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Preface

The present compendium has been developed by Euhanna Ghadizhe Xu, and Carlo Fischione during
2011 and 2012 for the course BIz45 Principles of Wireless Sensor Networks, given at KTH Royatitute
of Technology, Stockholm. In many cases exercises havelimeowed from other sources. In these cases, the

original source has been cited.
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Exercises



1 Introductory Exercises. Sensor Modeling, Random Variablesand Optimiza-
tion Theory

EXERcCISE 1.1 Gaussian Q function

(a) Consider a random variabl€ having a Gaussian distribution with zero mean and unit maga The
probability thatX is larger thane, or distribution function, is

P(X >z)=Q(x) = /OO Ee_tQ/zdt,

whereQ(-) is called the Q function. Plot the distribution function imetvariablex. Recalling that a
function is convex when the second derivative is strictlgifiee, find a region ofr in which the function
IS convex.

(b) Consider a Gaussian random variaile~ A/ (u, o) of average: and standard deviation Such a random
variable has a distribution function given by a translated eeshaped Q function:

().

Discuss about convexity region of this function.

(c) A function f is log-concave iff () > 0 and for allz in its domain—log f(z) is convex. Show that the
twice differentiable functiort) is log-concave.

EXERCISE 1.2 Binary hypothesis testing: application of the Q function

Assume a couple of sensor nodes are randomly deployed inanrefjinterest and are connected to a sink.
The task of each sensor is to detect if an event happened ,anarotly taking a binary decision. Each sensor
measures noisy signals from the environment and whenegen#dasured signal is strong enough the sensor
will decide that an event has occurred. We assume that theuresaent noises at sensoare identically
and independently distributed (i.i.d) and follows a Gaasistributionn; ~ N(0,1). The binary hypothesis
testing problem for sensaiis as follows:

Hl:s;,=a;+n;

HOZSZ‘:"I”LZ‘

wheres; is the measured signal at sengsanda; € R, is the signal amplitude associated to the event. Assume
that all sensors use a common thresholi detect the event, i.e., if the measured signal at senisdarger
thant, then the sensor will decide that the event happened andepibrt this decision to the sink.

(a) Characterize the probability &flse alarmp, namely the probability that a local sensor decides thaethe
was an event while there was not one.

(b) Characterize the probability dietectingan eventy,;, namely the probability that an event occurs and the
sensor detects it correctly.

EXERcCISE 1.3 Miscellanea of discrete random variables (Bx4 in [1])
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Let X be a real-valued random variable that takes discrete valugs , as. ..., a,} wherea; < ay < --- <
an, With probability P(X = a;) = p;, Vi = 1,2,...,n. Characterize each of following functions pf= [p;]
{p € R%|17p = 1} (wherelis the all ones vector) and determine wether the functiowiiwex or concave.

(a) ExpectationEX.

(b) Distribution function:P(X > «).

(c) Probability of interval:P(a < X < ).

(d) Negative entropy distribution} " ; p;l0gp;.
(e) Variancevar X = E(X — EX)2.

(f) Quartile: quartile(X) =inf{g|P(X < 3) > 0.5}.

EXERCISE 1.4 Amplitude quantization

I[=inT,
“'.-' [stri S‘II.]&

|

l
—1 5
Figure 1.4.1: (a)A three-bit Analog to Digital (A/D) conver assigns voltage in the rangel, 1] to one of
eight integers betwedhand7. For example, all inputs having values lying betw@&hand0.75 are assigned
the integer value six and, upon conversion back to an anabagythey all becom&.625. The width of a
single quantization intervah is 2/25.

The analog-to-digital (A/D) conversion is a standard openaperformed in sensors and many electronic de-
vices. Itworks as follows: Consider a sensor that samplesdlimited continuos time signal(t). According

to sampling theory, if the sensor samples the signal fasigimat timenT, wheren is the sample number and
T, is the sampling time, it can be recovered without error fresrsamples(n7s), n € {...,—1,0,1,... }.

The processing of the data further requires that the seasoples be quantized: analog values are converted
into digital form. The computational round-off preventgrsl amplitudes from being converted with no errors
into a binary number representation.

In general, in A/D conversion, the signal is assumed to ltbiwia predefined range. Assuming we can scale
the signal without affecting the information it expresses, will define this range to be-1, 1]. Furthermore,
the A/D converter assigns amplitude values in this rangedet @f integers. AB-bit converter produces one
of the integers{0, 1, ...,25 — 1} for each sampled input. Figure 1.4.1 shows how a three-iit dohverter
assigns input values to the integers. We define a quantizatierval to be the range of values assigned to the
same integer. Thus, for our example three-bit A/D convetiter quantization intervah is 0.25; in general, it
is2/28.

Since values lying anywhere within a quantization inteeva assigned the same value for processing, the
original amplitude value is recovered with errors. The DboRwerter, which is the device that converts integers
to amplitudes, assigns an amplitude equal to the value lyaifgyvay in the quantization interval. The integer
6 would be assigned to the amplitu&25 in this scheme. The error introduced by converting a sigrethf
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analog to digital form by sampling and amplitude quant@atihen back again would be half the quantization
interval for each amplitude value. Thus, the so-called Aidreequals half the width of a quantization interval:

1/25. As we have fixed the input-amplitude range, the more bitéadiea in the A/D converter, the smaller the

guantization error.

signal
1_
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Figure 1.4.2: (a) Shows a signal going through the analegjgital, where B is the number of bits used in the
A/D conversion process3(in the case depicted here). First it is sampled (b), then i&undplquantized to three
bits. Note how the sampled signal waveform becomes distafter amplitude quantization. For example the
two signal values between 0.5 and 0.75 become 0.625. Thestitis is irreversible; it can be reduced (but not
eliminated) by using more bits in the A/D converter.

To analyze the amplitude quantization error more deeplyneed to compute the signal-to-noise ratio,
which is the ratio of the signal power and the quantizatianrggower. Assuming the signal is a sinusoid, the
signal power is the square of the root mean squane)@mplitude:power(s) = (1/v/2)? = 1/2. Figure 1.4.2
shows the details of a single quantization interval.

Its width is A and the quantization error is denoted by To find the power in the quantization error,
we note that no matter into which quantization interval tlgmal's value falls, the error will have the same
characteristics. To calculate thmsvalue, we must square the error and average it over the aiterv

A o\ 1/2
1/2 2de — <A_>
A -4 12

Since the quantization interval width forfzxbit converter equalg/2? = 2'=5, we find that the signal-to-
noise ratio for the analog-to-digital conversion procapsas

rms(e) =

1
1 3

SNR, — QQ%B) = 52213 = 6B + 10log 1.5dB
12

Thus, every bit increase in the A/D converter yields a 6 dBdase in the signal-to-noise ratio. The constant
term10log 1.5 equalsl.76.

(@) This derivation assumed the signal’s amplitude lay énringe/—1, 1]. What would the amplitude quanti-
zation signal-to-noise ratio be if it lay in the rangeA, A]?

(b) How many bits would be required in the A/D converter towgaghat the maximum amplitude quantization
error was less thaé0o db smaller than the signal’s peak value?

(c) Music on a CD is stored to 16-bit accuracy. To what sigonatoise ratio does this correspond?



EXERCISE 1.5 Accelerometer system design and system scale estimaé 1Ex. [2])

An accelerometer is a sensor that measures acceleratiamsidéo the design of an accelerometer that is in-
tended to meet specific acceleration sensitivity goals awgrecific bandwidth given a position sensor sensitiv-
ity. The designer may adjust mass, spring constant, prossmalue, and resonance quality factor to achieve
these goals.

(a) Consider an accelerometer with an electronic displacesensor having a position sensitivitylgin /(Hz) /2.
For a target acceleration sensitivity if > m/s?/(Hz)'/? in the bandwidth fron®).001 to 100 Hz, find the
largest sensor resonance frequency that may meet thigiobjadile ignoring the effect of thermal noise.

(b) Now, include the effect of thermal noise and compute dugiired proof mass value for this accelerometer
for Q values ofl, 100, and10* (consider parametets, = 1.38 x 10722 andT" = 300).

(c) If this mass were to be composed of a planar Si structditbjakness L, what would be the required area
of this structure.

EXERCISE 1.6 Signal dependent temperature coefficients (Ex.4.4 in [2])

A silicon pressure microsensor system employs a piezéikesistrain sensor for diaphragm deflection having
a sensitivity to displacement of = 1V /u (at T = 300K). Further, this displacement is related to pressure
with a pressure-dependent deflection of K.81,/N/m? . This is followed by an amplifier having a gain
G =10 (atT = 300K). This amplifier further shows an input-referred offsetguaital, V g« = 0 at 300K.
Each of these characteristics include temperature caaitii These temperature coefficients are listed here:

« 1072/K
K 1074/K
G —1073/K
V;)ffset _IOIU'V/K

(a) Consider that the pressure sensor is exposed to no radifference. Find an expression for its output
signal for temperature. Compute the temperature coeffithen describes the operation.

(b) Consider that the pressure sensor is exposed to a peatiffarence signal of.1 N/m?. Find an expression
for its output signal for temperature and plot this. Estientite temperature coefficient that describes its
operation at the specific temperatures in the neighborhb@d and 350K.

(c) Consider that the pressure sensor is exposed to a peagiffiarence signal of0 N/m?. Find an expression
for its output signal for temperature and plot this. Estientite temperature coefficient that describes its
operation at the specific temperatures in the neighborhb@d and 350K.



2 Programming Wireless Sensor Networks

ExXERcCISE 2.1 Hello world

Implement a Hello world program in TinyOS. Implement a tiraad toggle the blue LED every 2 sec.

EXERCISE 2.2 Counter

Implement a counter using 3 LEDs. Use binary code to courgugpy 1 seconds. Change the application to
reset after it reaches 7.

EXERCISE 2.3 Ping Pong

(a) Develop an application where two sensor nodes startdoagxje a message in a ping pong manner. For
this task you are not allowed to use Node IDs. (hint: probgioly need to use broadcast message once.
then upon receiving the message use unicast to ping ponggebstween sender and receiver.)

(b) Change the application such that only two nodes out ofyrmades can ping pong. (hint; you might use a
sequence number inside the packet!)

EXERCISE 2.4 Dissemination Protocol

(a) The task is propagating a command in the sensor netwdrd.cdmmand could be toggling a LED. Node
ID 1 every 10 second sends a command to turn ON/OFF a sele&iBd.LReceivers act accordingly and
re-broadcast the command.

(b) How to avoid redundant commands? (hint: use a sequencgerdo detect duplicate commands).
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3 Wirdess Channel

EXERCISE 3.1 The noisy sensor (Ex.14.6 in [2])

Sensor nodes are laid out on a square grid of spatasyreported in Figure 3.1.1. Propagation losses go as the
second power of distance. The source to be detected has asi@adsstribution with zero mean and variance
o2. The source is measured at each sensor by a noisy measureaverg an independent Additive White
Gaussian Noise (AWGN) with variane€; . Sensor nodé is malfunctioning, producing noise variantér? .

The two best nodes in terms of SNR cooperate to provide estsd the source.

(a) Sketch the region of source locations over which nddlev{ll be among the two best nodes, assuming a
long sequence of measurements are made of the source.

(b) For a single measurement, approximate the likelihoad ¢hsource at positiof0.25d, 0) will result in
better SNR at sensérthan at sensor.

6

2 1 3 4
e o o o

5

Figure 3.1.1: A sensor network.

EXERCISE 3.2 Radio power optimization

Consider the following model describing the required endigA, B) to send a packet from node A to node B:
E(A,B) = d(A, B)*. Here,d(A, B) is the distance between node A and B ani a system parameter with
«a > 2. Assume that we are allowed to place a number of equidiséday nodes between source node S and
destination node T. Here, relay nodes serve as intermeutiakes to route packets from S to T. For instance, if
S and T would use relay nodes A and B, the message would bereen&fto A, from A to B and finally from
BtoT.

(a) What is the ideal number of relay nodes in order to send ssage from S to T with minimum energy
consumption?

(b) How much energy would be consumed in the optimal caseegbtlvious item?

(c) Assume now an energy model which determines the enemgyresl to send a message from A to B as
E(A,B) =d(A, B)* + ¢, with ¢ > 0. Argue why this energy model is more realistic.

(d) Prove under the modified energy model introduced in previtem that there exists an optimal numhber
of equidistant intermediate nodes between S and D that naasrthe overall energy consumption when
using these intermediate nodes in order to route a packat&do T. [Assumer as a continuous variable
for simplicity].

(e) Derive a closed-form expression on how much energy wilt@nsumed when using this optimal number
n of relay nodes. [Assume as a continuous variable for simplicity].

11



Figure 3.7.1: 2-state Markov chain describing to Gilbefio&lmodel.

ExXERCISE 3.3 Density of a Function of a Random Variable: the Rayleigh clean

Suppose that has a chi-square distribution with the density

1

R 72 —:(:/ZU
Tyt ¢ V@)

f(x)
where
Ma+1)= / x%e *dx
0

is the gamma function and(z) = 1 for x > 0 andU (z) = 0 otherwise. For a new random varialgte= /x
compute its density function.

EXERCISE 3.4 Deriving the Density of a Function of a Random Variable: Ttepsvindowing
For a random variable with density functionf,,, compute the density function ¢f= xU (x), where

1 x>0
0 otherwise

) = {

EXERCISE 3.5 Deriving the Density of a Function of a Random Variable: Thadow fading

A log-normal distribution is a continuous probability dibtition of a random variable whose logarithm has a
Normal distribution. Ifx is a random variable with a normal distribution, ther= exp(x) has a log-normal
distribution. Forx ~ N (u, o), compute the density function gf = exp(x).

EXERCISE 3.6 Mean and Variance of Log-normal Distribution

Forx ~ N (u, o), compute mean and varianceyf= exp(x).

ExERcISE 3.7 Gillbert-Elliott Model for Wireless Channels
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The Gillbert-Elliott model is a 2-state Markov chain to mbtiee wireless channel behavior when sending
packet losses. This model consists of two channel statestetbias Good and Bad with corresponding error
probabilities. In Fig. 3.7.1 each state may introduce srfor independent events with state dependent error
ratesl — k in the good and — h in the bad state. In our framework, we interpret the evenhastrival of a
packet and an error as a packet loss.

(a) Based on the given error rates and transition probigsijitandr, formulaters andwp to be the stationary
state probabilities of being in each state.

(b) Obtain error ratey in stationary state.

(c) Consider the Average Error Length (AEL) and Average nend$ Packet Drops (APD) as two statistics of
channel. Deriverg andrp.

EXERcISE 3.8 Gillbert-Elliott model application

We have two sensor nodes that share a wireless channel. atkeo$the channel follows the Gillbert-Elliott
model. Suppose that the transition probabilities in Fig.Barep = 10~° andr = 107!,

(a) Find the average length of an error burst.
(b) Obtain the average length of an error-free sequence séage transmission.

(c) Assume that the error probability in Good and Bad state®gligible and almost sure, respectively. Com-
pute the average message loss rate of the channel.

13
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Figure 4.1.1: Gray-coded 8-PAM.

4 Physical Layer

EXERCISE 4.1 Gray Code (Ex6.5 in [2])

The property of the Gray code is that the code-words of adjaggnbols only differ in one bit. For example,
the code words of 8AM (pulse amplitude modulation) symbols are as illustrateligure 4.1.1. This results
in a minimum expected number of bit errors per symbol errocdnditions of low symbol error probability.
Devise a Gray code for 1@AM (quadrature amplitude modulation) symbols.

EXERCISE 4.2 Network reconfiguration (Ex.14.7 in [2])

A rectangular grid is also used for relaying packets. Forefleetronics used, it costs two times the energy of
a hop among nearest neighbors (separated by distrtcehop diagonally across the square (e.g. ndde

5) and eight times the energy to go a distance of 2d in one hgp ifede 2 to 3). In normal operation, packet
dropping rates are negligible and routes that use the leastjg are chosen.

(a) Considering only energy consumption, at what packepplry rate is it better to consider using two
diagonal hops to move around a malfunctioning node?

(b) Now suppose delay constraints are such that we can delate the probability of needing three transmis-
sion attempts being less tharb1. In this case, what error rate is acceptable, assuming packopping
events are independent?

EXERCISE 4.3 Bit error probability for BPSK over AWGN channels

Compute the probability of error for binary phase shift key(BPSK) with Additive white Gaussian noise
(AWGN) channel model.

EXERCISE 4.4 Bit error probability for QPSK over AWGN channels

Compute the probability of error for Quadrature phasetd@ying (QPSK) modulation with Additive white
Gaussian noise (AWGN) channel model.

EXERCISE 4.5 Error probability for4-PAM over AWGN channels

Compute the probability of error for Pulse amplitude motata (PAM) with Additive white Gaussian noise
(AWGN) channel model.

14



EXERCISE 4.6 Average error probability for Rayleigh fading

Compute the average probability of error for a Rayleighrigdihannel given the error probability of AWGN
channel model.

EXERCISE 4.7 Detection in a Rayleigh fading channel
In a Rayleigh fading channel the detection of symb&lom y is based on the sign of the real sufficient statistic

r = |hlx + z,

wherez ~ N (0, Ny/2). It means that, If the transmitted symbohis= +a, then, for a given value of, the
error probability of detecting: is

alh| 5
Q (JW?) ~ Q(V2hPSNR).

where SNR= a?/N, is the average received signal-to-noise ratio per symbw {inote that we normalized
the channel gain such thB|h|2?] = 1.) For Rayleigh fading wheth| has Rayleigh distribution with medn
and variancd, calculate the average probability of error. Approximéie $olution for high SNR regions.

EXERCISE 4.8 Average error probability for log-normal fading

Consider a log-normal wireless channel with AWGN receivaise. We know that the probability of error in
AWGN is

o0 1 2
=Pr{x >} = [ —e "/t
Q(7) =Pr{x >~} L o
The average probability of error with respect to the logamalr distribution is the average @(~) with

respect to the log-normal distribution. It is difficult toropute becaus€) is highly non linear. Suppose to
perform a Stirling approximation of th@ function, which is

EL£(0)) ~ 27(0) + 7+ VB0) + (Vo)

where f(6) is any function of a random variable having meary, and variances?>. Compute the average
probability of error of log-normal channel by using the Bty approximation.

EXERCISE 4.9 Probability of error at the message level

In a WSN communication platform, consider a Rayleigh Ch&aower a AWGN receiver noise. The message
is a frame of sizef bits and is composed of the preamble, network payload, arid@dcdde.

(a) Computep the probability that the message is correctly received.
(b) Assume that the received signal level at the receivesydemversely with the squared of the distance, i.e.,

aEb

SNR~ .
Nyd?

For messages of siZ) bits and the value&, /Ny, = 100 anda = 0.1, compute the farthest distance to
deploy a receiver such that the probability of successfulssage reception is at least 0.9'° ~ 0.35.

15



EXERCISE 4.10 The rate2/3 parity check code

A parity check code forms a modulo 2 sum of information bitd &#men appends this bit as the parity check.
Consider, e.g., a scheme in which there are two informatitshamd one party bit. The codewords are then
the set000, 011, 101, and101, which have even parity, while the odd-parity possibi&ti®1,010, 100 and111

are excluded. There are four code-words and thus two bitsfofmation, compared with the eight uncoded
possibilities which would take three bits to represent. Tbee rate is thug/3. Suppose this coding scheme

is used in conjunction with binary phase shift keyigPSK). Compute the coding gain assumilt soft
coding.

EXERCISE 4.11 Hard vs. soft decisions (EX.7 in [2])

In previous exercise, if hard-decisions are used insteadftidecisions, answer to the following questions:
(a) How many errors can the code detect and correct, regpl¢ti
(b) Compute the error probability, i.e., the probabilitytihe decoder cannot make the correct decision.

(c) Compare the error probability with that resulting froaftsdecisions.
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5 Medium Access Control

EXERCISE 5.1 Slotted Aloha

In this exercise we analyze the Slotted Aloha when the numibstationsn is not exactly known. In each time
slot each station transmits with probabiljty The probability that the slot can be used (i.e. the probgtiiat
exactly one station transmits) is

Pr(success=n-p(1 —p)" 1.

If n is fixed, we can maximize the above expression and get thmalgii Now assume that the only thing
we know abouir is A < n < B, with A and B being two known constants.

(a) What is the value gf that maximize®r(successfor the worstn € [A, B]?

(b) What is this “worst case optimal” value fpiif A = 100 and B = 2007?

EXERCISE 5.2 ARQ Ex.8.10in [2]

Consider a simple ARQ scheme through a single transmisgi@rof data rateR. The ARQ scheme works
as follows. The sender transmits a data packet across theQince the receiver receives the whole packet, it
checks if data have been corrupted. If there is no error, kgbax sent to the sender to acknowledge the correct
reception of the data packet. If there is an error, an ARQri$ f&& a retransmission. The sender resends the
packet immediately after it receives the ARQ packet. Asstimdengths of data and ARQ packets arand
LARQ respectively, and the propagation delay along the linl isNeglect the turn-around time at the sender
and the receiver. Suppose that the probability the datagpaslkorrupted during transmissionis and ARQ
packets are always correctly received.

(a) Determine the average number of transmissions reqidredpacket to be correctly received.

(b) Find the average delay a packet experiences. The detigfireed as the time interval between the start of
the first packet transmission and the end of the correct paekeption, and note that it does not include
the transmission of the last acknowledgement packet.

EXERCISE 5.3 Analysis of CSMA based MAC in WSNs

In this exercise we evaluate the performance of slotted CSivbdocol with fixed contention window size.
Such mechanism is supported by protocols such as IEEE 8@2riLBon-beacon enabled mode.

Assume a network oV sensors with a single channel and all the nodes are in the coiation range of
each other. The nodes use slotted CSMA scheme with fixedrdomtesize /. Nodes sense the channel and
if the channel is free they enter to the contention round. dimtention round each node draws a random slot
number in[1, M| using uniform distribution and sets its counter with thigeger number. In successive slots
timesty,, each contender counts down until when its counter expims ittsenses the channel and if there is
no transmission in the channel it will send the packet imeedly at beginning of the next slot. Assumgs
the required time to transmit the data packet, is determined by physical layer parameters like propagatio
time of the packet (it also called vulnerable time) which éiced by the distance between the nodes. In this
exercise 4.1, depends on data length is assumed to be much largetgharEach contention round will finish
by a packet transmission that might be either successfublided. Collision happens if at least two nodes
draw the same minimum slot number, otherwise the transomsgould be successful.
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(a) DefineP; as the probability of having a successful transmissiomr aft@ntention round witld/ maximum
window size andV contenders. Also denoje(m) as the probability of success at stat Findp,(m) and
Ps.

(b) Similarly denoteP, as the probability of collision after contention round an¢m) as the probability of
collision at slotm. Propose an analytical model to calcul&eandp.(m). Note that based on our system
model, a collision happens at shot, if at least two sensors pick the same siotto transmit given that
nobody has selected a smaller slot.

EXERCISE 5.4 MAC optimization for distributed estimation

ConsiderN nodes randomly deployed in a field. A node periodically clseslth periodsS if there is an event

of interest. Whenever node detects such an event,, it starts broadcasting a monitoring messaggx),
which is called “state vector”, to a fusion center. Nodessube slotted Alhoa medium access control protocol
and transmit over the same wireless channel. In particedarh node transmits,, () in a randomly chosen
time slot within the rangél, S] units whereS is the total number of slots per second. The node transmits a
message within the slot boundaries following any slot. lerach node starts transmission with probability

z
g
wherez is the rate of state vector transmissions per second. Thmbilidy that a node does not start trans-
mission is1 — 7. Collision at the fusion center happens when two nodes samebusly transmit in a time
slot.

The state vector transmission intervallis= 1/z. Each node wants to minimize the state vector transmis-
sion interval so to have often and more reliable informa#ibout the event of interest. However, this increases
the collision probability.

T = 0<rT<1,

(a) Pose an optimization problem which copes with such a&tfénd argue if it is a convex one.

(b) Calculate the optimal rate of state vector transmissfmer second that minimiz4s,.

EXERCISE 5.5 Broadcast

Three students discuss the broadcasting problem witlsmrildetection in graphs of constant diameter. Student
A claims that there is a deterministic protocol that allowbtoadcast messages of length time O(l). He
says that it is possible since all nodes act synchronouslycan detect collisions, which allows to transmit
information one bit per round (slot) using the collisionatdgion mechanism, i.e. detecting a transmission or
collision in a slot means bit, detecting a free channel medhsStudent B says that this is not possible because
he can prove the existence of a lower bounf@bg n) for deterministic algorithms, which can be much larger
than the length of a messafm general. He says that this can be done in the same way dweftovwer bound

of n for the deterministic broadcast without collision detectfor graphs of diamete?, i.e. using golden and
blue nodes in the middle layer. Student C claims that A's idegks in principle but all nodes need to know the
length! of the message. Who is right?

(a) If you believe A is right, give an algorithm that perforthe broadcast.
(b) If you believe B is right, give a proof.
(c) If you believe C is right, describe an algorithm giventtAthnodes know the message lengtind explain

why the message lengths needed.
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EXERCISE 5.6 M/M/1 queues (Ex.8.9 in [2])
Consider the infinite length/ /M /1 queue.

(a) Given that the probability of customers in the queuesgn) = (1 — p)p™, wherep = A/, show that the
average number of customers in the queue is

N=E(m)=> mn) =1
n=0

(b) PlotN as a function op when0 < p < 1. What happens when> 1 ?

(c) Find the average delay that customers experience anavdrage waiting time that customers spend in
queue. (Hint: use Little’s theorem.)
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6 Routing

EXERCISE 6.1 Shortest path routing: Bellman-Ford algorithm (Ex.8.4 #)) [

The network topology of Figure 6.1.1 is used to illustrate Bellman-Ford algorithm for finding the shortest
route to a node. In the figure, the number beside a node sesube éabel for the node, and the number near
an arc indicates the length of the arc. For instance, theaameexting nodes 1 and 2 has length 1. Defipeo

be the length of the direct arc connecting noflaad; . If there is no direct arc connecting the two nodes, we
setd;; = oo . By doing this,d;; has meaning for any pair of nodéand; in the network.

Figure 6.1.1: A simple network.

Consider node 1 as the destination node. The shortest mathrfode: to node 1 that traverses at most
h arcs and goes through node 1 only once is called a shortest)walk, and its length is denoted by”.
Note there are two special cases. If all paths between hadd 1 consist of more the‘narcs,DZh = 0o0. By
convention,D} = 0 for any h.

(@) DetermineD? fori =1,2,...,6. Findd;; for all possiblei, j = 1,2,...,6.
(b) The following iteration is used to generate the subsegsieortest walks:

D+t = mjin[dij + D7) foralli # 1

DetermineD)} fori # 1.

(c) Use the iteration equation in (b) to compu®é , D? ,... fori # 1. Stop the iteration whe®! ™! = DI,
for all i # 1. The minimum distance from nodeo node 1 isD” in the last iteration.

EXERCISE 6.2 Shortest path routing: Dijkstra algorithm (Ex.8.5in [2])

We will use Figure 6.1.1 to illustrate the Dijkstra algornittor finding the shortest route to a destination node.
The length of the direct arc connecting nodesid; is defined to bel;;. For a detailed description of the figure
and the definition ofl;;, refer to previous exercise. Denote Bythe set of nodes whose shortest path to the
destination node is known, and denote/ythe current shortest distance from ngd® the destination node.
Note that only when nodg belongs to the se? can we sayD; is the true shortest distance. Choose nbds

the destination node. Initially, sét = {1} , D; = 0, andD; = oo for j # 1.

(a) UpdateD; for j # 1 using the following equation
Dj = min[Dj, djl] .
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(b) Findi such that
D; = min[Dj]

J¢p
updateP := P U {i}.
(c) UpdateD; for j ¢ P by the following equation
Dj := min[Dy, D; + dj]
in which is thei obtained in (b).

(d) Go back and compute steps (b) and (c) recursively untdontains all the nodes in the network. The
resultingD; is the shortest distance from nogléo nodel.

EXERCISE 6.3 Shortest path routing in WSNs

Figure 6.3.1: A sample WSN topology. Node 1 is the sink ankldjnalities (PRR) are depicted on each arc

One way of building routing tree in WSNSs is based on ETX. ETagsls for expected number of transmissions.
The Idea is to make a minimum spanning tree (MST) minimizimg éxpected number of transmissions for
each node. This is done based on MAC layer functionalitieg.,(€RR). With PRR for each link between
(,7) nodes have a good estimate of packet reception rate from iy and hence can measure the temporal
reliability of the link. Note that PRR is directional and tfee of packet reception for linkg, j) and(j,7) can

be different. Having the values of PRR of direct neighboilable at each node, in a recursive fashion nodes
can build a routing tree that minimizes the expected numbansmissions to the sink.

(a) Develop a sketch of the algorithm and the required egusitio build the routing tree based on ETX metric.

(b) Consider Figure 6.3.1 and assume the PRR is bidiredt{tnks are undirected) where the values of the
PRR are given on the arcs. Find the MST based on ETX metric.

EXERCISE 6.4 Anycast routing over WSNs
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ETX[1]

ETX[n]

Figure 6.3.1:Initial graph with link probabilities annotated. Each néigor i of nodes provides its ETX]] to
S.

In WSNs, the expected number of transmissions of a node (EST&)youting metric, namely a metric used by
a node to take the decision over which path the node routée{sadenote by ET¥] the expected number of
transmissions required for nodeo send a packet to the destinatibn Let NV, P, andp; be the neighbors set
of s, parent set of and probability of successful transmission from nede neighboring node, respectively.
Given ETX:] andp; for all i € N, ETX ats is defined as

. ) 1
ETX[s] = ng\p {ETX[z] + E’}
and the parent set afis defined as; = {i} ,wherei is the neighbor that minimizes ET¥ above. Note that
theP, has one component.

Now we want to extend this scheme to consider multiple parénigure 5.6.1 illustrates such network. The
routing scenario is as follows. Noddooks at its parents sé?; = {1...n} as an ordered set. It broadcasts a
packet to all the parents and waits for an acknowledgemeR) (mcket. If parent receives the packet (with
probability p;) then nodel will forward the packet taD (with cost ETX[L]). Now if node 1 fails to receive
the packet and nod2 receives it, then node will forward it. So within this scheme nodgis allowed to
forward a packet if 1) it successfully receives the packatfs with probability p; and 2) if all the nodes with
higher priority1, ..., — 1 fail to get the packet. Assume that an efficient messagengassheme handles this
structure.

(a) Calculate the new ETX metric farand a given ordered set of parefts= {1...n}. [hint: first you can
calculate the probability that a packet fronis received by at least one of the parents. Then, conditioned
on that you are in one of the parents (the first hop transmmdsisuccessful), calculate the average ETX
from one of the parents to the destination.]

(b) In Figure 5.6.1, assume thahas3 neighbors with success probabilitigs;, p2, p3) = (1/2,1/3,1) and
ETX of (2,2,4), respectively. Calculate the ET3[for two cases: with single parent and three parents
with priority order (, 2, 3).

(c) For the second case of the previous point, find the optpaednt set (note that there &¥&— 1 possible
parent sets) that minimizes ET[

EXERCISE 6.5 Spanning tree (Ex.8.7 in [2])

Find all possible spanning trees for the two graphs in Figudel subject to the constraint that node 1 must be
the root. Determine the number of nodes N and arcs A in eadiesktspanning trees. Can you see a relation
between N and A?
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4 <y

(a) (b)

N

Figure 6.4.1: Spanning tree.

EXERCISE 6.6 Directed diffusion (Ex.8.8 in [2])

Consider the situation in Figure 6.6.1. The solid lines @spnt transmission links between nodes, and dashed
lines indicate boundaries of tiers. Here node A wants tcstranto node D. Suppose the transmission takes the
branches within the same tier with one third of the probgbdif branches in the next tier, and the packets do
not back-track. Determine the likelihood of packets flowihigugh node B and C to reach D.

Figure 6.6.1: Directed diffusion.
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7 Detection

EXERCISE 7.1 Binary choice in Gaussian noise

A signal voltagez can be zero (hypothesi8) or k (hypothesisH), each hypothesis with a probability’2,
The voltage measurement is perturbed by additive white Sausoise (AWGN) of variance?. Compute the
decision threshold for MAP criterion, and the error prolitiés Pr(D;|H() andPr(Dy|H1), whereD; means
that H; was decided, andd, meansH, was decided.

EXERCISE 7.2 Binary hypothesis test and SNR (Ex.5.2 in [2])

Consider the binary choice in Gaussian noise, as shownwopieexercise with the threshold bf2, the SNR

is also maximized at the decision point. Since the possigleaévalues are known, the maximization of SNR
means that the hypothesized noise powén?(¢)] is minimized when the decision boundaries are optimally
chosen. Prove that SNR is maximized when the threshatdds

EXERCISE 7.3 MAP and the LRT (Ex.5.4in [2])
Show that the MAP decision rule is equivalent to the liketiloatio test.

EXERCISE 7.4 Binary decisions with unequal a priori probabilities( E%.t [2])

For the binary choice in Gaussian noise in Exercise 1, coeningt threshold when the probabilities i and
H, are 1/3 and 2/3 respectively.

EXERCISE 7.5 Detection of known mean in Gaussian noise (Example D.1 in [6]
The simplest possible problem is to decide whether therdiman meanA in an observed signal or not:

HO:yk:€k7
Hi:yp =51 +eg.

Suppose to detect a general known signabbserved with Gaussian noisegs= s, + ex. Using a matched
filter defined as

L Nl
yZNkZ%ykSkZAJre,

show that
N_

1
A=— 57
Nkzzok

—_

ande ~ N(0,0%/N). Here we assume th3t s, = 1.

EXERCISE 7.6 Fault detection
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Suppose to detect a signal observed with Gaussian noisesgs= s + ex, wheree, ~ N(0,0?). Assume
there exist fault alarms for the signal, that is, the alarmsuo when the measurement of signal beyond the
interval [—30, 30]. Here assume tha, equals 0 withpg = 0.9, andt = 30 as fault withp; = 0.1. Find the
probability of the correct fault alarms.

EXERCISE 7.7 Optimal Data Fusion in Multiple Sensor Detection Systenjs [7

Let consider a binary hypothesis problem with the following hypothesest|, signal is absent; signal is
present. The priori probabilities of the two hypothesesdareted byr(H() = Py andPr(H;) = P;. Assume
that there are, detectors and the observations at each detector are dénoigd = 1,...,n. Furthermore,
assume that the observations are statistically indepéraehthat the conditional probability density function
is denoted by(y;|H,),i = 1,...,n, while j = 1,2. Each detector employs a decision ryjéy;) to make a
decisionu;,i = 1,...,n, where

~_J =1 if Hp is declared
Ui +1 if H; is declared

We denote the probabilities of the false alarm and miss df datector byPr, and Py, respectively. After pro-
cessing the observations locally, the decisiopare transmitted to the data fusion center. The data fusiotece

determines the overall decision for the systeimased on the individual decisions, i.e.= f(ui, ..., uy,).
1. Show that Pr(H, )
1 — _—
log W + Z log L4 Z log

whereS is the set of all such that,; = +1 andS_ is the set of alb such thatuy; = —1.

2. Find the optimum data fusion rule using likelihood ratio.

EXERCISE 7.8 Counting Rule [8]

Consider the same situation in Exercise 7. An alternatiberse would be that the fusion center counting the
number of detections made by local sensors and then comgpaviith a thresholdl™:

A= Zul <

Ho

which is called “counting rule”. Now assume that each sehssrthe sam&y, = P; and Py, = P, find the
probability of false alarnPr and detection”,, at the fusion center level.

EXERCISE 7.9 Matched filter and SNR (Ex.5.12 in [2])

Prove the matched filter maximizes the output SNR and comhetenaximum output SNR as a function of
the energy of the signalt) and N.

EXERCISE 7.10 Binary hypothesis testing and mutual information (Ex.5.32])

Consider the binary choice in Gaussian noise, as shown ircEgel. Wherk = 1 and the variance of the
Gaussian distribution i§, show numerically that the mutual information is maximizeédeny = 0.5.
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8 Estimation

EXERCISE 8.1

Given a vector of random variablésthat is related to another vector of random variablfesdescribe briefly
what is the best linear estimator of X if one observes an onécofY.

EXERCISE 8.2 MMSE estimator

In many situations, one has to estimateom some noisy measurementshat are a linear function of plus
some noise. LeKX be a vector of random variables having zero mean. Suppoté& tlsa vector of random
variables related t&X such that ifz is an outcome ofX, then an outcome of isy = Hx + v, whereH is a
constant matrix and is a zero mean Gaussian noise having covariddgewith v independent ofX. Then,
the MMSE estimate oKX is given thaty” = y is

P ' =HR, 'y
with error covariance
P=R{y+H'R'H.

Now, consider a network of sensors. LefX be a random variables observed by each sensor by the noisy
measuremeny; = H;xz + v; andi = 1,...,n, where all the noises are uncorrelated with each other atid wi
X. Let the estimate based on all the measuremeritded letz; the estimate based on only the measurement
y;. Then,

n
P la =Y Pl
i=1
whereP is the estimate error covariance corresponding amd P; is the estimate error covariance correspond-
ing to z;, with
n
Pt =>"P"'—(n—-1Ry".
i=1
The above estimators, by the assumption fihais the i-th row of the matri¥{, give the same estimate. Assume

that Rx andR, are diagonal matrixes. Motivate wether the first estimagquires more computations than the
second estimator and suggest which one is best for a sernswrke

EXERCISE 8.3 Mean square (MS) estimation (Ex.5.21 in [2])

Let X be a real-valued RV with a pdf ofy (z) . Find an estimateé such that the mean square errorzdby &
is minimized when no observation is available.

EXERCISE 8.4 Distributed MMSE estimator

We would like to estimate a vector of unknown constant patarse € R™ using a network of distributed
sensors. Each sensor makes a noisy measurement

v = Hix + v; 1=1,...,n.

WhereH; is an known matrix relating the unknown parameter to the oveasent,; is a Gaussian noise with
zero average and covariance matily . Moreovery;’s are assumed statistically independent noises. In vector
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notation one can formulatg = Hx + v, wherey, H andv aren x 1 vectors ofy;, H; andv;. Show that the
maximum likelihood (or MMSE) estimate afgiveny is

n -1 n
&= (Z HI R;}Hi> > HIR 'y

i=1 =1

ExXERCISE 8.5 Cramér-Rao bound (Ex.5.27 in [2])

Let X be the sample mean from independent Gaussian random variables Xo, . .., X,, with Gaussian
distribution N (6, 02) . Assumes? is known. First, derive the Cramér-Rao bound. Then, showXh& the
most efficient unbiased estimate fb(i.e. it attains the right-hand-side of the Cramér-Rao lioun

EXERCISE 8.6 ML estimates of mean and variance of Gaussian random vasidBix.5.28 in [2])

Considern independent random samples from a Gaussian distribution, 0?) . Letd = (u,0) , that is
f, = p andf, = o. Find the Maximume-Likelihood (ML) estimates gfando.

EXERCISE 8.7 Distributed detection/estimation

A set of N nodes is randomly deployed on a field. Every node makes aditt@mmg on an unknown parameter
0 € [-1,1]. The observations are corrupted by an additive noise

T = 0 + v, k=1,2,...,N,

wherev;, is the noise, which is modeled as a random variable. Thesnarvariables are assumed to be
independent and identically distributed and with zero méarparticular, they are uniformly distributed over
[—1, 1], with a probability distribution function (pdf)

p(v) = %, if vel-1,1].

To get an accurate estimate of the paraméteach node reports its observations to a fusion centre. we
due to message losses and medium access control protociolnede is allowed to transmit a message com-
posed only by one bit. In other words, each node reports aagess; (zx) € {0, 1} to the fusion center. The

bit of the message is chosen as
() = 1, if x>0
RUPRS =0, if 2, < 0.

(@) Find the expectatioR(m;,) and variance of the one-bit messdgen; — E(m;,))? for nodek.
(b) Prove thaiE(m; — E(my))? is bounded above. Find the upper bound.

(c) Suppose that the fusion center uses a final fusion fumgtend estimatoé to decide upon the parameter
given by

9 N
0:= f(my,...,my) = Nka—l.
k=1
FindE(d) andE (4 — 0)2.
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(d)

5
@ e o ©o
Figure 8.8.1: A grid of sensor nodes.

Suppose we want the variance of estimtess thare. What is the minimum number of nodeéé to
deploy so that such a variance bound is satisfied?

EXERCISE 8.8 Distributed detection, MAC, and routing

Sensor nodes are laid out on a square grid of spatiag depicted in Figure 8.8.1. Ever sensor wants to detect
a common source.

(a) Suppose that the source signal has a Gaussian digiribwiih zero mean and with variano%. More-

(b)

(©

(d)

over, every sensor measures such a signal with an additivesiaa noise of zero average and variance
o2. If the measured signal is positive, the sensor decidesyfoothesisH,, otherwise the sensor decides
for hypothesisH;. Based on the measured signal, characterize the prolatiilfalse alarm and the
probability of miss detection per every sensor.

Now, suppose that the source signal is constant and hawer 5. Such a signal power is received at
every sensor with an attenuation givenitjy wherer; is the distance between the source and sensor
Sensor nodé is malfunctioning, producing noise variant@s2 . The two best nodes in terms of SNR
will cooperate to provide estimates of the source. Charaetéhe region of source locations over which
node () will be among the two best nodes.

The grid depicted in Figure 8.8.1 is also used for relgyifissume it costs two times the energy of a hop
among nearest neighbors (separated by distdnt®hop diagonally across the square (e.g. ndte5)
and eight times the energy to go a distance of 2d in one hopttede 2 to 3). Lep be the packet loss
probability. Characterize for which it is better to consider using two diagonal hops tavenaround the
malfunctioning node.

Under the same assumption of the previous item, suppedeltere is an ARQ protocol, but the delay
constraints are such that we can only tolerate three retige®n attempts. Le1.99 be the probability

of having up to three retransmissions. Assuming packingmlng events are independent, characterize
the constraint that probability of packet losses per trassion should satifsy.

EXERCISE 8.9 Unknown mean in Gaussian noise (Example C.1 in [6])
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Consider an unknown mean in Gaussian noise,
yr = 0+ eg, ekeN(0,0'z).

Find the mean and variance of the sample average. Show thahathple average is the minimum variance
estimator.
Hint: use the CRLB.

EXERCISE 8.10 Moments method (Example C.9 and C.10in [6])

The method of moments is general not efficient and thus mféoi the ML method. However, in many cases
it is easier to derive and implement. For Gaussian mixturesMLE does not lead to analytical solutions so
numerical algorithms have to applied directly to the ddfing, where whole data vector has to be used. Using
the method of moments, closed expressions can be deriveshettohs of reduced data statics.

The key idea is to estimate the figsitnoments of data, and match these to the analytical momeitte of
parametric distributiom(y|0):

Now consider a Gaussian mixture
p(yl0) = aN(y;0,07) + (1 — Q)N (y;0,03),

where
= (a,a%,ag)T.

Assume that those are known. Using the method of moments, find the estimatian. df the variances are
unknown, find the estimation @f
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9 Positioning and L ocalization

ExXERcCISE 9.1 Timing Offset and GPS (Ex.9.1in [2])

GPS uses a constellation of 24 satellites and their growattbss as reference points to calculate positions
accurate to a matter of meters. Suppose we find our distanasumanents from three satellites to be 18 000,
19 000, and 20 000 km respectively. Collectively this plabeslocation at either of the two points where the
20 000 km sphere cuts through the circle that is the inteémect the 18 000 and 19 000 km spheres. Thus
by ranging from three satellites we can narrow our posit@just two points in space. To decide which one
is our true location we could make a fourth measurement. Mewveisually one of the two points is a non-
possible answer (either too far from Earth or moving at anassjble velocity) and can be rejected without a
measurement. Now apply the above principle of location wadimensional space. Assume that poidts

B, andC are reference points with known locations, respectivelfzatyl), (#2,y2), and(z3, y3), and that
the unknown position i8.0 meters from point4, 4.0 meters from poin3, and5.0 meters from point’'

(a) Suppose that accurate measurements are available.tighthree measurements can be used to uniquely
determine the position. Letrl,y1) = (0,3.0), (z2,y2) = (4.0,0), («3,y3) = (4.0,3.0). Find the
position.

(b) Now assume that all measurements include a single tioffisgt that corresponds to an error@$ m. In
other words, the position is observed todg m from point A, 4.5 m from point B, and5.5 m from point
C. Develop a generic procedure to find the true position.

EXERCISE 9.2 Linearizing GPS Equations (Ex.9.2 in [2])

In order to find position using the GPS system, we need to kin@ndcation of at least three satellites and
the distance to each of those satellites. Assume that the Hatellites are located respectivelyaat, y1, z1),
(22,92, 22), and(z3, y3, 23), and that the distance between us and the three satelitesspectivelyl1, d2, d3.
The following nonlinear system of equations needs to beeshlv

(z—21)’+y—n)’+(z-—n) =4

(z—20)* + (y—2)* + (2 — 2)* = 2 (9.2)
(z—23) 4+ (—u3)>+ (2 — )’ =d3

Obviously linearization is desirable in this case. Assuhs the reference point i$),0,0). Prove that the
resulting system after linearizing (9.2) is

1 oy 2 x a3 +yf+ 23 — &3
2| 12 y2 22 y | =| 234y + 25 —d3
T3 Ys Ys z x5+ Y3 + 23 — d3

EXERCISE 9.3 Averaging to reduce error in TOA (Ex.9.3in [2])

TOA is based upon the measurement of the arrival time of aabtgansmitted from the to-be-located object to
several reference nodes. For radio signals, the distange ugherec is the velocity of light and is time of
travel from the object to the reference node. This measurethas indicates the object is on a circle of radius
ct, centered at the reference node. There is always a need [Easitthree reference nodes to determine the
location of the object correctly. The disadvantage of th@hhique is that processing delays and non-line-of-
sight propagation can cause error, resulting in mistakeldnTOA estimation. Assume that t is a Gaussian
distributed RV with mean at the real time of arrivadnd a variancé;.
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(&) Find the mean and variance of the resulting range of tfezbb

(b) Now assume that independent multiple measurementsgérare available. That is(n), n = 1,2,3, ..,
is the measured time of arrival from the reference node téatme-located object, at time instamnt Show
that multiple measurements help to reduce the error in sdtneg range of the object.

EXERCISE 9.4 Weighted centroid computation (Ex.9.9 in [2])

Three beacons are locatedaat= (1,1), b = (1,—1), andc = (—1,1). The received powers from nodes
b, andc are1.2, 1.5, and1.7 respectively. Calculate the unknown position of the remeitairough a weighted
centroid computation.

ExXERcISE 9.5 Collaborative multilateration

Consider Figure 9.5.1, suppose nddecan estimate ranges only for nodds C, andV, and nodeV can
estimate ranges only for nodés D, andU, where the unknown locations areandl’. One can begin with an
initial guess at the position @&f from either the centroids of the known positions in immegli@nge, or via the
topology. Then multilateration is performed using the tamas of all neighbors (estimated or known) to refine
the positions, in a sequence that proceeds until locati@islize. Compute the first estimate of the positions
of U(up) and V' (ng) as the centroids of the nodes they can hear that have knovitioposThen iteratively
calculate by multilateration the positions in the ordern, assuming perfect range measurements.

C=(-1,1) A=(1,1)
® [
o U=(5.5)
o V=(-5-5)
® [
D=(-1,-1) B=(1,-1)

Figure 9.5.1: Four node multilateration.

EXERCISE 9.6 Linearization of angle of arrival (AOA) location determtimn (Ex.9.11 in [2])

The intersection of the angles from two or more sites may bd tsprovide an unknown location in the plane.
For this triangulation problem, denote the position of tile known nodes as; = [ z; ¥; |7,i = 1,2, and
the unknown node’s position as= [ z y ]7. The bearing angles can be expressed as

92’ = fi(ry TZ') + n;, 1= 1727 (96)

wheren; is the angle measurement error, and the funcfidhis defined as

fi(r,r;) = arctan (ac — xl) ,i=1,2. (9.6)
Y—UYi
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After collecting angle measurements from known nodes, titk@own node’s position can be found by solving
the nonlinear system of equations

01 = arctan [ =2 ) + nq
v (9.6)

0y = arctan Z‘m + ng

This triangulation problem can alternatively be solved iogarizing thef;() function by expanding it in a
Taylor series around a reference point, denoteghbyonce the equation system is linearized, the ML estimator
is used to provide the following unknown node position eatin

02 — fa(ro)

— ot G [ PR ] . (9.6)

Matrix N = E[nn/] is the measurement error covariance matrix, and métrig the matrix of the resulting
equation system after linearizing (9.6). Mat€is equal to

F=ro+ (G"TNT'G) TGN [ b1 = f1(ro) }

_ [ (yo —y1)/day  — (o — x1)/dy }
(yo — yz)/dgz — (@0 — 952)/d32 ’

where angléy; = fi(ro),i = 1,2, anddy; is the distance between thé¢h node andy. Givenrg =[ 0 0 ]7,
ri=[-3 417, rp=[4 3]7,6, =450, =135°,and

1 0
v=15 0]

Use equation (9.6) to find the unknown node’s position. Controa the accuracy of the results.
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10 Time Synchronization

ExeERcCISE 10.1 TOA with low-cost clocks (Ex.9.4 in [2])

In order to make accurate range measurements in a GPS syiséeraceiver and satellite both need clocks that
can be synchronized down to the nanosecond, which potgra@ild require atomic clocks not only on all the
satellites, but also in the receivers. However, atomickdare far too expensive for everyday consumer use.
GPS sidesteps this problem by measuring the distance tarfstead of the minimum three located satellites.
Every satellite contains an expensive atomic clock, butréoeiver uses an ordinary quartz clock, which it
constantly resets. With four range measurements, thevexceqn easily calculate the necessary adjustment
that will cause the four spheres to intersect at one poinseBan this, it resets its clock to be in sync with
the satellite’s atomic clock, thus providing time as welll@sation. Explain mathematically how this fourth
measurement provides these benefits.

EXERcCISE 10.2 Time difference of arrival (TDOA) in a two-dimensional spa@&x.9.5in [2])

TOA requires that all the reference nodes and the receiver fr@cise synchronized clocks and the transmitted
signals be labeled with time stamps. TDOA measurementsverti® requirement of an accurate clock at
the receiver. Assume that five reference nodes have knowtionsg0, 0), (—1, —1),(0,1),(3,1), and(1,4)
respectively. We choos@, 0) as the reference sensor for differential time-delays whiehdefined as

Ts1 —Ts2
tlr:tl_tr:T7

whereuw is the velocity of propagation; is the distance between the unknown node andttheode. Further
assume thatjs = —1.4s, t13 = 0.4s, t14 = —1.6s, andty5 = —2.6s.
(a) Find the unknown locatiof;, y;).

(b) Now assume that the propagation speed is known as 1.&mfsthe unknown locatiof;, y; ).

ExERcCISE 10.3 TDOA in a three-dimensional space (Ex.9.6 in [2])

Now assume that five reference nodes are knowfd &, 0), (6,0,0), (3,4,0), (—4,—3,0), and (0,0, —8)
respectively. Alsotio = 0s, t13 = 1s, t14 = 0.7s, t15 = 0.7s, andt g = 1.7s. The velocity of propagation is
V.

(a) Find the unknown locatiofr;, y:, z¢) using (9.10) from lecture notes.

(b) Now assume that the propagation speed is known to be &7 Riid the unknown locatiofw;, y;, z¢)
using (9.12) from lecture notes.

EXERCISE 10.4 EX.9.3in [3]

Consider two nodes, where the current time at nodelA@® and the current time at node B1i800. Node As
clock progresses by.01 time units once every s and node B’s clock progresses®99 time units once every

1 s. Explain the terms clock offset, clock rate, and clock skisimg this concrete example. Are these clocks
fast or slow and why?
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EXERCISE 10.5 EX.9.4in [3]

Assume that two nodes have a maximum drift rate from the @& of 100 ppm each. Your goal is to synchro-
nize their clocks such that their relative offset does naieexil s. What is the necessary re-synchronization
interval?

EXERCISE 10.6 EX.9.6 in [3]

A network of five nodes is synchronized to an external refegdime with maximum errors df, 3, 4, 1, and2
time units, respectively. What is the maximum precisiort ti@a be obtained in this network?

EXERCISE 10.7 EX.9.7 in [3]

Node A sends a synchronization request to node B &0 (on node A's clock). AB250, node A receives the
reply from node B with a times-tamp 61 20.

(a) What is node A's clock offset with respect to the time ade® (you can ignore any processing delays at
either node)?

(b) Is node A's clock going too slow or too fast?

(c) How should node A adjust the clock?

EXERCISE 10.8 EX.9.8 in [3]

Node A issues a synchronization request simultaneoushpdes B, C, and D(Figure 10.8.1). Assume that
nodes B, C, and D are all perfectly synchronized to each otbgplain why the offsets between node A and
the three other nodes may still differ?

t t,(B) t,(C) t,(D
Node A ]N\ /4(()/‘4( )/4( )
Node B \ Y(‘B) tS(B)/ /
Node C x 4©) 4O /
Node D

t,(D) (D)

Figure 10.8.1: Pairwise synchronization with multiplegidioring nodes.

34



11 Networked Control Systems

EXERCISE 11.1 Matrix Exponential

Let A be ann x n real or complex matrix. The exponential 4f denoted by:# or exp(A), is then x n matrix.
Find e# using two different way, where
0 1
=Py

EXERCISE 11.2 Stability
Given a bi-dimensional state space system
X1 = PXy,
1. show how to compute the eigenvaluesbof

2. make some comments on the relationship between the elgesvwof® and the stability.

EXERCISE 11.3 Modeling

Model the dynamics of a coordinated turn (circle movemesthag Cartesian and polar velocity. Here we
assume that the turn rateis piecewise constant.

EXERCISE 11.4 Linearized Discretization

In some cases, of which tracking with constant turn rate é&sexample, the state space model can be discretized
exactly by solving sampling formula

t+T
x(t+T)=uz(t) + / a(z(r))dr,
t
analytically. The solution can be written as

2(t+ 1) = f(a(t)).-

Using this method, discretize the models in Ex:11.3.

ExXERcCISE 11.5 Modeling of the Temperature Control

Assume that in winter, you'd like to keep the temperaturehig toom warm automatically by controlling a
house heating system. L&}, T, andT, denote the temperature inside, outside and radiator. Heugrocess
model can be simplified as

Ti :al(Tr - Tz) + a2(To - le)
T, =ag(u—1T}).
1. Model the dynamics in standard state space form. Hererasthat the outside temperature is aroud
zero, T, = 0.
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2. Assume that the sampling time is h, model the continuaaite space form to the discrete time standard
form.

EXERcCISE 11.6 PID Controller

One heuristic tuning method for PID controller is formallpdwn as the Ziegler-Nichols method. In this
method, the(; and Kz gains are first set to zero. THg, gain is increased until it reaches the ultimate géin,

at which the output of the loop starts to oscillae.and the oscillation periody; are used to set the gains, let
K, = 0.60G, K; = 2K, /T and Ky = K,T¢/8. Now consider the system in Ex: 11.3 and the step response
plot shown in Fig. 11.6.1. Find, then design the PID controller for the system in continuspece using
Ziegler-Nichols method. Here assume that 10.

Step Response

Amplitude

. . \ .
0 2 4 6 8 10 12 14 16 18
Time (sec)

Figure 11.6.1: The step response for PID controller wiith= 12.

EXERCISE 11.7 Stability of Networked Control Systems with Network-ingéacDelay.

ZOH Continuous h
Actuator Time Plant
sensor
Control ) . Control
Discrete Time
«— Network Network [—
T Controller Te
ca s8¢

Figure 11.7.1: Networked Control System with communicatielay.

Consider the Networked Control Systems (NCS) in Figure.11.The system consists of a continuous plant

x(t) = Az(t) + Bu(t)
y(t) = Cu(t) ’
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and a discrete controller
u(kh) = —Kx(kh), k=0,1,2,...,

whered e R, BeR,C € R.
Let A =0, B = I. lllustrate the stability properties of the system as fiarcof the network delays,. and
Teq UNder the assumptions that. + 7., < h and thath = 1/K.

EXERCISE 11.8 Control with time-varying delay

A process with transfer function

is controlled by the Pl-controller

C(z) = K, + Ki—

z—1

where K, = 0.2 and K; = 0.1. The control is performed over a wireless sensor networkshasvn in
Figure 11.10.1. Due to retransmission of dropped packesetwork induces time-varying delays. How large
can the maximum delay be, so that the closed loop systembie3ta

P(z)

Sample
G(s) o—

WSN

C(z)

N

Figure 11.8.1: Closed loop system for Problem 11.2.

EXERCISE 11.9 Stability of Networked Control Systems with Packet Losses.

Consider the Networked Control System in Figure 11.9.1s #ssumed that the network is present only from
the plant to the controller. The state space plant model is



Plant

Controller

u(kh) = —kx(kh)

Figure 11.9.1: Networked Control System with packet losses

The feedback controller ig(kh) = —Kx(kh), whereK = [20,9].
Suppose that packets sent over the network are receivettat+al — p, wherep is the packet loss rate,

and that the system is sampled at rate 0.3s. What is the lower bound on reception ratidat still guarantee
the stability of the system?

ExXERcCISE 11.10 Networked Control System

Plant

Controller

u(kh) = —kx(kh)

Figure 11.10.1: Closed loop system over a WSN.
Consider the Networked Control System (NCS) in Fig. 11.10He system consists of a continuous plant

i(t) = Az(t) + Bu(t) (11.10a)
y(t) = Cz(), (11.10b)

whereA = a, B =1, C = 1. The system is sampled with sampling tifneand the discrete controller is given
by
u(kh) = —Kx(kh), k=0,1,2,...,

whereK is a constant.

(a) Suppose that the sensor network has a medium accessl ematirouting protocols that introduce a delay
7 < h. Derive a sampled system corresponding to Eq.(11.10) watr@-order-hold.

(b) Under the same assumption above that the sensor netmtookluces a delay < h, give an augmented
state-space description of the closed loop system so taatéar such a delay.
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(c) Under the same assumption above that the sensor netntookluces a delay < h, characterize the
conditions for which the closed loop system becomes urestitiht: no need of computing numbers,
equations will be enough]

(d) Now, suppose that the network does not induce any dalayrtiortunately introduces packet losses with
probabilityp. Letr = 1 — p be the probability of successful packet reception. Givediscuss sufficient
conditions for which the closed loop system is stable. IEéheonditions are not satisfied, discuss what
can be done at the network level or at the controller levebssiill ensure closed loop stability.

ExXERCISE 11.11 Energy-Efficient Control of NCS over IEEE 802.15.4 Netwoji}s

Consider the Networked control system over IEEE 802.15t&aork composed o8 control loops depicted
in the Figure 11.11, where each process is scalar of the fore a;x; + bju;, ¢ = 1,2,3, and where the

R — [

Controller |

Process

Rl

IEEE 802.15.4

Figure 11.11.1: NCS over IEEE 802.15.4 network.

communication from the sensor nodes to the Personal AreaddetCoordinator (PANC) is allowed only
during the Guaranteed Time Slot (GTS) portion of the supanré. Assume that there are no time delays, i.e.
the transmissions from sensoto the PANC and the respective control updaigare performed at the same
instantt = T; ;. and that each node can transmit only a packet per super-frame

Ateacht = T; ;,, node: sends the values af (T; ;) andt; ;. to the PANC, where;;(T; ;) is the measure-
ment of the output of procegst timet = T; ;, andt; ;.. is the time by which the next transmission from node
i must be performed. The controlleupdates the control input; with w; = —k;x;(T; ;) and it keeps it con-
stant in the time intervdll; ;, T; 1+1). The transmissions are performed according to a selfdrem sampler
that predicts the time in which the conditioey ()| := |z;(T; ) — xi(t)| < 6; is violated. The self-triggered
sampler has the expression

1 ‘CLZ’(L >
A I <1+ . 11.11
k41 k ‘ai‘ la; — bzsz%(Tz,k)‘ ( )

Consider the numerical values of the described NCS as irotlweving table wherer; o denotes the initial
condition of the process Determine:

(a) The values ok, such that practical-stability of the loop #1 is ensured.

(b) The values ob- such that that practical-stability of the loop #2 is ensured
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a; by ki 6 o
Loop#1| 2 1 ? 4 5
Loop#2| 3 -2 -2 7 8
Loop#3| 2 L 6 1 2

(c) The values of3 o such that that practical-stability of the loop #3 is ensured

(d) For each control loop, find an upper-bound of the the pralestability region size;.
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12 Scheduling

EXERCISE 12.1 Scheduling in Smart Grids

The latest wireless network, 3GPP Long Term Evolution (L TiE€used to transmit the measurements obtained
by a smart grid. Every time slot, LTE need to allocate resesifor N users in time- and frequency- domain.
Assume that in each time slot, LTE hag 1 x Ngp transmission resources, whée¥gy is the number in time
domain andVggp the number in frequency domain. Now, assume that each tiasigm resource can be used
by one user only in one time slot. And the utility can be deflaed%(c) for slot used by uset in time ¢ and
frequencyj. Now pose the scheduler design by an optimization problemmetwlmlze the sum of the utility of
the transmission resources.

Since LTE transmits data flows not only in a smart grid but &sgoublic use in a wide area, we would
like choose a utility function in the scheduling problem sogive the highest value to messages from the
devices in smart grid. Assume that the devices in smart gnie fiollowing features: constant data updating
rates, equivalent data packets lengths, and approximiatelyiant channel qualities. Design a suitable utility
function.
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13  Security

EXERCISE 13.1 The Caesar code (Ex.14.1in [2])

The Virginére family of codes for the alphabet is specified by
C; = mi—i-ki mod 26,

wherem; is the numerical index of the letter in the alphabet (el 2), andk; is a component of a key of

lengthd. Whend goes to infinity and the key is chosen randomly, this is the&er code, otherwise known as

the one-time pad. When d=1, this is one of #eossible Caesar ciphers. Typically it is broken by brutedo

attacks. All possible keys are applied to the cipher text thiedmessage that makes sense is selected. More

precisely, a message that matches the statistical prep@ftthe occurrences of letters and sequences of letters

in a natural language is selected as being correct. Knowiaiget Caesar code was employed, decode:
NBCMCMYUMS

EXERCISE 13.2 Unicity distance (Ex.14.2 in [2])

The length of text required to uniquely decode encipheretviben keys are randomly generated is known as
the unicity distance. Denoting bi (K') the entropy of the key and h# the redundancy of the text, then the
unicity distance is defined as

H(K)

o

There are26! possible substitution ciphers for2é-letter alphabet, while the redundancy of English expresse
usinglog 10 is 0.7. What length of text is sufficient to uniquely decode any stlison cipher? What does this
say about the security of such ciphers?

ExXERCISE 13.3 Euclid’s Algorithm (Ex.14.3 in [2])

Euclid’s algorithm can be used to find the greatest commasatiygcd) of two integera andb. Suppose: > b
and let{q;} and{r;} be integer quotients and remainders respectively. Theitigorests on two principles.
First, if b dividesa, thenged(a,b) = b. Second, ifa = ¢b + r, thenged(a,b) = ged(b,r). One can find
ged(a, b) by repeatedly applying the second relation:

a=qob+r; 0<r <|b

bZQ1T1+T2 0<ry<r
r1=¢qara+13 0 <713 <719

Tk = Qk+1Tk+1 + Tht2 0 < 7rpqo < Thp

The process continues until one finds an integesuch thatrn + 1 = 0, thenrn = ged(a,b). Find
gcd (10480, 3920).

EXERCISE 13.4 Factoring products of primes (Ex.14.4in [2])
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Two ways to decode a public key system are to try out all ptesgiys or to attempt to factor = pq wherep
andgq are both primes. Lei(x) denote the number of primes less than or equal td/e have

lim m(x)

T
r— o0 z/ln(z) 1, hence m(z) ~ — for large x.

Inx

Quadratic sieve factoring is the most efficient known aliponi for factoring primes less than abdut decimal
digits long (well within the range of keys in common use).desnplexity is sub exponential, in this case

O(e(ln n)'/? (Inln n)l/z)

Forn = 26% andn = 228 determine the relative effort of running through the priress than n or applying
guadratic sieve factoring.

EXERCISE 13.5 Hash functions and sensing (Ex.14.5in [2])

In message authentication codes, a family of hash funcfignsherek is the secret key, are employed. The
properties of good families are:

(1) Ease of computation @f;(z), given k.

(2) Compression of an input of arbitrary length into a sequence of fixed length, n.

(3) Even given many text-message-authentication-codes paj, i (x;)) it is computationally infeasible to
compute any text-message-authentication-code(pairy (x)) for a new inpute not equal tor;.

(&) What brute force attacks could result in determinatibthe hash function, and what is a simple counter-
measure?

(b) How is hash function compression similar to and différieam the mapping of data from the physical
world into a decision by a sensor node?

EXERCISE 13.6 Fighting infection (Ex.14.8 in [2])

Suppose nodes face a constant probability p of being irdgetg., malfunctioning, taken over) in every time
epoch. A mobile agent can visit 100 of the nodes in each epoch and fix/replace them if they aretede It

is further desired that less thar100 of the data produced by nodes be corrupted. Determine thémeax
tolerable infection probability if (a) nodes simply reptiteir own data or (b) three nearby nodes with identical
access to the data perform a majority vote.

EXERCISE 13.7 Information theft (Ex.14.9 in [2])

The compression approach in a sensor network has implcatioth for scalability and vulnerability to in-
formation theft. Consider the network depicted in Figure71BTier1 producesl00 data per node; differing
levels of compression are applied. Calculate the volumeatd dt risk when a node is compromised at any of
the three levels with the following data compression scteeme

(a) Tier 1 does no compression; tier 2 reduces the union otéfe 10 units; tier 3 reduces union of inputs to
1 unit.
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Figure 13.7.1: Three-tier network.

(b) Tier 1 compresses to 20 units through a hardwired algumritier 2 to 5 units; tier 3 to 1 unit.

(c) Tiers 1 and 2 do no compression; tier 3 reduces to 1 unit.

ExEeRcISE 13.8 Physical security (Ex.14.10 in [2])

An important component in the overall security of a systerthes difficulty of physical access for theft or
tampering. A rule of thumb is that the electronic and physsegcurity means should present comparable
difficulty to would-be attackers, and should have cost comsueate with the value of what is being protected.
Comment on the applicability/usefulness of the followirygtems for uses in ubiquitous small sensor nodes,
nodes with cameras, gateways (including those in vehicdggjregation points, CAs: tamper-detection devices,
hardened casing, security bolts, security port for key tggjacamouflage/embedding in structures, secured
room, secured facility and redundant systems

EXERCISE 13.9 People and data reliability (Ex.14.11 in [2])

Data reliability will depend also on the users/applicagigust as security depends on human involvement.
List the ways in which confidence (trust/reputation) is gdiamong people and comment on how reputation
systems for people fit into the overall system integrity feeasor network.
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1

Introductory exercises

SOLUTION 1.1

Random variables

(a) For azero mean Gaussian distribution

(b)

(©

P(X >2x)=Q(x) = /OO \/%e_ﬁ/zdt,

one can verify that the function is continuousiire (—oo, +o0). Moreover, the first derivative is

/ -1 2
= e 2 s
2 V2T
and the second derivative is ,
" X T
= ez >0,
Q(E \/ﬁ -

for £ > 0. So the function is convex far > 0.

T —p o0 1 _t-w?
Q( > :/ ce 20?2 dt
o « V2mo?

A derivation similar to the previous exercise yields

nlT—p T — [ _@w?
Q< ): e 22 >0 forx>p
o o2V 2mo?

For the function

We prove that) function in its entire domain is log-concave. Accordinghe definition, a functiory is
log-concave iff(z) > 0 and for allz in its domain, logf is concave. Supposgis twice differentiable
entirely its domain: € R, so

Nx' xTr) — I’2

We conclude thaf is log-concave if and only if " () - f(z) < f (z)?. ForQ(z), in previous exercise we
computed the second derivative
" X 2

for z < 0. Moreover,f(z) > 0 for all z which indicates that the inequality holds for< 0. What remains
to show is that the inequality also holds for> 0. For the case of Gaussian function the basic inequality

reduces to
12 o0 t2 2
me‘2-/ e 2dt< e ™.
X

<0

Hence

22

o0 2 — 5
/ ot < &
" T

To prove this inequality, remember the following generaltefor convex functions

g(t) > g(@) + g (2)(t — z).
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We now apply the above inequality fgft) = ¢2/2, so we have

2 .%2 .%2

— —x)=at — —.
5 5 +z(t—z)==x 5
So, multiplying by—1 and taking exponential we will yield

+2 22

e 7 <e ¥ty

Now take the integral and conclude

o0 2 o0 z2 e? z2 e
/ e‘2dt§/ e . ez dt= ‘ez =
X X

SOLUTION 1.2

Application of Q(-) function
Recalling the definition of; as the probability ofalse alarmandp, as the probability otletection we
have

(@)
pf:P(SZ'>T|H0):/ \/12_7Te_2dt:Q(7')
(b)
1 (t=a;)®

pa=P(si > 7|Hy) :/ S i = Q(r — ay)

2T

SoLUTION 1.3
(Ex. 3.24 in [1]) In each case we investigate the given function basedaviable{p € RleTp =1}

(@) Ex = a1p1 + asp2 + - - - + anpy is & linear function op, hence it is both convex and concave.

(b) P(X > a). Letj = min{a; >= a}, and therP(X > a) = 371 . p;, is a linear function op and, hence
is convex and concave.

() Pla < X < f). Letj = min{a; >= a}, andk = max{i|a; < B}. ThenP(a < X < f3) = Zf:j pi, IS a
linear function ofp and, hence is convex and concave.

(d) >, pilogp;. We knowp log p is a convex op onR . (assuming) log0 = 0), so_, p; logp; is convex.
Note that the function is not concave. To check this we cansath example, whene = 2, p = [1, 0] and
p = [0, 1]. The function value at both poingsandp’ is equal to). Now consider the convex combination
[0.5,0.5] has function value log /2) < 0. Indeed this is against concavity inequality.

e) var X = E(X — EX)2. We have
(e)
var X =EX* — (EX)* =) pial = O_piai)?,
=1 =1

Sovar X is a concave quadratic function pf The function is not convex. For example consider the
casen = 2, a; = 0, az = 1. Both X with probabilities|p,, p2] = [1/4,3/4] and Xy with [p1,p2] =
[3/4,1/4] lie in probability simplex and we hawaar X; = var Xy = 3/16. But the convex combination
X3 =1/2X; + 1/2X, with probabilities[p;, p2] = [1/2,1/2] has a variancear X3 = 1/4 > 3/16. This
contradicts convex inequality.
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(f) quartile(X) = inf{8|P(X < ) > 0.5}. This function is piecewise constant, So it is not contirgiou
Therefore,quartile(X) is not convex nor concave. To see this, consider an examplerwi= 2 and
probability simplexp; + p2 = 1. We have

B a for S [07 1/2)
f(p) —{ aj for Zi € [1/2,1]

SOLUTION 1.4

Amplitude Quantization

(a) The signal-to-noise ratio does not depend on the signalitude. With an A/D range of— A, A], the
quantization interval\ = 24/2% and the signal’s rms value (again assuming it is a sinussid) i/2.

(b) Solving2~5 = .001 results inB = 10 bits.

(c) A 16-bit A/D converter yields a SNR af x 16 + 101og 1.5 = 97.8dB.

SOLUTION 1.5

Accelerometer system design and system scale estimate

(@)

1075 =10712/(1/wd) forw < w,. Thus, w?=10" and wp=3.16x10> rad/sec =504 Hz.

(b)

4k, Two 4 % 1.38 x 10723 x 300 x 3160 9 [ 1
TNEA = = =723 x 1077/ —
\/ MQ ¢ MQ 8 MQ

For TNEA=107%, /515 = 1.38 x 10% MQ = 5.2 x 10~7 Thus, forQ = 1, M = 0.52 pkg= 0.52mg
for @ =100, M = 5.2 x 1079 kg= 5.2u9
for @ = 10,000, M = 5.2 x 10~ kg= 0.052u9

(c) ForQ =1
0.52mg/2.33 gm/cm?® =2.23 x 107*  cm?
Att=1u= 107% cm; A = 2.23cm?.

SOLUTION 1.6

Signal dependent temperature coefficients

(@) Voftset = 101V x 107%(300K — T)
Vout = 0 + Vofrset = 10uV x 1074(300K — T)
Temperature coefficient i) ~*/K
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(b)

©)

Votiset = 10p V(300K — T)
a=1V/u(l +1072T)

K =0.01p/N/m?(1 +107*T)
G =10(1 —10737)

Vout = PnaK G + GVofset
Now,

250K: —6.2 x 107

350K: —8.3 x 107

Vottset = 10V (300K — T)
a=1V/u(l +1072T)

K =0.01p/N/m?(1 +107*T)
G =10(1 —10737)

Vout = PnaK G + GVofiset
Now,

250K: —5.2 x 1073

350K: —7.3 x 1073
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event void button_handler ( button_state_t state ) {

if ( state == BUTTON_PRESSED && sendflag == TRUE ) {
sendflag = FALSE;
// send the first packet with broadcast
msg->senderId = TOS_NODE_ID;

msg->counter = counter;
broadcast_message (&msg) ; //forward message
}//end_if

(a) Broadcast

event message_t* Receive.receive (message_t* msg) {

newmsg->senderId = TOS_NODE_ID;
newmsg->counter = msg->counter+1;
newmsg->receiverId = msg->senderId;
unicast_message (&newmsg) ;

(b) Unicast

Figure 2.3.1: (a) Pseudo code for initiating “ping pong” seage. As it is shown, the first node uses broadcast
to initiate the transmission. (b) Code for receiving messdmndler”. After receiving a message “exchange”
the node addresses and resend the message by using unicast.

2 Programming Wireless Sensor Networ ks

SOLUTION 2.1

Hello world
Before starting the solutions, let us review some basic eptscfor TinyOS programming.

SOLUTION 2.2
Counter

SOLUTION 2.3
Ping Pong

SOLUTION 2.4

Dissemination Protocol
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every 10 seconds({

cmd = random_cmmand(); //get a random command
lastSegNum++; //increase seq num
interprete_command(cmd); //handle command
broadcast_command(cmd) ; //forward to surrounding nodes

}

(a) Sink Nodeld=1

broadcast_msg _handler (packet* msg) {

if ( msg->segNum > lastSegNum) {

lastSegNum = msg->segNum; //store seq num
interprete_command (msg->cmd); //handle command
broadcast_message (msg); //forward msg

}

}

(b) Receiver Nodeld =1

Figure 2.4.1: (a) Pseudo code for dissemination protodok i$de every 10 seconds picks a random command
and broadcasts it to surrounding nodes. (b) Node i, afteivieg new message interprets the command and
rebroadcasts it.

3 Wirdess Channel

SoLUTION 3.1
The noisy sensor

(a) Letr; be the distance from the source to a node, and'lbe the signal power. Then for node 1 to be
involved in a decision rather than some other node one must ha

S S ;
Th2 > ) or ﬁ >V 10
10ry 7 1
For reasons of symmetry one need only consider the allipegjtadrant with nodé as the origin. For a
source at positiofiz, 0) equal SNR is obtained with respect to ndde

d—
T V10 or x=d/4.16.
For node2 the result is J
T 10 or = d/2.16.
x
Similarly for node4 one solves
2d — x

=v10 or x=4d/2.08.

Node5 turns out to have the second tightest constraint on the s-axi

d? + 22
2

=10 or z=4d/3.

Thus, nodel is only among the two best nodesiif< d/3. The situation is symmetric with respect to the
y-axis, with nodes 2 and 6 being better for- d/3. Now consider the positiofiz, ); nodes2 and5 will
have the same SNR as notd

(d+ z)? + 22

o2 =10 or d? 4+ 2zd — 1822 = 0;
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(b)

solving the quadratic equatiom, = d/3.35. The node diagonally opposite produces= d/4.16 while
nodest and3 produce a tighter result with = d/5.35.

For a source at positigif.25d, 0) the respective SNRs for nodeand1 areS/1.0625d? o2 andS/0.625d%02.
Thus the ratio in signal normalized noise variancekisor put another way, the standard deviatio.i&
times as large for nodeas nodel. There are a variety of ways to approximate the likelihoat thgiven
measurement will be lower at noddghan nodel. One is to simulate; another is to divide both normalized
noise distributions into bins of equal size, with eventshia same bin assigned equal likelihood of being
larger or smaller. The likelihoods of being in particulandiare easily obtained from the Q-function table.
Normalize the noise variance for nodldo be so that the standard deviation for nédis 1.3. Then, the
probability that the absolute value of the noise at node &ds than the noise at nodes approximately
given by the sum of’(1 in bin ¢)(1/2 P(5 in bin i)+ P(5 larger than bin)). Thus, with bin sizes of; /2
(taking both positive and negative values) we obtain (wWithlast one being the rest of the distribution):

Bin | P(1in bin) | P(5in bin) | P(5 bigger)
1 .383 .300 .700
2 .300 .248 .452
3 184 .204 .248
4 .088 124 124
5 017 .070 .054
6 .012 .054

HenceP(1 less thars) =.383(.15 + .7) + .3(.124 + .452) + .184(.102 + .248) + .088(.062 + .124) +
017(.035 + .054) +.012(.027) = 0.62.

SOLUTION 3.2

Power optimization

(@)

(b)

(©

(d)

If we considelt > 0 and the intermediate nodes are equidistant, then the sueguoired energy between
source and destination consideribgntermediate node is as follows

d

E:(k+1)<k—+1

sincel — a < 0 if k increases” decreases and in limit point, whéngoes to infinity ' goes to zero. So
there is no optimal number of nodes to minimize the energwammption (infinity number of nodes here
makes the energy to be zero).

) c e

Based on part (a), if we consider a number of nodes thalstémoc as optimal solution, the energy
consumption goes to zero.

A new model of energy consumption with the constant vaduaore realistick (A, B) = d(A, B)* + C.

If we put this new formula in the limit computed in part (a)etminimum required energy for transmission
would be a value greater than zero and it is more reasonadsdaube in real world it is impossible to send
data without any energy consumption.

We have

E=(k+1) (%)aﬂkﬂ)c.

By taking the derivative

dE d \“ d \“ d \“
%= () () o= () a-ae



and putting it to zero, we have:

1
a—1\«
k=d -1
( ¢ )
which is the optimal number of intermediate nodes that mirés the overall energy consumption.

(e) If we put the computed value @fin previous case into the energy consumption equation @fipus
section), the following closed form can be achieved:

E(S,T) = (k + 1) (%)a +(k+1)C

SO

SOLUTION 3.3

Deriving the Density of a Function of a Random Variable: R fading

We use the method from [4] on the calculation of pdf for fuos of one random variable. Assumde
a function ofz with known distribution and pdf,(z). To find f,(y) for a specificy, we solvey = g(x).
Denoting its real roots by,

From [4], it can be shown that

W) = 1@ T g

whereg’(z) is the derivative ofj(x).

Fory = \/x andg'(z) = 1/(2y/x), the equationy = /x has a single solutiom = y for y > 0 and no
solution fory < 0. Hence

fu) =2y (y*)U(y). (3.3)

Suppose that has a chi-square density as

1
_ n/2—1_—x/2
andy = /z. In this case, (3.3) yields
_ 2 n—1_—y2/2

This function is called the chi density withdegree of freedom. In special case, fice 2, we obtain Rayleigh
density f, (y) = ye ¥"/2U (y).

SOLUTION 3.4
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Deriving the Density of a Function of a Random Variable: Stépdowing
Lety = xU(x) andg'(z) = U(z). Clearly, f,(y) = 0 andF,(y) = 0 fory < 0. if y > 0, then the
equationy = zU(x) has a single solutiom; = y. Hence
fy) = faly) Fy(y) = Fu(y) y>0.

ThusF,(y) is discontinuous ag = 0 with discontinuity 7, (0") — F,(0~) = F,(0). Hence,

fy(W) = f2(y)U(y) + Fz(0)6(y)

SOLUTION 3.5

Deriving the Density of a Function of a Random Variable: Sivafading
We havey = exp(x) andg’(z) = exp(x). If y > 0, then the equatiop = ¢ has the single solution
x = Iny. Therefore

fy(y) = éfx(lny) y > 0.

If y <0, thenf,(y) = 0. Now if x ~ A (u1,0?), then
_
oyvV 2w

This density is called log-normal and it is the standard rhmehe shadow fading, namely the slow variation
of the wireless channel.

o~ (ny—p)?/20°

fy(y) =

SOLUTION 3.6

Mean and Variance of Log-normal Distribution
Forx ~ N (u, o), the expected value gf = exp(x), which has a log-normal distribution, is

E{y} = /+OO yf(y)dy = /+OO Le—(lny—u)Q/%zdy — ohHo?/2
-0 —co OYV 2
The variance off = exp(x) is
+o00 (

2 2 oo 2 Yy— :“’)2 —(Iny—p)? /202 o2 2u+o?
E{y"} - E{y}= (y — ) fly)dy = We dy = (7 —1)e

SOLUTION 3.7
Gillbert-Elliot model for the wireless channels

(a) Steady state probabilities are derived via the stetatg-equations

7Tg—|—7TB:1,
g = (1 —p)rg +r7p

which yields
T
Tr =
€ T
and
r p
g =1-— = .
pt+r p+r
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(b) steady state errorz = (1 — k)ng + (1 — h)7wp.

(c) we determine = 1/AEL andpr = APD. From section (a) and (b) we hawe= pgr/(h — pg). Having
r andp the stationary probabilities andr are in order.

SOLUTION 3.8
Gillbert-Elliot Channel

(a) The average length of an error burst is the same as thagevéime of staying in the bad state. The
probability of an error burst of lengthis the same as the probability of staying in bad state for tamal
of lengtht, which is equal to

Pr{error burst of length} = (1 — r)"~1r.

Average error burst length is

AEL =) " tPr{error burst of length} = " ¢(1 —r)"'r = = = 10.
=1 i

(b) Similar to the last part, the average length of an emee-Eequence of bits is the average time of staying in
good state, which is

1
AEFL =)t Pr{error-free sequence of length= Y " (1 —p)''p = = = 10°.
p
>1 7

(c) Looking at the system as a Markov chain, the stationaopquility of being in the bad state is

P 107° 1

p+r 10014+10% 104 +1

T™B

moreover, message loss rate is given based on the statipraogbility of errorpy = (1 — h)np + (1 —
k)rg. Sincek ~ 1 andh =~ 0, thenpg ~ 75 ~ 107
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4 Physical Layer

SOLUTION 4.1

Gray Code Using the mirror imaging several times, one example (ofyhahthe Gray code is as 4.1.1

A
® [ ] [ ] ®
0111 0011 0010 0110
® @ @ ®
0101 0001 0000 0100
>
@ ] ] ®
1101 1001 1000 1100
® [ ] ® ®
1111 1011 1010 1110

Figure 4.1.1: Gray-coded 16-QAM.

SOLUTION 4.2
Network reconfiguration

(a) The alternate route will be selected if the expected rarmobtransmissions into and out of the malfunc-
tioning node i or greater. Let the packet dropping probabilityzbél' he last successful transmission will
have probability(1 — p). Then the expected number of transmissions is

1(1—p)+2p(1 —p)+3p°(1—p) + -+ =2

Solving above equality we have

and hencep = 0.5.
(b) The probability of requiring less than or equaBttransmissions is
(1 —p)+p(l —p)+p*(1—p)=0.99

This is a cubic irp and can be solved in any number of ways. A probability.afis close. Thus the delay
requirement leads more quickly to choice of alternativéngat this example.
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SOLUTION 4.3

Bit error probability for BPSK over AWNGN channels
The general form for BPSK follows the equation:

sp(t) =4/ ? cos(2rft+m(1 —n)), n=0,L1.
b

This yields two phase® andn. Specifically, binary data is often conveyed via the follogvsignals:

so(t) =4/ %Eb cos(2mft +m) = —4/ %Eb cos(27 ft)
b b

s1(t) = \/? cos(2m ft)
b

Hence, the signal-space can be represented by

o(t) = \/%008(277]%)

where1 is represented by/E,¢(t) and0 is represented by-v/Ey¢(t). Now we comment on the channel
model. The transmitted signal that gets corrupted by noiggically refereed as added white Gausssian noise.
It is called white since the spectrum of the noise is flat fofraquencies. Moreover, the values of the noise
follows a zero mean gaussian probability distribution fisrcwith variances? = Ny /2 . So for above model,
the received signal take the form

y(t) = so(t) +n
y(t) =s1(t) +n

The conditional probability distribution function (PDH) g for the two cases are:

1 _w+VEp?
e No
f(wlso) .
1 _(yﬂ/Ez,)2
= No
f(y!s1) \/ﬂ'—]\foe

Assuming thak, ands; are equally probable, the thresh@ldorms the optimal decision boundary. Therefore,
if the received signay is greater thai, then the receiver assumeswas transmitted and vise versa. With this
threshold the probability of error given is transmitted is

plelsi) = \/_/ (yixf(f_ﬂ dy = \/,/\/> e dz=Q O/?E(;b) = %erfc( %),

where erf¢x) = \/_ f°° -2 dr is the complementary error function. Similarly, the prabgbof error given
sg IS transmitted is

(613)—#/006(“%:_)2 / e dy = 28 _ Lo ,/@
P O VAo Jo W= \/_\/> B No ) 2 No |-

Hence, the total probability of error is
1 b
Py = p(s1)plels1) + plso)p(elso) = Serfe | (/=2 |
2 No
Note that the probabilities(sy) andp(s;) are equally likely.
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SOLUTION 4.4

Bit error probability for QPSK over AWGN channels
The general form for QPSK follows the equation:

sn(t) = \/2TE‘I)COS(27Tft +7(2n—1)/4), n=1,---4.
b

In this case, the signal space can be constructed usingwal@gdsis functions:

o1(t) = \/%cos(Qﬂft)
Pa(t) = \/szsin(%rft)

The first basis function is used as the in-phase componertieobiggnal and the second as the quadrature
component of the signal. Hence, the signal constellatiarsists of the signal-spacepoints

(i\/m> + Eb/2>

The factors ofl /2 indicate that the total power is split equally between the tarriers. Comparing these
basis functions with that for BPSK shows clearly how QPSKawriewed as two independent BPSK signals.
Although QPSK can be viewed as a quaternary modulationgasser to see it as two independently modulated
guadrature carriers. With this interpretation, the evermlal) bits are used to modulate the in-phase component
of the carrier, while the odd (or even) bits are used to mddufze quadrature-phase component of the carrier.
BPSK is used on both carriers and they can be independenttpdidated. As a result, the probability of
bit-error for QPSK is the same as for BPSK:

B [2E,\ 1 | B,
Pb_Q< m>_§erfc< Fo)

However, in order to achieve the same bit-error probabdgyBPSK, QPSK uses twice the power (since two
bits are transmitted simultaneously). The symbol erra@ imgiven by:

Pszl—(l—Pb)2=2Q< %)—@( %’)

If the signal-to-noise ratio is high (as is necessary focfical QPSK systems) the probability of symbol error
may be approximated:
[2E)
Py ~2 — .
SOLUTION 4.5

Error probability for 4-PAM over AWGN channels

Signal sets are designed to maximize the minimum distanteela the points in signal space, subject to
peak and average power constraints. This is because therowates is desired. The symbol error probability
is closely approximated by

d .
Ple) ~ Ny @ (S22
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whereNdmin is the average number of nearest neighbors at the minimuandes. Pulse amplitude modulation

(PAM) is effected by multiplying a rectangular pulse of dioa 7" by one of M equally spaced voltage levels
symmetric about the origin. It can be easily shown that thisraetry minimizes the peak and average power,
without affecting the error probability. In the particulease od-PAM, the signals are given by

S()() = \/E/5§Z51(7f),801 = 3\/E/5¢1(7f), 510 — —\/E/5¢1(t),811 = —3\/E/5¢1(t),

where¢, (t) = /1/T,0 < t < 1T. Clearly, the average energy Is = [(2)(E/5) + (2)(9E/5)]/4, and
the squared minimum distance4&’/5. Heresy ands;o have two neighbors at the minimum distance, while
s11 andsg; have only one. Thus,;_ . = 1.5. Also, the most likely error is to cross only into the neighbg
region, for which the bit labels differ in only one positiohhus a symbol error results in only one of the two
bits being in error. Consequently, the symbol error rate is

Pe) ~ 1.5Q (,/%) =1.5Q (,/%) ,

Py ~0.75Q< i)

and bit error rate

5Ny
where,
) E
E, = ener er bit= = —.
b P log, M 2

SOLUTION 4.6

Average error probability for Rayleigh fading

Let P(v) be the probability of error for a digital modulation as a ftioe of E;,/Ny, v, in the Gaussian
channel. Let the channel amplitude be denoted by the randoiableq, and let the average SNR normalized
per bit be denoted by* = E[a?]E},/Np. Then to obtainP(e) for a Rayleigh fading channéb(y) must be
integrated over the probability that a givens encountered:

Ple) = /0 P,

For Rayleigh fading,

1 .
p(v) = *e—v/v )
) =7

In the case of coherent BPSK, the integration can actuallyobgouted yielding

Ple) = = {1— 11*7*].

At high SNR like OQPSK systems, the approximatiant z)'/? ~ 1 4 z/2 can be used, giving

1

P(e) ~ 4,}/*

compared withP(e) = Q(1/27*) for the Gaussian channels.
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SOLUTION 4.7
Detection in a Rayleigh fading channel
We have

P(e) = E[Q(y/2/h[2SNR)]

00 00 1 ) 1 t2/(2SNR) )
= / e_x/ e P2 dtdr = —/ / e 2T drdt
v2:SNR V27 V2

—t2/2 e—t2/(2SNR)> dt — —12( 1+1/SNR)/2dt

vk sty h

_1(,_ [ S\R
T2 1+SNR)’

a2
In the first step we take into account that is a Rayleigh random variable; i.e., it has the dengiy 2>

and hence its squared magnitydi¢’ is exponentially distributed with densit%e%, x > 0. Remember that
according to the question assumptians= 1. Moreover, the third step follows from changing the order of
integration.

Now, for large SNR, Taylor series expansion yields

SNR 1 1 +O< 1 >N1_ 1

1+ SNR 2SNR SNR? 2SNR

which implies

SOLUTION 4.8

Average error probability for Log-normal fading

First, we present a short summary of the Stirling approxiomatA natural way of approximating a function
is using the Taylor expansion. Specially, for a functjfd) of a random variablé having mean: and variance
o2, using the Taylor expansion about the mean we have

F(8) = F()+ (6 — )" (n) + 50— 2 F" () 4+

By taking expectation

E(7(6)} ~ F(1) + 5 (1)0”

However, in Stirling approximation one can start with thdggerences

f(g):f(#)+(9_u)f(ﬂ+h)2—hf(ﬂ—h)+%(9_ )2f(u+h)—2];(2)+f(,u—h)+m’

then, taking the expectation we have

1futh) —2f(w) + flr—h) »
2 h2 ‘

It has been shown that= /3 yields a good result. So we obtai@(v). Given a log-normal random variable
z with meany, and variancer?, we calculate the average probability of error as the aeecd@ (). Namely,

EfO)~ f(u) +

E{QE)} ~ Qi) + ¢ Qlps + Vo) + £QUs — Vo).
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SOLUTION 4.9
Probability of error at the message level

(a) Given the bit error probability?(e), the probability of successfully receiving a message is
p=(1-Pe).
For Rayleigh fading, from Exercise 4.7 we have

1
Pe) ~ 1SNR'

(b) To have a message reception probability of at Ipast0.35, it is required that

1 ! 10

ok 10
SNR= —— = —
Nod?  d?

By substitutingf = 10, and

in inequality above we obtain

d2 10
(1 — E) > (0,90 —=d<2.

SOLUTION 4.10

The rate2/3 parity check codeA sequence of threBSK symbols can be represented by vertices of a cube,
with each coordinate axis corresponding to signal spacentbividual PSK symbols. This is illustrated in
Figure 4.10.1, using the convention that @ndicates a positive coordinate, whileDaepresents a negative
coordinate. Clearly, the squared minimum distance is Raicompared withF for uncodedPSK. Hence

Ey /Ny performance has improved Ryx 2/3 = 4/3 or 1.25dB.

¢

011 b

W

000

Figure 4.10.12/3 parity check code.

SOLUTION 4.11
Hard vs. soft decisions

(a) The Hamming distance is 2. The code can detect one emaraamot correct any errors.
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(b) Since it cannot tolerate any errors, the error prohighigi

pe:1—p3

B VE/2'\ 26,/3\ B,
--o () e () e V)

(c) IftheQ(-) in previous part is very small, the error probability can ppraximated as

-\ )

The error probability for soft-decisions is

B 8k,
pe—Q< 3—No>

which is lower than the error probability with hard-deciso

where
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5 Medium Access Control

SOLUTION 5.1

Slotted Aloha
Ex.5.1) p* maximizes the min{P(p,A), P(p,B)}
0.4 T T T T T T T
=
g
a
1
[0}
8
>
2]
G
2
= 0.281 ——p=1/A
@
- — —p=1/B

S 0.26f p=t . .
o —¥F— p*:intrsec point. Ps(A,p)=Ps(B,p)

0.24} 1/B<p<p” 1

p*<p<1/A
0.22f 4

2 . . . . . . . . .
100 110 120 130 140 150 160 170 180 190 200
Number of users n € [A,B]

Figure 5.1.1: maximum worst-case success probability att&l Aloha is achieved for the poipt fulfilling
P(p*, A) = P(p*, B).

(a) We define the functio® : R? — R as

P(p,n) := Pr(success=n-p(1 —p)"'.

For a fixedp, P(p,n) is monotone increasing for < —1/In(1 — p) and monotone decreasing for>
—1/In(1 — p) and therefore”(p, n) is minimized either ab = A or atn = B for n € [A, B]. Therefore,
we have to find

pF = argpmaXmin{P(p, A),P(p,B)}).

For a fixedn, P(p,n) is monotone increasing for < 1/n and monotone decreasing for> 1/n (for
p € [0,1]). FurthermoreP(1/A,A) > P(1/A,B)andP(1/B,B) > P(1/B,A) for B > A+ 1 and
therefore the intersection betweétip, A) and P(p, B) is between the maxima d?(p, A) and P(p, B),
respectively. Thug* is found whereP(p*, A) = P(p*, B). Therefore,

A ‘p* . (1 _p*)A—l — B ‘p* . (1 _p*)B—l

A B (A B
5= 0=p)F i = (1 - p)Pa

_A]A
*:1_BA_
b V' B

Figure 5.1.1 plotsP(p,n) versus number of nodes € [A, B], whereA = 100 and B = 200 and the
optimal p* that maximizes mifiP(p, A), P(p, B)}.

Note:another explanation of the maxima for the worst casasi$ollowing. The worst case for success
probability P(p,n) w.r.t. n happens when either = A andn = B. On the other hand, for such cases
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p* = 1/nis the maximizer. Now assume if we pick 1/A but it happen that = B is the worst case then
if we decrease* toward 1/B will increase P(p,n = B). Similarly, if we choose* = 1/B and it happen
that worst case success probability is fB(p,n = A), then increasingp* toward 1/A is maximizing
P(p,n = A). Consequently, To be sure that we have picked theyljefsr the worst case of we find it
whenP(p*, A) = P(p*, B). Moreover, One can check that =1 — ?~{/A/Bisin[1/B,1/A].

(b) ForA =100 andB = 200, we get

1
* —
p~ = 0.006908 = 1148

SOLUTION 5.2
ARQ

(a) That the packet is correctly received after n transimissis to say that there ane— 1 corrupted transmis-
sions and 1 correct transmission. The probability is thusrgby

P,=(01-P)P" !,

e

The average number of transmissions required for a coreeeption is

N:inP :in(l—Pe)Pg_lz(l—Pe)d%in
n=0 n=1 € n=1
d / P 1
:(1_]38)61_138(1—138):1—Pe

(b) Since there are a total number 8fdata packet transmission ai — 1 acknowledgement packet trans-
missions, the average delay experienced by a packet is

D= <%+td>N+<LA]§Q+td)(N—1),

whereN is the average number of transmissions from (a).

SOLUTION 5.3
Analysis of CSMA based MAC in WSNs

(&) Consider a contention round with lengthh and total number of sensoré. Let x,, denotes the selected
slot of noden. ps(m) is the probability of having a successful transmission@ttrsl which happens when
a node selects slot, and rest of the nodes select greater sldts.is the probability of success over the
entire contention round and is obtained by the summation a\e)

M M N
P, = Zps(m) = Z ZProb{xn =m, x; >mVj#n}
m=1 m=1n=1

M

> (Va5

m=1
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(b) Denotep.(m) as the probability of collision at slet then
pe(m) = Prob{z,, > m, ¥n} - [1 — Prob{z,, = m, x; > mVj # n|z, > mVn}

— Prob{z,, > m + 1|z, > m, Vn}]

1

= 1~ (M =m+ )N = (N + M —m) - (M —m)¥]

Which is essentially one minus the probability of havingcassful or idle slots. Also the probability of
having collision after contention round can be formulated similar way as success case. i.e.,

M
P, = ch(m) =1-P,.
m=1

SOLUTION 5.4
MAC optimization for a distributed estimation application
1. for this tradeoff of transmission rate and success piitityalye can minimize the state vector transmis-
sion interval normalized by state vector success proltabifience we have

T, 1

minimize f(z) = Pu(z)  2Py(2)

whereP;(z) is the probability of success given that a node is sendingiireat slot. P, (z) = (1—7)V~1
, Wherer = z/8S.

2. The problem is convex far € [0, 1]. This is because computing trand1 the function tends to infinity,
it is continuous and down-ward oriented in between, andan ititerval there is only one critical point:
By taking first derivative off (z), we have

f'(2) = (ﬁ) = (z(l - %)N*)_Z (- %)N_Z(l - % ~ (N - 1)%)) —0

which givesz* = S/N. This is also the point that solved the minimization prohlem

SOLUTION 5.5

Broadcast Student A is right. An exemplary algorithm: Source origing the broadcast: Transform the
message m as follows: Replacé with 10 and append1 at the end and at the front of a message, i.e. message
m = 10110 becomes message’ = 11 10010100 11. Transmit "Hello" in round; if bit 7 of m/ is 1. If a
node is not the source it waits until it detects twice a nae-fthannel for two consecutive rounds. It decodes
a non-free channel asand a free channel d@s It can easily reconstruct the messagéy ignoring11 at the
beginning and end and replacin@ with 1 for the bits received in between the first receivédand the second

11. As soon as a node decoded the entire messagestarts to transmit the same’ in the same way as the
source.

SOLUTION 5.6
M/M/1 queue
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(a) The average number of customers in the queue is

[e.e]

N=> npn)=>Y n(l—p)p"=(1- p)pdip oo
n=0 n=0 n=1

(1—p)pd%(1fp) = 1fp-

(b) The plotis shown in Figure 5.6.1. The average number stiocaers in the queue will become unbounded
whenp > 1.

(c) From Little’s theorem, the average delay experiencedusyomers is

N 1

X op—A

The average service time experience by customergis Therefore, the average waiting time is

25

a0F

L L L
o 0z 04 06 0.s 1 12
A

Figure 5.6.1: Average number of customers in the queue ascéida of p
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6 Routing

SOLUTION 6.1

Shortest path routing: Bellman-Ford algorithm

(a) One can see that

0 +2=0
0 _
b= { oo otherwise

andd;; is described by the following matrix, in which the element-#t row andj-th column isd;;:

0 1 5 oo oo o
1 0 1 oo 10 o©
dy;] = 5 1 0 4 oo o©
Y o oo 4 0 1 3
oo 10 co 3 0 1

oo o0 oo 3 1 0 |

(b) From what we have in (a), we can determine

1 i=2
Dl={5 i=3
0o i=4,5and6.

(c) Continue the iterations, fdr = 2 going forward:

h| D} | D} | DY | D} | D | D}
110 1 ) o0 | oo | oo
2l 0] 1 [ 2]9 11|
3l o] 1] 2]6]10]12
4101|2679
500 1] 2]6]7]s8
6/ 0] 1[]2]6]7]S38

The minimum distance from nodeto node 1 is determined whén= 6, since there is no change in the
table from the previous iteration.

SOLUTION 6.2

Dijkestra The iteration is illustrated in the following steps:

Step 1:
1 j=2
Di=<¢ 5 j=3 i=2,P=1{1,2}.
oo j=4,5,and6,
Step 2:
2 j=3
Dj=<¢ 11 j= i=3,P=1{1,2,3}.



Step 3:

Step 4:

Step 5:

SOLUTION 6.3
Shortest path routing in WSNs

Figure 6.3.1: A sample topology of the WSN. Node 1 is the simi link qualities(PRR) are depicted on each

arcs

(a) Denote ETXx;] as the expected number of transmissions required for mpttesend a packet to the sink.
Also, denoteV; andP; as the neighbors set and parent of ngdespectively. Then given PRR) as the

6 j=4
11 j=5 i=4,P=1{1,2,3,4}.
oo j =06,

7T J=
b7 17

D;j=8 j=6

Zi:&P:{LZ&&&.

i=6,P={1,2,3,4,56}.

packet reception rate fromto j, One can formulate ET]X;] as

andP; = {z;} wherez; is the neighbor that minimizes the ET2%]. ETX[z;] = 0 wherez; is the
sink. Starting from the sink, nodes put their ETX equal byniit§i Then sink propagates its ETX value
to one hop neighbors, they update their ETX and broadcastvleies. Whenever a node receives a ETX
message from a neighbor, it checks if the value differs froengdrevious reported value. If so they update
their ETX and parent node (if it happens) and broadcast t6EK. It can be proved that this algorithm
constructs a MST and converges in a couple of iteration(@sads PRR values remain unchanged).

ETX[wZ] = jrg/l\l’/] {ETX[(ﬂ]] + m}

7
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(b) According to Figure 6.3.1 nodes update their ETX as Vaithg
ETX[1] =0

node 3:

ETX[3] = min{% g ETX[Z]} —min{1.1,00} = 1.1, Py = {1}.

node 2: .
ETX[2] = min{ﬁ 1+ ETX[3]} — min{1.25,2.1} = 1.25, P, = {1}.

Note that here we assumed node 2 receives the[ET¢fore computing its value.

node 4:
(1 1 1 _

ETX[4] = min {ﬁ +ETX[3). 5 + ETX[5), o= + ETX[6]} = min{3.1, oo, oo} = 3.1, Py = {3}.
node 5:

ETX(5] = min {% +ETX[2], % +ETXM], o% + ETX[6]} — min{2.5, 4.77, co} = 2.5, P5 — {2}
node 6:

(1 1
ETX[6] = min {ﬁ +ETXM), o= + ETX[5]} = min{4.53, 4.5} = 3.5, Ps = {5}.

in next iteration all the ETX values will remain unchangedl dne algorithm converges. The set®k
builds the topology.

SOLUTION 6.4
Anycast routing in WSNs

(a) We calculate the new ETX metric farand a given ordered set of parefRs = {1...n}. The
probability of success in this structure is given by

Psuccess=1— [ (1 = p)-
iePs

Hence, the average number of TX to reach one hop neighborisagiden by ETX[s] = 1/Psuccess
The second part corresponds to the average cost to reachstieadion. This average is given by

ETX;[s] = ) _ Pr(iis forwadetsuccess at first hOETXi]
i€Ps
where ‘
pi[T;21 (1 —p))
Psuccess
which is the probability that nodereceives successfully from and all the parents prior than i.e.,

Pr(i is forwadetsuccess at first hop=

1,...i— 1 fail. Remember we condition this probability that at least @f the parents receives success-

fully. In total, ETX[s] for a given ordered set of pareri&s = {1...n} is as following
ETX[s] = ETX[s] + ETXz]s].
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(b) ETX with one parent (traditional ETX) for the example i$Xs] = 1/0.5 +2 = 4and R = {1}.
For the case of multi-parents, ET(; 2 33 = 3.66.

(c) To find optimal parent set, one needs to calculate ETXfaubsets of neighbors (here 7 subsets) as
the parent set. But there is a useful result: the optimalrpaset is an ordered set of parents where the
neighbors are sorted based on the increasing order of th&ir &o for this example this set can be either
{1} or {1,2}, or {1,2,3}. If we calculate the ETX based on section (a) wdifierent parent sets as input
we will get ETX[S]{l} =4, ETX[S]{LQ} = 3.5, ETX[S]{LQB} = 3.66. So the optimal ETX{]=3.5 with
parent seP’ = {1,2}.

SOLUTION 6.6

Spanning Tree

(a) There are 3 spanning trees with node 1 as the root.

1 1
4
ZO/I\S 2 3 3
4
4 2

Figure 6.6.1: N=4, A=3.

(b) There are 5 spanning trees with node 1 as the root.

! 1 1 1 1
2 2
4 2 3 ’ 2 3
4
4 4 4
n 5
5 5
3 3

Figure 6.6.2: N=5, A=4. The following relation hold8 = A + 1.

SOLUTION 6.6

Directed diffusionFirst compute the probability of choosing particular pdtirsdata exiting a node.

The probability of transmission taking place on each brasdisted in the Figure 6.6.2. Therefore the
likelihood of transmission flowing through B and C are 2484 3and 1103/1344 respectively. Notice that there
is bi-directional flow of packets along one link, and here amgst invoke the rule against back-tracking to
compute the output flows for the two nodes it connects.
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Figure 6.6.1: The probability of choosing a particular pathdata exiting a node

7 Detection

SOLUTION 7.1

Binary choice in Gaussian nois&he decision threshotgis chosen under the MAP criterion so that(z| H;) =
Pr(z|Hy), i.e., equal error probabilities result. Due to the equalrgorobabilities, this is also the ML thresh-
old. The threshold is obviously/2 due to the symmetry of Gaussian distribution, with the eprabability
being the area of the tail past the threshold. In this case it i

o0 1 2 2 k
—z¢/20 dr = <_> ]
/k:/2 a\/27re v=0 20

Notice that what determines the error probability is theorat the voltage difference between the two hypoth-
esis to the expected noise amplitude, and not the absollitgyegdevels.

SOLUTION 7.2
Binary hypothesis test and SNRhe power of the hypothesized noise as a function of thestioldy is

2 2 2 k2 o0 1 —z2 v 1 7(1‘7k)2
E[n (7)] = (_k) Pr(D1|HO) + (k) PT(D0|H1) = — |:/ emdl‘ _|_/ Tdm
v

e
2 o2 oo OV 2T
The SNR maximum occurs when we let thén? ()] minimum, whiledE[n?(v)]/dy = 0. Thus,
1 -2 1 (vk)2>
e + 2
o 2T oV 2w

2
B )y =5 (-

2
Furthermore, we should check whethBi[n? ()] /dvy? > 0, wheny = k/2, to guarantee it is the minimum.
The derivatived® E[n?(v)]/dv* can be obtained by

2 1 k _—t-r? —(k)? 2
eBwe)/ar = 8 [ Do (B i - 2o T )]

2 |ov2r \ o2 o o

Thus, wheny = k/2, d2E[n?(v)]/dy* > 0.
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129/1344

129/1344

Figure 6.6.2: Probability of transmission for each branch

SOLUTION 7.3

MAP and the LRTThe MAP decision rule is based onki(s1|z) > Pr(so|z) . This criterion can be rewritten

as
Pr(sy,2) - Pr(so, 2)

Pr(z) Pr(z)
SincePr(z) shows up on both sides, it can be discarded. It can expressed a

Pr(z|s1) Pr(s1) > Pr(z|so) Pr(so) .

This is equivalent to the likelihood ratio test

SOLUTION 7.4
Binary decisions with unequal a priori probabiliti@he likelihood ratio test is

exp < _(;:Qk)Q >

_ 52
exp (ﬁ)

exp <_—1(—2k‘z + k2)> > 2

DO =

>

202

. 2021In2 — k2
—2k

The threshold is thus
B 2021n2 — k?

T T ok
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SOLUTION 7.5
Since the signal and noise are independent, the resultsecalnthined as
N—

N ko
k=0

—_

A=
while € is
| Nl
=N Z Skek s
k=0

in which e, ~ NV(0,02). Thuse ~ N(0,0%/N).

SOLUTION 7.6

The probability can be obtained Bs(|sx| = t|yx ¢ [—30,30]), which can be obtained as

Pr(|si| = t,yx ¢ [-30,30])
Pr(yy, ¢ [-30,30]) '

Pr(|si| = t|lyx ¢ [—30,30]) =

where
Pr(|sg| = t,yx ¢ [-30,30]) = pQ(0),

and

Pr(yy, ¢ [-30,30]) =Pr([sk| = t,yr ¢ [-30,30]) + Pr(|sk| = 0,y ¢ [—30,30])
=p:Q(0) + 2poQ(3)
in which Q(+) is @ function of the normal distribution.
SOLUTION 7.7
Optimal Data Fusion in Multiple Sensor Detection Systems
1. We have
PI‘(Hl, U_) Pl
() = 5 = gy LLPr = #1180 [T Pries = —11Hy)
+

S_
P
_ Pr(lu) 1@ = Pu) [ P, -

S5 S_

In a similar manner,

Pr(Holu) = Pf()(il) [1a-Pe) ] Pr-
S S

Thus, we have that

PI‘(H1|11) P1 1-— PM PM
10 ae———— lO — + 10 : + 10 : .
S Pr(Holu) 2 hy ; & pr D log 1= Pr,
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2. In this case, using Bayes rule to express the conditiorddgbilities, we can obtain the log-likelihood

ratio test as
Pr(Hy|u) Iél 0.

log ———~
& Pr(Holu) 7,

Therefore using the result obtained in previous subpropthendata fusion rule is expressed as

B 1 if ag+ Z?:l auy >0
Fu,un) _{ —1 otherwise
where the optimum weights are given by
log 11
ap = 108 —
0 g j2)
log 1—})1;% ifu; = +1
a; = 1-Pp .
log 2 ifuy = —1

7

SOLUTION 7.8

Counting RuléAt the fusion center level, the probability of false alafta is

Pp =Y Pr(N)Pr(A > T|N, Hp),
N=T

where
NozaiN .
Pr(A > T|N, Hy) = Z <N> P}(l — Pf)N" .
i=T

WhenN is large enoughPr(A > T|N, Hy) can be obtained by using Laplace-De Moivre approximation:

T—-NP
HMEﬂNﬂ@mQ( ! ).

VNP¢(1— Py)

Similarly, the probability of detectiop is

Pp= > Pr(N)Pr(A >T|N, H),
N=T

where

N

i 7 —1
Pr(A > T|N, H;) = ; <N> Pi(1— Py)N
Py=1-P;—P,.

SOLUTION 7.9
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Matched filter and SNRssume the received signa(t) consists of the signal(t) and AWGNn(t¢) which has
zero-mean and power spectral dengit Ny W/Hz. Suppose the signal is passed through a filter with isgul
responsei(t),0 < t < T, and its output is sampled at time= 7" . The filter response to the signal and noise
components is

y(t) = /0 r(T)h(t —7)dr = /0 s(1)h(t —1)dT + /0 n (1) h(t —7)dr.

At the sampling instant = 7", the signal and noise components are

T T
y(T) = /O SOt — 7)dr + /O ()t — 7)dr = yo(T) + yu(T))

wherey,(T') represents the signal component gn¢t) the noise component. The problem is to select the filter
impulse response that maximizes the output signal-tcen@itso defined as

ys(T)
Ely2(T)]

n

SNRy =
The denominator is simply the variance of the noise termeabtliput of the filter.
T [T T
E[yi(T)] = / / En(m)n(t)|h(T — 7)h(T — t)dtdr = %N@/ h2(T —t)dt.
0o Jo 0
By substituting fory, (7)) and E[y2(T')] into SN R , we obtain

T 2 T 2
I o sR@ =7)dr|” [ h@)s(T = 7)dr]
"IN TR —tydt  INo [TRA(T - t)dt

Since the denominator of the SNR depends on the energytin the maximum output SNR ovéi(t) is
obtained by maximizing the numerator subject to the coimgtthat the denominator is held constant. The
maximization of the numerator is most easily performed gy afshe Cauchy-Schwarz inequality

U_Z gl(t)gz(t)dt}2 < /_Z g2 (t)dt /_O; g5(t)dt

with equality whery, (t) = C'g2(t) for any arbitrary constantt’. If we setg; (¢) = h(t) andgs(t) = s(T' — 1),
itis clear that the SNR is maximized whé(x) = Cs(T —t) . The scale facto€? drops out of the expression
for the SNR. The maximum output SNR obtained with the matdHied is

T
SNRy = % / s%(t)dt = 2E/Ny .
0

SOLUTION 7.10

Binary hypothesis testing and mutual informatidhe mutual information between the source signals X and
the decision set Y is
I(X;Y) = H(X) - H(X|Y),

where H(X) = log2. We denoteP; = Pr(D;|H;) and Py, = Pr(Dy|Hy) . ThenH(X|Y') can be expressed
as

P

- p P
log — -9
CmTiop

1 ) 1- P,
log——1 L plog——1
R R

1-P log —— =0 |
(1=P) CPt1-hR

—% Py (1-PR)
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rutual information
0109 T T T T T T T T T

0.108

o.1a7

0.108

0.105

0.104

0.103

0102

010

0.1

0.053
0

Figure 7.10.1: mutual information for differemt

The values of?;, and P, are evaluated as

T 2
Py :/ e 2dx.

oo V2T

The values of mutual information are plotted in Figure 7110t is obvious the maximal mutual information
occurs when the threshold is equal to 0.5.
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8 Estimation

SOLUTION 8.1

If one observed” as a vector of random variables which is a function of randanable X, then a proposition
shows that the best linear estimatorX6fto minimize the MMSE is the conditional expectationBf X |Y =
y). In general, we can only use this proposition. But if theee@her assumptions abalt Y such as ¥, Y
has Gaussian distribution df has zero mean and etc.) we can go further and prove other gitiops to
achieve the best estimator &f.

SOLUTION 8.2

MMSE estimator
consider the estimator of sensor fusion of the form

n
~1x —1a4
p wZE p; i,
i=1

p; tai = Hz'R;ilyz-
Note thatv;'s matrices are uncorrelated and consequently they aré biagonal. Also, consider the assump-
tion for which eachH; is a row of theH matrix, it is evident that above iteration on each stejp the whole
performs a matrix multiply between the matricsand R;;! and vectory which its component are each sen-
sor's measuremend (", p; ‘i; = HR; 'y).

For the estimate of the error covariance, noting tRat is diagonal and consisting of different values of
Rx;; as the covariance of nodewe can obtain the same result as MMSE estimator (the estirnalculates
the same value with regard to the assumptions). From a catiqmel point of view, in both cases the output
is the same, but the computation effort is not comparablethénfirst case, the computation of the matrix
operation take€)(n?) operation while the order of the second on@ig:), wheren is the number of nodes
in the network. For the first case, computing the multiplmaibetween the matriceld,, ., R, *(n x n) and
ynx1 Needsn? 4+ n multiplications as well as? — 1 additions. But for the second case, by considering the
diagonal matrices, many of these operations can be omi@edsidering summation over the sensor values
at the sink, we haven multiplications andn additions. Here much savings can be done especially when the
number of nodesr{) is large. From an implementation point of view, this schameseful because it pushes
the complexity of computation to the sink (central node)dmis the sensors by putting some computation
effort to each sensor node. It is more considerable when teethat in order to implement this estimator at a
sink node, each node must send its local values to the siaktljiror via some relay nodes, which has a large
communication cost (overhead) for the network.

SOLUTION 8.3
Mean square (MS) estimatiohet

o0

e=E[z—#)? = / (x — ) fx (z)dx

— 00

be the MSE. To find the estimator that minimize the MSE, we thkdirst and the second derivatives

=2 - apx@d =0,

oz e

s
o

/OO fx(z)de =2>0.
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But

Thus, the optimal estimate is

SOLUTION 8.4

Distributed MMSE estimatorConsideringy = H6 + v, H € R™*™ js a known matrix and € R™*! is a
noise vector with zero mean with independent componenteig&®DF N (0, R, ), under these conditions the
joint PDF ofv due to independence of its components can be written as:

- 1
p(U) = 11(277)_? det(Rvi)_% exp <—§’UZ'TR;_1’UZ'> .

Take the natural log and replacevith y — H6. Now we can write above equation in matrix form as follows:

n

1 1
Inp(y|) = Z (—% 27— lndet(Rv,L.)) — 5(y —HOTR; Y (y — HS).
=1

The MLE of 6 is found by minimizing
. 1 _
J(0) =5y — HO) R, (y — HO),

since this is a quadratic function of the element$ ahd R, ! is a positive definite matrix, differentiation will
produce the global minimum. Now we have:

) v
By setting this equation equal by zero, we can firas follows:

H'R; 'y — HO) =0,
H'R;'w—HTR;'HO =0,

0=(H"R;'H)'HTR; 1y

However, all they;'s are uncorrelated with each other. Herfgis a block diagonal matrix with blockg,,.
Thus, above equation can be decomposed as

n -1 n
0=(H"R;'"H) "HTR;'y = (Z H}R;lﬂ,—) > HIR'yi.
=1 =1

On the other hand, to compuie; we have
Ry = var (H'R;'H)'H'R;'y) .
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For a constant vectar and random variablé&l we havevar(aX) = avar(X)aT. Here, the random variable is
Y which has the distribution oV (H 6, R,) so we can calculate error covariance as

Ry = ((HTR;'H)'"HTR;") R, (HTR;'H)'HTR;Y)"

Ry = ((H"R;'H)"'H"R;Y) RyRyVH(H Ry TH) ™

Ry=(H'R;'H)™".

SOLUTION 8.5

Cramér-Rao boundThe probability of one observation is

o 2
px(x]0) = \/% exp (—%)

Take the natural log and the second derivative, we get

)2
Inpx(z|0) = —3In(27) —lno — (z = 9)

202
Pnpx(zl) 1
062 g2

With n observations, we have

0?Inp(z1,x2, ..., 7, |0) B 9?3 Inpx(x:]0) B
00?2 - 00?2

Therefore, the bound i§—E[—n/<72]}_1 , which isa2/n . On the other hand, the variance of

n

o2

1+ X2+ ... +xy
n

is o2 /n, which is identical to the Cramér-Rao bound bound. In otherds, it is an efficient estimator.

SOLUTION 8.6

ML estimates of mean and variance of Gaussian random vasabhe probability is

n

1 —=x 3 (2i—61)?
f X1,T2, "'7xn;91792 = —— ¢ 263 i=1 .
( ) o (2m)"/

First, we take the natural log of the probability

1 n
In f(z1,22,...,20;01,02) = —gln%’ —nlnfy — 27)% ZZ_; (x; — 91)2.

To find the ML estimate of;, , we take the first and second derivatives of the function vésipect t@,

Oln f(z1,x2,...,xn;01,02) __

n
1 —
20, 9_2 (IL'Z — 01) = 0
2In f( 000 a
0% In f(x1,x2,...,wn;01,02) _  n
8912 05 < O
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Thus, the ML estimate df; is

n
x
A =1 A~
91 = = U.
n
Similarly, we take the derivatives with respectfto
n . 2
OIn f(x1,3,. . nith 02) _ Z @)

n 7 J—
003 -0, + N 0
33 (zi—01)°
=1

8% 1In f(x1,x2,...,xn;01,02) n
0652 ~ 62 o1
The ML estimate ob, is

1/2

n . /

Z (z; — f1)

bp=|=4——| =5.
n

We also have to make sure the second derivative is lesthaimen the first derivatives w.i#; andd, are
zero. The second derivative w.ith is

0?In f(z1, 20, ..., Tn; 01, 62) n 3n6? _2n
26,2 B

SOLUTION 8.7

Distributed detection/estimation

(@) From the problem, we can get

1
mk—l
0

/9
- f

1

Then

B(mi) = 5(1+0)

1
E(my, — E(my))* = yithe 6%)
(b) From the previous results, we can obtain

Bl — B(my))? = 11— %) <
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whereas

Sincem,’s are independent, we calculate the previous equation as

4 N P, X 1 1
NP (Z(mk - E(mk))> =2 ;E(mk —E(my))’ = (10 < &

k=1

(d) Based on the results above, we need more thiamodes to satisfy the variance bound.

SOLUTION 8.8

Distributed detection, MAC, and routing

(a) Letx be the measured signal, which is given by the source’s tristeshsignal plus the measurement
noise. Denote the false alarmBs(x < 0, D = Hj), and miss detection d&(z > 0, D = H;), where
x is the signal and is the decision made by per every node. For the false alarnhawe

Pr(z < 0,D = Hy) =Pr(x < 0)Pr(D = Hy|z < 0) / / —e 2“’”*"S)dyaﬂac
z On

Similarly, we have
—T 1 y
Pr(x > 0,D = Hy) =Pr(z > 0) Pr(D = Hy|z > 0) / / —e 20D dyda .

(b) Letr; be the distance from the source to a node, and'lbeé the signal power. Then for node 1 to be
involved in a decision rather than some other node one must ha

S S
>2:—>\/
107"1 T

2

For reasons of symmetry, we need only consider one of thesr@ewith nodel as the origin. Without
loss of generality, let the source at positiany) and consider the equal SNR respecting to node 3. Then
we have

r%z(m—d)2+y2:10:>(w+%d)2 y
Aty ()2 (5l

=1,

which is an ellipse with center if—d/9,0) havingz- andy-axis radius(dv/10/9, dv/10/9) shown as
the curve of E1 in Fig. 8.8.1. The regions over which node kttel than node 2,3 and 5.6 are shown in
Fig. 8.8.1 as E1,E2 and E3,E4 respectively. Thus when thesdau the shadowed region in Fig. 8.8.1,
node 1 is among the two best nodes.
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Figure 8.8.1: The region over which node 1 is better thanrsthe

(c) The alternate route will be selected if the expected remobtransmissions into and out of the malfunc-
tioning node i or greater. Let the packet dropping probability joeThe last successful transmission
will have probability(1 — p). Then the expected number of transmissions is

1(1—=p)+2p(1 = p) +3p*(L —p) +--- =2
Solving above equality we hage :° (i + 1)p‘(1 — p) = 1/(1 — p) = 2 and hencep = 0.5.
(d) The probability of requiring less than or equaBtaransmissions is
(1=p)+p(l —p)+p*(1 —p) =0.99

This is a cubic inp and can be solved in any number of ways. A probability) @fis close. Thus the
delay requirement leads more quickly to choice of altevegpiaths in this example.

SOLUTION 8.9
Unknown mean in Gaussian noisee sample average as a mean estimator is unbiased withcgria

1 N
ezﬁzyka
k=1
~ :9’

El0]
Var(f)

2
Furthermore, the second derivative of the log likelihoodchion does not include any stochastic terms, so the
CRLB follows as

1 1 e
p(leye) = W6202 Z(yk 9) ,

d*log p(yi.n|0) N

d62 T o2

g

Var(d) > — .

[\
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That is, the sample average is the minimum variance estimaait thus a consistent estimator. Further, the
variance is equal to the CRLB, so it is also efficient.

SOLUTION 8.10
Moments method

We have
m =E(y) =0,
p2 =E(y*) = a0t + (1 — a)o3,
| XN
N 2
H2 —Nzyk,
k=1
& _,&2 — 09
ot — o3

In unknown variances case, we need more equations. Sinoddilinoments are zero at least the following
even moments are needed:

ps =E(y") = 3a0] +3(1 — a)os + a(l — a)o?ol,
6 =E(y°) = 1500 +15(1 — a)os + 3a(1 — a)oios + 3a(l — a)oios .
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9 Positioning and L ocalization

SOLUTION 9.1
Timing Offset and GRS

(a) Denote the unknown position &8, y). (x,y) may be found by solving the following nonlinear system of
equations
@—z)+@y—wn)=ri=9
(x—2)’ +(y—12)’ =7
(@—a3)’+(y—ys)’=r
The solution is

T = =0
x(y3 — y2) + o(y1 — y3) + x5(y2 — y1)
(z3 — x2)
[v—r} y3—r3 yi—r3 ] | (w1 —a3) | + (23— 22)(z1 — 23) (22 — 1)
(z2 — 1)

Yy (23 — 22) + Yo (21 — 3) + y3(z2 — 1)

(b) Notice that while pointsi and B’s measured ranges intersect at pdihtpoint C’s measured range cannot
go through that point. This discrepancy indicates thaktigea measurement error. Since any measurement
error or offset has in this case been assumed to affect aBumements, we should look for a single correc-
tion factor that would allow all the measurements to interrse one point. In our example, one discovers
that by subtracting.5 meter from each measurement the ranges would all inters@cteapoint. After
finding that correction factor, the receiver can then appdydorrection to all measurements.

SOLUTION 9.2
Linearizing GPS Equation€Expanding (9.2), we have

0=z +0—y)?+(0—2)°+2[ (0—21) O—p1) O—2) ]|y |=d
0= +(0—12)> +(0—22)*+2[ (0—m2) (0—y2) (0—2) ]|y | =d3
0—23)+(0—y3)* +(0—23)> +2[ (0—a3) (0—y3) (0—23) ]|y | =23

or

dryitA-di=2[z y a ]

3ty + s —di=2[ 12 y2 2 ]

a3+ y3+ 25 —d3=2[ a3 ys 23 |

e RN 8 we 8

84



which can be reorganized into

T oy 2 x a3 4yt + 2 — d
2| w2 Y2 22 y | = | a3+y;+2—ds
T3 Y3 Y3 z z3+ 3 + 23 — dj

SOLUTION 9.3
Averaging to reduce error in TOA

(a) The relationship between time of arrivabnd ranger is » = ct. Therefore, the mean of the range is
7 = ¢ - t, and the variance of the rangedis= ¢? - ;.

(b) Again,r(n) = ct(n),n =1,2,3.... Therefore, the estimated range based on the multiple mezasats
of time of arrival is

1 1 1
= 3= i 3t S i

SOLUTION 9.4
Weighted centroid computatiomhe weighted centroid of the three known locations is
1

P (1204 1.5b+ 1.7¢) = (0.22,0.32).
T Tarisg iy Ret LebE1Te) = (0.22,032)

SOLUTION 9.5

Collaborative multilaterationClearly ug = (0,1) andvg = (0,—1). The squared distances fraihto nodes
A, C, andV are respectively.5, 2.5, and2, while the squared distances frdmto B, D, andU are2.5, 0.5,
and2. Then for the first calculation we havg = rg = 1 andr, = 2 so that

1 0 1-410.5
A= -1 0 |,z=|1-+v25
0 -1 2 -2

resulting in the systerd” Ad, = ATz :
2 01[ 6] [ 08740
01 Oyu | —0.5859 |’

which givesu; = (0 + 0.437,1 — 0.5859) = (0.437,0.414). In the next setyc = rp = 1, ry = 1.48, so that

1 0 1—+25
A — —1 0 ’Z = 1 — 05
0.295 0.995 1.48 — /2

Theresultiy; = (0—0.437, —1+0.196) = (—0.464, —0.804). Iterations can continue now fak, usingA4, B,
andn; and so forth. Successive iterations produce results ctogée true ones. In general, for collaborative
multilateration to converge a variety of constraints on tingology must be satisfied, and the order of the
computations is important. However, if there is a relajiMeigh density of nodes with known position these
constraints are almost always satisfied without explici#toéting being required; bad positions can be discarded
through recognition that the values are diverging in somghi®rhood.
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SOLUTION 9.6

Linearization of angle of arrival (AOA) location determii@n Fromrg = [0 07,7 =] -3 4 |7 ry =
[4 317, we have

sin 901 4 COS 901 %, d01 == 5,
sin 902 g , COS 902 d02 = 5
fi(ro) = arctan( 1) = —0 9273,
fa(ro) = arctan(2 ) = 0.6435,

and 2 2 4 3
_ [ (o —y1)/dyy  —(wo — x1) /diyy ] — { ) ]
(%o —y2)/d(2)2 — (20 —5132)/‘1(2)2 25
According to (9.6), the estimate of the unknown position is

— 1o+ G-IN-L [ 1 — fi(ro) }

>

b2 — f21(7’0)
_ — - 42% 0.7854 +0.9273
-2 = 2.3562 — 0.6435
2 5641
10.8537

It can be seen that here the linearization error is large. rdictige, a series of iterations would need to be
performed.
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10 Time Synchronization

SoLuTION 10.1

TOA with low-cost clock®enote the satellite positions BX;,Y;, Z;),i = 1,2,3,4. The user's unknown
position is(U,, Uy, U,). With four range measurements, the nonlinear system of iemsaior positioning is

(X1 —U.)? + (Y1 = Uy)? + (2, — U,)* = Aty — At)

(Xo = Un)> + (Ya = Uy)° + (22 — U.)” = A(t — At)?
(X3 —Up)? + (Y3 = U,))* + (Z3 — U.)? = A(t3 — At)?
(X4 —Up)* + (Y4 = U))* + (Z4 — U.)? = A(ty — At)?

wherec is the speed of light, are respectively the true time of atrikom the four satellitest;,: = 1,2, 3,4,
is the unknown clock drift in the receiver. Since we have feguations, the four unknown parameters can be
found by solving the above system of equations. In practige,is done with a linearized form of the problem.

SoLuTION 10.2
Time difference of arrival (TDOA) in a two-dimensional spac

(a) according to lecture notes,= A*b and we have

st =} +yp,

3 =a3+y3 =2,
r?=x}+y2=1,
r2 =z +y2 =10,
r2 =2 +y2 =17,

and
T2 Y2 —tiz t35/2 -1 -1 1.4 1.4%)2
g | w8 vz —hs ti5/2 | _ | 0 1 —04 04°/2
T4 ys —tu t3,/2 3 1 16 16%2/2 |’
z5 Y5 —tis t35/2 1 4 26 26%/2
Ty 73 2
2
I _ LE . 1
w = st ,b=1/2 2 =1/2 10
v? r? 17
The least squares solution is then
0.8750
AT =147, | —0.1250
w=ATA) AT =1 o375
3.1250
" x| | 0.8750
Therefore, the unknown position {Syt ] = [ 0.1250 } .
(b) According to lecture notes,
To Y2 —Tti12 -1 -1 1.4
A— | T3 U3 -tz | | 0 1 -04
- T4 Ya —t14 o 3 1 1.6 ’
T5 Ys —tis 1 4 26
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e r2 1
w=| y |,b=1/2 7‘% =1/2 THE
VS % 17
5
t2, 1.42
B 2 | 0.42
d=-1/2 2, =-1/2 162 |
t3s 2.6
o
p= 22 = (ATA) AT,
3
= p4 iy
q1
q= 32 = (ATA) ' ATd,
3
L 44 ]
Ty 0.8905
w = Ui =p+ v2q = | —0.1645
V81 —1.0328

SoLuTIoN 10.3
TDOA in a three-dimensional space

(a) according to lecture notes,= A*b and we have

$=af 407+,

r§:x§+y§+z§:9,
rs =3 +y3 + 25 = 36,
7‘2:3:4214—1/24—7:2:25,
s =xf Yz + 25 =25,
12 = a4+ y3 + 22 = 64.

and

To Yo 22 —tia 135/2 0 3 0 0 0
T3 ys 23 —tiz tig/2 6 0 0 -1 1/2
A= |4 ya 24 —tis t3/2 | =|— 3 4 0 -07 0.7%)2
5 Y5 25 —tis ti5/2 —4 -3 0 -0.7 0.7%/)2
z6 Y6 z —ti 1ie/2 0 0 —8 —17 1.72/2

Tt 7"% 9

Yt r§ 36

w=| 2z |,b=1/2|r? | =1/2| 25

Vs r 25

v? rg 64

The least squares solution is then

—1.5000
1.5000

w=(ATA)'ATh = | 7.3333
10.6190
75.2381
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Therefore, the unknown position is

Ty —1.5000
| = 1.5000
Z 7.3333
(b) According to lecture notes,
T2 Y2 22 —ti2 0 3 0 0
r3 Y3 Zz3 —t13 6 0 0 —1
A= T4 Yq 24 —t14 = 3 4 0 -0.7 s
Is UYs 25 —t15 -4 -3 0 —-0.7
6 Y6 26 —lie 0O 0 8 -—-1.7
2
ry 9
o r3 36
w=| | b=1/2| 07 | =1/2] 2 |,
vst 7‘% 25
! 7‘% 64
t§2 0
d=-1/2| &, | =-1/2| 0.72 |,
tig, 0.7;
tis 1.7
oy ]
p= D2 _ (ATA)_lATb,
p3
— p4 e
q1
q= q2 _ (ATA)_lATd,
q3
L 94 |
Tt —1.5000
| ow B 9 1.5000
W= L, | TPTVET | 73333
V81 10.6190
Therefore, the unknown position is
Ty —1.5000
| = 1.5000
Z 7.3333

SOLUTION 10.4

Ex.9.31in [3]

Comparing the two clocks, the clock offset is the differeimme between the two clocks. In this example,
the current clock offset i$00. The clock rate indicates the frequency at which a clock @sges, i.e., node
A's clock has a clock rate of.01 and node B’s clock has a clock rate @9. The clock skew indicates the
difference in the frequencies of the two clocks, which.i&®. Clock A is fast since its clock readings progress
faster than real time. Similarly, clock B is slow since iteai readings progress slower than real time.
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SoLuTION 10.5

Ex.9.4in [3]

Each clock can deviate from real time b§0 ps per second in the worst case, it takes up tol0000 s
to reach an offset of s. However, since both clocks have a drift ratel@® ppm, the relative offset between
them can be twice as large as the offset between a single afatkhe external reference clock. Therefore, the
necessary re-synchronization intervab®o0 s.

SoLuTION 10.6

Ex.9.6 in [3]
Since the error can go either way, i.e., a clock can be fastslower than the external reference time by
the amount of the error, the maximum precision is then the clutime two largest errors, i.8.4+4 = 7.

SoLuTIoN 10.7
Ex.9.7 in [3]

1. If ¢ = 3150, to = 3120, andts = 3250, then the offset can be calculated as

(t2 —t1) — (t3 — t2) _

ffset =
offse 5

-80,

That is, the two clocks differ bg0 time units.
2. Node A’ clock is going too fast compared to node B’s clock.

3. One approach is to simply reset the clock8ytime units. However, this can lead to problems since
the clock repeats the last 80 time units, potentially triggeevents in the node that have already been
triggered previously. Therefore, node A should slow dowhogress of its clock until clock B had an
opportunity to catch up the 80 time units it lags behind nogeckck.

SoLuTION 10.8

Ex.9.8in [3]

As indicate in Figure 10.8.1, the times for the synchromizatmessages to travel between nodes can differ,
e.g., based on the distances between senders and rec8esides propagation delays, synchronization mes-
sages also experience send, access, and receive delagartldiffer from node to node, affecting the measured
offsets.

90



11 Networked Control Systems

SOLUTION 11.1
Matrix ExponentialThe exponential ofd, denote bye or exp(A), is then x n matrix given by the power

series
o0 1
A _ k
et = E _k:!A .
k=0

The above series always converges, so the exponentidli®fvell defined. Note that ifi is al x 1 matrix,
the matrix exponential ofl is al x 1 matrix consisting of the ordinary exponential of the sigelaiment ofA.

Thus we have that
A C[roo], o 1] [r 1
e_‘”“4_{01+00_01’
sinced « A = 0.

We can finde# via Laplace transform as well. As we know that the solutiothtosystem linear differential
equations given by

Su() = Ay(), y(0) = wo,

y(t) = eyo.
Using the Laplace transform, letting(s) = £{y}, and applying to the differential equation we get

sY(s) —yo =AY (s) = (sI — A)Y(s) =y,
wherel! is the identity matrix. Therefore,
y(t) = L7H(sT = A) " Jyo.

Thus, it can be concluded that
M= L7H(sI - A7},

from this we can fing* by settingt = 1. Thus we can have
1 1
At p—1 T R | 5 2 _ u(t) tu(t)
et = e g 5= )

We obtain the same result as before if we ingett 1 into previous equation.

SOLUTION 11.2
Stability The eigenvalue equations for a matdxs

dv— =0,

which is equivalent to
(- A)v=0,

wherel! is then x n identity matrix. It is a fundamental result of linear algalihat an equatiod/v = 0
has a non-zero solution if and only if the determinandet()/) of the matrix M is zero. It follows that the
eigenvalues o are precisely the real numbexghat satisfy the equation

det(® — A\I) = 0.

91



The left-hand side of this equation can be seen to be a polahdumction of variableX. The degree of this
polynomial isn, the order of the matrix. Its coefficients depend on the estdf ®, except that its term of
degreen is always(—1)"\". For example, lef> be the matrix

200
o=10 3 4
0 4 9
The characteristic polynomial d@f is
200 1 00 2—-X 0 0
det(® —AI)=det | {0 3 4| —A|0 1 O | =det| O 3—-X 4 ,
0 4 9 0 1 0 0 9-2AX

which is
(2=N[B=XN)(9—)) —16] =22 — 35\ + 1422 — X3

The roots of this polynomial are 2, 1, and 11. Indeed thes¢harenly three eigenvalues @&, corresponding
to the eigenvector., 0,0]’, [0, 2, —1]’, and[0, 1, 2]".

Given the matrix® = diag([-1.01,1,—0.99]), we plot following image, in which we can distinguish
stable, asymptotical stable and instable state.

Figure 11.2.1: The stability, asymptotical stability andtability.

SOoLUTION 11.3

Modeling
The dynamic for the state vector using Cartesian velogityy, v., v,,w), is given by:

T = v,
Y =uy
Up = —WUy
Uy = Wiy
w=20.
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Secondly with state vector with polar velocity;, i, v, h,w)”, the state dynamics become

SOLUTION 11.4

Linearized Discretization
Consider the tracking example with, v, v, h,w)”. The analytical solution is

z(t+T)=uaz(t) + 2v t)) in < (2)T> cos <h(t) + w(é)T)
y(t+7T)=y(t) + i}(t) sin <w(; T) sin <h(t) + w(;)T)
v(t+T) =v(t)
h(t +T) = h(t) +w(t)T

(

)
wt+T)=wlt).

The alternative state coordinates y, v, v,,w)? give

x(t+T)=uaz(t)+ ve (t) sin(w(t)T) — o () (1 —cos(w(t)T))

w(t) w(t)
y(t+T)=y(t)+ 1:5((;) (1 —cos(w(t)T)) + Uy(tt)) sin(w(t)T)

SoLuTION 11.5
Modeling of the Temperature Control

1. LetX(t) = [T;(t), T(t)]" andy(t) = T;(t). The continuous time state space model can be obtained as

- — a2

Xt =1, _a3}+[gg}u
y(t) = [1,01X (1) -

2. In the discrete time domain, we need to find matritend!.

P =eAh

h
F:/ e5dsB.
0
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In this case, by using the result from previous subproblemcan obtain that

B B e—alh—agh ar(oq + ag — as e—agh o e—alh—agh
e C e N oy . !
h a1a3(e’alh’a2h—1) a1(e’a3h)
r :/ eA5dsB = | (aitas)(@itas—as)  ai+az—as
0 1—e s

SOLUTION 11.6

PID Controller From the step response plot, we can find that~ 4. Then the parameters of PID can be
obtained directly ag,, = 6, K; = 3 andK; = 3.

SOLUTION 11.7

Stability of Networked Control Systems with Network-imduDelayThe are two sources of delay in the net-
work, the sensor to controllet,. and controller to actuator.,. The the control low is fixed. Therefore, these
delays can be lumped together for analysis purposed:r,. + 7¢q.

Sincer < h, at most two controllers samples need be applied during-thesempling periodu((k —1)h)
andu(kh). The dynamical system can be rewritten as

#(t) =
y(t)
u(t”

whereu(t") is a piecewise continuous and changes values ori§ at 7. By sampling the system with period
h, we obtain

Az (t) + Buf(t), tekh+7,(k+1)h+71)
= Cx(t),
)= —Kuz(t — 1), te{kh+7, k=0,1,2,...}

z((k+ 1h)) = ®x(kh) + To(7T)u(kh) + T1(7)u((k — 1)h)
y(hk) = Cx(kh),

where
d = AP
h—T1
Do(r)u(kh) = / e*Bds
0

h
Ly (t)u((k —1)h) = /h_ e Bds .

Let z(kh) = [T (kh),uT ((k — 1)h)]T be the augmented state vector, then the augmented closed loo
system is

2((k +1)h) = ®z(kh),

where



Figure 11.8.1: Closed loop system for Problem 11.3.

Given thatA = 0 andB = I, we have

(E_ 1—hK+TK T
- -K 0

The characteristic polynomial of this matrix is
M- (1-Kh+71K)\+7K.

By recalling that, = 1/ K, we definey = 7/h, so it follows that the characteristic polynomial is

Ny +y.
The solutions\; and\s to such an equation are
Yoo 1
M=ot —,
2 Ay — y2
N S
2 Ay — y2

Since|A| < 1, there is no other constraint far

SOLUTION 11.8

The control problem over wireless sensor network can beesgpted as shown Figure 11.8.1. The d&laig
such that
A(y(kh)) = y(kh — d(k)) d(k) € {0,...,N}
The closed loop system is stable if
P(e™)C(e™) - 1
1+ P(ew)C(ew)| = Nlew —1|

whereNN is the number of samples that the control signal is delayetichl that the previous result is valid if
the closed loop transfer function is stable. In this caselbsed loop transfer function is stable with poles

w € [0, 27]

z1 = 0.861, 29 = 0.447.

If we plot the bode diagram of the closed loop system withaalayl versus the functioi/(N|e™ — 1) for
different values ofV we obtain the results shown in Figure 11.8.2. It can be searthie closed loop system
is stable ifN < 3. Thus the maximum delay is 3 samples. Notice that the resolbly a sufficient condition.
This means that it might be possible that the system is stablarger delays than 3 samples.
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Bode Diagram
60 T T T T T T T T

=== Closed loop system
=+ N
N
N

=1
=3
50 - = N=4

Magnitude (dB)

Frequency (rad/sec)

Figure 11.8.2: Bode diagram of the closed loop system of[Bnold 1.2 and the functiom/(N|e™” — 1) for
different values ofV.

SOoLUTION 11.9

Stability of Networked Control Systems with Packet Losses
We use the following result to study the stability of the syst

Theorem 11.1. Consider the system given in Figure 11.9.1. Suppose thatdsed-loop system without packet
losses is stable. Then

e if the open-loop system is marginally stable, then the sysdeexponentially stable for all < » < 1.

o if the open-loop system is unstable, then the system is expalty stable for all
1
T/
wherey; = log[\2,. (® — T'K)], 72 = log[\2 . (®)]

max max

r<1,

By sampling the system with peridd= 0.3 we obtain:

o 1.3499 0.3045
N 0 0.7408 | -

and

0.0907 0.0408
PR = [ 0.5184 0.2333 ] ’
It follows that the closed loop system is stable (the matrix 'K is stable), but the open loop system is not
stable ¢ has the maximum eigenvalue leger than 1). The second stateithne Theorem applies. We have
~v1 = —0.1011, and~y = 0.6001. It follows thatr > 0.85, namely that the system can tolerate a packet loss of

up about15%.
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SoLuTION 11.10
Networked Control System

(a) Sincer < h, at most two controllers samples need be applied during-theskmpling periodu((k —
1)h) andu(kh). The dynamical system can be rewritten as

x(t) = Ax(t) + Bu(t), telkh+7,(k+1)h+71)
y(t) = Cx(t),
uw(th) = —Kaz(t — 1), te{kh+7, k=0,1,2,...}

whereu(t1) is a piecewise continuous and changes values ority at 7. By sampling the system with
periodh, we obtain

— |l

z((k + 1)h) = ®x(kh) + To(r)u(kh) + T (m)u((k — 1)h)
y(hk) = Cx(kh),

where

<I>:€Ah:€ah,

h—T1
To(r) = / e Bds = 2 <e“(h_7) - 1) ,
0

h
(1) = / e Bds = <e“h - ea(h_T)) .
h

—T

SHN

giventhatd =a,B=1,C = 1.

(b) Letz(kh) = [T (kh),uT ((k — 1)R)]T be the augmented state vector, then the augmented closed loo
system is

2((k 4 1)h) = ®z(kh),
where

& { @—E%T)K rl(()f) } |

Using the results obtained in (a), we can obtain

(i) B eoh _ % (e(l(h—T) _ 1) K % (eah _ ea(h—ﬂ-))
N -K 0 ’

(c) The characteristic polynomial of this matrix is

N2 <eah B é <ea(h—7') B 1>> K+ % (eah B ea(h—r)) ‘

Thus when thenax |A| > 1, the closed loop system becomes unstable.
(d) We use the following result to study the stability of tlystem:

Theorem 11.2. Consider the system given in Fig. 2. Suppose that the closgdsystem without packet
losses is stable. Then
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o if the open-loop system is marginally stable, then the systeexponentially stable for all < r <

1.
e if the open-loop system is unstable, then the system is erpalty stable for all
1
——<r<1,
L—m/7

wherey; = log[A2,,, (® — TK)], 72 = log[A2,,. (®)]

max
Here we have

d = eAh — €ah

)

h 1
= / e Bds = ~ (e“h — 1) .
0 a

Thus, the stability of this system depends on the valuds,@f, a. When the conditions are not satisfied,
we may choose differen for controller or different sampling time for the system to make the system
stable.

SoLuTIiOoN 11.11

Energy-Efficient Control of NCS over IEEE 802.15.4 Networks

Practical-stability of each loop is ensured if the minimumer-sampling time of the self-triggered sampler
is greater than the the minimum beacon interval fixed336 x 2 = 30.72 ms. In other words, practical-
stability of each loop is ensured if

(i)

mljn tik+1 — Tig = Blin, Vi = 1,2, 3.
The minimum inter-sampling time of the given self-triggggampler, is attained by considering the peak value
of the associated process output. By recalling the defmitibL..-norm of a signals : R — R"defined

as|[s(t)|lc. = supssy, |Is(t)]| (note that thel..-norm indicates the peak value of a signal), the minimum
inter-sampling time guaranteed is given by

(ii).

: 1 |a 6
Mtk — e = |ag i (1 " |a; — bikini][;w> '
Under the defined sampling rule, the closed-loop system eaewritten asi; = (a; — b;ik;)x; — bikie;,
forallt € [T;,T; r+1). Because; — b;k; < 0 for all 7, and becaus;| < ¢; for all t > ¢, the output of each
process is upper-bounded (recall BIBO stability) with

(iii). -
|2:(t)] < | olel@i—bkali=to) 4 ﬁ&w
for all ¢t > ¢y, and then
(iv).
|zilc.. < |xiol + %51

Thus, practical-stability of each loop is ensured if it teld
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(V).

1 |al|52 >
—In(1+ > BImin )
|a| ( la; = bikil|zi|co.
where |z;|,., can be estimated by previous equation. In this case an wéilaund (or practical-stability
region) is given by

|biki|

_ ikl 5
la; — biks|

& =

(@) The closed loop dynamics of the system #1 becomes,ddfl , 71 k+1), ©1 = (2 — k1)z1 — kreq, from
which one derive&; > 2. By observing thati; — b1k; < 0,a; > 0,210 > 0, we get

1 a0y
k1 < .
b bl(wl,o + 51) <(6a1BImin _ 1)1.170 + alwl,o) 6877

where the upper-boundvj is used. Then, for al < k; < 4.68 system #1 is practically-stable. The
region of practical-stability i$).88 < ¢; < 400, depending on the choice of the control. For instance,
the practical-stability region size decreases as the aloetffiort increases, but that way the inter-sampling
times shrinks, leading to a larger energy expenditure oh#te/ork.

(b) By following the same argument as in the previous poirget the condition

(eagBImin _ 1)(b2k2 — ag)l‘Q,O

1)
2 as — (€a2BImin — 1)b2k2

v

~ 2.955,

and then practical-stability is ensured by taking, for eglamd, > 3. In this case, the region of practical-
stability isey > 12, where the value 12 is obtained & = 3, and it increases as does.

Notice that, in general, by increasing we are enlarging the practical-stability region size,weatare also
enlarging the inter-sampling times. Hence, it is clear thedoff between the closed-loop performance
(practical-stability region size) and the energy efficien€ the network (inter-sampling times), tweaked
by §;. Further notice that even for arbitrary large valueg,pttondition §) may not be fulfilled, and then

a system may not be stabilizable over the specified IEEE 802 dven if we are willing to accept large
ultimate bound regions. This can be observed by lookingeatbument of the logarithm in the inequality
(i) that is bounded with respect to the variablewhen the upper-boundv) is used. Hence, even for
0; — —+oo condition{’) may not be fulfilled.

(c) By following the same argument as in the previous poinesget the condition

(CLS — (e(lSBImin — 1)b3k3)53

_ ~ 14.281.
3,0 > (eaaBImin — 1)(63k3 - CL3)

Hence, the system is practical-stabilizable over the §ipddEEE 802.15.4 network jfc3 o| < 14.28. The
ultimate bound region size i = 1.5. Notice how the ultimate bound region size does not deperaten
the initial condition, but practical-stabilizability depds on that. This is due because the inter-sampling
times depend on the distance of the current process outpmattfie equilibrium point (that in this case is
the origin). If the initial condition is far from the equilitum point, the self-triggered sampler may give
inter-sampling times that are shorter than the minimum deaaterval guaranteed by the protocol, and
then practical-stability may not be achieved.
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12 Scheduling

SOLUTION 12.1
Scheduling in Smart Gridé/e propose the problem

N Nt11 NRrB
max > Y > R Iy (12.1a)
Loe c=1 i=1 j=1
s.t. Zx@ <1 29 e{0,1} Vi, j (12.1b)
ZSL'” < N7 Vi, c (12.1¢)
Zw” < Ngrs Vi, c (12.1d)
sz i < Ve, (12.1e)
whereR( - /\( ) ( ) is the utility weight function for the-th user with some utility parameteﬁé ) is

1if (4, ]) resource block is assigned ¢ah user, and zero otherwise. Eq. (12.1b) indicates thett murce
block can be allocated to one user at most, and Eq. (12.1c)lantld) give the greatest valuégr, Ngrg Iin
time and frequency domain respectively. Eq. (12.1e) irtdic¢hat resource blocks allocated to UE are limited
by each UE transmission demané’. We make the natural assumption that the weDéFft depends on UE’s
information only. In other words, UEs only report the averafpannel condition for all available channels in
every TTI. It is possible to show that problem (12.1) has ipldtoptimal solutions.

We propose to obtain it as

. —1
Wi = [al,-xc) 4 oani© 4 agq«c)] ,

whereq; € [0,1] and}_ «; = 1. In this case, we set;, ay andas to 0.3, 0.5 and 0.2 respectively.
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13  Security

SOLUTION 13.1

The Caesar cod@/e write the possible solutions down, advancing one platkedralphabet for each row:

NBCMCMYUMS

OCDNDNZVNT

PDEOEOAWOU

QEFPFPBXPV

RFGQGQCYQW

SGHRHRDZRX

THISISEASY Clearly we can stop once recognizable Englishappears. Note that the dependencies of
natural languages are such that a very small number ofdedterneeded to determine the unique message.

SOLUTION 13.2

Unicity distanceThe unicity distance i¥og,, 26!/0.7 or about 30 characters. Clearly substitution ciphers are
not secure in any way. In fact one can usually do much betteesi quite high degree of certainty is obtained
already using the statistics forletters of text. Furthermore, it is impossible to get enotegtt for statistics of
dependencies beyoridalready this is more text than in the Library of Congress. @uglies instead rules of
syntax and grammars to assist in the attack.

SOLUTION 13.3
Euclid’s Algorithm

10480 = 2(3920) + 2640
3920 = 1(2640) + 1280
2640 = 2(1280) + 80

1280 = 16(80) + 0
Thusged (10480, 3920) = 80.

SOLUTION 13.4

Factoring products of prime$he number of primes in the two cases dre 1017 and4 x 1036 respectively.
This would be a lot of divisions. Quadratic sieve filteringjuees in the two case9(1521) andO(15,487)
iterations respectively, each one being much more thanisialiv Nevertheless it is clear that an efficient
factoring algorithm is the way to go here.

SOLUTION 13.5
Hash functions and sensing

(a) An obvious attack is to attempt to guess keyry all possible sequences of the key length. Another is to
try all possible signatures of length n in an attempt to f@@ignature. Thus both key length and signature
length have to be large enough to make this combinatoridizult.
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(b) A hash function performs a type of lossy compression oagaance; one cannot reconstruct the original
sequence from the signature. Similarly, all sensor measemées only partially represent a physical phe-
nomenon, with greater processing resulting generally 38 lenowledge about the original phenomenon.
However, hash functions are deterministic while sensirggraadomness associated with it in the form of
noise. Moreover, lossy compression codes are not designpobtide a unique and seemingly random
signature but rather to produce a result that answers a qoiéing best fidelity possible, given constraints
on the length of the report.

SOLUTION 13.6
Fighting infection

(@) For low infection probabilities, the requirement baltsvn to100p < .01, or p < 10~%. While there will
be some sweeps in which there will be a higher levels of waikdidata, on average the requirement is met.

(b) Consider the probability that a given is not corruptedt®yend is(1 — p)!%° = 1 — ¢, whereq is the final
infection probability. The chances that two of the threeew®tare corrupted i3¢(1 — q) + ¢° = 0.01. If
q is reasonably small, the3y? is approximately).01 and sog = 5.8 x 1072, Thus(1 — p) = (1 — 5.8 x
102)1/190 orp = 6 x 10~%. Thus2 of 3 voting enables either a six times higher infection rate doaer
audit cycle.

SOLUTION 13.7
Information theft

(a) Clearly100 units are at risk at tiet while at tier2 there are300 units of raw data available prior to
application of the compression algorithm. At tiethere are onl\30 units available.

(b) In this case there a@) units at risk in tierl, 60 at tier2, and10 at tier 1. Note that while in the end the
same amount of information is presented to the end usernfssation irrelevant to the query is at risk
within the network.

(c) Here tierl has100 units at risk, tier2 has300 units at risk, and tiet has600 units at risk since all the raw
data has been forwarded. This is obviously the most dangestoategy.

SOLUTION 13.8

Physical security

Clearly many answers are plausible; the assumptions madestrand value of information obtained will
matter. However, generally redundancy is a good idea ad\al$. Camouflage and embedding are appropriate
for multiple levels also, although unnecessary when thecdevare in a secured room. Tamper detection
devices can be quite simple (was the package opened?) armk @pplied at multiple levels also. Hardened
casings might be needed in any case for environmental mdsstat gateway levels and up, while secured
rooms/facilities would be reserved for the highest netwaylers in general such as a certificate authority.

SOLUTION 13.9

People and data reliability

Personal trust among people is based on past actions, aadicutar is gained when actions are taken that
cost something (e.g., time) without apparent personalftiefiechnical trust is gained based on the track record
of actual accomplishments, and the publicity that surreuhédm. Trust is also reinforced by the comments of
peers, with the comments of trusted friends or technicdlaittes assigned more weight than those of others.
Thus both direct observations and the opinions of a soctalark establish reputation.
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