

N

)

P i
f (1− Pf )

N−i .

WhenN is large enough,Pr(Λ ≥ T |N,H0) can be obtained by using Laplace-De Moivre approximation:

Pr(Λ ≥ T |N,H0) ≈ Q

(

T −NPf
√

NPf (1− Pf )

)

.

Similarly, the probability of detectionPD is

PD =

∞
∑

N=T

Pr(N) Pr(Λ ≥ T |N,H1) ,

where

Pr(Λ ≥ T |N,H1) =

N
∑

i=T

(

i

N

)

P i
d(1− Pd)

N−i

Pd = 1− Pf − Pm .

SOLUTION 7.9
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Matched filter and SNRAssume the received signalr(t) consists of the signals(t) and AWGNn(t) which has
zero-mean and power spectral density1/2N0 W/Hz. Suppose the signal is passed through a filter with impulse
responseh(t), 0 ≤ t ≤ T , and its output is sampled at timet = T . The filter response to the signal and noise
components is

y(t) =

∫ t

0
r (τ) h(t− τ)dτ =

∫ t

0
s (τ) h(t− τ)dτ +

∫ t

0
n (τ) h(t− τ)dτ .

At the sampling instantt = T , the signal and noise components are

y(T ) =

∫ T

0
s(τ)h(t − τ)dτ +

∫ T

0
n(τ)h(t− τ)dτ = ys(T ) + yn(T )) ,

whereys(T ) represents the signal component andyn(t) the noise component. The problem is to select the filter
impulse response that maximizes the output signal-to-noise ratio defined as

SNR0 =
y2s(T )

E[y2n(T )]
.

The denominator is simply the variance of the noise term at the output of the filter.

E[y2n(T )] =

∫ T

0

∫ T

0
E[n(τ)n(t)]h(T − τ)h(T − t)dtdτ = 1

2N0

∫ T

0
h2(T − t)dt .

By substituting forys(T ) andE[y2n(T )] into SNR0 , we obtain

SNR0 =

[

∫ T
0 s(τ)h(T − τ)dτ

]2

1
2N0

∫ T
0 h2(T − t)dt

=

[

∫ T
0 h(τ)s(T − τ)dτ

]2

1
2N0

∫ T
0 h2(T − t)dt

.

Since the denominator of the SNR depends on the energy inh(t), the maximum output SNR overh(t) is
obtained by maximizing the numerator subject to the constraint that the denominator is held constant. The
maximization of the numerator is most easily performed by use of the Cauchy-Schwarz inequality

[
∫ ∞

−∞
g1(t)g2(t)dt

]2

≤
∫ ∞

−∞
g21(t)dt

∫ ∞

−∞
g22(t)dt ,

with equality wheng1(t) = Cg2(t) for any arbitrary constantC. If we setg1(t) = h(t) andg2(t) = s(T − t) ,
it is clear that the SNR is maximized whenh(t) = Cs(T − t) . The scale factorC2 drops out of the expression
for the SNR. The maximum output SNR obtained with the matchedfilter is

SNR0 =
2
N0

∫ T

0
s2(t)dt = 2E/N0 .

SOLUTION 7.10

Binary hypothesis testing and mutual informationThe mutual information between the source signals X and
the decision set Y is

I(X;Y ) = H(X) −H(X|Y ) ,

whereH(X) = log 2. We denoteP1 = Pr(D1|H1) andP0 = Pr(D0|H0) . ThenH(X|Y ) can be expressed
as

−1

2

[

P0 log
P0

P0 + 1− P1
+ (1− P1) log

1− P1

P0 + 1− P1
+ P1 log

P1

P1 + 1− P0
+ (1− P0) log

1− P0

P1 + 1− P0

]

.
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Figure 7.10.1: mutual information for differentγ.

The values ofP1 andP2 are evaluated as

P1 =

∫ ∞

γ

1√
2π

e−
(x−1)2

2 dx .

P0 =

∫ γ

−∞

1√
2π

e−
x2

2 dx .

The values of mutual information are plotted in Figure 7.10.1. It is obvious the maximal mutual information
occurs when the threshold is equal to 0.5.
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8 Estimation

SOLUTION 8.1

If one observesY as a vector of random variables which is a function of random variableX, then a proposition
shows that the best linear estimator ofX to minimize the MMSE is the conditional expectation ofE (X|Y =
y). In general, we can only use this proposition. But if there are other assumptions aboutX,Y such as (X,Y
has Gaussian distribution orX has zero mean and etc.) we can go further and prove other propositions to
achieve the best estimator ofX.

SOLUTION 8.2

MMSE estimator
consider the estimator of sensor fusion of the form

p−1x̂ =

n
∑

i=1

p−1
i x̂i ,

p−1
i x̂i = HiR

−1
vi yi .

Note thatvi’s matrices are uncorrelated and consequently they are block diagonal. Also, consider the assump-
tion for which eachHi is a row of theH matrix, it is evident that above iteration on each stepi at the whole
performs a matrix multiply between the matricesH andR−1

v and vectory which its component are each sen-
sor’s measurement (

∑n
i=1 p

−1
i x̂i = HR−1

v y).
For the estimate of the error covariance, noting thatRX is diagonal and consisting of different values of

RXii as the covariance of nodei, we can obtain the same result as MMSE estimator (the estimator calculates
the same value with regard to the assumptions). From a computational point of view, in both cases the output
is the same, but the computation effort is not comparable. Inthe first case, the computation of the matrix
operation takesO(n2) operation while the order of the second one isO(n), wheren is the number of nodes
in the network. For the first case, computing the multiplication between the matricesHn×n, R−1

v (n × n) and
yn×1 needsn2 + n multiplications as well asn2 − 1 additions. But for the second case, by considering the
diagonal matrices, many of these operations can be omitted.Considering summation over the sensor values
at the sink, we have2n multiplications andn additions. Here much savings can be done especially when the
number of nodes (n) is large. From an implementation point of view, this schemeis useful because it pushes
the complexity of computation to the sink (central node) towards the sensors by putting some computation
effort to each sensor node. It is more considerable when we note that in order to implement this estimator at a
sink node, each node must send its local values to the sink directly or via some relay nodes, which has a large
communication cost (overhead) for the network.

SOLUTION 8.3

Mean square (MS) estimationLet

ε = E [(x− x̂)2] =

∫ ∞

−∞
(x− x̂)2fX(x)dx

be the MSE. To find the estimator that minimize the MSE, we takethe first and the second derivatives

∂ε

∂x̂
= −2

∫ ∞

−∞
(x− x̂)fX(x)dx = 0 ,

∂ε

∂x̂
=

∫ ∞

−∞
fX(x)dx = 2 > 0 .
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But
∫ ∞

−∞
xfX(x)dx = µx = mean of x ,

∫ ∞

−∞
x̂fX(x)dx = x̂ .

Thus, the optimal estimate is
x̂ = µx .

SOLUTION 8.4

Distributed MMSE estimatorConsideringy = Hθ + v, H ∈ R
nm×m is a known matrix andv ∈ R

m×1 is a
noise vector with zero mean with independent components having PDFN(0, Rv), under these conditions the
joint PDF ofv due to independence of its components can be written as:

p(v) =

n
∏

i=1

(2π)−
m
2 det(Rvi)

− 1
2 exp

(

−1

2
vTi R

−1
vi vi

)

.

Take the natural log and replacev with y −Hθ. Now we can write above equation in matrix form as follows:

ln p(y|θ) =
n
∑

i=1

(

−m

2
ln 2π − 1

2
ln det(Rvi)

)

− 1

2
(y −Hθ)TR−1

v (y −Hθ) .

The MLE ofθ is found by minimizing

j(θ) =
1

2
(y −Hθ)TR−1

v (y −Hθ) ,

since this is a quadratic function of the elements ofθ andR−1
v is a positive definite matrix, differentiation will

produce the global minimum. Now we have:

∂j(θ)

∂θ
= −HTR−1

v (y −Hθ) .

By setting this equation equal by zero, we can findθ̂ as follows:

HTR−1
v (y −Hθ̂) = 0 ,

HTR−1
v y −HTR−1

v Hθ̂ = 0 ,

θ̂ = (HTR−1
v H)−1HTR−1

v y .

However, all thevi’s are uncorrelated with each other. HenceRv is a block diagonal matrix with blocksRvi .
Thus, above equation can be decomposed as

θ̂ = (HTR−1
v H)−1HTR−1

v y =

(

n
∑

i=1

HT
i R

−1
vi Hi

)−1 n
∑

i=1

HT
i R

−1
vi yi .

On the other hand, to computeRθ̂ we have

Rθ̂ = var
(

(HTR−1
v H)−1HTR−1

v y
)

.
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For a constant vectora and random variableX we havevar(aX) = avar(X)aT. Here, the random variable is
Y which has the distribution ofN(Hθ,Rv) so we can calculate error covariance as

Rθ̂ =
(

(HTR−1
v H)−1HTR−1

v

)

Rv

(

(HTR−1
v H)−1HTR−1

v

)T
,

Rθ̂ =
(

(HTR−1
v H)−1HTR−1

v

)

RvR
−1
v H(HTR−1

v H)−1 ,

Rθ̂ = (HTR−1
v H)−1 .

SOLUTION 8.5

Cramér-Rao boundThe probability of one observation is

pX(x|θ) = 1√
2πσ2

exp

(

−(x− θ)2

2σ2

)

Take the natural log and the second derivative, we get

ln pX(x|θ) = −1
2 ln(2π) − lnσ − (x− θ)2

2σ2
,

∂2 ln pX(x|θ)
∂θ2

= − 1

σ2
.

With n observations, we have

∂2 ln p(x1, x2, ..., xn|θ)
∂θ2

=
∂2
∑n

i=1 ln pX(xi|θ)
∂θ2

= − n

σ2

Therefore, the bound is
{

−E[−n/σ2]
}−1

, which isσ2/n . On the other hand, the variance of

x1 + x2 + ...+ xn
n

is σ2/n, which is identical to the Cramér-Rao bound bound. In other words, it is an efficient estimator.

SOLUTION 8.6

ML estimates of mean and variance of Gaussian random variables The probability is

f(x1, x2, ..., xn; θ1, θ2) =
1

θn2 (2π)
n/2

e
− 1

2θ22

n
∑

i=1
(xi−θ1)

2

.

First, we take the natural log of the probability

ln f(x1, x2, ..., xn; θ1, θ2) = −n

2
ln 2π − n ln θ2 −

1

2θ22

n
∑

i=1

(xi − θ1)
2 .

To find the ML estimate ofθ1 , we take the first and second derivatives of the function withrespect toθ1

∂ ln f(x1,x2,...,xn;θ1,θ2)
∂θ1

= 1
θ22

n
∑

i=1
(xi − θ1) = 0

∂2 ln f(x1,x2,...,xn;θ1,θ2)

∂θ1
2 = − n

θ22
< 0 .
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Thus, the ML estimate ofθ1 is

θ̂1 =

n
∑

i=1
xi

n
= µ̂ .

Similarly, we take the derivatives with respect toθ2

∂ ln f(x1,x2,...,xn;θ1,θ2)
∂θ2

= − n
θ2

+

n
∑

i=1
(xi−θ1)

2

θ32
= 0

∂2 ln f(x1,x2,...,xn;θ1,θ2)

∂θ2
2 = n

θ22
−

3
n
∑

i=1
(xi−θ1)

2

θ42
.

The ML estimate ofθ2 is

θ̂2 =









n
∑

i=1
(xi − µ̂)2

n









1/2

= σ̂ .

We also have to make sure the second derivative is less than0. When the first derivatives w.r.tθ1 andθ2 are
zero. The second derivative w.r.t.θ2 is

∂2 ln f(x1, x2, ..., xn; θ1, θ2)

∂θ2
2 =

n

σ̂2
− 3nσ̂2

σ̂4
= −2n

σ̂2
< 0 .

SOLUTION 8.7

Distributed detection/estimation

(a) From the problem, we can get

Pr(mk = 1) =

∫ 1

−θ
p(v)dv =

1

2
(1 + θ)

Pr(mk = 0) =

∫ −θ

−1
p(v)dv =

1

2
(1− θ) .

Then

E(mk) =
1

2
(1 + θ)

E(mk −E(mk))
2 =

1

4
(1− θ2)

(b) From the previous results, we can obtain

E(mk −E(mk))
2 =

1

4
(1− θ2) ≤ 1

4

(c) Based on the results from (a) and the given fusion function, we can have

E(θ̂) =
2

N

N
∑

k=1

E(mk)− 1 =
2

N

N
∑

k=1

1

2
(1 + θ)− 1 = θ ,
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whereas

E(θ̂ − θ)2 = E

((

2

N

N
∑

k=1

mk − 1

)

− θ

)2

=
4

N2
E

(

N
∑

k=1

mk −
N
∑

k=1

1

2
(1 + θ)

)2

=
4

N2
E

(

N
∑

k=1

(mk −E(mk))

)2

.

Sincemk’s are independent, we calculate the previous equation as

4

N2
E

(

N
∑

k=1

(mk −E(mk))

)2

=
4

N2

N
∑

k=1

E(mk −E(mk))
2 =

1

N
(1− θ)2 ≤ 1

N

(d) Based on the results above, we need more than1/ǫ nodes to satisfy the variance bound.

SOLUTION 8.8

Distributed detection, MAC, and routing

(a) Letx be the measured signal, which is given by the source’s transmitted signal plus the measurement
noise. Denote the false alarm asPr(x < 0,D = H0), and miss detection asPr(x > 0,D = H1), where
x is the signal andD is the decision made by per every node. For the false alarm, wehave

Pr(x < 0,D = H0) =Pr(x < 0)Pr(D = H0|x < 0) =
1

2

∫ 0

−∞

∫ ∞

−x

1

σn
e
− y2

2(σ2
n+σ2

S
)dydx .

Similarly, we have

Pr(x > 0,D = H1) =Pr(x > 0)Pr(D = H1|x > 0) =
1

2

∫ ∞

0

∫ −x

−∞

1

σn
e
− y2

2(σ2
n+σ2

S
)dydx .

(b) Let ri be the distance from the source to a node, and letS be the signal power. Then for node 1 to be
involved in a decision rather than some other node one must have

S

10r21
>

S

r2i
⇒ ri

r1
>

√
10

For reasons of symmetry, we need only consider one of the nodes 2-6 with node1 as the origin. Without
loss of generality, let the source at position(x, y) and consider the equal SNR respecting to node 3. Then
we have

r23
r21

=
(x− d)2 + y2

x2 + y2
= 10 ⇒ (x+ 1

9d)
2

(
√
10
9 d)2

+
y2

(
√
10
9 d)2

= 1 ,

which is an ellipse with center in(−d/9, 0) havingx- andy-axis radius(d
√
10/9, d

√
10/9) shown as

the curve of E1 in Fig. 8.8.1. The regions over which node 1 is better than node 2,3 and 5.6 are shown in
Fig. 8.8.1 as E1,E2 and E3,E4 respectively. Thus when the source in the shadowed region in Fig. 8.8.1,
node 1 is among the two best nodes.
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Figure 8.8.1: The region over which node 1 is better than others.

(c) The alternate route will be selected if the expected number of transmissions into and out of the malfunc-
tioning node is2 or greater. Let the packet dropping probability bep. The last successful transmission
will have probability(1− p). Then the expected number of transmissions is

1(1 − p) + 2p(1− p) + 3p2(1− p) + · · · = 2

Solving above equality we have
∑∞

i=0(i+ 1)pi(1− p) = 1/(1 − p) = 2 and hence,p = 0.5.

(d) The probability of requiring less than or equal to3 transmissions is

(1− p) + p(1− p) + p2(1− p) = 0.99

This is a cubic inp and can be solved in any number of ways. A probability of0.2 is close. Thus the
delay requirement leads more quickly to choice of alternative paths in this example.

SOLUTION 8.9

Unknown mean in Gaussian noiseThe sample average as a mean estimator is unbiased with variance,

θ̂ =
1

N

N
∑

k=1

yk ,

E[θ̂] = θ ,

Var(θ̂) =
σ2

N
.

Furthermore, the second derivative of the log likelihood function does not include any stochastic terms, so the
CRLB follows as

p(y1:N |θ) = 1

(2πσ2)N/2
e

−1
2σ2

∑

(yk−θ)2 ,

d2 log p(y1:N |θ)
dθ2

=
N

σ2
,

Var(θ̂) ≥ σ2

N
.
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That is, the sample average is the minimum variance estimator and thus a consistent estimator. Further, the
variance is equal to the CRLB, so it is also efficient.

SOLUTION 8.10

Moments method
We have

µ1 =E(y) = 0 ,

µ2 =E(y2) = ασ2
1 + (1− α)σ2

2 ,

µ̂2 =
1

N

N
∑

k=1

y2k ,

α̂ =
µ̂2 − σ2

2

σ2
1 − σ2

2

.

In unknown variances case, we need more equations. Since allodd moments are zero at least the following
even moments are needed:

µ4 =E(y4) = 3ασ4
1 + 3(1− α)σ4

2 + α(1− α)σ2
1σ

2
2 ,

µ6 =E(y6) = 15ασ6
1 + 15(1 − α)σ6

2 + 3α(1 − α)σ4
1σ

2
2 + 3α(1 − α)σ2

1σ
2
2 .
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9 Positioning and Localization

SOLUTION 9.1

Timing Offset and GPS.

(a) Denote the unknown position as(x, y). (x, y) may be found by solving the following nonlinear system of
equations

(x− x1)
2 + (y − y1)

2 = r21 = 9

(x− x2)
2 + (y − y2)

2 = r22 = 16

(x− x3)
2 + (y − y3)

2 = r23 = 25

The solution is

x =

[

x21 − r21 x22 − r22 x23 − r23
]

·





(y3 − y2)
(y1 − y3)
(y2 − y1)



+ (y3 − y2)(y1 − y3)(y2 − y1)

x1(y3 − y2) + x2(y1 − y3) + x3(y2 − y1)
= 0;

y =

[

y21 − r21 y22 − r22 y23 − r23
]

·





(x3 − x2)
(x1 − x3)
(x2 − x1)



+ (x3 − x2)(x1 − x3)(x2 − x1)

y1(x3 − x2) + y2(x1 − x3) + y3(x2 − x1)
= 0.

(b) Notice that while pointsA andB’s measured ranges intersect at pointD, pointC ’s measured range cannot
go through that point. This discrepancy indicates that there is a measurement error. Since any measurement
error or offset has in this case been assumed to affect all measurements, we should look for a single correc-
tion factor that would allow all the measurements to intersect at one point. In our example, one discovers
that by subtracting0.5 meter from each measurement the ranges would all intersect at one point. After
finding that correction factor, the receiver can then apply the correction to all measurements.

SOLUTION 9.2

Linearizing GPS Equations. Expanding (9.2), we have























































(0− x1)
2 + (0− y1)

2 + (0− z1)
2 + 2

[

(0− x1) (0− y1) (0− z1)
]





x
y
z



 = d21

(0− x2)
2 + (0− y2)

2 + (0− z2)
2 + 2

[

(0− x2) (0− y2) (0− z2)
]





x
y
z



 = d22

(0− x3)
2 + (0− y3)

2 + (0− z3)
2 + 2

[

(0− x3) (0− y3) (0− z3)
]





x
y
z



 = d23

or






















































x21 + y21 + z21 − d21 = 2
[

x1 y1 z1
]





x
y
z





x22 + y22 + z22 − d22 = 2
[

x2 y2 z2
]





x
y
z





x23 + y23 + z23 − d23 = 2
[

x3 y3 z3
]





x
y
z




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which can be reorganized into

2





x1 y1 z1
x2 y2 z2
x3 y3 y3









x
y
z



 =





x21 + y21 + z21 − d21
x22 + y22 + z22 − d22
x23 + y23 + z23 − d23



 .

SOLUTION 9.3

Averaging to reduce error in TOA

(a) The relationship between time of arrivalt and ranger is r = ct. Therefore, the mean of the range is
r̄ = c · t̄, and the variance of the range isδr = c2 · δt.

(b) Again,r(n) = ct(n), n = 1, 2, 3 . . . . Therefore, the estimated range based on the multiple measurements
of time of arrival is

r̂ = lim
N→∞

1

N

N
∑

n=1

r(n) = lim
N→∞

1

N

N
∑

n=1

c · t(n) = lim
N→∞

1

N

N
∑

n=1

c · (t̄+m(n))

= lim
N→∞

c · t̄+ c · 1

N

N
∑

n=1

m(n) = c · t̄.

SOLUTION 9.4

Weighted centroid computationThe weighted centroid of the three known locations is

r̄ =
1

1.2 + 1.5 + 1.7
(1.2a + 1.5b+ 1.7c) = (0.22,0.32).

SOLUTION 9.5

Collaborative multilaterationClearlyu0 = (0, 1) andv0 = (0,−1). The squared distances fromU to nodes
A, C, andV are respectively0.5, 2.5, and2, while the squared distances fromV to B, D, andU are2.5, 0.5,
and2. Then for the first calculation we haverA = rB = 1 andrv = 2 so that

A =





1 0
−1 0
0 −1



 , z =





1−
√
0.5

1−
√
2.5

2−
√
2



 .

resulting in the systemATAdu = AT z :
[

2 0
0 1

] [

δxu
δyu

]

=

[

0.8740
−0.5859

]

,

which givesu1 = (0 + 0.437, 1 − 0.5859) = (0.437, 0.414). In the next set,rC = rD = 1, rU = 1.48, so that

A =





1 0
−1 0

0.295 0.995



 , z =





1−
√
2.5

1−
√
0.5

1.48−
√
2



 .

The result isv1 = (0−0.437,−1+0.196) = (−0.464,−0.804). Iterations can continue now foru2 usingA, B,
andn1 and so forth. Successive iterations produce results closerto the true ones. In general, for collaborative
multilateration to converge a variety of constraints on thetopology must be satisfied, and the order of the
computations is important. However, if there is a relatively high density of nodes with known position these
constraints are almost always satisfied without explicit checking being required; bad positions can be discarded
through recognition that the values are diverging in some neighborhood.
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SOLUTION 9.6

Linearization of angle of arrival (AOA) location determination Fromr0 = [ 0 0 ]T , r1 = [ −3 4 ]T , r2 =
[ 4 3 ]T , we have

sin θ01 =
4
5 , cos θ01 = −3

5 , d01 = 5,
sin θ02 =

3
5 , cos θ02 =

4
5 , d02 = 5,

f1(r0) = arctan(−4
3 ) = −0.9273,

f2(r0) = arctan(34 ) = 0.6435,

and

G =

[

(y0 − y1)/d
2
01 −(x0 − x1)/d

2
01

(y0 − y2)/d
2
02 −(x0 − x2)/d

2
02

]

=

[

− 4
25 − 3

25
− 3

25
4
25

]

.

According to (9.6), the estimate of the unknown position is

r̂ = r0 +G−1N−1

[

θ1 − f1(r0)
θ2 − f2(r0)

]

=

[

0
0

]

+

[

− 4
25 − 3

25
− 3

25
4
25

]−1 [
0.7854 + 0.9273
2.3562 − 0.6435

]

=

[

2.5641
10.8537

]

.

It can be seen that here the linearization error is large. In practice, a series of iterations would need to be
performed.
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10 Time Synchronization

SOLUTION 10.1

TOA with low-cost clocksDenote the satellite positions by(Xi, Yi, Zi), i = 1, 2, 3, 4. The user’s unknown
position is(Ux, Uy, Uz). With four range measurements, the nonlinear system of equations for positioning is















(X1 − Ux)
2 + (Y1 − Uy)

2 + (Z1 − Uz)
2 = c2(t1 −∆t)2

(X2 − Ux)
2 + (Y2 − Uy)

2 + (Z2 − Uz)
2 = c2(t2 −∆t)2

(X3 − Ux)
2 + (Y3 − Uy)

2 + (Z3 − Uz)
2 = c2(t3 −∆t)2

(X4 − Ux)
2 + (Y4 − Uy)

2 + (Z4 − Uz)
2 = c2(t4 −∆t)2

wherec is the speed of light, are respectively the true time of arrival from the four satellites.ti, i = 1, 2, 3, 4,
is the unknown clock drift in the receiver. Since we have fourequations, the four unknown parameters can be
found by solving the above system of equations. In practice,this is done with a linearized form of the problem.

SOLUTION 10.2

Time difference of arrival (TDOA) in a two-dimensional space

(a) according to lecture notes,w = A+b and we have

s21 = x2t + y2t ,
r22 = x22 + y22 = 2,
r23 = x23 + y23 = 1,
r24 = x24 + y24 = 10,
r25 = x25 + y25 = 17,

and

A =









x2 y2 −t12 t212/2
x3 y3 −t13 t213/2
x4 y4 −t14 t214/2
x5 y5 −t15 t215/2









=









−1 −1 1.4 1.42/2
0 1 −0.4 0.42/2
3 1 1.6 1.62/2
1 4 2.6 2.62/2









,

w =









xt
yt
vs1
v2









, b = 1/2









r22
r23
r24
r25









= 1/2









2
1
10
17









.

The least squares solution is then

w = (ATA)−1AT b =









0.8750
−0.1250
−0.9375
3.1250









.

Therefore, the unknown position is

[

xt
yt

]

=

[

0.8750
−0.1250

]

.

(b) According to lecture notes,

A =









x2 y2 −t12
x3 y3 −t13
x4 y4 −t14
x5 y5 −t15









=









−1 −1 1.4
0 1 −0.4
3 1 1.6
1 4 2.6









,
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w =





xt
yt
vs1



 , b = 1/2









r22
r23
r24
r25









= 1/2









2
1
10
17









,

d = −1/2









t212
t213
t214
t215









= −1/2









1.42

0.42

1.62

2.62









,

p =









p1
p2
p3
p4









= (ATA)−1AT b,

q =









q1
q2
q3
q4









= (ATA)−1ATd,

w =





xt
yt
vs1



 = p+ v2q =





0.8905
−0.1645
−1.0328





SOLUTION 10.3

TDOA in a three-dimensional space

(a) according to lecture notes,w = A+b and we have

s21 = x2t + y2t + z2t ,
r22 = x22 + y22 + z22 = 9,
r23 = x23 + y23 + z23 = 36,
r24 = x24 + y24 + z24 = 25,
r25 = x25 + y25 + z25 = 25,
r26 = x26 + y26 + z26 = 64.

and

A =













x2 y2 z2 −t12 t212/2
x3 y3 z3 −t13 t213/2
x4 y4 z4 −t14 t214/2
x5 y5 z5 −t15 t215/2
x6 y6 z6 −t16 t216/2













=













−

0 3 0 0 0
6 0 0 −1 1/2
3 4 0 −0.7 0.72/2
−4 −3 0 −0.7 0.72/2
0 0 −8 −1.7 1.72/2













,

w =













xt
yt
zt
vs1
v2













, b = 1/2













r22
r23
r24
r25
r26













= 1/2













9
36
25
25
64













.

The least squares solution is then

w = (ATA)−1AT b =













−1.5000
1.5000
7.3333
10.6190
75.2381













.
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Therefore, the unknown position is




xt
yt
zt



 =





−1.5000
1.5000
7.3333



 .

(b) According to lecture notes,

A =













x2 y2 z2 −t12
x3 y3 z3 −t13
x4 y4 z4 −t14
x5 y5 z5 −t15
x6 y6 z6 −t16













=













0 3 0 0
6 0 0 −1
3 4 0 −0.7
−4 −3 0 −0.7
0 0 8 −1.7













,

w =









xt
yt
zt
vs1









, b = 1/2













r22
r23
r24
r25
r26













= 1/2













9
36
25
25
64













,

d = −1/2













t212
t213
t214
t215
t216













= −1/2













0
1

0.72

0.72

1.72













,

p =









p1
p2
p3
p4









= (ATA)−1AT b,

q =









q1
q2
q3
q4









= (ATA)−1ATd,

w =









xt
yt
zt
vs1









= p+ v2q =









−1.5000
1.5000
7.3333
10.6190









.

Therefore, the unknown position is




xt
yt
zt



 =





−1.5000
1.5000
7.3333



 .

SOLUTION 10.4

Ex.9.3 in [3]
Comparing the two clocks, the clock offset is the differencein time between the two clocks. In this example,

the current clock offset is100. The clock rate indicates the frequency at which a clock progresses, i.e., node
A’s clock has a clock rate of1.01 and node B’s clock has a clock rate of0.99. The clock skew indicates the
difference in the frequencies of the two clocks, which is0.02. Clock A is fast since its clock readings progress
faster than real time. Similarly, clock B is slow since its clock readings progress slower than real time.
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SOLUTION 10.5

Ex.9.4 in [3]
Each clock can deviate from real time by100 µs per second in the worst case,i.e. it takes up to10000 s

to reach an offset of1 s. However, since both clocks have a drift rate of100 ppm, the relative offset between
them can be twice as large as the offset between a single clockand the external reference clock. Therefore, the
necessary re-synchronization interval is5000 s.

SOLUTION 10.6

Ex.9.6 in [3]
Since the error can go either way, i.e., a clock can be faster or slower than the external reference time by

the amount of the error, the maximum precision is then the sumof the two largest errors, i.e.3 + 4 = 7.

SOLUTION 10.7

Ex.9.7 in [3]

1. If t1 = 3150, t2 = 3120, andt3 = 3250, then the offset can be calculated as

offset =
(t2 − t1)− (t3 − t2)

2
= −80 ,

That is, the two clocks differ by80 time units.

2. Node A’s clock is going too fast compared to node B’s clock.

3. One approach is to simply reset the clock by80 time units. However, this can lead to problems since
the clock repeats the last 80 time units, potentially triggering events in the node that have already been
triggered previously. Therefore, node A should slow down the progress of its clock until clock B had an
opportunity to catch up the 80 time units it lags behind node A’s clock.

SOLUTION 10.8

Ex.9.8 in [3]
As indicate in Figure 10.8.1, the times for the synchronization messages to travel between nodes can differ,

e.g., based on the distances between senders and receivers.Besides propagation delays, synchronization mes-
sages also experience send, access, and receive delays thatcan differ from node to node, affecting the measured
offsets.
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11 Networked Control Systems

SOLUTION 11.1

Matrix ExponentialThe exponential ofA, denote byeA or exp(A), is then × n matrix given by the power
series

eA =
∞
∑

k=0

1

k!
Ak .

The above series always converges, so the exponential ofA is well defined. Note that ifA is a1 × 1 matrix,
the matrix exponential ofA is a1× 1 matrix consisting of the ordinary exponential of the signalelement ofA.
Thus we have that

eA = I +A =

[

1 0
0 1

]

+

[

0 1
0 0

]

=

[

1 1
0 1

]

,

sinceA ∗ A = 0.
We can findeA via Laplace transform as well. As we know that the solution tothe system linear differential

equations given by
d

dt
y(t) = Ay(t) , y(0) = y0 ,

is
y(t) = eAty0 .

Using the Laplace transform, lettingY (s) = L{y}, and applying to the differential equation we get

sY (s)− y0 = AY (s) ⇒ (sI −A)Y (s) = y0 ,

whereI is the identity matrix. Therefore,

y(t) = L−1{(sI −A)−1}y0 .

Thus, it can be concluded that
eAt = L−1{(sI −A)−1} ,

from this we can findeA by settingt = 1. Thus we can have

eAt = L−1{(sI −A)−1} = L−1

{[

1
s

1
s2

0 1
s

]}

=

[

u(t) tu(t)
0 u(t)

]

.

We obtain the same result as before if we insertt = 1 into previous equation.

SOLUTION 11.2

StabilityThe eigenvalue equations for a matrixΦ is

Φv − λv = 0 ,

which is equivalent to
(Φ− λI)v = 0 ,

whereI is then × n identity matrix. It is a fundamental result of linear algebra that an equationMv = 0
has a non-zero solutionv if and only if the determinantdet(M) of the matrixM is zero. It follows that the
eigenvalues ofΦ are precisely the real numbersλ that satisfy the equation

det(Φ− λI) = 0 .
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The left-hand side of this equation can be seen to be a polynomial function of variableλ. The degree of this
polynomial isn, the order of the matrix. Its coefficients depend on the entries ofΦ, except that its term of
degreen is always(−1)nλn. For example, letΦ be the matrix

Φ =





2 0 0
0 3 4
0 4 9



 .

The characteristic polynomial ofΦ is

det(Φ− λI) = det









2 0 0
0 3 4
0 4 9



− λ





1 0 0
0 1 0
0 0 1







 = det





2− λ 0 0
0 3− λ 4
0 0 9− λ



 ,

which is
(2− λ)[(3 − λ)(9− λ)− 16] = 22− 35λ+ 14λ2 − λ3 .

The roots of this polynomial are 2, 1, and 11. Indeed these arethe only three eigenvalues ofΦ, corresponding
to the eigenvectors[1, 0, 0]′, [0, 2,−1]′, and[0, 1, 2]′.

Given the matrixΦ = diag([−1.01, 1,−0.99]), we plot following image, in which we can distinguish
stable, asymptotical stable and instable state.

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

Figure 11.2.1: The stability, asymptotical stability and instability.

SOLUTION 11.3

Modeling
The dynamic for the state vector using Cartesian velocity,(x, y, vx, vy, ω)

T , is given by:

ẋ = vx

ẏ = vy

v̇x = −ωvy

v̇y = ωvx

ω̇ = 0 .
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Secondly with state vector with polar velocity,(x, y, v, h, ω)T , the state dynamics become

ẋ = v cos(h)

ẏ = v sin(h)

v̇ = 0

ḣ = ω

ω̇ = 0 .

SOLUTION 11.4

Linearized Discretization
Consider the tracking example with(x, y, v, h, ω)T . The analytical solution is

x(t+ T ) = x(t) +
2v(t)

ω(t)
sin

(

ω(t)T

2

)

cos

(

h(t) +
ω(t)T

2

)

y(t+ T ) = y(t) +
2v(t)

ω(t)
sin

(

ω(t)T

2

)

sin

(

h(t) +
ω(t)T

2

)

v(t+ T ) = v(t)

h(t+ T ) = h(t) + ω(t)T

ω(t+ T ) = ω(t) .

The alternative state coordinates(x, y, vx, vy, ω)T give

x(t+ T ) = x(t) +
vx(t)

ω(t)
sin(ω(t)T )− vy(t)

ω(t)
(1− cos(ω(t)T ))

y(t+ T ) = y(t) +
vx(t)

ω(t)
(1− cos(ω(t)T )) +

vy(t)

ω(t)
sin(ω(t)T )

vx(t+ T ) = vx(t) cos(ω(t)T )− vy(t) sin(ω(t)T )

vy(t+ T ) = vx(t) sin(ω(t)T ) + vy(t) cos(ω(t)T )

ω(t+ T ) = ω(t) .

SOLUTION 11.5

Modeling of the Temperature Control

1. LetX(t) = [Ti(t), Tr(t)]
T andy(t) = Ti(t). The continuous time state space model can be obtained as

Ẋ(t) =

[

−α1 − α2 α1

0 −α3

]

+

[

0
α3

]

u

y(t) = [1, 0]X(t) .

2. In the discrete time domain, we need to find matricesΦ andΓ.

Φ =eAh

Γ =

∫ h

0
eAsdsB .

93



In this case, by using the result from previous subproblem, we can obtain that

Φ =L−1{(sI −A)−1} =

[

e−α1h−α2h α1(α1 + α2 − α3)(e
−α3h − e−α1h−α2h)

0 e−α3h

]

Γ =

∫ h

0
eAsdsB =

[

α1α3(e−α1h−α2h−1)
(α1+α2)(α1+α2−α3)

− α1(e−α3h)
α1+α2−α3

1− e−α3h

]

SOLUTION 11.6

PID Controller From the step response plot, we can find thatTG ≈ 4. Then the parameters of PID can be
obtained directly asKp = 6, Ki = 3 andKd = 3.

SOLUTION 11.7

Stability of Networked Control Systems with Network-induced DelayThe are two sources of delay in the net-
work, the sensor to controllerτsc and controller to actuatorτca. The the control low is fixed. Therefore, these
delays can be lumped together for analysis purposed:τ = τsc + τca.

Sinceτ < h, at most two controllers samples need be applied during the k-th sampling period:u((k−1)h)
andu(kh). The dynamical system can be rewritten as

ẋ(t) = Ax(t) +Bu(t), t ∈ [kh+ τ, (k + 1)h+ τ)

y(t) = Cx(t) ,

u(t+) = −Kx(t− τ), t ∈ {kh+ τ, k = 0, 1, 2, . . .}

whereu(t+) is a piecewise continuous and changes values only atkh+ τ . By sampling the system with period
h, we obtain

x((k + 1h)) = Φx(kh) + Γ0(τ)u(kh) + Γ1(τ)u((k − 1)h)

y(hk) = Cx(kh) ,

where

Φ = eAh ,

Γ0(τ)u(kh) =

∫ h−τ

0
eAsBds ,

Γ1(τ)u((k − 1)h) =

∫ h

h−τ
eAsBds .

Let z(kh) = [xT (kh), uT ((k − 1)h)]T be the augmented state vector, then the augmented closed loop
system is

z((k + 1)h) = Φ̃z(kh) ,

where

Φ̃ =

[

Φ− Γ0(τ)K Γ1(τ)
−K 0

]

.
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P

C

y

D

Figure 11.8.1: Closed loop system for Problem 11.3.

Given thatA = 0 andB = I, we have

Φ̃ =

[

1− hK + τK τ
−K 0

]

.

The characteristic polynomial of this matrix is

λ2 − (1−Kh+ τK)λ+ τK .

By recalling thath = 1/K, we definey = τ/h, so it follows that the characteristic polynomial is

λ2 − yλ+ y .

The solutionsλ1 andλ2 to such an equation are

λ1 =
y

2
+ j

1
√

4y − y2
,

λ2 =
y

2
− j

1
√

4y − y2
.

Since|λ| < 1, there is no other constraint forλ

SOLUTION 11.8

The control problem over wireless sensor network can be represented as shown Figure 11.8.1. The delay∆ is
such that

∆(y(kh)) = y(kh− d(k)) d(k) ∈ {0, . . . , N}
The closed loop system is stable if

∣

∣

∣

∣

P (eiω)C(eiω)

1 + P (eiω)C(eiω)

∣

∣

∣

∣

<
1

N |eiω − 1| ω ∈ [0, 2π]

whereN is the number of samples that the control signal is delayed. Notice that the previous result is valid if
the closed loop transfer function is stable. In this case theclosed loop transfer function is stable with poles

z1 = 0.861, z2 = 0.447.

If we plot the bode diagram of the closed loop system without delay versus the function1/(N |eiω − 1|) for
different values ofN we obtain the results shown in Figure 11.8.2. It can be seen that the closed loop system
is stable ifN ≤ 3. Thus the maximum delay is 3 samples. Notice that the result is only a sufficient condition.
This means that it might be possible that the system is stablefor larger delays than 3 samples.
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Figure 11.8.2: Bode diagram of the closed loop system of Problem 11.2 and the function1/(N |eiω − 1|) for
different values ofN .

SOLUTION 11.9

Stability of Networked Control Systems with Packet Losses
We use the following result to study the stability of the system:

Theorem 11.1. Consider the system given in Figure 11.9.1. Suppose that theclosed-loop system without packet
losses is stable. Then

• if the open-loop system is marginally stable, then the system is exponentially stable for all0 < r ≤ 1.

• if the open-loop system is unstable, then the system is exponentially stable for all

1

1− γ1/γ2
< r ≤ 1 ,

whereγ1 = log[λ2
max(Φ− ΓK)], γ2 = log[λ2

max(Φ)]

By sampling the system with periodh = 0.3 we obtain:

Φ =

[

1.3499 0.3045
0 0.7408

]

.

and

ΓK =

[

0.0907 0.0408
0.5184 0.2333

]

.

It follows that the closed loop system is stable (the matrixΦ − ΓK is stable), but the open loop system is not
stable (Φ has the maximum eigenvalue leger than 1). The second statement of the Theorem applies. We have
γ1 = −0.1011, andγ2 = 0.6001. It follows thatr ≥ 0.85, namely that the system can tolerate a packet loss of
up about15%.
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SOLUTION 11.10

Networked Control System

(a) Sinceτ < h, at most two controllers samples need be applied during the k-th sampling period:u((k −
1)h) andu(kh). The dynamical system can be rewritten as

ẋ(t) = Ax(t) +Bu(t), t ∈ [kh+ τ, (k + 1)h+ τ)

y(t) = Cx(t) ,

u(t+) = −Kx(t− τ), t ∈ {kh+ τ, k = 0, 1, 2, . . .}

whereu(t+) is a piecewise continuous and changes values only atkh+ τ . By sampling the system with
periodh, we obtain

x((k + 1)h) = Φx(kh) + Γ0(τ)u(kh) + Γ1(τ)u((k − 1)h)

y(hk) = Cx(kh) ,

where

Φ = eAh = eah ,

Γ0(τ) =

∫ h−τ

0
eAsBds =

1

a

(

ea(h−τ) − 1
)

,

Γ1(τ) =

∫ h

h−τ
eAsBds =

1

a

(

eah − ea(h−τ)
)

.

given thatA = a,B = 1, C = 1.

(b) Let z(kh) = [xT (kh), uT ((k − 1)h)]T be the augmented state vector, then the augmented closed loop
system is

z((k + 1)h) = Φ̃z(kh) ,

where

Φ̃ =

[

Φ− Γ0(τ)K Γ1(τ)
−K 0

]

.

Using the results obtained in (a), we can obtain

Φ̃ =

[

eah − 1
a

(

ea(h−τ) − 1
)

K 1
a

(

eah − ea(h−τ)
)

−K 0

]

.

(c) The characteristic polynomial of this matrix is

λ2 −
(

eah − 1

a

(

ea(h−τ) − 1
)

)

K +
K

a

(

eah − ea(h−τ)
)

.

Thus when themax |λ| > 1, the closed loop system becomes unstable.

(d) We use the following result to study the stability of the system:

Theorem 11.2. Consider the system given in Fig. 2. Suppose that the closed-loop system without packet
losses is stable. Then
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• if the open-loop system is marginally stable, then the system is exponentially stable for all0 < r ≤
1.

• if the open-loop system is unstable, then the system is exponentially stable for all

1

1− γ1/γ2
< r ≤ 1 ,

whereγ1 = log[λ2
max(Φ− ΓK)], γ2 = log[λ2

max(Φ)]

Here we have

Φ = eAh = eah ,

Γ =

∫ h

0
eAsBds =

1

a

(

eah − 1
)

.

Thus, the stability of this system depends on the values ofK,h, a. When the conditions are not satisfied,
we may choose differentK for controller or different sampling timeh for the system to make the system
stable.

SOLUTION 11.11

Energy-Efficient Control of NCS over IEEE 802.15.4 Networks
Practical-stability of each loop is ensured if the minimum inter-sampling time of the self-triggered sampler

is greater than the the minimum beacon interval fixed to15.36 × 2 = 30.72 ms. In other words, practical-
stability of each loop is ensured if

(i)
min
k

ti,k+1 − Ti,k ≥ BImin ,∀i = 1, 2, 3 .

The minimum inter-sampling time of the given self-triggered sampler, is attained by considering the peak value
of the associated process output. By recalling the definition of L∞-norm of a signals : R → R

ndefined
as‖s(t)‖L∞

= supt≥t0 ‖s(t)‖ (note that theL∞-norm indicates the peak value of a signal), the minimum
inter-sampling time guaranteed is given by

(ii).

min
k

ti,k+1 − Ti,k =
1

|ai|
ln

(

1 +
|ai|δi

|ai − biki||xi|L∞

)

.

Under the defined sampling rule, the closed-loop system can be rewritten aṡxi = (ai − biki)xi − bikiei,
for all t ∈ [Ti,k, Ti,k+1). Becauseai − biki < 0 for all i, and because|ei| ≤ δi for all t ≥ t0, the output of each
process is upper-bounded (recall BIBO stability) with

(iii).

|xi(t)| ≤ |xi,0|e(ai−biki)(t−t0) +
|biki|

|(ai − biki)|
δi ,

for all t ≥ t0, and then

(iv).

|xi|L∞
≤ |xi,0|+

|biki|
|ai − biki|

δi .

Thus, practical-stability of each loop is ensured if it holds
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(v).
1

|ai|
ln

(

1 +
|ai|δi

|ai − biki||xi|L∞

)

≥ BImin ,

where |xi|L∞
can be estimated by previous equation. In this case an ultimate bound (or practical-stability

region) is given by

εi =
|biki|

|ai − biki|
δi .

(a) The closed loop dynamics of the system #1 becomes, fort ∈ [T1,k, T1,k+1), ẋ1 = (2− k1)x1 − k1e1, from
which one derivesk1 > 2. By observing thata1 − b1k1 < 0, a1 > 0, x1,0 > 0, we get

k1 ≤
1

b1(x1,0 + δ1)

(

a1δ1
(ea1BImin − 1)x1,0

+ a1x1,0

)

= 4.687 ,

where the upper-bound (iv) is used. Then, for all2 < k1 ≤ 4.68 system #1 is practically-stable. The
region of practical-stability is0.88 ≤ ε1 < +∞, depending on the choice of the control. For instance,
the practical-stability region size decreases as the control effort increases, but that way the inter-sampling
times shrinks, leading to a larger energy expenditure of thenetwork.

(b) By following the same argument as in the previous point, we get the condition

δ2 ≥
(ea2BImin − 1)(b2k2 − a2)x2,0

a2 − (ea2BImin − 1)b2k2
≃ 2.955 ,

and then practical-stability is ensured by taking, for example, δ2 ≥ 3. In this case, the region of practical-
stability isε2 ≥ 12, where the value 12 is obtained forδ2 = 3, and it increases asδ2 does.

Notice that, in general, by increasingδi, we are enlarging the practical-stability region size, butwe are also
enlarging the inter-sampling times. Hence, it is clear the tradeoff between the closed-loop performance
(practical-stability region size) and the energy efficiency of the network (inter-sampling times), tweaked
by δi. Further notice that even for arbitrary large values ofδi, condition (v) may not be fulfilled, and then
a system may not be stabilizable over the specified IEEE 802.15.4 even if we are willing to accept large
ultimate bound regions. This can be observed by looking at the argument of the logarithm in the inequality
(i) that is bounded with respect to the variableδi when the upper-bound (iv) is used. Hence, even for
δi → +∞ condition(v) may not be fulfilled.

(c) By following the same argument as in the previous points,we get the condition

x3,0 ≤
(a3 − (ea3BImin − 1)b3k3)δ3
(ea3BImin − 1)(b3k3 − a3)

≃ 14.281 .

Hence, the system is practical-stabilizable over the specified IEEE 802.15.4 network if|x3,0| ≤ 14.28. The
ultimate bound region size isε3 = 1.5. Notice how the ultimate bound region size does not dependent on
the initial condition, but practical-stabilizability depends on that. This is due because the inter-sampling
times depend on the distance of the current process output from the equilibrium point (that in this case is
the origin). If the initial condition is far from the equilibrium point, the self-triggered sampler may give
inter-sampling times that are shorter than the minimum beacon interval guaranteed by the protocol, and
then practical-stability may not be achieved.
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12 Scheduling

SOLUTION 12.1

Scheduling in Smart GridsWe propose the problem

max
i,j,c

N
∑

c=1

NTTI
∑

i=1

NRB
∑

j=1

R
(c)
i,j (12.1a)

s.t.
∑

c

x
(c)
i,j ≤ 1 x

(c)
i,j ∈ {0, 1} ∀i, j (12.1b)

∑

i

x
(c)
i,j ≤ NTTI ∀j, c (12.1c)

∑

j

x
(c)
i,j ≤ NRB ∀i, c (12.1d)

∑

i

∑

j

x
(c)
i,j ≤ L(c) ∀c , (12.1e)

whereR(c)
i,j = λ

(c)
i,j x

(c)
i,j is the utility weight function for thec-th user with some utility parametersλ(c)

i,j , x(c)i,j is
1 if (i, j) resource block is assigned toc-th user, and zero otherwise. Eq. (12.1b) indicates that each resource
block can be allocated to one user at most, and Eq. (12.1c) and(12.1d) give the greatest valuesNTTI, NRB in
time and frequency domain respectively. Eq. (12.1e) indicates that resource blocks allocated to UE are limited
by each UE transmission demandL(c). We make the natural assumption that the weightλ

(c)
i,j depends on UE’s

information only. In other words, UEs only report the average channel condition for all available channels in
every TTI. It is possible to show that problem (12.1) has multiple optimal solutions.

We propose to obtain it as

W
(c)
P =

[

α1ṙ
(c) + α2 l̇

(c) + α3q̇
(c)
]−1

,

whereαi ∈ [0, 1] and
∑

αi = 1. In this case, we setα1, α2 andα3 to 0.3, 0.5 and 0.2 respectively.
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13 Security

SOLUTION 13.1

The Caesar codeWe write the possible solutions down, advancing one place inthe alphabet for each row:
NBCMCMYUMS
OCDNDNZVNT
PDEOEOAWOU
QEFPFPBXPV
RFGQGQCYQW
SGHRHRDZRX
THISISEASY Clearly we can stop once recognizable English text appears. Note that the dependencies of

natural languages are such that a very small number of letters are needed to determine the unique message.

SOLUTION 13.2

Unicity distanceThe unicity distance islog10 26!/0.7 or about 30 characters. Clearly substitution ciphers are
not secure in any way. In fact one can usually do much better since a quite high degree of certainty is obtained
already using the statistics for5 letters of text. Furthermore, it is impossible to get enoughtext for statistics of
dependencies beyond9 already this is more text than in the Library of Congress. Oneapplies instead rules of
syntax and grammars to assist in the attack.

SOLUTION 13.3

Euclid’s Algorithm

10480 = 2(3920) + 2640

3920 = 1(2640) + 1280

2640 = 2(1280) + 80

1280 = 16(80) + 0

Thusgcd(10480, 3920) = 80.

SOLUTION 13.4

Factoring products of primesThe number of primes in the two cases are4 × 1017 and4 × 1036 respectively.
This would be a lot of divisions. Quadratic sieve filtering requires in the two casesO(1521) andO(15, 487)
iterations respectively, each one being much more than a division. Nevertheless it is clear that an efficient
factoring algorithm is the way to go here.

SOLUTION 13.5

Hash functions and sensing

(a) An obvious attack is to attempt to guess keyk: try all possible sequences of the key length. Another is to
try all possible signatures of length n in an attempt to forgea signature. Thus both key length and signature
length have to be large enough to make this combinatorially difficult.
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(b) A hash function performs a type of lossy compression on a sequence; one cannot reconstruct the original
sequence from the signature. Similarly, all sensor measurements only partially represent a physical phe-
nomenon, with greater processing resulting generally in less knowledge about the original phenomenon.
However, hash functions are deterministic while sensing has randomness associated with it in the form of
noise. Moreover, lossy compression codes are not designed to provide a unique and seemingly random
signature but rather to produce a result that answers a queryto the best fidelity possible, given constraints
on the length of the report.

SOLUTION 13.6

Fighting infection

(a) For low infection probabilities, the requirement boilsdown to100p < .01, or p < 10−4. While there will
be some sweeps in which there will be a higher levels of unreliable data, on average the requirement is met.

(b) Consider the probability that a given is not corrupted bythe end is(1− p)100 = 1− q, whereq is the final
infection probability. The chances that two of the three voters are corrupted is3q2(1− q) + q3 = 0.01. If
q is reasonably small, then3q2 is approximately0.01 and soq = 5.8 × 10−2. Thus(1− p) = (1− 5.8 ×
10−2)1/100, or p = 6× 10−4. Thus2 of 3 voting enables either a six times higher infection rate or a slower
audit cycle.

SOLUTION 13.7

Information theft

(a) Clearly100 units are at risk at tier1 while at tier 2 there are300 units of raw data available prior to
application of the compression algorithm. At tier1 there are only30 units available.

(b) In this case there are20 units at risk in tier1, 60 at tier2, and10 at tier1. Note that while in the end the
same amount of information is presented to the end user, lessinformation irrelevant to the query is at risk
within the network.

(c) Here tier1 has100 units at risk, tier2 has300 units at risk, and tier1 has600 units at risk since all the raw
data has been forwarded. This is obviously the most dangerous strategy.

SOLUTION 13.8

Physical security
Clearly many answers are plausible; the assumptions made oncost and value of information obtained will

matter. However, generally redundancy is a good idea at all levels. Camouflage and embedding are appropriate
for multiple levels also, although unnecessary when the devices are in a secured room. Tamper detection
devices can be quite simple (was the package opened?) and canbe applied at multiple levels also. Hardened
casings might be needed in any case for environmental robustness at gateway levels and up, while secured
rooms/facilities would be reserved for the highest networklayers in general such as a certificate authority.

SOLUTION 13.9

People and data reliability
Personal trust among people is based on past actions, and in particular is gained when actions are taken that

cost something (e.g., time) without apparent personal benefit. Technical trust is gained based on the track record
of actual accomplishments, and the publicity that surrounds them. Trust is also reinforced by the comments of
peers, with the comments of trusted friends or technical authorities assigned more weight than those of others.
Thus both direct observations and the opinions of a social network establish reputation.
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