
Sound generator using PIC16F628A

Elias Riedel Gårding

NMA11, Norra Real, Stockholm

January 15, 2014

Contents

1 Overview 2

1.1 Objective . 2
1.2 Operation . 2
1.3 Functional blocks . 2

2 Hardware 3

2.1 Realization . 3
2.2 Circuit diagram . 3

3 Software 4

3.1 Code and program architecture 4
3.2 Rotary encoder input . 6
3.3 Tone generation . 7

4 Adequacy tests 8

4.1 Interface functionality . 8
4.2 Pitch accuracy . 8

5 Source code listings 9

5.1 pin_configuration.c . 9
5.2 main.c . 9
5.3 initialization.c . 11
5.4 tones.c . 11
5.5 lcd.c . 12
5.6 delay.c . 15

1

1 Overview

1.1 Objective

The goal of this project was to construct a prototype of a sound generator
using Microchip's PIC16F628A microprocessor. It was carried out as an
examination project in the course Tillämpad digitalteknik med PIC-processor
IL131V under the supervision of William Sandqvist of KTH, Stockholm.

1.2 Operation

The user selects a tone by turning a rotary encoder, and is given visual
feedback from an LCD (Liquid Crystal Display). They may then press and
hold a button to hear the tone played, in the form of a square wave, from a
speaker. In addition, the user may adjust the speaker's volume by turning a
potentiometer. The original intent was to include a possibility for the user
to select the waveform of the sound (square, sawtooth or sine wave), but this
was dropped due to time constraints. The available tones range from A4 (440
Hz) to G7# (approximately 3322 Hz).

1.3 Functional blocks

Figure 1: Block diagram.

2

Figure 1 shows a block diagram of the device's main features. We see
that the processor has four main tasks, one for each block:

• Accept and process input from the button

• Accept and process input from the rotary encoder

• Play the desired tone on the speaker

• Display information on the LCD

Button input presented no unexpected problems. As the device employs
a press-and-hold control scheme no considerations of switch debouncing were
necessary. Input from the rotary encoder was handled using an implementa-
tion of a Moore state machine. Sound generation and output to the speaker
was handled using PWM (Pulse Width Modulation) from the processor's
built-in CCP (Capture, Compare, PWM) unit. Displaying of information on
the LCD was achieved by using the LCD's serial/parallel interface.

The datasheet ([2]) was extremely useful in all aspects of the design.

2 Hardware

2.1 Realization

The prototype was realized on a breadboard using components most of which
were ordered from Electrokit ([1]). Figure 2 shows the �nished prototype.

2.2 Circuit diagram

Figure 3 shows a circuit diagram of the �nished prototype. The components
shown are only those necessary for the device to function as a sound gener-
ator. In addition to these, the breadboard was equipped with components
used for in-circuit programming of the processor using Microchip's PICKit 2
programmer.

The button (BUTTON) was connected to the RB2/TX/CK pin in an active-
high fashion using a pull-down resistor (R1). The A pin of the rotary encoder
(ROTARY_ENCODER) was connected to the RB0/INT pin and the B pin was
connected to the RB1/RX/DT pin. Both were pulled down to ground using
a resistor net (RN1). The speaker was connected to the RB3/CCP1 pin via a
potentiometer (VOLUME). The LCD was connected via six pins to the pro-
cessor: pins DB4 through DB7 were connected to pins RB4 through RB7 of
the processor, the RS pin of the LCD was connected to RA0/AN0 and its E

3

Figure 2: The �nished prototype, with components related to programming
the processor removed.

pin was connected to RA1. The VSS and VCC pins of the LCD were connected
to ground and +5V respectively, as were the LED− and LED+ pins (A and
K on the circuit diagram). The VEE pin (contrast, VO on the diagram) was
connected to ground via a resistor (R2).

3 Software

3.1 Code and program architecture

Figure 4 and 5 show JSP (Jackson Structured Programming) diagrams of
the main program �ow; the main function and its helper update_tone. The
functions used as helpers to these functions are better understood by studying
their source code, attached in section 5.

The software was written in C and compiled using B Knudsen Data's
CC5X C compiler (which uses its own version of C, not ANSI-C). The code
was split into six �les (see section 5 for listings of their source code):

• pin_configuration.c

• main.c

4

Figure 3: A circuit diagram of the �nished prototype.

• initialization.c

• tones.c

• lcd.c

• delay.c

pin_configuration.c is a pure con�guration �le, with a graphical overview
of which pins are used for what purpose, and mapping of those pins to ap-
propriate aliases.

main.c is the main �le, it includes every other �le and is the �le that is fed
to the CC5X compiler. It contains the main loop and the code responsible for
handling input, including the rotary encoder state machine (see section 3.2).
It also contains the preamble of the code, with inclusion of the processor-
speci�c header �le, constant de�nitions, function declarations and so forth.

initialization.c handles initial setting of con�guration registers such
as the TRIS-registers and the con�guration registers of the CCP unit.

tones.c deals with the production of sound on the speaker. It uses
the processor's CCP1 module, set to PWM mode, to produce a square wave
current on the RB3/CCP1 pin. This is elaborated on in section 3.3.

5

Figure 4: A JSP diagram of the main function.

Figure 5: A JSP diagram of the update_tone function.

lcd.c contains functions involved in interacting with the LCD. Com-
mands are sent to the display in 4-bit mode (to which the display is set
during initialization), thus requiring six lines between the display and the
processor: The E (enable) line, the RS (command/character) line, and the
four data lines DB4 through DB7.

delay.c contains a single function instr_delay_ms, used throughout the
program to produce a delay in program execution.

3.2 Rotary encoder input

Input from the rotary encoder is handled through a Moore state machine.
The concept and implementation are almost exactly copied from a lab in
the course ([4]). A state is described by two bits: the values of the A and
B pins of the rotary encoder in that state. At each iteration of the main
loop (see �gure 4 and the listing of main.c) the current state transition
(rotary_encoder_state_transition) is calculated by appending the cur-
rent state to the previous state. If the transition is from state 00 to 01 the
tone is incremented. If it is from 01 to 00 the tone is decremented. On a
transision from 00 to 00 (no motion of the rotary encoder) the tone and the
LCD are updated if necessary.

6

Figure 6: A state diagram of the Moore state machine. (Image from [4])

3.3 Tone generation

Tone generation is done using the processor's built in CCP (Capture, Com-
pare, PWM) unit set to PWM (Pulse Width Modulation) mode. Once the
correct settings for a certain tone are in place, the unit will produce an os-
cillating voltage on the RB3/CCP1 pin, independently of program execution.
Switching the tone on and o� is achieved through simply deactivating the
CCP unit in its control register.

The frequency of a tone t in octave o was calculated as

f = 440 ∗ 2o+
t
12 [Hz]

The processor uses two lookup functions (tone_PR2_value and
TMR2_prescaler_configuration_bits, located in tones.c) together with
some arithmetic to determine the necessary values of the PR2 and CCPR1L

registers, as well as the CCP1X and CCP1Y bits of the CCP1CON register and
the T2CKPS1 and T2CKPS0 bits of the T2CON register, for a desired tone.

The values in this lookup table were calculated using a Python program,
�nding the correct values of the PR2 register and the two prescaler con�g-
uration bits (T2CKPS1 and T2CKPS0) such that the PR2 value �ts within a
byte and the prescale ratio is as small as possible. The data sheet gives the
formulae

TPWM = (PR2+ 1) 4 TOSC p

7

and
CPWM = CCPR1 TOSC p

where TPWM is the period of the output signal (TPWM = 1/f), PR2 is the value
of the PR2 register, TOSC is the oscillator period, p is the Timer2 prescaler
ratio, CPWM is the PWM duty cycle and CCPR1 is the 10-bit number given by
appending the bits CCP1X and CCP1Y to the CCPR1L register. Since the signal
is to become a classical square wave the amount of time spent high should
be the same as the amount of time spent low. Therefore

TPWM = 2 CPWM

The three equations together give (after simpli�cation) that

CCPR1 = 2 (PR2+ 1)

This makes it possible to store the necessary information as just the values
PR2 and T2CKPS1 : T2CKPS0 (the prescale ratio), and then calculate CCPR1

from those values.

4 Adequacy tests

4.1 Interface functionality

Check that correct information is always displayed on the LCD, and that a
tone is produced when the button is pressed. Check that the rotary encoder
switches tones in intervals of one semi-tone every time it gives a pulse, and
that the tone wraps around correctly when the maximum or minimum tone
is passed.

4.2 Pitch accuracy

Use a reliable source of pitch and compare it to the output of the sound
generator, or better yet, use an oscilloscope to measure the frequency of the
produced tones.

8

5 Source code listings

5.1 pin_configuration.c

1 // FILE: pin_configuration.c

3 /*
________ ________

5 | \/ |
|RA2 16F628 RA1|--LCD_EN

7 |RA3 RA0|--LCD_RS
|RA4 -od RA7/OSC1|

9 |RA5/~MCLR RA6/OSC2|
GND --|Vss Vdd|-- +5V

11 Rotary encoder A--|RB0/INT (RB7)/PGD|--LCD_D7
Rotary encoder B--|RB1/Rx (RB6)/PGC|--LCD_D6

13 Button --|RB2/Tx RB5|--LCD_D5
Speaker --|RB3/CCP1 (RB4)/PGM|--LCD_D4

15 |__________________|
*/

17

#pragma bit button_down @ PORTB.2
19

#pragma bit speaker @ PORTB .3
21

#pragma bit rotary_encoder_A @ PORTB .0
23 #pragma bit rotary_encoder_B @ PORTB .1

25 #pragma bit LCD_EN @ PORTA .1
#pragma bit LCD_RS @ PORTA .0

27 #pragma bit LCD_DB4 @ PORTB .4
#pragma bit LCD_DB5 @ PORTB .5

29 #pragma bit LCD_DB6 @ PORTB .6
#pragma bit LCD_DB7 @ PORTB .7

pin_configuration.c

5.2 main.c

// FILE: main.c
2

#include "16F628.h"
4

// Configuration
6 #pragma config |= 0x3f30

8 // Create an alias for the char datatype , 'byte ', to better describe the datatype
#define byte char

10

12 // Constant definitions
#define MIN_OCTAVE 0

14 #define MAX_OCTAVE 2
#include "pin_configuration.c"

16

// Global variable declarations
18 byte current_tone;

byte current_octave;
20 bit playing; // Whether a tone is currently playing

22 byte previous_tone;
byte previous_octave;

24 bit previous_playing;

26 byte rotary_encoder_state_transition; // The previous state (2 bits) followed by the current state

28

// Function declarations
30 // initialization.c

void initialize ();
32 // tones.c

byte tone_PR2_value(byte tone , byte octave);
34 byte TMR2_prescaler_configuration_bits(byte tone , byte octave);

void play_tone ();

9

36 // lcd.c
void LCD_init ();

38 void LCD_putchar(byte data);
void LCD_write_string(const char *str);

40 void LCD_update_tone ();
void LCD_update_playing ();

42 // delay.c
void instr_delay_ms(byte ms);

44 // main.c
void update_tone ();

46 void main();

48 // Inclusion of code files
#include "initialization.c"

50 #include "tones.c"
#include "lcd.c"

52 #include "delay.c"

54 void update_tone ()
{

56 // Poll button input
previous_playing = playing;

58 playing = button_down;
if (playing) {

60 // Set CCP1 to PWM mode (set bits CCP1M3 and CCP1M2)
CCP1CON |= 0b0000 .1100;

62 }
else {

64 // Turn off CCP1 (clear bits CCP1M3 and CCP1M2)
CCP1CON &= 0b1111 .0011;

66 }

68 // Update the screen and CCP unit where necessary
if (previous_playing != playing)

70 LCD_update_playing ();

72 if (current_tone != previous_tone
|| current_octave != previous_octave)

74 {
play_tone ();

76 LCD_update_tone ();
}

78

previous_tone = current_tone;
80 previous_octave = current_octave;

}
82

void main()
84 {

initialize ();
86

// Initialize variables
88 previous_tone = -1;

previous_octave = -1;
90 previous_playing = 0;

current_tone = 0;
92 current_octave = 0;

playing = 1;
94 rotary_encoder_state_transition = 0b00 .00;

96 // Ensure that the first tone is displayed
update_tone ();

98

while (1) {
100 // Process rotary encoder input

102 // Update the current state
// The previous state

104 rotary_encoder_state_transition .3 = rotary_encoder_state_transition .1;
rotary_encoder_state_transition .2 = rotary_encoder_state_transition .0;

106 // The current state
rotary_encoder_state_transition .0 = rotary_encoder_A;

108 rotary_encoder_state_transition .1 = rotary_encoder_B;

110 if (rotary_encoder_state_transition == 0b00 .00) {
// Update

112 update_tone ();
}

114 else {
// Check for increment/decrement transitions

116 if (rotary_encoder_state_transition == 0b00 .01) { // From 00 to 01
// Increment tone

118 current_tone ++;

10

if (current_tone == 12) {
120 current_tone = 0;

// Increment octave
122 current_octave ++;

if (current_octave == MAX_OCTAVE +1)
124 current_octave = MIN_OCTAVE;

}
126 }

else if (rotary_encoder_state_transition == 0b01 .00) { // From 01 to 00
128 // Decrement tone

current_tone --;
130 if (current_tone == -1) {

current_tone = 11;
132 // Decrement octave

current_octave --;
134 if (current_octave == MIN_OCTAVE -1)

current_octave = MAX_OCTAVE;
136 }

}
138 }

}
140 }

main.c

5.3 initialization.c

// FILE: initialization.c
2

void initialize ()
4 {

// Disable comparators on RA0 through RA3
6 CMCON = 0b00000 .111;

/*
8 * 00xxx.xxx Comparator 2 and 1 Output. Read -only bits.

* xx00x.xxx Comparator 2 and 1 Output Inversion. Irrelevant.
10 * xxxx0.xxx Comparator Input Switch. Irrelevant. For connecting comparators to different pins.

* xxxxx .111 Comparator Mode. 111: Comparators Off.
12 */

14 // Configure pins for input or output
TRISA = 0b1111 .1100;

16 /*
* xxxx.xx0x RA1 pin to be used as output to LCD_EN

18 * xxxx.xxx0 RA0 pin to be used as output to LCD_RS
*/

20 TRISB = 0b0000 .0111;
/*

22 * 0000. xxxx RB4 -RB7 to be used as outputs to LCD_DB4 -LCD_DB7 respectively.
* xxxx.0xxx RB3/CCP1 pin to be used as output to the speaker.

24 * xxxx.x1xx RB2 pin to be used as input from the button
* xxxx.xx11 RB1 and RB0 pins to be used as inputs from rotary encoder A and B respectively

26 */

28 // Configure the CCP1 unit to start turned off (it is turned on when the button is pressed)
CCP1CON = 0b0000 .0000;

30 /*
* 00xx.xxxx Unimplemented.

32 * xx00.xxxx PWM Least Significant bits. The two LSBs of the PWM duty cycle. Subject to change.
* xxxx .1100 CCP1 Mode Select. 0000: Capture/Compare/PWM off.

34 */

36 // Enable the Timer2 module (for use by the CCP1 unit)
TMR2ON = 1; // In T2CON register

38

// Initialize the LED display (see lcd.c)
40 LCD_init ();

}

initialization.c

5.4 tones.c

11

1 // FILE: tones.c

3 byte tone_PR2_value(byte tone , byte octave)
// Returns the value that PR2 should assume for the given tone in the given octave.

5 {
// Computed Goto

7 byte index = 12 * octave + tone;
skip(index);

9

/*
11 * A table of the values that PR2 should assume. The octaves are stored one after another.

* The values are calculated according to the formula (given in the documentation)
13 * PR2 = PWM_period / (4* Tosc * TMR2_prescale) - 1

* The value TMR2_prescale is calculated such that PR2 can be contained within a single byte.
15 * TMR2_prescale is given by TMR2_prescaler_configuration_bits(tone , octave)

*/
17 #pragma return [] = \

/* Octave 0 */ 141 133 126 118 112 105 99 94 88 83 79 74 \
19 /* Octave 1 */ 70 66 252 238 224 212 200 189 178 168 158 149 \

/* Octave 2 */ 141 133 126 118 112 105 99 94 88 83 79 74
21 /* Tone name: A A# B C C# D D# E F F# G G# */

/* Tone index: 0 1 2 3 4 5 6 7 8 9 10 11 */
23 }

25 byte TMR2_prescaler_configuration_bits(byte tone , byte octave)
// Returns a byte containing as its last two bits the bits that T2CKPS1:T2CKPS0

27 // should assume for the given tone in the given octave.
{

29 byte index = 12 * octave + tone;
if (index >= 12 * 1 + 2) // Boundary at B in octave 1

31 return 0b01; // Prescaler ratio 1:4
else

33 return 0b10; // Prescaler ratio 1:16
}

35

void play_tone ()
37 {

/*
39 * The documentation gives the following formulae:

* PR2 = PWM_period / (4* Tosc * TMR2_prescale) - 1
41 * PWM_duty_cycle = CCPR1 * Tosc * TMR2_prescale

* Since we want a square wave , we need a duty cycle ratio of 50%. Thus:
43 * PWM_duty_cycle = PWM_period / 2

* These formulas together give
45 * CCPR1 = 2 * (PR2 + 1)

* We look up the value of PR2 in a table and then calculate CCPR1 using this formula.
47 */

49 // Look up the period for the given tone
PR2 = tone_PR2_value(current_tone , current_octave);

51

// A 10-bit variable
53 long long_PR2_plus_1 = (long) PR2 + 1;

long CCPR1 = 2 * long_PR2_plus_1;
55

// The two least significant bits
57 CCP1X = CCPR1 .1;

CCP1Y = CCPR1 .0;
59

// The eight most significant bits
61 CCPR1 >>= 2;

CCPR1L = CCPR1;
63

65 // Set the Timer2 prescaler ratio
byte TMR2_prescaler = TMR2_prescaler_configuration_bits(current_tone , current_octave);

67 T2CKPS1 = TMR2_prescaler .1;
T2CKPS0 = TMR2_prescaler .0;

69 }

tones.c

5.5 lcd.c

1 // FILE: lcd.c

3 const char LCD_FIRST_ROW [] = "Octave ";

12

const char LCD_SECOND_ROW [] = ", ";
5 #define LCD_OCTAVE_LOCATION 0b1 .0000111

#define LCD_TONE_LETTER_LOCATION 0b1 .1000011
7 #define LCD_TONE_SUFFIX_LOCATION 0b1 .1000100

#define LCD_PLAYING_LOCATION 0b1 .1000111
9

#define LCD_PLAYING_CHARACTER_ADDRESS 0
11 #define LCD_NOT_PLAYING_CHARACTER_ADDRESS ' '

13 const char TONE_LETTERS [] = "AABCCDDEFFGG";
const char TONE_SUFFIXES [] = " # # # # #";

15

void LCD_init ()
17 {

// Give the LCD time to settle down after Vcc
19 instr_delay_ms (80);

21 // Put the LCD in Command mode
LCD_RS = 0;

23

/* Enable 4-bit interface by issuing the command
25 * 0010 xxxx

* It will be sent twice due to the nature of LCD_putchar ().
27 */

LCD_putchar (0b0010 .0010);
29 // Hereafter instructions are sent one nibble at a time ,

// so LCD_putchar will send instructions correctly.
31

// Set the display to 2-line mode and 5x10 dot format
33 LCD_putchar (0b0010 .1000);

/*
35 * 001x.xxxx Function set command

* xxx0.xxxx 4-bit interface
37 * xxxx.1xxx 2-line mode

* xxxx.x0xx 5x10 dot format
39 * xxxx.xx00 Unimplemented

*/
41

// Turn the display on, turn cursor and cursor blink off
43 LCD_putchar (0b0000 .1100);

/*
45 * 0000.1 xxx Display On/Off & Cursor command

* xxxx.x1xx Display on
47 * xxxx.xx0x Cursor off

* xxxx.xxx0 Cursor blink off
49 */

51 // Clear the display
LCD_putchar (0b0000 .0001);

53 /*
* 0000.0001 Clear Display command

55 */

57 // Set the character entry mode to increment , no shift
LCD_putchar (0b0000 .0110);

59 /*
* 0000.01 xx Character Entry Mode command

61 * xxxx.xx1x Increment
* xxxx.xxx0 No shift

63 */

65 // Define the tone character
// Select CGRAM address 000000

67 LCD_putchar (0b0100 .0000);
/*

69 * 01xx.xxxx Set CGRAM Address command
* xx00 .0000 The CGRAM address

71 */

73 // Put the LCD in character mode
LCD_RS = 1;

75

// Define the character
77 LCD_putchar (0b000 .00011); // ##

LCD_putchar (0b000 .00010); // #
79 LCD_putchar (0b000 .00010); // #

LCD_putchar (0b000 .01110); // ###
81 LCD_putchar (0b000 .11110); // ####

LCD_putchar (0b000 .11110); // ####
83 LCD_putchar (0b000 .01100); // ##

LCD_putchar (0b000 .00000); //
85

// Move the cursor to the first display address

13

87 LCD_RS = 0; // Command mode
LCD_putchar (0b1000 .0000);

89 /*
* 1xxx.xxxx Set Display Address command

91 * x000 .0000 The display address
*/

93

// Write the first row
95 LCD_RS = 1; // Character mode

LCD_write_string(LCD_FIRST_ROW);
97

// Move the cursor to the first column of the second row
99 LCD_RS = 0; // Command mode

LCD_putchar (0b1100 .0000);
101 /*

* 1xxx.xxxx Set Display Address command
103 * x100 .0000 The display address

*/
105

// Write the second row
107 LCD_RS = 1; // Character mode

LCD_write_string(LCD_SECOND_ROW);
109 }

111 void LCD_putchar(byte data)
// Send the given data to the LCD in 4-bit mode.

113 {
// Load the upper nibble of the data into the bus

115 LCD_DB7 = data .7;
LCD_DB6 = data .6;

117 LCD_DB5 = data .5;
LCD_DB4 = data .4;

119

// Tick the LCD
121 LCD_EN = 0;

nop();
123 LCD_EN = 1;

125 // Give the LCD time to receive the data
instr_delay_ms (2);

127

// Load the lower nibble of the data into the bus
129 LCD_DB7 = data .3;

LCD_DB6 = data .2;
131 LCD_DB5 = data .1;

LCD_DB4 = data .0;
133

// Tick the LCD
135 LCD_EN = 0;

nop();
137 LCD_EN = 1;

139 // Give the LCD time to receive the data
instr_delay_ms (2);

141 }

143 void LCD_write_string(const char *str)
{

145 LCD_RS = 1;
byte i;

147 for (i = 0; str[i] != '\0'; i++)
LCD_putchar(str[i]);

149 }

151

void LCD_update_tone ()
153 {

// Octave
155 LCD_RS = 0;

LCD_putchar(LCD_OCTAVE_LOCATION);
157 LCD_RS = 1;

LCD_putchar('0' + current_octave);
159

// Tone letter
161 LCD_RS = 0;

LCD_putchar(LCD_TONE_LETTER_LOCATION);
163 LCD_RS = 1;

LCD_putchar(TONE_LETTERS[current_tone]);
165

// Tone suffix
167 LCD_RS = 0;

LCD_putchar(LCD_TONE_SUFFIX_LOCATION);
169 LCD_RS = 1;

14

LCD_putchar(TONE_SUFFIXES[current_tone]);
171 }

173 void LCD_update_playing ()
{

175 // Go to the location of the playing/not playing symbol
LCD_RS = 0;

177 LCD_putchar(LCD_PLAYING_LOCATION);

179 // Write the correct character
LCD_RS = 1;

181 if (playing)
LCD_putchar(LCD_PLAYING_CHARACTER_ADDRESS);

183 else
LCD_putchar(LCD_NOT_PLAYING_CHARACTER_ADDRESS);

185 }

lcd.c

5.6 delay.c

1 // FILE: delay.c

3 void instr_delay_ms(byte ms) // Delay the specified number of milliseconds (1 <= ms <= 256). Error:
~0.1%

{
5 // The delay in us of each loop = 4 + i * (4 + j * (5) + 3) + 3.

do { // Sleep 1 ms
7 // 4 + 7 * (4 + 27 * (5) + 3) + 3 = 1001 ins.

char i = 7; // 2 ins
9 do {

char j = 27; // 2 ins
11 do {} while (--j); // 3 ins

} while (--i); // 3 ins
13 } while (--ms); // 3 ins

}

delay.c

References

[1] http://www.electrokit.com/

[2] Microchip Technology Inc. PIC16F627A/628A/648A Data Sheet. http:
//web.mit.edu/6.115/www/datasheets/16f628.pdf

[3] B Knudsen Data. CC5X User's Manual. Version 3.4. http://www.bknd.
com/doc/cc5x-34.pdf

[4] Sandqvist, W. Avläsning av pulsgivare. http://www.ict.kth.se/

courses/IL131V/quad/index.htm

15

http://www.electrokit.com/
http://web.mit.edu/6.115/www/datasheets/16f628.pdf
http://web.mit.edu/6.115/www/datasheets/16f628.pdf
http://www.bknd.com/doc/cc5x-34.pdf
http://www.bknd.com/doc/cc5x-34.pdf
http://www.ict.kth.se/courses/IL131V/quad/index.htm
http://www.ict.kth.se/courses/IL131V/quad/index.htm

	Overview
	Objective
	Operation
	Functional blocks

	Hardware
	Realization
	Circuit diagram

	Software
	Code and program architecture
	Rotary encoder input
	Tone generation

	Adequacy tests
	Interface functionality
	Pitch accuracy

	Source code listings
	pin_configuration.c
	main.c
	initialization.c
	tones.c
	lcd.c
	delay.c

