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Mündliche Prüfung am: 28.05.2008

Referentin: Prof. Dr. Heike Faßbender, TU Braunschweig
Korreferent: Prof. Dr. Achim Ilchmann, TU Ilmenau
Korreferent: Prof. Dr. Daniel Kreßner, ETH Zürich
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Notation

R real numbers
R+ positive real numbers
R− negative real numbers
Z integer numbers
Q rational numbers
C complex numbers
C+ open right half plane
C− open left half plane
D, ∂D open unit disc (D := {z ∈ C : |z| < 1}), unit circle
∂C boundary of the set C
closC closure of the set C, closC = ∂C ∪ C
i imaginary unit, i2 = −1
Re z real part of the complex number z
Im z imaginary part of the complex number z
l(z1, z2) straight line connecting z1, z2 ∈ C not including endpoints
Arg z principal branch argument of the complex number z
z̄ complex conjugate of the complex number z
A∗ complex conjugate transpose of the matrix A
σ(A), σ(Σ) spectrum of the matrix A or system Σ
σ(G) solutions of s ∈ σ(G(s)) where G : C → Cn×n

σ(A,B) solutions of the generalized eigenvalue problem det(A− λB) = 0
σmin(A) the smallest singular value of the matrix A
‖ · ‖ Eucledian or spectral norm
κ(A) condition number of matrix A
rσ(A) spectral radius of matrix A
atan

(
a
b

)
four quadrant inverse of tangent, atan

(
a
b

)
= Arg (b+ ai)

sgn(z) sign of complex number z, sgn(z) = z/|z| if z 6= 0
O(g(x)) big O, f(x) = O(g(x)) ⇔ ∃M > 0, x0 > 0 : |f(x)| < M |g(x)| ∀x > x0

εmach machine precision, where not explicitly stated: εmach ≈ 2.2 · 10−16

⊗,⊕ Kronecker product, Kronecker sum
Wk kth branch of the Lambert W function
dm(S1, S2) maxmin distance between sets S1 and S2

dH(S1, S2) Hausdorff distance between sets S1 and S2

C([a, b]) A continuous function on the segment t ∈ [−a, b]



Acronyms

DDE delay-differential equation
DEP delay eigenvalue problem
IGD infinitesimal generator discretization
LHP left half-plane
LMI linear matrix inequality
LMS linear multistep
MS Milne-Simpson
NP-hard nondeterministic polynomial-time hard
PDDE partial delay-differential equation
PDE partial differential equation
PS pseudospectral
RHP right half-plane
RI Rayleigh iteration
RII residual inverse iteration
SOD solution operator discretization
SRII subspace accelerated residual inverse iteration
TDS time-delay system

iv



Contents

1 Introduction 1

2 Computing the spectrum 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Methods for DDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Scalar or simultaneously triangularizable DDEs: Lambert W . . 16

2.2.2 Solution operator discretization (SOD) . . . . . . . . . . . . . . . 24

2.2.3 PDE discretization (IGD) . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Methods for nonlinear eigenvalue problems . . . . . . . . . . . . . . . . 46

2.3.1 Scalar and vector valued fixed point methods . . . . . . . . . . . 47

2.3.2 Projecton methods . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.4.1 A PDDE with real eigenvalues . . . . . . . . . . . . . . . . . . . 60

2.4.2 Random matrix with complex eigenvalues . . . . . . . . . . . . . 65

3 Critical Delays 69

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.1.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2 Notes and references on delay-dependent stability results . . . . . . . . . 82

3.3 A parameterization for retarded DDEs . . . . . . . . . . . . . . . . . . . 90

3.3.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

v



3.3.2 Plotting critical curves . . . . . . . . . . . . . . . . . . . . . . . . 104

3.3.3 Commensurate delays . . . . . . . . . . . . . . . . . . . . . . . . 105

3.3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.4 A parameterization for neutral DDEs . . . . . . . . . . . . . . . . . . . . 113

3.4.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.4.2 Commensurate delays . . . . . . . . . . . . . . . . . . . . . . . . 120

3.4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.5 Solving the quadratic eigenproblem . . . . . . . . . . . . . . . . . . . . . 126

3.5.1 Exploiting the structure . . . . . . . . . . . . . . . . . . . . . . . 128

3.5.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

3.6 Multiparameter problems and matrix pencil methods . . . . . . . . . . . 131

3.6.1 Polynomial two-parameter eigenvalue problems . . . . . . . . . . 132

3.6.2 One single delay . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

3.6.3 Neutral systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

3.6.4 Commensurate delays . . . . . . . . . . . . . . . . . . . . . . . . 138

3.7 NP-hardness issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4 Perturbation of nonlinear eigenproblems 145

4.1 Notes on current literature . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.2 The fixed point form and a similarity transformation . . . . . . . . . . . 150

4.3 Local perturbation and convergence . . . . . . . . . . . . . . . . . . . . 153

4.3.1 Local perturbation and sensitivity analysis . . . . . . . . . . . . 153

4.3.2 Convergence of fixed point iterations . . . . . . . . . . . . . . . . 158

4.4 Non-local perturbation results and the Bauer-Fike theorem . . . . . . . 162

4.4.1 The Bauer-Fike theorem . . . . . . . . . . . . . . . . . . . . . . . 165

4.4.2 Contraction mappings in set-valued fixed point theory . . . . . . 166

4.4.3 A Bauer-Fike theorem for nonlinear eigenvalue problems . . . . . 168

A Appendix 171

A.1 Linearization of polynomial eigenproblems . . . . . . . . . . . . . . . . . 171

vi



Abstract

Three types of problems related to time-delay systems are treated in this the-
sis. In our context, a time-delay system, or sometimes delay-differential equation
(DDE), is a generalization of an ordinary differential equation (ODE) with con-
stant coefficients. For DDEs, unlike ODEs, the derivative of the state at some
time-point is not only dependent on the state at that time-point, but also on one
or more previous states.

We first consider the problem of numerically computing the eigenvalues of
a DDE, i.e., finding solutions of the characteristic equation, here referred to as
the delay eigenvalue problem. Unlike standard ODEs, the characteristic equation
of a DDE contains an exponential term. Because of this nonlinear term, the
delay eigenvalue problem belongs to a class of problems referred to as nonlinear
eigenvalue problems. An important contribution of the first part of this thesis is
the application of a projection method for nonlinear eigenvalue problems, to the
author’s knowledge, previously not applied to the delay eigenvalue problem. We
compare this projection method with other methods, suggested in the literature,
and used in software packages. This includes methods based on discretizations of
the solution operator and discretizations of the equivalent boundary value problem
formulation of the DDE, i.e., the infinitesimal generator. We review discretiza-
tions based on, but not limited to, linear multi-step, Runge-Kutta and spectral
collocation. The projection method is computationally superior to all of the other
tested method for the presented large-scale examples. We give interpretations of
the methods based on discretizations in terms of rational approximations of the
exponential function or the logarithm. Some notes regarding a special case where
the spectrum can be explicitly expressed are presented. The spectrum can be
expressed with a formula containing a matrix version of the Lambert W func-
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tion. The formula is not new. We clarify its range of applicability, and, by
counter-example, show that it does not hold in general.

The second part of this thesis is related to exact stability conditions of the
DDE. We find exact conditions on the delays such that the DDE has a purely
imaginary eigenvalue. All those combinations of the delays such that there is
a purely imaginary eigenvalue (called critical delays) are parameterized. That
is, we construct a mapping consisting of computable expressions, from a simple
mathematical object onto the set of all subsets of the critical delays. The map-
ping can be expressed explicitly with trigonometric functions for scalar DDEs.
We find some new formulas and verify some formulas in the literature. In general,
an evaluation of the map consists of solving a quadratic eigenvalue problem of
squared dimension for non-scalar problems. The constructed eigenvalue problem
is large, even for DDEs of moderate size. For that reason, we show how the com-
putational cost for one evaluation of the map can be reduced. In particular we
show that the matrix-vector product corresponding to the companion lineariza-
tion of the quadratic eigenvalue problem can be computed by solving a Lyapunov
equation. Most of the results in the chapter on critical delays are derived for
retarded DDEs as well as neutral DDEs with an arbitrary number of delays.

The third and last part of this thesis is about perturbation results for non-
linear eigenvalue problems. We discuss some results in eigenvalue perturbation
theory which can be generalized to nonlinear eigenvalue problems. A sensitivity
formula for the movement of the eigenvalues extends nicely to nonlinear eigen-
value problems. We introduce a fixed point form for the nonlinear eigenvalue
problem, and show that some methods in the literature can be interpreted as set-
valued fixed point iterations. The convergence order of these types of iterations
can be determined from an expression containing the left and right eigenvec-
tors. We also use some results from fixed point theory. The famous result in
perturbation theory referred to as the Bauer-Fike theorem, can be generalized
to the nonlinear eigenvalue problem if we assume that the set-valued fixed point
problem has a certain contraction property.
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Zusammenfassung

In dieser Arbeit werden drei verschiedene Problemklassen im Bezug zu time-delay
Systemen behandelt. Unter einem time-delay System, oder manchmal delay-
differential equation (DDE), verstehen wir die Verallgemeinerung einer gewöhn-
lichen Differentialgleichung (ODE) mit konstanten Koeffizienten. Wobei im Ge-
gensatz zu ODEs, bei DDEs die Ableitung zu jedem Zeitpunkt nicht nur vom
aktuellen, sondern auch von einem oder mehreren vorhergehenden Zuständen
abhängig ist.

Als erstes gehen wir auf die numerischen Berechnung der Eigenwerte von
DDEs ein. Das heißt es sind Lösungen der charakterischen Gleichung zu finden.
Dieses Problem wird im Folgenden als Delay-Eigenwertproblem (DEP) bezeich-
net. Im Gegensatz zu ODEs enthält die charakteristische Gleichung einer DDE
einen exponentiellen Term. Aufgrund des nichtlinearen Terms gehört das Delay-
Eigenwertproblem zur Klasse der nichtlinearen Eigenwertprobleme. Ein wichtiger
Beitrag dieser Arbeit ist die Anwendung einer Projektionsmethode für nichtlinea-
re Eigenwertprobleme, welche bisher noch nicht auf DEPs angewendet wurde. Wir
vergleichen diese Projektionsmethode mit anderen in der Literatur vorgeschlage-
nen und in Softwarepaketen verwendeten Verfahren. Dieser Vergleich schliesst
Methoden der Diskretisierung des Lösungsoperators sowie der Diskretisierung
des äquivalenten Randwertproblems ein. Dabei betrachten wir auf Diskretisierung
basierende Methoden, wie lineare Mehrschrittverfahren, Runge-Kutta Verfahren
und spectral collocation, näher. Es stellt sich heraus, dass die hier vorgestell-
te Projektionsmethode bedeutend bessere numerische Eigenschaften für die hier
verwendeten großen Beispiele, als sämtliche andere getestete Verfahren besitzt.
Zusätzlich treffen wir Aussagen über Diskretisierungsmethoden zur rationalen
Approximation der Exponentialfunktion bzw. des Logarithmus. Des weiteren be-
trachten wir einen Spezialfall, bei welchem das Spektrum explizit mit Hilfe einer
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Matrix-Version der Lambert W-Funktion dargestellt werden kann. Für diese an
sich nicht neue Formel bestimmen wir einen möglichen Anwendungsbereich und
zeigen durch ein Gegenbeispiel, dass diese nicht allgemein gilt.

Im zweiten Teil der Arbeit werden exakte Stabilitätsbedingungen von DDEs
betrachtet. Für die Delays werden exakte Bedingungen so bestimmt, dass die
DDE einen rein imaginären Eigenwert besitzt. Die Menge dieser Delays, soge-
nannte kritische Delays, wird parameterisiert. Das heißt, wir bilden eine aus
berechenbaren Ausdrücken bestehende Abbildung von einem einfachen mathe-
matischen Objekt auf die Menge aller Teilmengen kritischer Delays. Für skalare
Probleme wird diese Abbildung mit trigonometrischen Funktionen explizit aus-
gedrückt. Dabei werden sowohl neue Formeln hergeleitet als auch bereits in der
Literatur bekannte Formeln bestätigt. Für nicht skalare Probleme ist zur Aus-
wertung der Abbildung das Lösen eines quadratischen Eigenwertproblems nötig,
dessen Größe dem Quadrat der Dimension der DDE entspricht. Damit wird auch
für DDEs kleiner und mittlerer Dimension das konstruierte Eigenwertproblem
groß beziehungsweise sehr groß. Weiterhin werden möglichkeiten zur Reduktion
des Rechenaufwandes der Auswertung der Abbildung diskutiert. Es wird gezeigt,
dass das zur companion Linearisierung des quadratischen Eigenwertproblems
gehörende Matrix-Vektor Produkt durch das Lösen einer Lyapunov-Gleichung
berechnet werden kann. Die meisten Ergebnisse des Kapitels über kritische De-
lays sind speziell auf DDEs mit beliebiger Anzahl von Delays, sowohl retardierter
als auch neutraler Form, anwendbar.

Der dritte und letzte Teil dieser Arbeit befasst sich mit der Störungstheo-
rie von nichtlinearen Eigenwertproblemen. Hierin werden einige Aussagen über
Ergebnisse der Eigenwertstörungstheorie, welche sich auf nichtlineare Eigenwert-
probleme verallgemeinern lassen, getroffen. Unter anderem lässt sich eine Formel
für die Sensitivität auf nichtlineare Eigenwertprobleme erweitern. Desweiteren
wird eine Fixpunktform für nichtlineare Eigenwertprobleme vorgestellt, und ge-
zeigt dass einige Methoden aus der Literatur als mengenwertige Fixpunktitera-
tionen dargestellt werden können. Die Konvergenzordnung solcher Iterationen
kann durch einen aus linkem und rechtem Eigenvektor bestehenden Ausdruck
bestimmt werden. Ausserdem werden einige Ergebnisse aus der Fixpunkttheorie
verwendet. Damit kann das in der Störungstheorie bekannte Bauer-Fike Theorem
auf nichtlineare Eigenwertprobleme verallgemeinert werden, wenn angenommen
wird, dass das mengenwertige Fixpunktproblem äquivalent zu einer Kontraktion
ist.
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Chapter 1

Introduction

Many physical phenomena are described with mathematical models expressed as
differential equations. That is, the derivative of the state at some time point is
a function of the current state and the current time. The important special case
that the derivative of the state is a linear combination of the state, i.e.,

ẋ(t) = Ax(t), A ∈ Rn×n

is treated in analysis text-books for undergraduate studies in the science subjects.

The topic of this thesis is a generalization of this ordinary differential equation
(ODE). We allow an additional term in the state equation depending on the
state at some previous time-point. Mostly, we consider linear delay-differential
equations (DDEs) with one delay,

ẋ(t) = A0x(t) +A1x(t− h),

or multiple delays

ẋ(t) = A0x(t) +
m∑

k=1

Akx(t− hk).

That is, the derivative of the state is a linear combination of the current state
and one or more previous states.

In this thesis we discuss numerical tools and some theoretical results used to
analyze DDEs.

1



2 Chapter 1. Introduction

Some applications

This generalization of the ODE is important, as it allows the mathematical treat-
ment of models with delays. Indeed, many physical events do not occur instanta-
neously and can be modeled with delays. We mention some models with delays
from engineering, physics and chemistry.

The electronic signal of the control of a robot takes some time to go from the
controller to the robot arm. Similarly, if the controllers of the wing-rudders of an
airplane are located in the cockpit, the controllers can only control the rudders
with a certain delay. When a human driver on a high-way observes that the
next car is breaking, he will hit the breaks after a certain reaction time. In the
modelling of a high-way congestion, this reaction time influences the length of the
congestion. Chemical reactions do normally not occur instantaneously. Suppose
a manufacturer wants to produce a material with a customer specified material
property. An (unpolluted) construction of a material with the given properties
is sometimes only possible with an accurate control of the chemical process.

Delays are also relevant in more critical applications. The accurate modelling
and control of nuclear reactors is crucial. The temperature of the inner part of
nuclear reactor may not be available for measurement. If the temperature in the
inner part rises, after some time (delay), the temperature of the surface of the
reactor will also rise. Hence, only old information about the state is available for
measurement and can be used to control the process.

Since delay-differential equations appear in a large number of fields in science.
It is not surprising that it has received different names in different fields. For
instance, the following terms are used for slight variations of DDEs, time-delay
systems, difference-differential equations, retarded systems, functional differential
equations1.

In particular, there are many results on DDEs in the field of control and
systems theory, functional analysis, mathematical biology, numerical analysis
and analysis in general.

In this thesis we discuss results from several fields, but attempt a consistent
presentation by using mostly the terminology and concepts of numerical linear al-
gebra. In particular, we use the terminology of numerical methods for eigenvalue
problems.

1DDEs is only one of many applications of functional differential equations.
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An illustrative example

The main concepts of this thesis are illustrated with a simple example.

Even though not as critical as the delay effects in the control of an airplane
or a nuclear reactor, the DDE can be used to describe the human being standing
under the shower trying to reach his optimal shower-temperature by turning the
shower tap (controller). We will illustrate some of the topics of this thesis with
this simple, popular, motivating example known as the hot shower problem.

Example 1.1 (Hot shower problem) Consider a shower with the following
physical parameters. See [Zho06, Section 1.2.1] for a more detailed model. We
denote the length of the shower hose, i.e., the distance from the shower tap to
the shower head, by l. Let v be the speed of the water in the hose. We assume
that the speed of water is constant (stationary flow). The state x(t) is the
temperature difference from optimum, i.e., the difference between the (human
dependent) optimal temperature and the present temperature at the shower tap.

We now make a somewhat questionable assumption for the system. We model
the human being as a linear controller with sensitivity α > 0. That is, the change
of the controller (shower tap) is assumed to be proportional to the temperature
difference of the water coming out of the shower head. The model is described
by

ẋ(t) = −αx(t− h), (1.1)

where h = l/v. The solution of this DDE for some choices of the parameters is
given in Figure 1.1.

For obvious reasons, you do not want the water temperature to behave like
the temperature of the shower in Figure 1.1b. This unstable behavior is unwanted
in most applications, which is why we will discuss stability conditions for DDEs
in Chapter 3. In fact, the DDE (1.1) is stable if and only if

hα =
lα

v
<
π

2
.

This is a special case of a well known formula (3.30) given in Chapter 3. It is
clear from the exact condition that (as expected) long shower hoses (large l), low
water pressure (small v) and sensitive human beings (large α) are the reasons
why there are unstable showers.
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Figure 1.1: The solution of the hot shower problem

To analyze the stability of (linear homogeneous) ODEs we typically look
for solutions with the ansatz x(t) = x0e

st. For the DDE (1.1) this yields the
characteristic equation

0 = −s− αe−sh. (1.2)

If all solutions of (1.2), i.e., eigenvalues of (1.1), lie in the complex open left half
plane, then the system is stable, cf. Figure 1.2.

Similar to ODEs, the solutions of the characteristic equation of a DDE can be
used to analyze the stability. Several other properties can also be characterized
with the solutions of the characteristic equation, which is why we discuss ways
to numerically compute some solutions of the characteristic equation, also called
the eigenvalues of the DDE, for large-scale DDEs in Chapter 2.

Not even the scalar problem (1.2) can be solved explicitly using the normal el-
ementary functions. However, if we use the logarithmic type function Wk defined
as the inverse of z 7→ zez, z ∈ C we can express the solution of (1.2) explicitly,

s =
1
h
Wk(−hα).

Here k ∈ Z is the branch index. This function (which is not so widely known) is
called Lambert W in the literature. Even though it is not an element of the set of
elementary functions, it is available in mathematical software and useful in some
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Figure 1.2: The spectrum of the DDE (1.1)

applications. This function, with a corresponding formula for the eigenvalues of
some DDEs, is discussed further in Section 2.2.1.

Most aspects of the stability for scalar single delay DDEs, e.g. the hot shower
problem, are nowadays considered solved. The situation is different for DDEs
of larger dimension. We consider numerical methods for the eigenvalues of large
DDEs (with mostly one delay) in Chapter 2. A parameterization of the delays
such that there is a purely imaginary eigenvalue, which is valuable information
in a stability analysis, is given in Chapter 3, with some new results for scalar
problems with multiple delays, as well as computational methods for larger DDEs.

Standard references for DDEs

The book of Bellman and Cooke [BC63] is still commonly cited in literature
related to stability and solutions of DDEs. Fundamental results, such as existence
and uniqueness, much in the terminology of functional differential equations are
treated in [HV93] as well as [DvGVW95]. More recently, [BZ03] seems to be the
first monograph related the numerical solution of DDEs. The large amount of
literature on stability of DDEs is surveyed in [Nic01a] and [GKC03].

The two monographs [Zho06] and [BL02] treat several topics important in
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control theory (and elsewhere), such as implementation, stabilizing feedback,
H∞-control, and (of course) robust stability.

Finally, even though it does not belong to the standard references (at least not
yet), the recent book by Michiels and Niculescu [MN07b] is a modern overview
of many results related to stability. This includes more recent topics, e.g. pseu-
dospectra (for DDEs) and stabilization techniques.

Topics of this thesis

The main problems of this thesis are exact conditions for delay-dependent sta-
bility (Chapter 3) and numerical methods to compute the spectrum of the DDE
(Chapter 2). We also make some notes on perturbation results for the nonlinear
eigenvalue problem (Chapter 4).

We first, in Chapter 2, consider the problem of numerically computing the
eigenvalues of a DDE, i.e., finding solutions of the characteristic equation, here
referred to as the delay eigenvalue problem(

−sI +A0 +A1e
−τs
)
v = 0, v 6= 0, (1.3)

mostly for DDEs with a single delay. As indicated in Example 1.1, the charac-
teristic equation is (informally) motivated as the result of the insertion of the
ansatz solution x(t) = x0e

st. See [DvGVW95, Chapter I] for a formal derivation.
Because of the nonlinear term in (1.3), the delay eigenvalue problem belongs to
a class of problems referred to as nonlinear eigenvalue problems. An important
contribution of Chapter 2 is the application of a projection method for non-
linear eigenvalue problems, to the author’s knowledge, previously not applied
on the delay eigenvalue problem. It turns out that this method is superior to
other methods to compute the spectrum of DDEs for the presented examples. In
particular, we compare it with methods in the literature, and used in software
packages. This includes methods based on discretizations of the solution opera-
tor and discretizations of the equivalent boundary value problem formulation of
the DDE, i.e., the infinitesimal generator. We discuss discretizations based on,
but not limited to, linear multi-step, Runge-Kutta and spectral collocation. We
also propose some new interpretations of the discretization schemes as rational
approximations of the exponential function or the logarithm.

In some cases the spectrum can be expressed explicitly with the function
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Lambert W. This formula is valid for scalar DDEs and single-delay DDEs for
which the matrices are simultaneously triangularizable. The treated formula is
expressed using a matrix version of the Lambert W function. Some works in the
literature state this formula in incorrect generality. We state some conditions
on the system matrices such that the formula holds. If the system matrices are
simultaneously triangularizable the formula holds. We show by counter-example
that it does not hold in general.

Chapter 3 deals with exact stability conditions of the DDE. We find exact
conditions on the delays such that the DDE has a purely imaginary eigenvalue.
All those combinations of the delays such that there is a purely imaginary eigen-
value (called critical delays) are parameterized. That is, we construct a mapping
consisting of computable expressions, from a simple mathematical object (here
([−π, π]m−1,Zm)) onto the set of all subsets of the critical delays. For DDEs of
arbitrary dimension we give a mapping containing an eigenvalue problem. For
the scalar case, we find an explicit expression containing only trigonometric func-
tions. For non-scalar problems, an evaluation of the map consists of solving a
quadratic eigenvalue problem of squared dimension. The constructed eigenvalue
problem is large, even for DDEs of moderate size. For that reason, we present
some notes on how the computational cost for one evaluation of the map can be
reduced. In particular, we show that the matrix-vector product corresponding to
the companion linearization of the quadratic eigenvalue problem can be evaluated
by solving a Lyapunov equation. Most of the results in the chapter on critical
delays are derived for retarded DDEs as well as neutral DDEs with an arbitrary
number of delays. We also propose a new interpretation of a class of methods for
delay-dependent stability, known as matrix pencil methods. The new interpreta-
tion is based on a similarity with two-parameter eigenvalue problems. We show
that the polynomial eigenvalue problems in the matrix pencil methods are the
generalized eigenvalue forms of a generalization of the two-parameter eigenvalue
problem.

The last chapter, i.e., Chapter 4, is about perturbation results for nonlinear
eigenvalue problems. We present some notes on results in eigenvalue perturbation
theory which can be generalized to nonlinear eigenvalue problems. A sensitivity
formula for the movement of the eigenvalues extends nicely to nonlinear eigen-
value problems. We introduce a fixed point form for the nonlinear eigenvalue
problem, and show that some methods in the literature can be interpreted as set-
valued fixed point iterations. The convergence order of these types of iterations
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can be determined from an expression containing the left and right eigenvectors.
We identify that the nonlinear eigenvalue problem belongs to the class of set-
valued fixed point problems in fixed point theory. By using some results available
in this field we generalize parts of an important theorem in perturbation theory
referred to as the Bauer-Fike theorem.



Chapter 2

Computing the spectrum

2.1 Introduction

In this chapter, we consider linear delay-differential equations with a single delay,
defined by

Σ =

{
ẋ(t) = A0x(t) +A1x(t− τ), t ≥ 0

x(t) = ϕ(t), t ∈ [−τ, 0],
(2.1)

where A0, A1 ∈ Rn×n, τ > 0 and an initial condition ϕ, typically assumed to be
continuous and bounded.

In the analysis of ordinary differential equations (ODEs) and initial value
problems (IVPs), the characteristic equation and the eigenvalues are often used
to establish properties of the problem without actually solving it. Similarly,
many properties of the DDE (2.1) can be expressed with, or determined from,
the characteristic equation and the eigenvalues of the DDE without solving it.
The topic of this chapter is numerical methods for the spectrum of the DDE
which, in our context, is defined as the solution set of the characteristic equation
in the following way.

Definition 2.1 For the DDE (2.1) we call:

i) the equation
det
(
−sI +A0 +A1e

−sτ
)

= 0, (2.2)

9
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the characteristic equation of (2.1);

ii) a solution s ∈ C to the characteristic equation (2.2) an eigenvalue;

iii) the set of all solutions of (2.2) the spectrum of the DDE (2.1) and denote
it by

σ(Σ) :=
{
s ∈ C : det

(
−sI +A0 +A1e

−τs
)

= 0
}

;

iv) a vector v ∈ Cn\{0} corresponding to the eigenvalue s ∈ σ(Σ), an eigen-
vector corresponding to s iff(

−sI +A0 +A1e
−τs
)
v = 0,

and the pair (s, v) is called an eigenpair.

Moreover, the term delay eigenvalue problem (DEP), will be used to refer to the
problem of finding eigenpairs of a DDE.

This is a true generalization of the eigenvalues and the characteristic equation
of a matrix since if τ = 0 or A1 = 0 then the DDE reduces to an ODE and
(2.2) coincides with the characteristic equation of a matrix. Unlike the delay-
free case, the characteristic equation generally contains an exponential term.
This exponential term (and more generally the characteristic equation) is, in
the literature, commonly motivated by looking for non-trivial solutions using the
exponential ansatz x(t) = estv. If we insert the exponential ansatz into (2.1) we
arrive at the characteristic equation. See e.g. [HV93] or [MN07b] for more formal
settings.

Note that, the use of the term spectrum in Definition 2.1 is consistent with
the common use of the term. The spectrum is normally a property of an operator
or a matrix. The terminology of eigenvalues and spectrum of a DDE is indeed
consistent, since the DDE (2.1) can be stated as a linear operator acting on a
Banach space which spectrum is a point-spectrum [HV93]. That is, the continu-
ous part and the residual part of the spectrum of the operator are empty, which
implies that the spectrum consists only of the set of eigenvalues of the operator,
i.e., consistent with Definition 2.1.

Also note that the spectrum is independent of the initial condition ϕ. Even
though the spectrum can be used in many different settings, it is particularly
often used to analyze properties which are independent of the initial condition.
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For instance, we saw in the illustrative example in the previous chapter (Exam-
ple 1.1) that the spectrum can be used to analyze stability, which is a property
independent of the initial condition.

For presentational reasons, it turns out to be advantageous to separate com-
putational and numerical methods related to the spectrum into two contexts:

• Approaches developed specifically for DDEs (Section 2.2)

Even if we assume that the system is scalar, i.e., n = 1, the characteris-
tic equation can not be solved for s using the standard exponential and
trigonometric functions. There are however approaches exploiting proper-
ties of the DDE or the characteristic equation such that the problem can
be accurately approximated or solved exactly for special cases.

Two important concepts in this context are the two operators, the solution
operator and the infinitesimal generator. There are methods specifically
developed for the eigenvalues of DDEs derived from approximations of the
DDE. Most methods are the result of approximations of these operators in
ways which make the characteristic equation easier to solve.

• Approaches stated in the more general context of nonlinear eigenvalue prob-
lems (Section 2.3)

The problem of finding the eigenpairs of a DDE belongs to the class prob-
lems often called nonlinear eigenvalue problems. Here, a nonlinear eigen-
value problem is the problem of finding s ∈ C and v ∈ Cn\{0} such that,

T (s)v = 0, (2.3)

for some parameter dependent matrix T : C → Cn×n. The nonlinear eigen-
value problem is a very general class of problems, and there are no general
methods which guarantee global convergence (to all solutions). There are
however a number of methods with good local convergence properties. See
[MV04] and [Ruh73] for overviews of numerical methods for nonlinear eigen-
value problems. The situation is somewhat better for some special cases,
e.g. when the eigenvalues are real and T (s) is Hermitian. In particular,
adapted projection methods have indeed been successfully applied to some
nonlinear eigenvalue problems where T is rational and (2.3) has a (so-called)
min-max characterization. See [VW82], [Wer72] and [Vos03].
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We present new results in both context. In particular, this chapter contains
the following main contributions:

• A clarification of the generality of an explicit formula containing the Lam-
bert W function (Section 2.2.1).

The spectrum of scalar single delay DDEs can be expressed explicitly using
the inverse of the function zez, referred to as the Lambert W function.
One contribution of this chapter is the clarification of the range of applica-
bility of this formula for the delay-eigenvalue problem. The expression is
formed by defining a matrix version of Lambert W . The most general suf-
ficient condition for which the formula holds is found to be simultaneously
triangularizability of A0 and A1.

• A unified interpretation for the methods based on discretization of the so-
lution operator and the infinitesimal generator in terms of rational approx-
imation (Section 2.2.2 and Section 2.2.3).

We propose some new interpretations of current methods for the delay
eigenvalue problem. In particular, we point out that several methods in the
literature correspond to rational approximations or interpolations. This
holds for instance for the methods based on solution operator discretiza-
tions (SOD). We point out that the SOD-method in the software package
DDE-BIFTOOL is a companion linearization of a high-order rational eigen-
value problem. It turns out that this rational eigenvalue problem is a Padé
approximation of the logarithm. We also discuss the methods based on
discretizations of the PDE-formulation of the DDE, which appears to be
superior for the numerical examples.

• An application of a projection method to a delay eigenvalue problem (Sec-
tion 2.3).

The direct application of projection methods to the delay eigenvalue prob-
lems seems to be new. For this reason, it is worthwhile to clarify how
projection methods can be adapted for this problem (Section 2.3.2). We
adapt a subspace acceleration of the vector iteration, residual inverse it-
eration (RII) suggested by Neumaier in [Neu85]. This is an Arnoldi-type
projection method and has been used by Voss in [Vos04a] for several other
nonlinear eigenvalue problems, e.g., rational eigenvalue problems. In this
projection method a small projected nonlinear eigenvalue problem must be
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solved in each expansion step. The solution to the projected problem is
used in the expansion, which is inspired by one step of the residual inverse
iteration. We adapt it and apply it to a delay eigenvalue problem.

• Numerical results for two examples indicating that the projection method is
advantageous for large sparse problems (Section 2.4).

The methods are applied to two examples in Section 2.4. In the first exam-
ple with tridiagonal matrices of dimension n = 106, the projection method
finds 12 real eigenvalues in a couple of minutes, whereas the software pack-
age DDE-BIFTOOL and other proposed methods breaks down (runs out of
memory) for n = 103. The projection method can solve the second example
with random (sparse) matrices for n = 104. This is also considerably better
than the other tested methods.

Note that, to the author’s knowledge, delay eigenvalue problems of the size
considered here have previously not been solved. This is indicated by the differ-
ence in meaning of the term large-scale in the context of DDEs and nonlinear
eigenvalue problems. For instance, adapted SOD-methods for delay eigenvalue
problems of order 131 (which are called large-scale) are constructed in [VGR04,
Section III.B], whereas the nonlinear eigenvalue problems (stemming from mod-
eling of a quantum dot) solved in [Vos06a] are of dimension 107 (12 million).
The comparison is not entirely fair as the problem in [VGR04] is a bifurcation
problem, and hence several eigenvalue problems of this size must be solved. It
however still indicates that problems of large scale (in the meaning in [Vos04a])
have not been extensively treated in the literature on DDEs.
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2.2 Methods for DDEs

If the DDE is scalar or the matrices A0 and A1 are simultaneously triangular-
izable, then σ(Σ) can be expressed in an explicit way. This is shown in Sec-
tion 2.2.1. Apart from this special case, the eigenvalues and eigenvectors, i.e.,
s ∈ C, v ∈ Cn\{0} such that

(−sI +A0 +A1e
−τs)v = 0 (2.4)

can in general not be computed or expressed exactly with elementary or simple
operations. In order to numerically solve (2.4), it is natural to consider some
form of approximation. The type of approaches we will address next, are based
on approximations of (2.4) with an equation which is easier to solve.

Note that the presentation we use here is somewhat different from the typical
presentation of similar results in the literature. A lot of literature discuss different
types of approximations of the DDE (2.1), whereas the approach we take directly
involves aproximations of the characteristic equation (2.2). This allows us to
interpet the approximations in a more unified manner.

The problem of determining s ∈ C and v ∈ Cn\{0} such that,
m∑

k=0

Bks
kv = 0, (2.5)

for B0, . . . , Bm ∈ Cn×n is called a polynomial eigenvalue problem. The poly-
nomial eigenvalue problem can be solved for problems of moderate dimension
and order using standard techniques, e.g., companion linearization. Compan-
ion linearization is extensively used in this thesis and is further discussed in
Appendix A.1. In this section we will show that several methods for the de-
lay eigenvalue problem (2.4) are polynomial or rational approximations, such
that the resulting approximation is a polynomial eigenvalue problem (2.5). Ob-
viously, if we approximate e−τs with a rational function, we can rewrite the
resulting approximation (which is a rational eigenvalue problem) into a polyno-
mial eigenvalue problem (2.5) by multiplying both sides with the denominator.
We illustrate this idea with a very crude approximation. We know from the def-
inition of the exponential function that e−τs = limN→∞(1 + τs/N)−N . Clearly,
e−τs ≈ SN (s) := (1 + τs/N)−N should be an accurate rational approximation
for sufficiently large N . Replace e−τs in (2.4) with this approximation and mul-
tiply by (1+τs/N)N . The resulting equation is a polynomial eigenvalue problem
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of the type (2.5) with m = N + 1. It turns out that this very crude approxi-
mation is equivalent to the approximation presented in [BM00], which belongs
to a class of methods normally motivated through the semi-discretization of the
PDE-formulation of the DDE. This branch of methods will be referred to as
IGD (infinitesimal generator discretization). We introduce IGD-methods in Sec-
tion 2.2.3.

There are two main branches of methods for the delay eigenvalue problem.
As mentioned, the methods of one branch are based on the discretization of
the infinitesimal generator. The other main branch of methods are motivated
by a discretization of the so-called solution operator. The methods based on
solution-operator discretizations will be referred to as SOD-methods. Several
SOD-methods can also be interpreted as rational approximations. We motivated
above that some IGD based methods could be interpreted as rational approxima-
tions of the exponential term. We will show that some SOD based methods can
be interpreted as the approximation of the logarithm in a transformed charac-
teristic equation. In the literature, SOD-methods are derived from a discretiza-
tion of the solution operator. In particular we will show that the subclass of
SOD based methods used in the software package DDE-BIFTOOL[ELR02] are
in fact different Padé approximations of ln(µ) where µ is a substitution variable
µ = e−hs.

It is not surprising that there are two branches of methods for approximations
of the spectrum of DDEs. A DDE is indeed a mixture of a difference equation and
a differential equation, and the two approaches correspond to the approximation
of the differential-term by a difference (Section 2.2.2) and the difference term by
a differential expression (Section 2.2.3).

There are other numerical methods to find eigenvalues of DDEs. For instance,
the method quasi-polynomial mapping based rootfinder (QPMR) [VZ06, Vyh03]
is designed for the delay eigenvalue problems. The general idea of QPMR is to
separate real and imaginary parts of the characteristic equation det(T (s)) = 0,
and to determine the intersection of the two level-set curves. The method uses the
coefficients in the characteristic equation. It is well known that the eigenvalues
may be very sensitive with respect to perturbations in the coefficients, which
may cause serious computational difficulties, as any numerical method will round
any intermediate result. This indicates that QPMR may exhibit numerically
unstability for many problems. Even though this method is sufficiently accurate
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to study the general behaviour of eigenvalues for DDEs for many interesting
cases, we will not include it in the comparisons done here, as we wish to study
eigenvalue problems of large dimension where numerical stability is particularly
important.

2.2.1 Scalar or simultaneously triangularizable DDEs: Lam-

bert W

The Lambert W function, denoted Wk(z), is the logarithmic type function de-
fined as the multivalued inverse of the complex function f(w) = wew. Here k
denotes one of (countably) infinite number of branches.

The Lambert W has been used in a variety of applications (see [CCH+96])
to find explicit formulas for nonlinear equations which were previously mostly
solved numerically. In many modern mathematical software packages such as
Matlab1, Maple and Mathematica2, Lambert W is easily available. Because of
its availability in software and the fair amount of applications, some argue that
this function should be added to the set of elementary mathematical functions
[Hay05]. Throughout this work we will make use of this function as it allows a
compact notation.

For the scalar single-delay DDEs

ẋ(t) = ax(t) + bx(t− τ), a, b ∈ R

the spectrum can be expressed explicitly using Lambert W , by the well known
formula

σ(Σ) =
⋃
k∈Z

(
1
τ
Wk(τbe−aτ ) + a

)
, (2.6)

where Wk is branch k of Lambert W . In this section we investigate one way to
generalize formula (2.6) to some multidimensional time-delay system{

ẋ(t) = Ax(t) +Bx(t− τ), t ≥ 0

x(t) = ϕ(t), t ∈ [−τ, 0],
(2.7)

1The current standard implementation of Lambert W in Matlab is based on the symbolic

toolbox. There is an alternative implementation based on Halley’s iteration by Pascal Getreuer

without this dependence.
2Lambert W is called ProductLog in Mathematica
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by defining a matrix-version of Lambert W . Note that, we have, for notational
purposes, denoted the system matrices A and B, but still denote the set of
eigenvalues with σ(Σ) := {s ∈ C : s ∈ σ(A+Be−τs)}.

In [AU03] and the derivative works [YU06] and [YUN06] such a generaliza-
tion for multidimensional systems was attempted. Unfortunately, the result in
[AU03] does not hold in the stated generality. We here give sufficient condi-
tions on the system matrices for the formula in [AU03] to hold. As the weakest
sufficient condition, we obtain simultaneous triangularizability of the matrices
A and B. Similar observations have been made recently in [SM06], where ba-
sically the same spectral results are obtained without explicit use of a matrix
version of the Lambert W function. Here we establish these results for the rep-
resentation in [AU03]. Moreover, we present an explicit counterexample, which
proves that in general, the formula may be wrong. This is important, since some
of the results of [AU03] have been cited in articles in a wide variety if fields,
e.g. in [HC05], [WC05], [HS05], [CM02b], [CM02a], [KN05], [Bam07], [HC06],
[Pit05],[WD07],[LJH06], [GCS08] and [ACS05]. Even if most of the conclusions
drawn in these papers still seem to be valid, since mainly the scalar case is con-
sidered, it is worthwhile to clarify the range of applicability of the formula.

Large parts of these results were published in a joint work with Tobias Damm
in [JD07]. Independent and similar observations regarding the accuracy of [AU03]
were published in the discussion article [Zaf07] together with a relevant applica-
tion to a problem from machine tool chatter.

The Lambert W function

For scalar arguments z, the Lambert W function is defined as the (multivalued)
inverse of the function z 7→ zez. It has a countably infinite number of branches

Wk(z) ∈ {w ∈ C : z = wew} , k ∈ Z ,

which can be defined by the branch-cuts in [JHC96] and [CCH+96]. Note that
unlike some fundamental functions, say the complex-valued logarithm, numbering
of the branches is not obvious and not periodic (as is the case for the logarithm).
Each of the branches is locally analytic in all points but z = −1/e. Hence, we
may define a matrix-version of the Lambert W function in a standardized way,
given e.g. in [HJ91] or [Hig06]. We first define Lambert W for matrices in Jordan
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canonical form, i.e.,

J = diag(Jn1(λ1), Jn2(λ2), . . . , Jns(λs)) ,

where Jn(λ) is the n-by-n Jordan block belonging to eigenvalue λ with multiplic-
ity n. Then

Wk(J) = diag(Wk1(Jn1(λ1)), . . . ,Wks
(Jns

(λs))) .

Note that we are allowed to pick a different branch for each Jordan block. If J
has s Jordan blocks and the index set for the branches of the scalar Lambert W
function is Z, then the index set for the branches of Wk(J) is Zs. For Jordan
blocks of dimension 1, i.e., single eigenvalues, we can use the scalar Lambert W
function. For all other cases, we define the Lambert W function (for a fixed
branch) of a Jordan block by the standard definition of matrix functions (e.g.
see [HJ91, Eq. (6.18)]), i.e.,

Wk(Jn(λ)) =


Wk(λ) W ′

k(λ) · · · 1
(n−1)!W

(n−1)
k (λ)

0 Wk(λ)
...

. . . . . .
...

0 · · · 0 Wk(λ)

 .

We complete the definition of Lambert W for matrices, by noting that all
matrices can be brought to Jordan canonical form by a similarity transformation
A = SJS−1. Thus we may set Wk(A) = SWk(J)S−1, where for the principal
branch k = 0 we from now on tacitly assume that −e−1 is not an eigenvalue
corresponding to a Jordan-block of dimension larger than 1, i.e.,

rank(A+ e−1I) = rank(A+ e−1I)2 . (2.8)

Remark 2.2 The limitation (2.8) lessens the elegance of the matrix Lambert W
function slightly. This point was brought to our knowledge by Robert Corless.

Example 2.3 We illustrate the definition of the Lambert W function for a 2×2-
Jordan block.

Let J =

[
z 1
0 z

]
, then Wk(J) =

[
Wk(z) W ′

k(z)
0 Wk(z)

]
. We verify that indeed
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J = Wk(J)eWk(J). To this end we note that by differentiating the equation z =
Wk(z)eWk(z), we obtain 1 = W ′

k(z)eWk(z) +W ′
k(z)z. Thus we have

Wk(J)eWk(J) = eWk(z)

[
Wk(z) W ′

k(z)
0 Wk(z)

][
1 W ′

k(z)
0 1

]

=

[
z zW ′

k(z) + eWk(z)W ′
k(z)

0 z

]
= J .

Conditions for the Lambert W formula

With the help of the Lambert W function we can easily express the spectrum of
triangular systems.

Lemma 2.4 If A and B are both upper or both lower triangular matrices, then

σ(Σ) =
⋃
k

σ

(
1
τ
Wk(Bτe−Aτ ) +A

)
. (2.9)

Proof: We exploit the fact that the determinant of a triangular matrix is the
product of the diagonal elements. The characteristic equation is hence

0 = det
(
−sI +A+Be−sτ

)
=
∏
j

(−s+ ajj + bjje
−sτ ).

Clearly, −s + ajj + bjje
−sτ = 0 for some j, if and only if s is an eigenvalue. It

follows that
(s− ajj)τe(s−ajj)τ = bjjτe

−ajjτ ,

which, for any branch Wk results in

s = 1
τWk(bjjτe

−ajjτ ) + ajj .

The expression holds for all choices j, hence

s ∈ σ(Σ) =
⋃

k,j∈Z

1
τWk(bjjτe

−ajjτ ) + ajj =
⋃
k∈Z

σ
(

1
τWk(Bτe−Aτ ) +A

)
,

completing the proof. �

Lemma 2.4 can easily be extended to the case where A and B are simultane-
ously triangularizable in the following sense.



20 Chapter 2. Computing the spectrum

Definition 2.5 The matrix pair A, B ∈ Cn×n is called simultaneously triangu-
larizable if there is a regular S ∈ Cn×n and upper triangular matrices TA and
TB such that

A = S−1TAS and B = S−1TBS .

Assuming simultaneous triangularizability, we can introduce new variables ξ =
Sx, such that system (2.7) can be written as a cascade of inhomogeneous scalar
equations

ξ̇j(t) = αjξj(t) + βjξj(t− h) + γj(t) ,

where γj is a linear combination of the functions ξ1, . . . , ξj−1. The spectrum of
the whole system is the union of the spectra of these scalar equations. We thus
obtain the most general case for the formula to hold.

Theorem 2.6 If A and B are simultaneously triangularizable, then (2.9) holds.

Proof: The characteristic equation is invariant under simultaneous similarity
transformation i.e.,

det(−sI +A+Be−sτ ) = det(−sI + TA + TBe
−sτ ) .

Moreover, the exponentiation operator and Lambert W commute with similarity
transformation, i.e.,

W (S−1CS) = S−1W (C)S .

This implies that (2.9) is invariant under simultaneous similarity transformation
of A and B. Hence we can assume without loss of generality that A and B are
both upper triangular and apply Lemma 2.4. �

We mention some interesting special cases.

Corollary 2.7 If A and B commute, then (2.9) holds.

Proof: This follows from Theorem 2.6 and the fact that commutativity implies
simultaneous triangularizability (cf. [RR00]). �

This result for τ = 1 is also stated (without proof) in [CCH+96]. It implies
that (2.9) also holds in the pure delay case.

Corollary 2.8 If A = 0 then σ(Σ) =
⋃

k σ( 1
τWk(τB)) .
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Proof: The matrices B and 0 commute, which allows us to apply the previous
corollary. �

Finally we note two partial results related to the controllability of the matrices
as defined in [Son98].

Lemma 2.9 Assume that the pair (A,B) is not controllable, i.e. the matrix

[B,AB, . . . , An−1B]

has rank less than n, and σu(A) denotes the corresponding set of uncontrollable
eigenvalues of A. Then

σu(A) ⊂ σ(Σ) ∩
⋃
k

σ

(
1
τ
Wk(Bτe−Aτ ) +A

)
.

Proof: By the Kalman decomposition (e.g. [Son98, Lemma 3.3.3]) there exists a
nonsingular S so that

S−1AS =

[
A11 A12

0 A22

]
, S−1BS =

[
B11 B12

0 0

]
,

where σ(A22) = σu(A). We can assume A and B to be in this form. Hence
σ(A22) ⊂ σ(Σ). Now we consider σ( 1

τWk(Bτe−Aτ ) + A). Here Bτe−Aτ has the

form

[
X Y

0 0

]
, and W =

[
Wk(X) Y e−Wk(X)

0 0

]
satisfies WeW = Bτe−Aτ .

Thus σ(A22) ⊂ σ
(

1
τWk(Bτe−Aτ ) +A

)
for some branch of the Lambert W func-

tion. �

A counter-example

To demonstrate that formula (2.9) is not applicable to arbitrary DDEs, we pick
the following pair of matrices which are not simultaneously triangularizable and
not commuting:

A =

(
0 0
α 0

)
, B =

(
0 1
0 0

)
,

for some α ∈ R, α > 0. We now find an explicit expression for the eigenvalues.
The characteristic equation is given by

0 = det
(
−sI +A+Be−sτ

)
= s2 − αe−sτ . (2.10)
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Eigenvalues s are thus characterized by

α = s2esτ ⇐⇒ ±1
2
τ
√
α =

1
2
sτe

1
2 sτ . (2.11)

In particular, s0 = 2
τW0

(
± 1

2τ
√
α
)

is an eigenvalue, where W0 denotes the
principal branch of the Lambert W function. The example becomes explicitly
tractable, if we pick τ = 1, α = π2 and make use of the fact that W0(− 1

2π) = 1
2πi.

Hence we obtain s0 = πi.

By formula (2.9) we would have

σ(Σ) =
⋃
k

σ
(
Wk(Be−A) +A

)
, (2.12)

where again τ = 1. It is clear from Figure 2.1 that this expression is not consistent
with (2.11).
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Figure 2.1: Counter-example from Section 2.2.1 with τ = α = 1

To prove this strictly, we first find an s such that s ∈ σ(Σ), but not s ∈⋃
k σ
(
Wk(Be−A) +A

)
, and hence prove that σ(Σ) 6⊂

⋃
k σ
(
Wk(Be−A) +A

)
.

Secondly, we find an s such s ∈
⋃

k σ
(
Wk(Be−A) +A

)
but not s ∈ σ(Σ), and

prove that σ(Σ) 6⊃
⋃

k σ
(
Wk(Be−A) +A

)
.
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We note that Be−A =

(
−α 1
0 0

)
, and

Wk(Be−A) =

(
Wk(−α) − 1

αWk(−α)
0 0

)
.

By (2.12), eigenvalues would be characterized via

0 = s2 − sWk(−α) +Wk(−α) , (2.13)

or more explicitly,

s =
Wk(−α)±

√
Wk(−α)2 − 4Wk(−α)

2
. (2.14)

In particular, for α = π2 and some k ∈ Z, the eigenvalue s0 = πi would have to
satisfy (2.13). Thus

0 = (iπ)2 − (iπ)Wk(−π2) +Wk(−π2)

= Wk(−π2)(1− iπ)− π2 .

Hence we conclude Wk(−π2) = π2

1−iπ . This is not fulfilled for any branch k since

−π2 = π2

1−iπ e
π2

1−iπ ⇐⇒ iπ − 1 = e
π2

1−iπ .

Taking absolute values, we get
√
π2 + 1 = e

π2

1+π2 which contradicts π > e. Hence
σ(Σ) 6⊂

⋃
k σ
(
Wk(Be−A) +A

)
.

Note that, vice versa, we can also produce an explicit example, where σ(Σ) 6⊃⋃
k σ
(
Wk(Be−A) +A

)
. Let α = 1

2π. For the principal branch of W equation
(2.14) reduces to

s =
iπ ±

√
−π2 − 8πi
4

.

It remains to show that s does not always satisfy the characteristic equation
s2 = π

2 e
−s from (2.10). Setting a + bi = ±

√
−π2 − 8πi with a > 0 we find

ab = −4π, whence b < 0, and a2−b2 = −π2, whence b < −π. Moreover b > −2π,
since otherwise a2 = b2 − π2 ≥ 3π2 and a2b2 ≥ 12π4 > 16π2. Thus Re s > 0 and
0 > Im s > −π/4, which implies Im s2 < 0, Im e−s > 0, i.e. s2 6= π

2 e
−s.

Actually, the spectra are disjoint (Figure 2.1), which is consistent with Lemma
2.2.1 and the controllability of (A,B).
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One may ask, whether our counter-example hinges on the controllability of
(A,B). It is, in fact, an immediate consequence of the Kalman decomposition
that any non simultaneously triangularizable pair of 2×2 matrices is controllable.
We may, however, embed our example in a higher-dimensional uncontrollable
system G̃, setting

Ã =

(
A 0
0 1

)
, B̃ =

(
B 0
0 0

)
,

so that

det
(
−sI + Ã+ B̃e−s

)
= (1− s) det

(
−sI +A+Be−s

)
,

i.e., σ(Σ̃) = σ(Σ) ∪ {1}, and (for all branches Wk)

det
(
−sI +Wk(B̃e−Ã) + Ã

)
= (1− s) det

(
−sI +Wk(Be−A) +A

)
,

i.e., σ
(
Wk(B̃e−Ã) + Ã

)
= σ

(
Wk(Be−A) +A

)
∪ {1}. Our conclusions thus hold

for this system as well, where in accordance with Lemma 2.2.1 the uncontrollable
eigenvalue 1 is contained in σ(Σ̃) ∩ σ

(
Wk(B̃e−Ã) + Ã

)
.

2.2.2 Solution operator discretization (SOD)

There are two common ways to express a DDE in terms of operators. The
first representation treated next, is based on the solution operator (the second
approach is discussed in Section 2.2.3). The solution operator is the operator
transforming an initial condition ϕ onto the solution segment at a later time-
point specified by a parameter h, in the following sense.

Definition 2.10 (Solution operator) The solution operator of the DDE (2.1)
is the operator transforming an initial condition φ to the solution segment at time-
point h. We denote this operator by T (h) : C([−τ, 0],Rn) → C([−τ, 0],Rn). The
solution operator applied to φ, i.e., (T (h)φ)(θ) =: ψ(θ), is the solution segment
of (2.1) with initial condition ϕ = φ at time-point h. More precisely,

ψ(θ) := (T (h)φ)(θ) = x(h+ θ), θ ∈ [−τ, 0],

where x(t) is the solution of (2.1) with initial condition ϕ = φ.
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The solution operator is commonly used in many standard works, e.g., [HV93,
Chapter 2], [DvGVW95, Chapter I] and [MN07b]. In these and other works it is
common to denote the function segment of the solution to the left of time-point
h (with length τ) by xh. That is, xh is the function window with view x of width
τ at time-point h. Formally, xh(θ) := x(h+ θ) for h ≥ 0 and −τ ≤ θ ≤ 0. In this
terminology, the definition of the solution operator is T (h)ϕ = xh.

A number of discretizations of the solution operator have been used in the
literature. For instance, it is the basis for the eigenvalue computations in the
software package DDE-BIFTOOL [Eng00]. Note that in this context, the solution
operator is not (despite the name) used to numerically find a solution of the DDE,
but constructed in order to approximate the eigenvalues.

We start the discussion by reviewing the typical derivation performed in the
literature, i.e., by formulating a (linear) solution operator T (h), approximate
the operator with a difference scheme (normally an equidistant linear multistep
method) from which the eigenvalues of the DDE can be approximated by solving a
large eigenvalue problem. After outlining the derivations done in the literature,
we present an alternative motivation by noting that the discretization can be
equivalently interpreted as a Padé approximation of ln(µ) where µ = ehs, for the
step-size h. We believe that the alternative derivation is somewhat more natural
for the purpose of computing eigenvalues as it does not require the introduction
of the solution operator.

The literature in the field of delay-differential equations has a strong founda-
tion in functional analysis. It has clearly colored the results and terminology in
the field. This is clear from the presentation in (or just the titles of) two of the
standard references, the book by Diekmann, et al. [DvGVW95] and the book of
Hale and Verduyn Lunel [HV93] where delay-differential equations are treated as
functional differential equations. Since functional analysis is not a main topic of
this work, we wish to do a fairly self-contained presentation of current numerical
methods by only introducing the concepts from functional analysis necessary for
the derivation. The solution operator and the infinitesimal generator in the next
section (Section 2.2.3) are necessary concepts.

It turns out that the solution operator can be expressed in an explicit way if
we assume that h ≤ τ . In this case, one part of the operator T (t) is a shift, e.g.
large parts of xt and xt+∆ are equal for small ∆, cf. Figure 2.3. The other part
of the operator can be expressed by the differential part of (2.1). We have just
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provided a motivation for the explicit expression of the solution operator which
is a combination of a shift and an ordinary differential equation (ODE),

(T (h)ϕ)(θ) =

{
ψ(θ) = ϕ(θ + h) θ ≤ −h
Solution of ψ̇(θ) = A0ψ(θ) +A1ϕ(θ + h− τ) θ ≥ −h,

(2.15)

for h < τ . Note that A1ϕ(θ+ h− τ), i.e., the second term in the ODE-case, is a
previous time-point, which is known, and can be interpreted as an inhomogeneous
part of the ODE. The initial condition for the ODE in the second case is such that
T (t)ϕ is continuous, i.e., (T (h)ϕ)(−h) = ϕ(0), cf. Figure 2.2. This construction
is sometimes referred to the method of steps, and gives a natural way to integrate
a DDE by (numerically) solving the ODE-part in each step (but in this work we
focus on eigenvalues of DDEs and not the integration of DDEs).

We formalize this construction in a theorem.

Theorem 2.11 Consider the DDE (2.1) with the solution operator T (h) defined
by Definition 2.10. Suppose h ≤ τ , then for any ϕ ∈ C([−τ, 0]),

(T (h)ϕ)(θ) =

{
ψ(θ) = ϕ(θ + h) θ ∈ [−τ,−h]
Solution of ψ̇(θ) = A0ψ(θ) +A1ϕ(θ + h− τ) θ ∈ [−h, 0].

(2.16)

Proof: First, suppose θ ∈ [−τ,−h]. Then, the evaluation of ψ(θ) := x(h + θ) is
always the initial condition in the definition of the DDE (2.1) since h + θ ≤ 0.
Hence, x(h+ θ) = ϕ(h+ θ). This proves the first case in (2.16).

Now, suppose θ ∈ [−h, 0]. Since ψ(θ) := x(h + θ) and h + θ ≥ 0 we use the
first case in the definition of the DDE (2.1) to evaluate x(h+ θ), i.e.,

ψ̇(θ) = A0ψ(θ) +A1x(h+ θ − τ). (2.17)

Now note that since h ≤ τ , h+θ−τ is non-negative and the evaluation x(h+θ−τ)
is the second case (the initial condition) in the definition of the DDE (2.1), i.e.,
x(h + θ − τ) = ϕ(h + θ − τ). Also note that this case, i.e., the second case in
(2.16) is an inhomogeneous initial value problem where the initial value ψ(−h)
is taken from the first case. Existence and uniqueness of a solution ψ of (2.17)
for the interval θ ∈ [−h, 0] follows from the theorem of Picard-Lindelöf [Lin94].
The proof is completed by noting the fact that the left and the right hand side
in (2.16) are both uniquely defined. �
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The construction has an important role in theoretical analysis of DDEs. For
instance, the uniqueness of the forward solution of DDEs follows from the unique-
ness of solutions of ODEs and even if the initial condition is continuous but not
differentiable, the next interval is differentiable. More generally, the number of
existing derivatives increases with one per time-interval. This is referred to as
the smoothing property of (retarded) DDEs; cf. illustration in Figure 2.2a.

The operator is clearly linear, and the spectrum is related to the spectrum of
the DDE by the following spectral mapping principle given in e.g. [DvGVW95,
Appendix II, Theorem 4.17]. For any t > 0

σ(Σ) =
1
t

ln(σ(T (t))\{0}), (2.18)

where the logarithm is the set of all branches of the component application on
the elements of the set σ(T (t))\{0}. In the following example we illustrate the
equivalence by giving an explicit expression T (t) for the special case that t = τ .
Using the Lambert W , we can compute the eigenvalues of T (τ) and confirm that
the equivalence holds by comparing the resulting expression with the formula
derived in Section 2.2.1.

Example 2.12 Consider{
ẋ(t) = − 3

2x(t− τ) t ≥ 0

x(t) = ϕ0(t) t ∈ [−τ, 0]
(2.19)

As mentioned, we call the function segment of the solution x to the left of some
time-point t, xt. That is, xt(θ) = x(t+θ), θ ∈ [−τ, 0]. We now wish to construct
the operator T (t) which transforms the initial function condition into the function
segment at time point t, i.e., xt = T (t)ϕ0. It is clear, from (2.15) and Figure 2.2,
that for t = τ the operator is an integration and takes the particularly easy form
(T (τ)ϕ)(θ) = − 3

2

∫ θ

−τ
ϕ(t) dt+ϕ(0). The result of the application of the solution

operator to scalar DDEs with a0 = 0 and simple initial conditions can be computed
exactly, e.g., here the solution segments are polynomial with increasing order, for
instance if τ = 1,

(T (1)ϕ0)(θ) = −1
4
− 3

4
θ

(T (2)ϕ0)(θ) = (T (1)2ϕ0)(θ) = − 7
16

+
3
8
θ +

9
16
θ2

(T (3)ϕ0)(θ) = (T (1)3ϕ0)(θ) =
7
32

+
21
32
θ − 9

32
θ2 − 9

32
θ3.
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Figure 2.2: Graphical interpretation of Example 2.12 with initial condition ϕ0 =
0.5, τ = 1.

We now search for eigenvalues of the operator T (τ), i.e., µ ∈ C, and nontrivial
functions ϕ such that

µϕ = T (τ)ϕ.

Inserting the definition of T (2.15) for τ = h, yields

µϕ′(θ) = −3
2
ϕ(θ). (2.20)

Moreover, we have,
µϕ(−τ) = ϕ(0). (2.21)

From (2.20), the eigenfunctions are ϕ(θ) = αe−
3
2µ θ, where α is a normalization

constant. From the second condition (2.21) we have that ϕ(0) = α = µϕ(−τ) =
αµe3τ/2µ, i.e., µ = −3τ

2Wk(−3τ/2) with the corresponding eigenfunction ϕ(θ) =
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eWk(− 3τ
2 )θ, i.e., σ(T (τ)) = { −3τ

2Wk(−3τ/2)}. From the spectral mapping princi-
ple (2.18), the eigenvalues of the DDE are s = 1

τ ln(µ) = 1
τ ln( −3τ

2Wk(−3τ/2) ) =
1
τWk(− 3τ

2 ). This is consistent with the explicit expression from (2.6).

In the example above we expressed T (τ) in an exact way. We will now discuss
a way to approximate T (h) for typically a small h. This is a main idea in the
Matlab package DDE-BIFTOOL [Eng00]. First note that for small h, a large
part of T (h) is a shift, cf. Figure 2.3. To be precise, suppose h < τ , then from
(2.15) it holds that (T (h)ϕ)(θ) = ϕ(τ + θ) for all θ ∈ (−τ,−h]. The general goal
is to construct a discretization which preserves the shift property exactly, but
approximates the ODE-part in the “new“ segment (−h, 0). In DDE-BIFTOOL
this is done with a linear multistep (LMS) discretization.
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x

(a) x0 = ϕ0

−1 −0.5 0
−0.5

0

0.5

θ

x

(b) x0.1 = T (0.1)ϕ0
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(c) x0.2 = T (0.2)ϕ0
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(d) x0.3 = T (0.3)ϕ0

Figure 2.3: Large parts of T (h)ϕ0 is a shift if h is small. Here applied to Exam-
ple 2.12.

Suppose the interval [−τ, 0] is discretized into N nodes, i.e., step-length h =
τ/(N−1). The solution for the discretization of the solution operator T (h) can be
written as a shift for all elements but the last, which must be an approximation of
the DDE. Note that we pick the step-length h and evaluate the point of evaluation
of T equal, i.e., t = h.

In a first example we approximate the last segment with a finite difference.

Example 2.13 We show the typical way the discretization of the solution oper-
ator is motivated by treating a simple DDE with a simple discretization. Again,
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consider {
ẋ(t) = − 3

2x(t− 1) t ≥ 0

x(t) = ϕ(t) t ∈ [−1, 0].

We now discretize the interval θ ∈ [−τ, 0] with N equidistant nodes, where h =
τ/(N − 1), that is ϕ(θj) ≈ uj, where θj = (j − 1)h.

We will construct an approximation SN ∈ RN×N of T (h) by imposing the
shift property, and approximating the new interval with a difference scheme. In
the following we denote the element of a vector by using indices, i.e., element k
of the vector u is denoted by uk or (u)k. The shift consistency can be guaranteed
by choosing SN such that (SNu)k = uk+1 for all k = 1, . . . , N−1. We establish a
relation for the N th component by approximating the DDE. In this first example
we approximate the DDE with a forward difference, i.e., here

(SNu)N − (SNu)N−1

h
= −3

2
(SNu)1,

or (SNu)N = (SNu)N−1 − 3
2h(SNu)1. The shift and the finite differences define

the matrix SN , i.e.,

SN =


0 1

0 1
. . . . . .

0 1
− 3

2h 0 · · · 0 1

 .

Since the eigenvalues of SN approximate the eigenvalues of T (h), the eigenvalues
of the DDE are approximated by s = 1

h lnµ where µ is an eigenvalues of SN .
From the spectral mapping principle, (2.18),

exp (hσ(Σ)) = σ(T (h)).

Note that the complex inverse of the exponential is not unique. However, there
is a branch of the logarithm such that if z ∈ σ(T (h)) then

s =
1
h

ln(z)

implies that s ∈ σ(Σ). In practice, in particular for stability analysis, it is often
not necessary to determine the branch since the real part of all branches of the
logarithm are equal.
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The idea of the alternative derivation (based on the Padé approximation of
the logarithm) which we will address below, is that the matrix SN is a companion
matrix and the eigenvalues µ of SN are actually the roots of the polynomial 0 =
−µN + µN−1 − 3

2h.

In the example above we used a forward difference scheme to approximate
the ODE. A numerous number of other discretizations have been successfully
used. We will review some results for the linear multistep discretizations and
Runge-Kutta discretizations. We call these methods SOD(LMS) and SOD(RK)
respectively.

Linear multistep, described in any undergraduate text-book on numerical
methods for ODEs (e.g. [Lam91]), is a way to numerically solve the initial value
problem,

ψ(a) = η,

ψ′(θ) = f(θ, ψ).

Linear multistep is a method specified by the constants α0, . . . , αk and β0, . . . , βk

and an approximation given by the relation

k∑
j=0

αjψn+j = h

k∑
j=0

βjfn+j . (2.22)

Note that the second part of the solution operator (2.15) is an initial value prob-
lem as above, if we let

f(θ, ψ) = A0ψ +A1ϕ(θ + h− τ). (2.23)

We will apply the discretization of the solution operator to an equidistant set of
grid-points θj = jh, j = −N, . . . , 0, where h = τ

N . We denote an approximation
at point θj by ψj , i.e., ψ(θj) ≈ ψj . Analogously, ϕ(θj) ≈ ϕj . For notational
convenience we also let

fj = f(ψj , θj) = A0ψj +A1ϕj+1−N . (2.24)

We now show a way to give the discretization with step-size h of the solution
operator (2.15) T (h) by expressing the discretization of ψj , j = −N, . . . , 0 in
terms of ϕj , j = −N, . . . , 0.
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We have fixed the step-size h equal to the evaluation point of the solution
operator T (h). This makes the shift-part of the operator expressible as

ψj = ϕj+1, j = −N, . . .− 1.

This comes from the fact that only one discretization point θ0 lies in the ODE-
part of the solution operator.

It remains to express ψ0 in terms of the discretization ϕ. Here, this is carried
out with the LMS-scheme.

We let n = −k in the LMS-scheme (2.22) such that the rightmost point is θ0.
That is,

k∑
j=0

αjψj−k = h

k∑
j=0

βjfj−k. (2.25)

This equation can be solved for ψ0 in the following way. We now use the definition
of fj (2.24) and again use the shift property. The shift property can be applied
to ψ−k, . . . , ψ−1, yielding,

αkψ0 +
k−1∑
j=0

αjϕj−k+1 = hβkA0ψ0 +h

k−1∑
j=0

βjA0ϕj−k+1 +
k∑

j=0

βjA1ϕj−k−N+1

 .

(2.26)
Finally, we solve for ψ0 by rearranging the terms,

ψ0 = R−1

k−1∑
j=0

(−αjI + hβjA0)ϕj−k+1 +
k∑

j=0

hβjA1ϕj−k−N+1

 , (2.27)

where we let R = I − hβkA0 for notational convenience.

Note that the last sum contains terms which are outside of the interval of ϕ.
This method assumes that the shift property holds for these as well.

Similar to the example, we may now combine the shift operation and the
approximation of the differential part and get a matrix as an approximation of
the solution operator

ψ−N−k+1

ψ−N−k+2

...
ψ0

 =


0 I

0 I
. . . . . .
AT



ϕ−N−k+1

ϕ−N−k+2

...
ϕ0

 ,
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where the last row and the coefficients AT ∈ Rn×(n(N+k)) are given by (2.27).
More precisely,

AT = (AT
0 , 0n×n(N−k−1), A

T
1 ),

where 0j×k ∈ Rj×k is the zero matrix,

AT
0 = h(β0, . . . , βk)⊗ (R−1A1) ∈ Rn×n(k+1),

and

AT
1 = −(α0, . . . , αk−1)⊗R−1 + h(β0, . . . , βk−1)⊗ (R−1A1) ∈ Rn×nk.

Now consider the eigenvalue problem SNx = µx. This is a companion lin-
earization of a polynomial eigenvalue problem. Companion linearizations are
described in Section A.1. The matrix coefficients of the polynomial eigenvalue
problem are given by the matrices in AT . A simple form can be found by con-
sidering (2.26) directly. Note that ψp = µp+N+ku, p = −N − k, . . . , 0, if u is
the eigenvector of the polynomial eigenvalue problem. It now follows from (2.26)
and the definition of f (2.23) that the polynomial eigenvalue problem is

k∑
j=0

αjµ
j+Nu = h

k∑
j=0

βj

(
A0µ

j+N +A1µ
j
)
u. (2.28)

In the alternative derivation presented below we will use the order of the LMS-
method, which is defined as follows. In our context, it turns out to be advan-
tageous to define the order using the shift operator E, i.e., (Ef)(x) = f(x + h)
(and (Eαf)(x) = f(x+ αh)) and the differentiation operator D, i.e., Df = f ′.

Definition 2.14 The linear multistep method defined by the two characteristic
polynomials3 α(s) = α0 + · · ·+ αks

k, β(s) = β0 + · · ·+ βks
k is of order p if

α(E)z − β(E)hDz = Cp+1(hD)p+1z + Cp+2(hD)p+2z + · · · ,

for some constants Ci, i = p+ 1, p+ 2, . . ., and any function z ∈ C1[a, b].

3In the literature, these polynomials are often referred to as the first and second character-

istic polynomials and are denoted ρ(s) and σ(s).
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SOD(LMS) is a Padé approximation of the logarithm

The solution operator is a characterization of the solution of the DDE. We are in-
terested in the eigenvalues and not the solution of the DDE. Hence, the derivation
using the solution operator appears somewhat indirect. We now wish to search
alternative shorter derivations leading to (2.28) without using the solution opera-
tor. The value of this discussion that follows is the simplicity of the derivation and
that we point out that the resulting approximation is a polynomial eigenvalue
problem. Polynomial eigenvalue problems can be solved using other methods
than the companion linearization which was implied by the discretization mo-
tivation above. There are several methods for polynomial eigenvalue problems,
e.g. the different types of linearizations [MMMM06b] and Jacobi-Davidson for
polynomial eigenvalue problems [SBFvdV96] (see also Section 2.3.2).

It turns out that the linear multistep discretization of the solution operator
(SOD(LMS)) is equivalent to a Padé-approximation of the logarithm. The rela-
tion between ODE-methods and polynomial (and rational) interpolation is not
new (see e.g. [Lam91, Section 3.3]). It is however worthwhile to clarify the inter-
pretation in the current context, i.e., how LMS applied to the solution operator
can be interpreted as a rational approximation.

The substitution s = 1
h ln(µ) for h = 1/N into the characteristic equation

yields
1
h
µN lnµ ∈ σ(A0µ

N +A1). (2.29)

We are interested in µ ≈ 1, as this corresponds to s close to the origin. We
will now approximate the logarithm close to this point. For instance, consider
the first-order Taylor expansion lnµ ≈ µ− 1. This yields

1
h
µ̃N (µ̃− 1) ∈ σ(A0µ̃

N +A1),

which reduces to Example 2.12 for A0 = 0, A1 = −3/2.

Similarly, we may consider a rational approximation of lnµ, i.e.,

lnµ ≈ α(µ)
β(µ)

,

where α, β are polynomials (where we denote the polynomials α and β as they will
coincide with the polynomials in Definition 2.14). If we insert this approximation
in (2.29) we have derived (2.28).
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For instance, the (2, 2)-Padé approximation of ln(µ) in µ = 1 is

lnµ ≈ µ2 − 1
1
3µ

2 + 4
3µ+ 1

3

. (2.30)

See for instance [Hig01] for Padé approximations of ln(1 + x). The default LMS-
method in DDE-BIFTOOL 2.03 is Milne-Simpson. It is not a coincidence that the
characteristic polynomials for the LMS-method Milne-Simpson, given by α(s) =
s2 − 1 and β(s) = (s2 + 4s + 1)/3, are the numerator and denominator of the
approximation (2.30).

In fact, an LMS-method of order p with characteristic polynomials α, β is
a pth order Padé approximation α/β of the logarithm at µ = 1. We have the
following motivation. The shift-operator E and the differentiation operator D
are (formally) related by hD = ln(E) (see [Bic48] or [DB08, Chapter 3]).

Multiplying the order definition (Definition 2.14) by β(E)−1, yields

β(E)−1α(E)z − ln(E)z =

Cp+1β(E)−1(hD)p+1z + Cp+2β(E)−1 (hD)p+2

z
+ · · · . (2.31)

If α, β correspond to an LMS-method of order p, (2.31) holds for any function
z, in particular for z(x) = ex. Suppose µ = eh, we conclude that

α(µ)
β(µ)

− ln(µ) = O(hp+1) = O((1− µ)p+1),

which is the Padé approximation α/β of order p in point µ = 1.

LMS(RK) is a also a polynomial eigenproblem

The ODE-segment of the solution operator was approximated with a linear mul-
tistep discretization in SOD(LMS). General Runge-Kutta discretizations can also
be used. This approach is taken by D. Breda in [Bre06]. Without attempting a
complete characterization, we now wish to point out that the method in [Bre06]
also results in a polynomial eigenvalue problem.

Breda considers the class of s-stage Runge-Kutta schemes (A, b, c) where A ∈
Rs×s, bT = (as1, as2, · · · , ass) and 0 < c1, · · · < cs = 1. Unlike the LMS-method
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each interval [θj , θj+1] is also discretized. The discretization SN ∈ RnsN×nsN of
the solution operator is given by

SN =



0 I · · · 0 0

0 0
. . . 0 0

...
...

...
0 0 · · · 0 I

hR(hA0)(A⊗A1) 0 · · · 0 R(hA0)(1se
T
s ⊗ Im)


,

where
R(Z) = (I −A⊗ Z)−1 and 1s = (1, · · · , 1)T .

This is also the companion matrix of the polynomial eigenvalue problem of di-
mension ns× ns,

(hR(hA0)(A⊗A1) +R(hA0)(1se
T
s ⊗ Im)µN−1 − µNI)u = 0,

or (
h(A⊗A1) + (1se

T
s ⊗ Im)µN−1 − (I −A⊗ hA0)µN

)
u = 0. (2.32)

It is worthwhile to determine in what sense (2.32) is an approximation of (2.29).
Equation (2.32) can be derived from (2.29) by multiplying (with the Kronecker
product) from the left with A ∈ Rs×s and approximating

A ln(µ) ≈ I − 1se
T
s µ

−1. (2.33)

The approximation is of course only the formal relation between (2.29) and (2.32)
and the approximation error of (2.33) is (except for s = 1) large. It is somewhat
remarkable that this approximation yields a successful efficient method despite of
the fact that the approximation (2.33) appears crude. It is shown in [Bre06] that
the convergence order is p/ν, where p is the order of the Runge-Kutta scheme
and ν is the multiplicity of the eigenvalue. More precisely, [Bre06, Theorem 4]
essentially states that, if s∗ ∈ σ(Σ) is an eigenvalue with multiplicity ν then there
is a step-length h such that det(−sI + SN ) = 0 has ν roots, s1, . . . , sν for which

max
i=1,...,ν

|s∗ − si| = O(hp/ν).

Breda also addresses multiple delays by Lagrange interpolation and a Gauss-
Legendre quadrature formula for distributed delays. The order of the interpo-
lation and the quadrature formulas are chosen high enough to ensure that the
accuracy order of the combined method is dominated by the discretization and
not the interpolation and quadrature approximations.
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Chebyshev discretization of the solution operator

Finally, we will briefly discuss yet another method to discretize the solution
operator. This method is presented in series works of Butcher, Bueler, et al.
[BMB+04], [Bue04] and [Bue07] and implemented in the recent Matlab-package
ddec by the same authors, where the authors consider a generalization of DDEs,
DDEs with periodic coefficients. Independently, an equivalent method for DDEs
with constant coefficients was published and analyzed in the thesis of D. Breda
[Bre04, Section 3.3.3]. This was later extended to DDEs with periodic coefficients
and presented in the conference proceedings [BMV06a]. To the author’s knowl-
edge, the first work of Breda and that of Butcher, Bueler et al., were parallel
independent results.

It is illustrative to start by presenting a couple of lines of Matlab-code for our
purpose, i.e., the single delay DDE.

We construct the discretization by using routine cheb to compute the (so-
called) Chebyshev differentiation matrix from [Tre00]4. The following lines of
code (following the description of matrices in [Bue07]) compute some eigenvalues
of the single DDE of dimension n with N Chebyshev nodes.

DD=cheb(N-1)*2/tau;

DN=kron([DD(1:end-1,:);[zeros(1,N-1),1]],eye(n));

MA=kron([eye(N-1,N);zeros(1,N)],A0);

MB=[kron([eye(N-1,N)],A1);kron([1,zeros(1,N-1)],eye(n))];

(log(eig(MB,DN-MA))+k*2*pi*i)/tau

(2.34)

Note that we must choose the correct branch k of the logarithm in the last
step. This stems from the fact that the substitution µ = e−τs is not bijective, e.g.
e−τs = e−τ(s+2πi/τ). The rightmost eigenvalues are typically the principal branch
k = 0. Note that the real part of the eigenvalues are (fortunately) independent
of k. Hence, the choice of branch is not relevant in a stability analysis.

The setting in the works by Bueler, Butcher, et al. as well as [BMV06a] is
much more general than in the code stated above. The authors consider DDEs
with periodic coefficients (see [HV93, Chapter 8]). Constant coefficients (as we
consider in this work) are trivially periodic. In [Bue07] and [BMV06a] the method

4cheb.m is also available online:

http://www.comlab.ox.ac.uk/nick.trefethen/spectral.html
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is used to succesfully compute the stability chart of the delayed Mathieu equation

ẍ(t) + (δ + ε cos(t))x(t) = bx(t− 2π).

The stability chart of the delayed Mathieu equation is also the topic of [IS02],
where an Fourier expansion of the periodic solution to find the boundary curves
for a fixed ε. In [Bue07] the author presents an error analysis by constructing a
method to compute a posteriori error bounds of a Chebyshev spectral collocation
method using a generalization of the Bauer-Fike theorem to Hilbert spaces. As
expected, the convergence of this method is exponential. More precisely, [Bue07,
Theorem I] states that if s ∈ σ(Σ) and si are the approximations, then

min
i
|s− si| ≤ ω cond(Ṽ ),

where cond(Ṽ ) is the condition number of the approximation of the discretization
of the solution operator. Bueler observes exponential convergence decay in ω and
a slow increase in the condition number as the number of discretization points
N is increased. Exponential convergence is proven for several examples.

The terminology in the field of DDEs and particular periodic coefficient DDEs
is unfortunately ambiguous. This is particularly clear in the works we just men-
tioned. Note that the (Floquet) multipliers of the monodromy operator (in the
terminology of e.g. Bueler and [HV93, Chapter 8]) for DDEs with constant co-
efficients, are the eigenvalues µ of the solution operator, in the terminology we
mostly use.

Example 2.15 (Chebyshev discretization of the solution operator) We
now apply (2.34) to Example 2.12 for some number discretization points N . In
the table below one of the left-most eigenvalues is computed with the Chebyshev
discretization. The correct digits are marked with bold. The error is 1 · 10−15 ≈
10εmach, for N = 13. We give more comments on these results in Example 2.19.

N = 3 N = 5 N = 13 W0(−3/2) (exact)

−0.0323 + 1.6354i −0.0327 + 1.5493i −0.0328 + 1.5496i −0.0328 + 1.5496i

2.2.3 PDE discretization (IGD)

Every DDE can be rewritten as a partial differential equation (PDE) by intro-
ducing an additional dimension, containing the function segment xt to the left
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(in time) of the time-point t. This introduced memory-dimension θ takes the
position of the space-dimension in the PDE-formulation. The PDE-formulation
is extensively used in [HV93] and [DvGVW95].

Another set of methods to compute the eigenvalues are based on discretizing
the PDE. We will refer to this type approach as the infinitesimal generator dis-
cretization (IGD) as the operator associated with the PDE-formulation is in fact
the infinitesimal generator of the solution operator.

PDE formulation of a DDE

We now present the PDE-formulation and show how it is related to the infinites-
imal generator of (the semigroup corresponding to) the solution operator. The
single-delay DDE {

ẋ(t) = A0x(t) +A1x(t− τ) t ≥ 0

x(t) = ϕ(t) t ∈ [−τ, 0]
(2.35)

can be rewritten as the boundary value problem (BVP)

PDE: ∂u
∂θ = ∂u

∂t t ≥ 0, θ ∈ [−τ, 0],
BV: u′θ(t, 0) = A1u(t,−τ) +A0u(t, 0) t ≥ 0,
IC: u(0, θ) = ϕ(θ) θ ∈ [−τ, 0]

(2.36)

for the unknown u ∈ C([0,∞) × [−τ, 0],Rn). The PDE formulation of the DDE
is equivalent to the DDE in the following sense.

Theorem 2.16 (PDE-formulation) Let ϕ ∈ C([−τ, 0],Rn) be given. Suppose
x(t) is the solution to (2.35) and u(t, θ) a solution to (2.36), then

u(t, θ) = x(t+ θ), (2.37)

for θ ∈ [−τ, 0], t ≥ 0.

Proof: We show both directions by first using a solution x(t) of (2.35) to define
u using (2.37) and showing that u then fulfills (2.36). The converse is shown by
using a solution u(t, θ) of (2.36), defining x(t) by (2.37) and proving that x the
fulfills (2.35).
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Let x(t) be a solution to (2.35) and u(t, θ) := x(t+ θ). We now have that

∂u

∂θ
=
∂u

∂t

since x(t + θ) is symmetric with respect to t and θ. It remains to show that
the boundary condition holds. Note that u′θ(t, 0) = ẋ(t), and hence u′θ(t, 0) =
A0x(t) +A1x(t− τ) = A0u(t, 0) +A1u(t,−τ).

The converse is proven next. Suppose u(t, θ) is a solution to (2.36) and let
x(t) := u(t, 0) for t ≥ 0. From (2.36) it follows that ẋ(t) = u′t(t, 0) = u′θ(t, 0) =
A0u(t, 0) +A1u(t,−τ) = A0x(t) +A1x(t− τ). �

Figure 2.4: The boundary value problem for the DDE in Example 2.17. The
thick lines are initial conditions ϕ(θ) and solution x(t).

The boundary value problem (2.36) is a transport equation with intercon-
nected (nonlocal) boundary conditions. That is, the boundary conditions are
non-local in the sense that there is only one boundary condition, but it is ex-
pressed in terms of both sides, θ = −τ and θ = 0 and the derivative at θ = 0. The
same type of formulation carries over to multiple delays as well as distributed
delays. DDEs with distributed delays contain an integral term of x(t − τ) over
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a delay-interval. In case of multiple or distributed delays, the “boundary condi-
tions” do not only depend on the boundary, but on interior points as well. We
will restrict the discussion to single delays for simplicity.

Example 2.17 (PDE-formulation) Consider the DDE{
ẋ(t) = − 3

2x(t− 1) t ≥ 0

x(t) = ϕ(t) = 0.5 t ∈ [−1, 0].
(2.38)

The PDE-representation of this DDE is visualized in Figure 2.4. The boundaries
are the shifted solutions x(t), cf. Figure 2.2.

The PDE is a linear infinite-dimensional system with xt(·) as the state. Let
A correspond to the differentiation operator in θ-direction with the domain of
functions fulfilling the boundary conditions in (2.36) (sometimes referred to as
the splicing condition). That is

(Aϕ)(θ) :=
dϕ

dθ
(θ), (2.39)

for a function ϕ which fulfills ϕ′(0) = A1ϕ(−τ) + A0ϕ(0). The boundary value
problem (2.36) is hence,

d

dt
xt = Axt, (2.40)

which is sometimes referred to as an abstract Cauchy-problem. We have here de-
fined A as the infinite-dimensional operator corresponding to the BVP (2.36). In
the literature (e.g. in standard references such as the book by Hale and Verduyn
Lunel [HV93]), the definition is often presented using the solution operator T .
More precisely,

Aϕ := lim
t→0+

1
t
(T (t)ϕ− ϕ).

This is the definition of the infinitesimal generator for a C0-semigroup (or strongly
continuous semi-group) corresponding to T . The set of operators {T (t)}t≥0 is
indeed a C0-semigroup as the solution operator T fulfills T (0) = I, T (t + s) =
T (t)T (s) and for any ϕ, limt→0+ ‖T (t)ϕ − ϕ‖ → 0. Moreover, the infinitesimal
generator of T is indeed the differentiation operator in θ-direction (see e.g. [HV93,
Chapter 7,Lemma 1.2]).
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Discretizing the PDE

The eigenvalues of the operator A are the eigenvalues of the DDE (see e.g.
[HV93, Chapter 7, Lemma 2.1]). The idea is now to discretize A, i.e., the PDE,
in θ-direction (space) and compute the eigenvalues of the corresponding finite-
dimensional linear operator (matrix) AN . A number of discretizations of (2.40)
have been addressed in the literature, e.g. a forward difference5 [BM00], Runge-
Kutta discretizations [BMV04] (see also [Bre04]), linear multistep [Bre04] and
spectral differencing [BMV05b] and [BMV06b]. We will now derive some of the
methods, and give new interpretations of some of them.

The first (crude) approximation we can think of is to replace the differential
(2.39) by a finite difference, e.g. forward difference. This discretization was
used on (2.39) in [BM00] (see also [BZ03, Section 3.5]), but with the purpose to
construct a method to solve the DDE.

Let uN (t) ∈ Rn be the vector approximating xt in some discretization points,
i.e., u(t, θj) = (uN (t))j for the discretization points θj . If we approximate the
derivative in θ with a forward difference on a uniform grid, the abstract Cauchy-
problem (2.40) turns into a linear system of ODEs

u̇N (t) = ANuN (t), uN (0) = ϕN ,

where

AN =

(
DN ⊗ In

A1 0 · · · 0 A0

)
, (2.41)

and

DN =
1
h


−1 1

. . . . . .
−1 1

 ∈ RN×(N+1).

Note that the first block row of AN is size nN × (n(N + 1)) corresponding to
the differentiation, and the last block row (of size n × n(N + 1)) corresponds
to the boundary condition. We will refer to this method as IGD(Euler) as it
corresponds to the Euler method (for ODEs) applied to the PDE (2.36).

5The main results are based on forward difference discretization but the authors point out

that the same procedure can be performed for higher order methods.
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Example 2.18 (Forward discretization of the PDE, IGD(Euler)) We
again consider the scalar example, Example 2.17. We approximate the eigen-
values of A, i.e., the eigenvalues of the DDE by the eigenvalues of AN (2.41) for
some choices of N . The error of the approximation of the rightmost eigenvalue
for different N are shown below. The approximation is so crude that the error is
fairly large (2 · 10−3) even for N = 500. This method is clearly more computa-
tion demanding than Example 2.15 where N = 13 was sufficient to get (almost)
machine precision.

N = 10 N = 100 N = 500 W0(−3/2) (exact)

−0.1095 + 1.4923i −0.0410 + 1.5437i −0.0344 + 1.5485i −0.0328 + 1.5496i

We now wish to show how this method can be interpreted as a direct approx-
imation applied to the characteristic equation (2.2). As mentioned in the intro-
duction, it turns out that if we truncate the limit in the definition of the expo-
nential we get the approximation (2.41). That is, we replace e−τs = limN→∞(1+
τs/N)−N with e−τs ≈ SN (s) := (1 + τs/N)−N . We can derive (2.41) as follows.
Let h = τ/N . If we replace e−τs with (1+hs)−N and multiply the characteristic
equation (2.2) by (1 + hs)N we have

(A0(1 + hs)N +A1)v = s(1 + hs)Nv. (2.42)

We now define the vectors vk = (1 + hs)vk−1 recursively with v1 = v. Clearly
vN = (1 + hs)Nv. The constructed vector w = (vT

1 , . . . v
T
N )T is now an eigen-

vector of (2.41). The first block row is fulfilled from the recursive construction
of vk and the last row is (2.42). In the context of linearizations of polynomial
eigenvalue problems, (2.41) is a (somewhat unusual) linearization of (2.42). See
[MMMM06b] for a characterization of linearizations.

The forward difference is of course a very crude approximation and is in
practice (as we will see in the examples) not very useful. But the general idea
remains unchanged for other discretizations. That is, the same procedure can be
used for other PDE discretization methods as well, e.g. Runge-Kutta [BMV04]
and pseudospectral6 differencing techniques [BMV05b].

In principle DN in (2.41) can be replaced with any differentiation matrix. A

6Pseudospectral methods are not really related to pseudospectra. Pseudospectral methods

are spectral collocation methods (see [Tre00]).
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particularly popular and successful approximation is the Chebyshev differentia-
tion matrix.

We wish to stress the simplicity to implement this method (i.e., [BMV05b])
with modern software. We will, similar to the SOD-method (2.34) use Matlab and
the routine cheb to compute the Chebyshev differentiation matrix from [Tre00].
The method can be elegantly implemented in two lines of code:

D=-cheb(N-1)*2/tau;

eig([kron(D(1:N-1,:),eye(n));[A1,zeros(n,(N-2)*n), A0]]);
(2.43)

The first line determines the Chebyshev differentiation matrix for the interval
[−τ, 0]. We scale with −2/τ because cheb returns the differentiation matrix for
the interval [−1, 1] with descending ordering of the interpolation points. We
switch to ascending ordering by multiplying with −1, in order to blend with
(2.41). We will refer to the this class of methods as IGD(PS), pseudospectral
discretization of the infinitesimal generator.

The boundary conditions are imposed by ignoring the last row in the dif-
ferentiation matrix. There are other ways to impose the boundary conditions
which will not be necessary for our purposes, e.g. one may add columns to the
differentiation matrix, cf. [Tre00].

Note that the construction of the discretization of the solution operator in
(2.34) (Bueler et al. [Bue07]) does not seem to be equivalent to the construction
of Breda, i.e., (2.43). For the example below the computational effort for the two
Chebyshev methods are however very similar.

Example 2.19 (Chebyshev differentiation matrix IGD(PS)) We again
consider the scalar problem in Example 2.17, i.e., A0 = 0, A1 = −3/2, τ = 1.
The table below shows the approximation of one eigenvalue using the method with
the Chebyshev differentiation matrix described above, i.e., the two lines of code
(2.43). For N = 5 the error is 6 · 10−4 which is sufficient for many applications.
For N = 13 we have reached 10−15 which is 10εmach. Clearly, IGD(PS) is here
much more efficient than IGD(Euler) (Example 2.18) where we computed the
rightmost eigenvalues to an accuracy of 2 ·10−3 by computing the eigenvalues of a
matrix of dimension 500 whereas we here reached (essentially) machine-precision
from a matrix of dimension 13. It is interesting to note that the Chebyshev
discretization method in Example 2.15 we also needed exactly N = 13 to achieve
an accuracy of 10 times machine precision.
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N = 3 N = 5 N = 13 W0(−3/2) (exact)

−0.0702 + 1.4468i −0.0326 + 1.5502i −0.0328 + 1.5496i −0.0328 + 1.5496i

Other approximations of the exponential

We saw above that the discretization of the infinitesimal generator could be in-
terpreted as an approximation of the exponential function, at least for some
cases. In principle, one could take any method from rational (analytic) interpo-
lation or approximation to construct a method to approximate the eigenvalues
of a DDE. In the context of DDEs, rational approximations have been used to
approximate the exponential in a number of articles by Partington, Mäkilä and
Bonnet [Par91], [MP99a], [MP99b], [Par04c], [PB04], [PM05], and [BP07]. See
also the monograph [Par04a, Chapter 6]. Even though most of the results are not
directly methods for the spectrum of the DDE, many results carry over naturally
to our context. The results are mostly related to approximations of the transfer
function of a dynamical system with delay. We describe the general idea with the
example in [MP99b]. The authors approximate G(s) = e−hs/(Ts+ 1)5, where T
is a model parameter. The approximation is based on the Padé-approximation
with shift

e−hs ≈ un(s) :=
(1− hs/(2n) + h2s2/12n2)n

(1 + hs/(2n) + h2s2/12n2)n
. (2.44)

They present a bound of the error (inH∞-norm) which is verified with the numer-
ical example. The bound in [MP99b] is for functions of the form e−hsR(s) where
R is a rational function. An explicit bound for the exponential approximation is
given in [PM05]. It is shown that∣∣∣∣e−z − p(−z)

p(z)

∣∣∣∣ ≤ 1
270

|z|5, |z| ≤ 1,

where p(z) = 1+z/2+s2/12, such that p(−z)/p(z) is the approximation in (2.44)
for h = 1 and n = 1. Now the approximation error of un(z) = (p(−z/n)/p(z/n))n

is bounded by

|e−z − un(z)| ≤ 1
270

∣∣∣ z
n

∣∣∣5 n3−Re z, if |z/n| ≤ 1 and n > −Re z.

We have seen that time-delay systems can be treated as infinite dimensional sys-
tem. The rational approximation is hence a model order reduction from infinite
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order to the order of the rational function. Several rational approximation tech-
niques, including Fourier-Laguerre series, shift-based approximations, Malmquist
bases and wavelet-based techniques, in the context of model order reduction are
reviewed in [Par04c]. See also [Rei05] for some notes on a different model order
reduction approach, where the approximation is similar to that of Example 2.18,
i.e., here IGD(Euler). Note that several issues related to model reduction for
time-delay systems seem to be open problems [Par04b].

2.3 Methods for nonlinear eigenvalue problems

The problem of finding the values s ∈ C such that a parameter dependent matrix
T (s) is singular is sometimes called a nonlinear eigenvalue problem. Equivalently,
we search for s ∈ C and v ∈ Cn\{0} such that

T (s)v = 0. (2.45)

We call s an eigenvalue and v the right eigenvector (or sometimes just eigenvector)
of the nonlinear eigenvalue problem. The nonlinear eigenvalue problem (2.45) is
indeed a numerically and computationally challenging problem ([MV04]). It is
a generalization of the root-finding f(s) = 0 as well as the standard eigenvalue
problem sv = Av. Root-finding problems are typically solved with fixed point
iterations such as Newton-iteration, whereas the eigenvalue problem is typically
solved with variants of the QR-method, inverse iteration or projection methods
such as Arnoldi or Jacobi-Davidson. It is not surprising that all the methods
mentioned above have been used in the literature to derive methods for the
nonlinear eigenvalue problem (2.45).

In general, methods motivated by the corresponding root-finding method
(e.g. MSLP and Newton-iteration below) have good local convergence proper-
ties. That is, given a good starting guess, these methods typically converge in
a reliable way with reasonable computational cost. These types of methods are
discussed in Section 2.3.1.

Clearly, local convergence properties are not sufficient for many problems.
For instance, in a stability analysis, the rightmost eigenvalues of (2.45) should
be computed. In this context, missing an eigenvalue is not acceptable. An-
other typical problem is to find the eigenvalues closest to some target σt ∈ C.
For some nonlinear eigenvalue problems of small or moderate dimension, there
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are methods with good global convergence properties. For instance, polynomial
eigenvalue problems can be solved by linearization (see below), the delay eigen-
value problem can be solved by the methods in Section 2.2. The general idea
in the projection type methods, which we discuss in Section 2.3.2, is to inherit
the good global convergence properties of a small nonlinear eigenvalue problem
constructed from the projection of a large problem onto a search-space. We wish
to stress that methods of this type have proven extremely efficient and have been
used to solved previously unsolved problems, but typically unfortunately contain
heuristic ingredients which are not (yet) completely mathematically understood.

The case that T is a matrix polynomial7 (of degree m) is particularly in-
teresting, as it is possible to transform the problem to a generalized eigenvalue
problem (of dimension n(m − 1)) by so-called linearization, cf. [MMMM06b],
where the companion linearization is the most popular method. There are also
methods which exploit that T is a matrix polynomial without linearizing it, e.g.
the generalization of the Arnoldi method [BS05].

In this section we will not further discuss the matrix polynomial, but focus
on general methods without being exhaustive. See [Ruh73] and more recently
[MV04] for more complete lists of methods.

2.3.1 Scalar and vector valued fixed point methods

Kublanovskaya’s QR-method

The nonlinear eigenvalue problem is mathematically equivalent to finding the
roots of the characteristic equation, i.e.,

g(s) = det(T (s)) = 0.

A straightforward approach to this problem is to apply a root-finding method (say
Newton) to g. We know from the theory of eigenvalue problems that such meth-
ods are likely to have a very small domain of attraction and are likely to be very
sensitive to rounding errors and computationally demanding, at least for large
problems. Some of these problems can be circumvented by considering a slightly
different definition of the target function g containing the QR-decomposition of
T , i.e., the decomposition of T (s) into two (parameter dependent) matrices Q(s)
and R(s) where Q(s) is orthogonal and R(s) an upper triangular matrix.

7A matrix polynomial is sometimes called a lambda-matrix.
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Suppose Q(s)R(s) = T (s)P (s) is the QR-decomposition of T (s) where P (s)
is permutation matrix such that rnn(s) is the smallest element in magnitude of
the diagonal elements of R(s). Then,

g(s) = ±det(R(s)).

Clearly, g(s) = 0 if and only if rnn(s) = 0. The idea in the method of Kublanovskaya
[Kub70] is to apply Newton’s method to f(s) = rnn(s), i.e.,

sj+1 = sj − f(sj)/f ′(sj).

Kublanovskaya showed that the inverse of the correction quotient is given by

f ′(s)/f(s) = eT
nQ(s)HT ′(s)P (s)R(s)−1en,

which allows the possibility to efficiently compute the correction term. Unfortu-
nately, the eigenvalue paths of a parameter dependent matrix are continuous but
in general not differentiable. The elements of R are not in general differentiable.
Hence, Kublanovskaya’s Newton iteration does not have quadratic convergence
in general. This as well as ambiguities in Kublanovskayas derivation were pointed
out together with a corrected method in [JS83].

There are similar results for the LU-decomposition of T (s). This approach
is taken in [JSH83], yielding a method which also allows the computation of
eigenvalue sensitivities with hardly any extra computational effort.

Method of successive linear problems (MSLP)

Suppose s∗ ∈ C is a solution to the nonlinear eigenvalue problem (2.45). Then
the Taylor expansion of T around some point sk ∈ C evaluated at s∗ is

0 = T (s∗)v = T (sk)v + (s∗ − sk)T ′(sk)v +O(s∗ − sk)2.

If we neglect the higher order terms we (hopefully) get a better approximation
of s∗ ≈ sk+1 from the generalized eigenvalue problem,

sk+1T
′(sk)v(k) = (skT

′(sk)− T (sk))v(k). (2.46)

That is, the next iterate sk+1 can be computed from a generalized eigenvalue
problem (2.46) where the matrices depend on sk. This iteration is referred to
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as the method of successive linear problems (MSLP) [Ruh73]. While deriving
(2.46) we neglected the quadratic term, it is hence not surprising that the con-
vergence is locally quadratic to simple eigenvalues [Vos04b]. Convergence order
of such iterations is the topic of Chapter 4. In particular, we verify the quadratic
convergence of MSLP with Theorem 4.10.

Certainly, this is not the only way to construct a sequence of linear problems
which locally converges to the solution of the nonlinear eigenvalue problem. For
instance, consider the continuous eigenvalue paths λi(s) of T (s), i.e., ∪iλi(s) =
σ(T (s)). Clearly, λi(s∗) = 0 for some i as T (s∗) is singular. We can now apply
a root-finding method to λi. Suppose v(k), u(k) ∈ Cn are the right and left
eigenvectors corresponding to the eigenvalue λi(sk) of T (sk). Then the Newton
iteration applied to λi(s) is

sk+1 = sk −
λi(sk)
λ′i(sk)

= sk −
u(k)∗T (sk)v(k)

u(k)∗T ′(sk)v(k)
(2.47)

as λ′i(s) = u(k)∗T ′(s)(k)v, with the normalization u(k)∗v(k) = 1, cf. [Lan02, The-
orem 2.5]. This approach is named Newton-Raphson [Lan02, Section 5.4]. It
is illustrative to rearrange the terms of (2.47) to compare it with (2.46). If we
multiply (2.47) by v(k)u(k)∗T ′(sk)v(k), then

sk+1v
(k)u(k)∗T ′(sk)v(k) = v(k)u(k)∗ (skT

′(sk)− T (sk)) v(k).

The method proposed by Lancaster is hence a variant of MSLP where only a rank
one part is taken into account. An essential difference between MSLP and the
method of Lancaster is that in one step of MSLP a generalized eigenvalue problem
must be solved (2.46) whereas in Lancaster’s method the eigenvalues of the matrix
T (sk) must be computed. Since it is slightly more computationally expensive to
solve generalized eigenvalue problems than computing the eigenvalues of a matrix,
one step of MSLP is slightly more expensive than (2.47). Both (2.46) and (2.47)
have quadratic convergence. However, which one is better in terms of convergence
domain and rate, is an open problem.

A method of Yang [Yan83] is also based on a Taylor expansion and successive
linear problems. Yang suggests to determine the smallest eigenvalue, which corre-
sponds to the smallest correction, by using the elements of an LU-decomposition
to construct an approximate solution of the linear eigenvalue problem. This
was applied to numerically analyze problems in vibration and structural stability
systems in [SR02].
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An approach based on a sequence of linear problems was also taken in [Thu78]
where the update ∆ = sk+1−sk was approximated by doing Gaussian elimination
of the linear equation (2.46) while dropping higher order terms in ∆.

Some of the methods just mentioned will be revisited in Chapter 4. For
instance, we show that MSLP can be elegantly formulated as a Newton-type set-
valued fixed point iteration, which makes it possible to give an explicit expression
for the convergence rate in terms of eigenvectors.

Finally, the self-consistent field iteration (SCF) (e.g. [LBLK06]) is also a
sequence of linear problems, where the higher order derivatives are neglected.
Some convergence properties of SCF will also be discussed in Chapter 4.

Nonlinear Rayleigh iteration

We now sketch a motivation for the Rayleigh-type iteration presented in [Wer70]
(see also [Vos04b]) where it is referred to as safeguarded iteration. See [Rog64],
[Had67] and references in [Ruh73] for other methods based on Rayleigh function-
als. Here, we present the method in an informal way. See [Vos04b] for a more
formal discussion and implementational details.

Suppose that we are looking for real eigenvalues within some interval I. For
a solution s∗ ∈ I of the nonlinear eigenvalue problem (2.45) with corresponding
eigenvector v, it holds that

v∗T (s∗)v = 0.

Let p(v) be the inverse of this expression, i.e.,

p(v) := {s ∈ I : v∗T (s)v = 0}, (2.48)

which is called the nonlinear Rayleigh functional. Now consider the iteration:

θ ∈ σ(T (p(vk)), with eigenvector vk+1 ∈ Cn. (2.49)

We must choose an eigenpair from σ(T (p(vk))) in each step of the set-valued
fixed point iteration (2.49). Assume T (s) is Hermitian for all s ∈ I, then the
eigenvalues are real and can be numbered by decreasing real part. If we choose
the kth eigenvalue from T in each step, the method has a (surprisingly) nice
convergence behaviour. In fact, under some assumptions on the interval I (such
that p(v) is unique) and the derivative T ′, the nonlinear eigenvalue problem
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has a (so-called) min-max characterization and we have global convergence to
the largest eigenvalue and local quadratic convergence to any eigenvalue. Now
consider the improved version

θ ∈ σ(T ′(p(vk))−1T (p(vk)), with eigenvector vk+1 ∈ Cn, (2.50)

where (as usual) the corresponding generalized eigenvalue problem is solved such
that the inverse must not be explicitly computed. This variant has even cubic
local convergence ([Vos04b]).

Note that p(v) is a scalar equation and can often be solved numerically with
Newton iteration (if a good starting guess is available). Moreover, for many
nonlinear eigenvalue problems T , the corresponding scalar problem v∗T (s)v = 0
can even be solved explicitly, e.g. the single delay scalar eigenvalue problem can
be expressed with the Lambert W-function (see Section 2.2.1).

The iteration (2.50) is not suitable for very large eigenvalue problems as it
requires the solution of an eigenvalue problem in each step. However, the global
convergence properties makes it very suitable to be combined with projection
methods (see Section 2.3.2). The method has been successfully used in com-
bination with a projection method [Vos04a] which is essentially Algorithm 2.1.
The method in [Vos04a] has been applied to problems with a min-max charac-
terizations from fluid-solid vibration interaction [Vos03] and electronic states of
quantum dots [BV07] (see also [Bet07a]).

2.3.2 Projecton methods

Vector-valued Newton iteration

The nonlinear eigenvalue problem (2.45) can be written as a system of nonlinear
equations by introducing an additional normalization constraint c∗v = 1 for some
normalization vector c. That is,(

T (s)v
c∗v − 1

)
= 0. (2.51)

Note that, we apply the Newton iteration with approximations of the eigenvalue
sk ∈ C and eigenvector vk ∈ Cn. The Newton iteration applied to (2.51) is(

vk+1

sk+1

)
=

(
vk

sk

)
−

(
T (sk) T ′(sk)vk

c∗ 0

)−1(
T (sk)vk

c∗vk − 1

)
,
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or

vk+1 =
1

c∗T−1(sk)T ′(sk)vk
T−1(sk)T ′(sk)vk, (2.52)

sk+1 = sk +
1

c∗T−1(sk)T ′(sk)vk
. (2.53)

In the literature and in implementations, it is common to introduce the interme-
diate vector uk+1 = T−1(sk)T ′(sk)vk such that the iteration is

uk+1 = T−1(sk)T ′(sk)vk,

vk+1 = uk+1/c
∗uk+1,

sk+1 = sk −
1

c∗uk+1
= sk −

u∗k+1vk+1

u∗k+1uk+1
.

This is a nonlinear version of inverse iteration. This application of Newton-
iteration was first used on nonlinear eigenvalue problems in [Ung50]. The equiv-
alence to inverse iteration was clarified in [PW79].

This is indeed a competitive method for problems where it is cheap to solve
the linear system T (s)x = b. In fact, the tool DDE-BIFTOOL [Eng00] uses this
iteration to get eigenvalues with machine precision.

Note that in the iteration (2.52) a system of linear equations T (sk)−1b, where
b = T ′(sk)vk, must be solved. This linear system depends on sk. The cor-
responding iteration for constant sk will converge to the solution of a different
problem. This unfortunate fact is a motivation why we will now discuss a method
which has a lower convergence order, but where the matrix in the linear system
is constant throughout the iteration.

Residual inverse iteration

The nonlinear version of inverse iteration

uk+1 = T (sk)−1T ′(sk)vk,

vk+1 = uk+1/c
∗uk+1, sk+1 = sk − 1/c∗uk+1

can be derived from Newton’s method as above. We mentioned above that an
unfortunate property of this iteration is that a different linear system T (sk)z = b

must be solved in each step. Since the matrix T (sk) changes in each iteration, it
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is in general not possible to do a precomputation (say LU-decomposition) such
that solving the system with different right-hand sides can be executed efficiently.
This makes the method unsuitable for problems where it is computationally de-
manding to solve this system, e.g. for very large problems. Note that if sk in
T (sk)−1 is kept constant the iteration is unusable as it converges to the solution of
a different problem. The method residual inverse iteration (RII) by Neumaier in
[Neu85] was motivated by this fact. RII is an iterative method similar to inverse
iteration where the shift can be kept constant at the cost of convergence order.
Similar to the Rayleigh-iterations a scalar nonlinear problem must be solved in
each step.

We now describe some theoretical properties of the iteration without pay-
ing attention to efficiency and refer the reader to the original work [Neu85] for
implementational details. In exact arithmetic, one step of RII is

uk+1 = uk − T (σ)−1T (p(uk))uk (2.54)

where p(uk) is the Rayleigh-functional in (2.48), i.e., the solution s of u∗kT (s)uk =
0. Here σ ∈ C denotes the shift. Note that T (σ) is constant throughout the
iteration, which allows us to make an LU-decomposition at the beginning of the
iteration, and solve the triangular system for different right-hand sides efficiently.
However, we have the choice to update σ if necessary. This is a computational
tradeoff; if σ is kept constant, the convergence is linear (to simple eigenvalues),
whereas updating σ = p(uk) in each step gives quadratic convergence but for
each step T (σ) is changed and we have the same computational difficulties as
in inverse iteration. Roughly speaking, we wish to update σ often enough to
have fast convergence, but not so often that the LU-decomposition becomes the
dominating part of the iteration.

Up until now we have only considered p(uk) defined as (2.48). Neumaier
points out that for RII (2.48) only makes sense if T (s) is Hermitian and s is real,
otherwise

p(uk) := {s ∈ C : c∗T (σ)−1T (s)uk}, (2.55)

should be used. In the next section we will discuss projection methods which are
motivated by RII.
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Projection methods

Nonlinear eigenvalue problems of small or moderate dimension can often be solved
reliably and efficiently. For instance, the small delay-eigenvalue problem can be
solved to high accuracy by the methods discussed in Section 2.2, i.e., SOD and
IGD, and polynomial and rational eigenvalue problems of moderate dimension
can be solved with companion linearizations. Moreover, general nonlinear eigen-
value problems where there is a min-max-characterization can be solved reliably
with the Rayleigh-type iteration (2.49) (safeguarded iteration).

For large eigenvalue problems we can use some of the iterative methods sug-
gested in Section 2.3.1, e.g. variants of inverse iterations and Rayleigh iterations.
The main drawback of these methods is that they typically only have good local
convergence properties, i.e., it is necessary to have a fairly good starting guess
to have reliable convergence.

The motivation for the introduction of projection methods for nonlinear eigen-
value problems can be seen as an attempt to combine the nice global convergence
properties we have for methods for small problems and the good local properties
of the iterative methods.

The goal of the remaining part of this section is two-fold. We wish to discuss
the idea and motivation of projection methods and in particular the proposed
method (Algorithm 2.1) and present technical details of the proposed method in
order to make the numerical results reproducable.

The general idea of projection methods for nonlinear as well as linear eigen-
value problems is that a corresponding small projected problem contains infor-
mation relevant for the large problem. More precisely, suppose V is a subspace
and the columns in V ∈ Rn×m form an orthonormal basis of V. The idea is that
the solutions of the projected problem det(V ∗T (s)V ) = 0 contains information
relevant for the larger problem det(T (s)) = 0.

Several projection methods for the (linear) eigenvalue problem have been
generalized to the nonlinear eigenvalue problem, e.g. the subspace acceleration
of residual inverse iteration [Vos04a], [Mee01], [LBLK06] as well as nonlinear
versions of Jacobi-Davidson [SBFvdV96], [BV04], [SS06].

We will focus on subspace accelerations of the residual inverse iteration (RII).
Two related methods in the literature are motivated by the residual inverse it-
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eration. The method by H. Voss [Vos04a] is called nonlinear Arnoldi and the
quadratic residual iteration by [Mee01, Algorithm 2.3]. A similarly motivated
method is called nonlinear Rayleigh-Ritz iterative method in [LBLK06].

Before presenting the variant used for the numerical examples, we wish to
point out some differences between the works of Voss and Meerbergen. Even
though the methods are equivalent both works use and point out important prop-
erties of the method. An important contribution in the work of Meerbergen is
the connection to Jacobi-Davidson. A Jacobi-Davidson method is also suggested.
The connection is studied by considering the Cayley-transformed problem. On
the other hand, Voss shows how convergence results for the residual inverse iter-
ation can be used in a heuristic to determine when the convergence is slow. If
the convergence is slow the shift should be updated.

Both methods solve the projected problem corresponding to the solution of
the Rayleigh function (2.48). That is, instead of solving the scalar problem (2.48)
a corresponding projected problem is solved

V ∗T (s)V y = 0,

where V is a basis of the subspace of the current iteration. One of the eigenvectors
from the projected problem is chosen and the subspace is expanded with the
direction of one step of residual inverse iteration (2.54). In [Vos04a] the projected
problem is suggested to be solved with inverse iteration and safeguarded iteration
(and a specific strategy for adapted for the examples considered was given in
[Mee01]). Moreover, the method of Meerbergen is (as the name quadratic residual
inverse iteration indicates) adapted for the quadratic eigenvalue problem.

Meerbergen applies the projection method to problems with nonreal eigen-
values and Voss does so in [Vos06b]. Note that for nonreal eigenvalues, the
motivation for the expansion direction is slightly more heuristic. According to
Neumaier, “Formula [(2.48)] is appropriate only when A(λ) is Hermitian and λ,
is real; otherwise [(2.55)] has to be used”. Hence, an expansion in the direction
of the solution of (2.48) is not recommended. Similar points were made by Voss.
Fortunately, the method still works efficiently. The method was successfully used
to find complex eigenvalues efficiently in [Mee01]. Note that it is not clear how
the projected problem corresponding (2.55) should be stated.

Note that many relevant problems are symmetric (or Hermitian) and have
real eigenvalues [Bet07a].
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In this work we will focus on nonlinear Arnoldi which we will abbreviate
with SRII (subspace accelerated residual inverse iteration). SRII is given in the
Algorithm 2.1, and works roughly as follows. It consists of two nested loops.
The method determines eigenvalues one after another in the outer loop (Step 3-
Step 13). The inner loop (Step 4-Step 10) is performed until sufficient accuracy
of the current wanted eigenvalue is achieved. In each iteration of the inner loop,
the considered subspace is expanded by one direction, by adding one vector to the
basis. This vector is the orthogonal component of the vector result from Step 7.
In Step 7 we perform one step of residual inverse iteration by using the solution
of the projected problem computed in Step 6. Once convergence to an eigenvalue
is achieved, the eigenvalue is stored and the subspace is reduced (Step 12) by
some strategy which must be adapted to the problem at hand.

Note that each expansion of the subspace “corresponds” to one step residual
inverse iteration and the convergence is expected to be at least as good as RII.
Formal proofs for such statements are not available in the literature. This is
unfortunately often the case for many subspace accelerations.

We now discuss details for our implementation.

Step 1 The factorization of T (σ) should be done such that the linear system
T (σ)x = b can be solved efficiently (in Step 7). Here we do an LU-
factorization with row and column reordering using the function LU pro-
vided in Matlab.

Step 2 We generate a random vector b and pick the following initial starting sub-
space, V = [(T (σ)−1)b, · · · , T (σ)−1)5b], and orthogonalize.

Step 3 Here mmax is the number of wanted eigenvalues.

Step 4 The relative residual is computed as ‖T (µ)v‖/‖T (σ)‖.

Step 5 The list of projected matrices Aproj is here updated or recomputed if
necessary. This is necessary if the projection space was changed in Step 12.
Otherwise the update can be done by adding the appropriate row and
column.

Step 6 The function projectedsolve computes the “best” solution of the projected
problem V ∗T (µ)V y = 0. Which solution candidate is the best solution, is
determined from some selection strategy, typically depending on the shift
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Algorithm 2.1 Subspace accelerated residual inverse (SRII) (NLARNOLDI)

INPUT: T (s) = A0f0(s)+· · ·ANfN (s), shift σ, mmax, RESTOL, RESTARTDIM,
projectedsolve(·), restart(·)

OUTPUT: Eigenvalues µl with corresponding eigenvectors Vl

1: Factorize LU = PT (σ)Q
2: Compute initial vectors V
3: for m = 1 . . .mmax do

4: while relres > RESTOL do

5: Update Aproj such that Aproj(k) = V ∗AkV for all k.
6: Solve projected nonlinear eigenvalue problem

[µ, y, µnext, ynext] = projectedsolve(V,Aproj, µ, σ, σt, Vl, µl)

where (µ, y) is the best solution candidate from selection strategy.
7: Compute v = T (σ)−1T (µ)V y with factorization of T (σ).
8: Orthogonalize v against V
9: Expand search space V = [V, v/‖v‖]

10: end while

11: Store locked values Vl = [Vl, v], µl = [µl, µ].
12: If dimension V > RESTARTDIM restart:

[V, µ] = restart(V, Vl, µ, y, µnext, ynext)

13: end for

σ, the target σt, the previous iterate µ and the locked eigenvalues µl, i.e.,
those eigenvalues which are already found, with corresponding eigenvectors
Vl. This strategy and method must be adapted to the problem at hand. The
general properties a good strategy should have is given below. The third
and fourth output parameter µnext and ynext correspond to the second best
candidate or possible a list of candidates, which can be used when restarting
the method (Step 12).

Step 7 The expansion direction v is taken as one step of residual inverse iteration.
As usual, the inverse T (σ) is not explicitly computed. The factorization in
Step 1 can be used to solve the linear system.

Step 8 The orthogonalization is computed by v = v − V (V ∗v). We use reorthog-
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onalization in order to avoid numerical that the space is not numerically
orthogonal.

Step 11 The found eigenvector is stored by adding it as a column to the matrix Vl.
The vector is stored in order to make sure the iteration does not converge
to the same eigenvector several times.

Step 12 Solving the projected nonlinear eigenvalue problem (Step 6) and the orthog-
onalization (Step 8) can turn computationally demanding if the dimension
of the search space V is large. For this reason it is computationally ad-
vantageous to reduce the subspace at some point. This restart strategy is
dependent on the problem. Typically (as done in e.g. [Vos07]) the restart
is done with the locked eigenvectors Vl and the second best candidate of
the projected nonlinear eigenvalue problem computed in Step 6, i.e., we let
V = [Vl, V ynext] and orthogonalize V .

If we want to find more than one eigenvalue, a critical problem for projec-
tion methods is to determine which solution to the projected eigenvalue problem
should be selected. For the linear eigenvalue problem the eigenvalue is chosen
closest to some target, see e.g. [SvdV96].

The situation for nonlinear eigenvalue problems is somewhat different. Unlike
linear eigenvalue problems we should try to have convergence to one eigenvalue
at a time, since we must insert the eigenvalue in the parameter dependent matrix
T (s).

A good strategy must handle the following issues.

• It must avoid convergence to locked eigenvalues, i.e., eigenvalues marked as
already found.

• It converges in a monotone way to one eigenvalue at a time. It is inefficient
to have convergence to several eigenvalues at a time.

• It converges first to the eigenvalues specified by some target, e.g. the shift
σ or ∞.

The heuristic strategy must be carefully constructed for the problem at hand.
We will combine three strategies. The strategies address the first point, i.e.,
the avoidance of convergence to solutions which have already converged, in the
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same way. We wish to determine the eigenvalues one after another. Hence, once
an eigenvalue is converged (marked as locked in Step 11), this eigenvalue must
not be returned in Step 6. We will avoid converging to locked eigenvalues by
removing candidate eigenvalues of the projected eigenvalue problem which has
an distance less than LOCKTOL to the locked eigenvalues. One eigenvector may
correspond to multiple eigenvalues. Hence, it is (strictly speaking) not sufficient
to check the angle between the eigenvectors. When determining if a solution of
the projected eigenvalue problem is a locked eigenvalue we must also check if the
approximate eigenvalue is also close to the locked eigenvalue. This extreme case
has not occurred in our examples.
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2.4 Numerical examples

With the following two examples we wish to show that there are cases where
projection methods are considerably more efficient than methods for the DDE,
i.e., SOD and IGD.

The first example (Section 2.4.1) is a problem with symmetric tridiagonal
system matrices for which the real eigenvalues should be computed. The projec-
tion method turns out to be very efficient for this problem. The general purpose
package DDE-BIFTOOL can solve problems of size 100, adapted version of SOD
and IGD can solve problems of dimension 1000, whereas the projection method
can solve problems of dimension 106 (one million) in a matter of minutes.

The first example is very special. For that reason we also consider a second
example (Section 2.4.2) with randomly generated matrices. Here, the projection
method is still superior to the IGD- and SOD-methods, but not with such a large
difference as the first example.

The numerical examples are performed on a dual core AMD Athlon 64 4400+
with 2 Gb memory using Matlab 7.4.0 (R2007).

2.4.1 A PDDE with real eigenvalues

In the first example we will compute the real eigenvalues of a partial differential
equation with delay (PDDE). Consider


∂u

∂t
=
∂2u

∂x2
+ a0(x)u+ a1(x)u(x, t− τ1) + a2(x)u(x, t− τ2),

u(0, t) = u(π, t) = 0, t ≥ 0
(2.56)

where a0(x) = a0 + α0 sin(x), a1(x) = a1 + α1x(1 − ex−π) and a2(x) = a2 +
α2x(π − x). We let u = u(x, t) for notational convenience. This equation is a
generalization of [Wu96, Example 1.12, Chapter 3]. See also Example 3.23 for
further theoretical properties and derivation of this equation.

We discretize the PDDE with central difference and uniform step-size h =
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π/(n+ 1) in space and get the DDE of dimension n

v̇(t) =
(n+ 1)2

π2


−2 1

1
. . . 1
1 −2

 v(t) +


a0(x1) 0

0
. . . 0
0 a0(xn)

 v(t)+


a1(x1) 0

0
. . . 0
0 a1(xn)

 v(t− τ1) +


a2(x1) 0

0
. . . 0
0 a2(xn)

 v(t− τ2). (2.57)

Here we will let τ = τ1 = τ2, but in later chapters this example will be revisited
with different delays. We select a0 = 20, α0 = 0, a1 = −4, α1 = 1, a2 = −0.1,
α2 = 0 and τ = 0.05.

For τ = 0 the PDE (as well its discretization) has only real eigenvalues. For
small delays several eigenvalues will remain real. We first try some SOD-methods,
IGD-methods and the projection method to find the 12 rightmost of these real
eigenvalues.

We apply the methods to the DDE (2.57). The timing-results for different
discretization sizes n are shown in Table 2.4. We are able to solve problems of
dimension n = 106 using SRII. Note that we have ignored the experiments for
n = 105 for typographical reasons.

The column with header nof. eigs. denotes the number of real eigenvalues
which were found to an accuracy 10−1. We have chosen such a high tolerance for
this indicator in order to show that the parameter N in the IGD- and the SOD-
methods can not be decreased without missing some eigenvalues. The column
marked as CPU denotes the (wall-clock) CPU time-consumption. The entries
marked as MEMERR correspond to runs where either Matlab (or in particular
eigs) threw an out of memory exception, or the primary memory was filled such
that excessive swapping caused the method to slow down very much.

We propose the following interpretations of Table 2.4. DDE-BIFTOOL is
general purpose package which uses an implementation of the SOD(MS) (as de-
fault) and full matrices. It can currently not handle sparse matrices. Hence, it is
not surprising that it does not work well for larger (sparse) problems. However,
our implementation of the SOD(MS) which uses the sparse structure also per-
forms comparatively bad. This indicates that even if DDE-BIFTOOL would be
modified to handle sparse matrices, it would still not handle this problem well (at
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Method n = 100 n = 103 n = 104 n = 106

nof. eigs CPU nof. eigs CPU nof. eigs CPU nof. eigs CPU
DDE-BIFTOOL 2.03

minrealpart=-20
5 18.0s MEMERR

SOD(MS,N = 4) 6 0.2s 6 3.3s MEMERR
SOD(MS,N = 8) 10 0.4s 9 6.1s MEMERR
IGD(PS,N = 5) 5 0.3s 5 2.6s MEMERR
IGD(PS,N = 10) 12 0.4s 12 27.4s MEMERR
IGD(Euler,

N = 10)
4 0.1s 4 1.2s MEMERR

IGD(Euler,
N = 100)

5 0.9s 5 12.9s MEMERR

SRII(RI)
restart=0

12 1.3s 12 0.5s 12 2.8s 12 361.7s

SRII(RI)
restart=20

12 0.3s 12 0.3s 12 1.9s 12 306.5s

SRII(RI)
restart=∞

12 0.2s 12 0.3s 12 1.9s 12 292.5s

Table 2.4: The methods applied to (2.57). Abbreviations: SOD=Solution
operator discretization (Section 2.2.2), MS=Milne-Simpson, IGD=Infinitesimal
generator discretization (Section 2.2.3), PS=Pseudospectral approximation,
RI=Rayleigh iteration (2.49) (safeguarded iteration), SRII=Subspace accelerated
residual inverse iteration, i.e., NLARNOLDI, Algorithm 2.1.

least for larger n). The memory and not computational power is the threshold
for all IGD and SOD-methods. We have shown that some of the methods are
linearizations of polynomial eigenvalue problems. Linearizations of polynomials
are known to be a memory consuming way to solve polynomial eigenvalue prob-
lems, as any linearization increases the dimension of the matrix by a factor equal
to the order of the polynomial minus one.

There are 12 eigenvalues in the interval [−70, 20]. Apart from the projection
method, only a fine discretization with IGD(PS) could determine all of them
to the (very coarse) accuracy 0.1. This stems from the fact that the methods
are approximations or interpolations of the DDE at certain points, e.g. the
origin. It is not surprising that the eigenvalues far away from the origin are
badly approximated. This can also been seen in Table 2.5. In Table 2.5 the error
is computed comparing the approximated solution with a more accurate solution
computed with some steps of Newton iteration.



2.4. Numerical examples 63

We made three experiments with SRII for different restart strategies. If the
subspace has grown to a dimension larger than the parameter RESTARTDIM
the method will be restarted. The method was restarted with (the locked space)
and an eigenvector of the delay-free system corresponding to the same eigenvalue.

n = 106 n = 103

SRII(RI) SRII(RI) IGD(PS, N = 10)
Error

17.77390548351727 17.77390636019264 3.62e-10
14.47147628813390 14.47149051585005 3.26e-09
8.96126129910668 8.96133538774918 1.74e-10
0.94108839008011 0.94133654158960 9.17e-09

-10.40800890309490 -10.40730527562455 1.20e-09
-31.76066692537303 -31.75561552146499 2.37e-08
-40.85518094704453 -40.85952887199092 9.81e-07
-54.65155800120748 -54.65191370323936 8.95e-06
-59.62703593778813 -59.62714883199634 2.17e-05
-62.90419784708817 -62.90424316387534 3.88e-05
-65.73788326232723 -65.73790047830707 6.37e-05
-68.46274387212003 -68.46274748864577 1.01e-04

Table 2.5: The eigenvalues and error for some of the runs. The error for IGD(PS)
is larger for eigenvalues far away from the origin.

In order to make the result reproducable, we will now present technical im-
plementational details.

For all IGD and SOD methods we used eigs as eigenvalue solver. We set the
parameter such that 20 eigenvalues were found with target 0. The more natural
target for this problem would be the smallest imaginary part. The experiments
with this target performed worse because the approximated eigenvalue jumped
between different approximations.

We will now describe the problem specific details for SRII, i.e., Algorithm 2.1.
We use the nonlinear Rayleigh iteration (2.49) (safeguarded iteration) as a solver
for the projected problem. We terminate the Rayleigh iteration when |sk −
sk+1| < 10−10. Rayleigh iteration (safeguarded iteration) only works well when p
is unique, which is not the case for the interval containing the 12 rightmost eigen-
values. We resolve this by separating the interval into two parts I1 = [−40, 20]
and I2 = [−70,−40]. We start the iteration with the 3 of the eigenvectors of
the delay free system, corresponding to the rightmost eigenvalues. As mentioned



64 Chapter 2. Computing the spectrum

0 10 20 30 40 50

10
−20

10
−10

10
0

Iteration

 

 

Error |s
k
−s

*
|

Residual

(a) restart=0

0 10 20 30

10
−20

10
−10

10
0

Iteration

 

 

Error |s
k
−s

*
|

Residual

(b) restart=∞

Figure 2.5: Iteration history for SRII in interval [−40, 20] and N = 106. The
eigenvalues in the middle converge fast because they are close to the shift.

the 10 first eigenvectors of the delay-free system are also used when restarting.
Note that Rayleigh iteration (safeguarded iteration) is very suitable for problems
with real eigenvalues because, if there is a min-max numbering of the eigenvalues,
one can use the eigenvalue number as a target in the strategy for the projected
problem. This is done here.

SRII turned out to be successful and superior to the other methods for this
example. Note that SRII can be improved by constructing a shift update strategy
or more sophisticated restart strategies. Moreover, for a formally correct use of
safeguarded iteration, a min-max characterization of (2.56) should be proven.
See [Vos04a] for further enhancements.

We now wish to point out some shortcomings of the construction of this
example, motivating the study of a different example in the next section. The
system matrices are tridiagonal and symmetric and the delay is small. This is a
very special class of problems which is likely easier to solve than problems with
general matrices and delays. In particular, this example can probably be solved
directly with a fixed point method using the corresponding delay-free vector as
initial guess.

If one is interested in the eigenvalues of the PDE (2.56), a more sophisticated
discretization scheme than central difference is likely to be more efficient.
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2.4.2 Random matrix with complex eigenvalues

The discretization of the PDE with delay in the previous example resulted in
matrices with diagonal and tridiagonal structure. Since this simple structure
is typically not present in more realistic applications, we wish to consider an-
other example with large and sparse matrices, but without the strong diagonal
structure.

We consider a random matrix constructed by the following Matlab-commands:

rand(’seed’,0); randn(’seed’,0);

A0=alpha*sprandn(n,n,beta); A1=alpha*sprandn(n,n,beta);

That is, A0, A1 ∈ Rn×n are sparse matrices with sparsity density β and random
normally distributed numbers with standard deviation α. The random seed is
reset in order to have reproducable results between different runs (but unfortu-
nately not between different system setups).

In the tests below we have chosen the scaling α such that we have approxi-
mately 10 eigenvalues with magnitude less than one half, i.e., |s| ≤ 0.5. We now
investigate with what efficiency and to what accuracy (absolute error) the meth-
ods can compute these eigenvalues. The accuracy and timing results for some
choices of n, α and β are shown in Table 2.6. The CPU-columns in the table
contain the (wall-clock) timing and the accuracy is the maximum error in the
computed eigenvalues, where we have performed two steps of inverse iteration to
have a (hopefully) considerably more accurate approximation to compare with.

It is clear from the table that for small and moderately sized problems the
pseudo-spectral discretization of the PDE, i.e., IGD(PS) is fast and accurate.
For dimensions larger than n = 4000 the projection method is the only method
which can solve the problem.

We now make some notes on the implementational details for the methods.
The implementation of SOD (with Milne-Simpson discretization) makes a com-
panion linearization resulting in a generalized eigenvalue problem of dimension
(N + 1)n. This generalized eigenvalue problem is solved using eigs (an imple-
mentation of implicitly restarted Arnoldi method) with target σ = 1, as µ = 1
corresponds to s = 0. The 15 eigenvalues closest to σ = 1 are found. This is
chosen larger than the number of wanted eigenvalues (10) as the k eigenvalues
closest to µ = 1 do not necessarily transform to the k eigenvalues closest to
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Method n = 100 n = 1000 n = 2000 n = 4000 n = 10000

α = 0.7 α = 6 α = 9 α = 10 α = 15

β = 0.1 β = 0.1 β = 0.1 β = 0.05 β = 0.001

Accuracy CPU Accuracy CPU Accuracy CPU Accuracy CPU Accuracy CPU

SOD(MS,

N = 2)

4.8e-05 0.3s 8.4e-06 19.3s 8.5e-06 109.7s MEMERR

SOD(MS,

N = 4)

6.1e-07 0.3s 1.0e-07 38.5s 1.0e-07 193.2s MEMERR

IGD(PS,

N = 3)

6.3e-03 0.3s 5.5e-03 9.8s 7.7e-03 47.8s 4.9e-03 321.5s

IGD(PS,

N = 5)

2.8e-06 0.1s 2.3e-06 11.7s 3.7e-06 105.4s MEMERR

IGD(Euler,

N = 10)

1.0e-02 0.6s 1.1e-02 131.1s 1.2e-02 399.0s MEMERR

IGD(Euler,

N = 100)

1.0e-03 5.4s 1.1e-03 680.8s MEMERR

SRII(IGD)

restartdim=0

3.8e-04 14.0s 2.6e-05 55.3s 1.0e-04 69.3s 1.1e-04 225.0s 1.1e-03 523.0s

SRII(IGD)

restartdim=50

3.8e-04 29.9s 4.5e-05 91.2s 1.1e-04 75.3s 4.6e-05 245.5s 2.0e-04 521.4s

SRII(IGD)

restartdim=∞
3.8e-04 38.1s 4.5e-05 113.5s 1.1e-04 91.0s 2.3e-01 286.3s 2.0e-04 518.7s

Table 2.6: CPU-time of for the random matrix. Abbreviations: SOD=Solution
operator discretization (Section 2.2.2), MS=Milne-Simpson, IGD=Infinitesimal
generator discretization (Section 2.2.3), PS=Pseudospectral approximation.
SRII=Subspace accelerated residual inverse iteration, i.e., the variant of [Vos04a]
in Algorithm 2.1

s = 0. The matrix-vector product provided to eigs involves the solving of a
linear system, which must be solved many times for different right-hand sides.
The standard procedure for this type of problem is to do an LU-decomposition of
the shifted matrix before starting the iteration, and perform the backward and
forward substitutions in every matrix vector product. This is done with partial
pivoting and improves the efficiency considerably.

For IGD we also use eigs on the (sparse) matrix approximating the infinites-
imal generator. The dimension of the constructed matrix is of size Nn. The
target here is chosen to be σ = 0, and (to have a fair comparison) we set eigs

to find the 15 smallest eigenvalues.

The subspace accelerated residual inverse is performed to the residual toler-
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ance 10−2. The projected eigenvalue problem is solved with SOD(PS,N = 6). In
the solver for the projected system, we use eig for matrices of dimension smaller
than 150 and eigs otherwise. We configure eigs to find the 30 eigenvalues clos-
est to the origin. This value can be decreased improving the efficiency. Here,
it is not necessary to fine-tune this parameter, to support the theory that the
projection method is efficient for larger systems. To choose the eigenvalue out
of the set of solutions to the projected problem, we use the weighted strategy
suggested above with weighting k = 4, and LOCKTOL = 10−3.

This example can not be handled with the normal settings of the Matlab
package DDE-BIFTOOL 2.03. The package is based on SOD (with default Milne-
Simpson) but unlike our tests here, it constructs full matrices, and applies eig

(i.e., the Lapack QR-method) to the companion linearization. The constructed
full matrices for this example are too large to be solved with eig in reasonable
time. Even with the improved heuristic suggested in [VGR04], the choice of N
will be larger than the first rows in Table 2.6 and will (even with eigs) be slower
than the tests here. However, we note that the goal of the heuristic for N is to
give sufficient accuracy on the rightmost eigenvalues, whereas we here search for
the eigenvalues closest to the origin.





Chapter 3

Critical Delays

The asymptotic behavior of DDEs is an important property in many applications.
We call a DDE asymptotically stable if the solution x(t) is bounded and goes to
zero as time goes to infinity, for any bounded initial condition1. The general prob-
lem considered in this chapter is to determine sufficient and necessary conditions
for asymptotic stability. The asymptotic stability of a DDE can be established
from the rightmost part of the spectrum. In particular, if the supremum of the
real part of the spectrum is negative, then the DDE is asymptotically stable. The
supremum of the real part of the spectrum is called the spectral abcsissa.

In the previous chapter we discussed numerical methods to compute the spec-
trum of DDEs with a single delay, i.e., the derivative of the state was a linear
combination of the state and a delayed state. We now consider more general
classes of DDEs. Most results are applicable to DDEs with an arbitrary number
of delays. Moreover, we present results for neutral DDEs, i.e., DDEs containing
terms with delays in the derivative of the state. In particular we discuss stability
properties as a function of the delays.

For most cases, the following phenomena will occur at a point where the
stability of the DDE changes. Consider a curve between two points in the space
of the delay parameters (called delay-space). Suppose that the DDE is stable for
one point and unstable for the other. When varying the delay parameters along
this curve, the spectrum changes continuously (in some sense), and at the point

1This is the usual definition of stability in the context of time-delay systems.
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where the stability of the DDE changes, one eigenvalue crosses the imaginary
axis. Hence, for most cases, the boundary of the points in delay-space for which
the DDE is stable is a subset of the set of points where the DDE has a purely
imaginary eigenvalue. We call the set of points where the DDE has a purely
imaginary eigenvalue, the set of critical delays.

The goal of this chapter is to compute or parameterize such delays with explicit
expressions or numerical procedures.

We describe the phenomena in more precise terms. If the spectral abscissa is
continuous with respect to changes in the delays, and the origin is not a clustering
point of the real part of the spectrum, then there is a purely imaginary eigenvalue
at a point (in delay-space) where the DDE goes from stable to unstable. Fortu-
nately, the spectral abscissa is continuous for most interesting cases and the case
that the origin is a clustering point of the real part is a degenerate case which is
easy to identify. Under these conditions, we characterize the boundary of the set
of points in delay-parameter space for which the DDE is stable as follows. This
set of points is a subset of the set of delay-parameters such that there is a purely
imaginary eigenvalue, i.e., the set of critical delays. A characterization of the set
of critical delays is often used in methods to analyze delay-dependent stability
for DDEs.

As mentioned, the main contribution of this chapter is an attempt to pro-
duce an exact characterization of the set of critical delays. In our context, by
exact characterization, we mean a closed explicit formula containing only ele-
mentary functions or operations elementary in the sense that the evaluation can
be performed with mature numerical procedures.

The exact representation we present is a parameterization of the set of critical
delays. By this, we mean a mapping from a simple mathematical object onto the
set of all subsets of the critical delays. Moreover it has the surjective property
that the union of the range is exactly the set of critical delays.

The parameterization is constructed in such a way that an evaluation of the
mapping consists of solving an eigenvalue problem for the general case (or more
precisely of solving a quadratic eigenvalue problem). Moreover, the parameteri-
zation can be expressed in terms of trigonometric expressions for the case that
the DDE is scalar.

Apart from constructing such a parameterization, we show how the critical
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delays of commensurate DDEs, i.e., DDEs where the delays are fixed integer mul-
tiples of each other, can be parameterized using (so-called) polynomial eigenvalue
problems.

The chapter is organized into the following main parts. In the first part (Sec-
tion 3.2) we review some of the large number of contributions in the field of
delay-dependent stability analysis of time-delay systems, in particular the contri-
butions related to imaginary eigenvalues. In the second part we present a method
to parameterize the critical delays for retarded (Section 3.3) as well as neutral
DDEs (Section 3.4). The computationally demanding part in an evaluation of
the parameterization is to find the unit magnitude eigenvalues of a quadratic
eigenvalue problem. We discuss computational topics related to this quadratic
eigenvalue problem in Section 3.5.

We also present delay-dependent results which are not parameterizations. In
Section 3.6 we present an alternative way to derive the essential parts of one class
of stability conditions in the literature. The class of conditions is referred to as
matrix pencil methods, because the conditions are expressed as a generalized
eigenvalue problem. The eigenvalue problems normally involve Kronecker prod-
ucts. The alternative derivation is based on a generalization of a two-parameter
eigenvalue problem, which can be rewritten into a generalized eigenvalue problem
in different ways corresponding to the different types of matrix pencil methods.

Finally, we discuss a result of Toker and Özbai [TÖ96] in Section 3.7. This
result essentially states that a problem related to the stability of DDE belongs to
the class of problems called NP-hard. We motivate why this does not necessarily
imply that the problem we consider is difficult from a numerical point of view.
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3.1 Introduction

In a large part of this chapter we study n-dimensional retarded delay-differential
equations with m discrete delays, i.e.,

Σ =


ẋ(t) =

m∑
k=0

Akx(t− hk), t ≥ 0

x(t) = ϕ(t), t ∈ [−hm, 0],

(3.1)

where A0, . . . , Am ∈ Rn×n. This retarded DDE has the characteristic equation

det (M(s)) = 0, (3.2)

where

M(s) := −sIn +
m∑

k=0

Ake
−hks. (3.3)

Without loss of generality we let h0 = 0 for notational convenience. We will
denote the spectrum by σ(Σ) := {s ∈ C : det(M(s)) = 0} or sometimes
σ(Σ(h1, . . . , hm)) in order to stress the dependence on the delay parameters.

Several results of this chapter can be derived for a more general type of DDE.
We consider DDEs with a delay in one or more derivative terms. These DDEs,
known as neutral DDEs, are given by

Σ =


m∑

k=0

Bkẋ(t− hk) =
m∑

k=0

Akx(t− hk), t ≥ 0

x(t) = ϕ(t), t ∈ [−hm, 0],

(3.4)

where A0, . . . , Am, B0, . . . , Bm ∈ Rn×n. Analogously, the characteristic equation
of (3.4) is

det(M(s)) := det(−sB(s) +A(s)) = 0, (3.5)

where A(s) = A0 +
∑m

k=1Ake
−hks and B(s) = B0 +

∑m
k=1Bke

−hks. The spec-
trum is the set of roots of the characteristic equation, i.e., σ(Σ) := {s ∈ C :
det(M(s)) = 0}.

It is desirable in many applications that the solution x(t) goes to zero indepen-
dent of the initial condition. This and many other properties are often analyzed
using the spectrum σ(Σ). This holds in particular, for the stability of DDEs.
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We now give a short overview of stability concepts relevant in our context. See
the standard references on DDEs for a more complete discussion, e.g. [HV93],
[DvGVW95] or [MN07b]. The continuity results are mostly from [MN07b] and
[MERD02]. For some further notes on continuity see [Pli05].

A DDE is called asymptotically stable if the solution is bounded and goes to
zero independent of (bounded) initial condition. In fact, more accurately, the
stability of a DDE is defined as the stability of the (so-called) null solution. The
null solution of a DDE is asymptotically stable if for any given δ > 0 and any
DDE with initial conditions ϕ bounded by δ, the solution is bounded by some
ε > 0 for all t, i.e., |x(t)| < ε, and x(t) → 0 as t→∞ [MN07b, Definition 1.18].

In terms of the spectrum, a DDE is asymptotically stable if the real part of
the spectrum σ(Σ) is bounded from above by a negative number [MN07b, Propo-
sition 1.20]. Unless zero is a clustering point of the real part of the spectrum, it is
sufficient to require that the spectrum is contained in the open left half plane, i.e.,
σ(Σ) ⊂ C−. In particular, this holds for retarded DDEs as the real part of the
spectrum of a retarded DDE has no clustering points [MN07b, Proposition 1.6].
The clustering points of the real part of the spectrum for neutral DDEs are also
often non-zero.

The stability analysis we carry out consists of a continuity argument using
the spectrum. Most of the continuity results available in the literature are stated
in terms of the spectral abscissa of the DDE. The spectral abscissa is defined as
the real part of the rightmost eigenvalue or the corresponding supremum, i.e.,

α(h1, . . . , hm) := sup{Re σ(Σ(h1, . . . , hm))}. (3.6)

The asymptotic stability of the DDE is now equivalent to that the spectral ab-
scissa is negative, i.e., α(h1, . . . , hm) < 0.

For retarded DDEs the spectral abscissa α is continuous with respect to the
delays [Dat78]. For neutral DDEs, α is not always continuous (see counter ex-
ample [MN07b, Example 1.38]). However, sufficient conditions on the DDE such
that it is continuous are available in the literature. We postpone the discussion
of continuity properties of neutral DDEs to Section 3.4.

We will focus on stability conditions in the delay parameters, to this end we
define Ds as the set of the delay parameters (h1, . . . , hm) such that the DDE is
stable, i.e.,

Ds := {(h1, . . . , hm) ∈ Rm
+ : α(h1, . . . , hm) < 0}.
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For retarded DDEs, the real part of the spectrum has no clustering points and
Ds = {(h1, . . . , hm) ∈ Rm

+ : σ(Σ(h1, . . . , hm)) ⊂ C−}. Since α is continuous for
retarded DDEs, the spectral abscissa α is zero on the boundary of the stability
region ∂Ds, i.e., ∂Ds ⊂ {(h1, . . . , hm) ∈ Rm

+ : α(h1, . . . , hm) = 0}.

Note that for retarded DDEs and neutral DDEs for which the origin is not
a clustering point of the real part of the spectrum, assuming that the spectral
abscissa is zero, i.e., α(h1, . . . , hm) = 0, implies that there is a (finite) purely
imaginary eigenvalue.

In other words, if α(h1, . . . hm) = 0 then there is a purely imaginary eigen-
value, or the imaginary axis is a clustering point of the spectrum. Hence, a
characterization of the points in delay-space where there is a purely imaginary
eigenvalue can be useful in a stability analysis. We will denote this set of points
by T . We call T the set of critical delays, critical curves (m = 2), critical surface
(m = 3) or critical hypersurfaces (m > 3). That is, the critical delays are,

T := {(h1, . . . , hm) ∈ Rm
+ : σ(Σ(h1, . . . , hm)) ∩ iR 6= ∅}.

The continuity argument used in this chapter is that if α is continuous, and
zero is not a clustering point of the real part of the spectrum, then ∂Ds ⊂ T .

Remark 3.1 (Terminology) The set of critical delays T (or slight variations
thereof) has several names in the literature, e.g. stability crossing curves/bound-
aries (e.g. in [MNG06], [GNC05], [NKGL06], [Mor06]) switching delays, switch-
ing points (e.g. [BK02], [Nic01a]), Hopf bifurcation curves (e.g. in [HH93]), delay
crossing set (e.g in [MN07b, Chapter 4]) or kernel and offspring curves (in [SO05]
and derivative works). The term critical delay is used in [PFF+06] and [Pli05].
A slightly different meaning of critical delays is used to refer to the case that
there is a (so-called) additional eigenvalue on the imaginary axis in [GN00]. The
additional eigenvalues are eigenvalues introduced by a transformation of the time-
delay system. They are additional in the sense that they are eigenvalues of the
transformed system, but not necessarily of the original system.

In this work we use the term critical delay, curves and surface for T . We find
this terminology slightly clearer than stability crossing curves which is sometimes
used by some experts in the field. Even though the term critical delays is less
informative than stability crossing curves, we prefer it, because in some situations
it is tempting to (falsely) deduce that the stability of the DDE switches (goes from
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unstable to stable or vice versa) when we move across a stability crossing curve.
Of course, the stability switches only when crossing ∂Ds, but not necessarily
when crossing T .

The terms offspring and kernel curves are avoided because the words offspring
and kernel give no information about what phenomenon occurs at the points
of the set T . Moreover, “kernel” already has a precise mathematical meaning
and the separation of T into two parts (kernel and offspring) does not ease the
presentation in our context, nor does it provide further understanding.

3.1.1 Problem formulation

In the field of mathematical analysis, systems of linear homogeneous ordinary
differential equations (ODEs) with constant coefficients are often solved by di-
agonalizing the system matrix, or determining the Jordan form. The solution is
typically expressed as a sum of exponential or trigonometric functions of time.
It is an explicit exact representation of the integrated ODE, from which many
properties can be read off with little effort. For instance, asymptotic behaviour,
maximas, minimas, oscillations, etc. can be determined by inspection or by sim-
ple trigonometric, exponential, logarithmic manipulations of the solution. The
main goal of this chapter is to give an explicit exact representation of T such that
relevant information can be easily determined. We will discuss ways to solve the
following problem.

Problem 3.2 (The exact delay-dependent stability problem) Find an ex-
act representation2 of T , such that a lot of information about T is easily available
by explicit formulas containing a finite number of elementary functions or a finite
number of operations for which there are mature numerical methods.

It is important to note that our main goal is to give an exact description of T , i.e.,
not approximate, estimate, numerically compute or plot T . This can be compared
to the different ways to analyze ODEs in analysis and numerical analysis. The
solution of ordinary differential equations is often numerically computed by some
finite difference and diagonalization is normally not the most efficient way to
numerically compute the solution of an ODE or an initial value problem. In

2By exact representation we formally mean a finite set of necessary and sufficient mathe-

matical expressions.
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the same sense, the goal of this chapter is not to produce an efficient numerical
method to compute T , but to determine a simple explicit form of T from which
many properties can be determined by inspection or simple manipulations.

We suggest a solution to Problem 3.2 by stating a parameterization of T .
The parameterization is presented for retarded DDEs in Section 3.3 and for
neutral DDEs in Section 3.4. The main result, i.e., the parameterization, is
a formula containing trigonometric functions for the scalar case (n = 1) and an
eigenvalue problem in general (n > 1). The parameterization for the general
multidimensional case is a formula containing an eigenvalue problem, or more
precisely a quadratic eigenvalue problem. Eigenvalue problems are one of the
fundamental problems in the field of numerical linear algebra and for moderately
sized eigenvalue matrices, the eigenvalues can be computed to sufficient accuracy
in reasonable time.

We will of course visualize T in practical examples, but this is not the main
goal. However, in practice, e.g. when we wish to plot T , we must be able
to numerically evaluate the parameterization. Hence, numerical efficiency must
also be considered. We present some ways to improve numerical efficiency for
the considered quadratic eigenvalue problem in Section 3.5. In particular, the
matrix-vector product corresponding to the quadratic eigenvalue problem con-
sists of a Lyapunov equation. The Lyapunov equation is a commonly occurring
matrix equation in control theory, and there are numerical methods for solving
the Lyapunov equation.

Remark 3.3 The set of critical delays can be computed numerically in a num-
ber of ways. In fact, it is easy to think of more efficient techniques to numeri-
cally compute T than the parameterization we propose. For instance, one could
discretize the delay-space and numerically compute some eigenvalues for each
discretization point using any of the techniques in Chapter 2. This straight-
forward numerical approach has been used in e.g. [BMV05a]. Another natural
approach is to make a grid on ∂Dm, i.e. zk ∈ ∂D (∂D is the unit circle); sub-
stitute zk = e−ihkω, k = 1, . . . ,m and check for which values of z1, . . . , zm,
A0 +

∑m
k=1Akzk has a purely imaginary eigenvalue. This has similarities with

frequency sweeping techniques, cf. [GKC03, Section 2.3], [Nic01a, Section 3.5.1].
Subsequently, sufficient accuracy (typically machine precision εmach, i.e., the ac-
curacy of the floating point system used on the computer) could be achieved ap-
plying a Newton-iteration.
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Note that neither of the techniques above qualify as solutions to Problem 3.2
as they do not provide an exact nor explicit representation of T . In particular,
the methods are no parameterizations.

The main focus of this chapter, i.e., Problem 3.2, is an instance of a wider
class problems which we refer to as the delay-dependent stability problem. This
important problem essentially consists of describing Ds, ∂Ds or T in some math-
ematical way. The following is an informal formulation of the problem to which
a delay-dependent stability result should provide some information to.

Problem 3.4 (The delay-dependent stability problem)

Give information about which points in Rm
+ belong to Ds, by determining

necessary and or sufficient conditions for Ds, ∂Ds or T .

In the discussions and examples that follow, we wish to describe in what way
the informal formulation of the delay-dependent stability problem has several
solutions or partial solutions. In particular, for DDEs with one single delay, this
problem is (in a sense) well posed, but for DDEs with multiple delays it is not
clear how a solution (or partial solution) to the delay-dependent stability problem
should be stated.

For a DDE with a single delay, we can give one solution to Problem 3.4 which
provides essentially all information about Ds, and could also be seen as an answer
to Problem 3.2. For these DDEs, which only depend on one real parameter (the
delay h), Ds is in general a countable set of intervals, and often just one interval
including the origin. Hence, a numerical answer to the delay-dependent stabil-
ity problem is a numerical value together with a periodicity formula. Another
possible more theoretical approach is to give a formula consisting of elementary
functions or operations, e.g. trigonometric functions. This is done in the follow-
ing scalar example.

Example 3.5 The set of critical delays of the single delay, scalar DDE,

ẋ(t) = a0x(t) + a1x(t− h1)

is given by,

T =

{
−sgn(a1)√
a2
1 − a2

0

(
acos

(
−a0

a1

)
+ 2pπ

)}
p∈Z

. (3.7)
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This formula is easily derived by separating the real and imaginary part of the
characteristic equation (3.3). In Section 3.3 (in particular in equation (3.30))
we will show that it is a special case of the parameterization presented in this
chapter. If we assume that 0 ∈ Ds, then

Ds =

[
0,

1√
a2
1 − a2

0

acos
(
−a0

a1

))
.

These formulas are not new (see e.g. [Nic01a, Proposition 3.15], [GKC03, Ex-
ample 2.4]). It is however interesting that the direct generalization of (3.7) to
neutral DDEs (derived in Example 3.33) is not widely known. In fact, we have
only seen parts of the generalization of (3.30), i.e., (3.56), in the literature.

Unfortunately, the geometry of the sets Ds, ∂Ds and T is in general for mul-
tiple delays complicated. The stability region Ds is in general not convex, does
not necessarily include the origin, can be unbounded, and is not even necessarily
connected. For neutral DDEs, Ds can even have an empty interior whereas the
closure is Rm (Ds is dense in Rm). However, for most cases ∂Ds is piecewise
smooth and in many applications the origin is indeed in Ds. Moreover, for DDEs
with two delays, some geometric classification is available [HH93]. The difficulty
in characterizing Ds, ∂Ds and T is possibly one justification for the large amount
of literature in the field of delay-dependent stability analysis. We discuss some
literature in Section 3.2.

For DDEs with multiple delays, Problem 3.4 is not very well posed in the
sense that it is not clear how an answer should be formulated such that (essen-
tially) all information about Ds is easily available. In particular, it is not clear
how a generalization of the formulas in Example 3.5 should be stated such that
we can identify many properties by inspection. In the example below, i.e., Ex-
ample 3.6, we show that one way to generalize the formula for T , i.e., (3.7), is a
parameterization.

In the set of results available in the literature, we often have a tradeoff between
information loss in the representation of the answer and explicitness of the answer.
Most results are either only sufficient but not necessary conditions, or sufficient
and necessary but stated in an implicit way such that it is not possible to read
off a lot of information by inspection.

In the following example we state some ways to provide information about Ds

in terms of explicit but not necessary conditions and some ways to state sufficient



3.1. Introduction 79

and necessary by slightly more implicit statements.

Example 3.6 Consider the DDE

ẋ(t) = −x(t) +
9
10
x(t− h1)− 2x(t− h2), (3.8)

which is stable for all (h1, h2) ∈ Ds shown in Figure 3.1(a). This type of visu-
alization of Ds is called a stability chart. It is a common tool in the literature
on time-delay systems and in particular applications of time-delay systems, e.g.
[HV04], [Sté89] [BC94], [CNW06], [Pee06], [AP05].

(a) Stable region Ds and critical curves T (b) ∂Ds and stability quantities

Figure 3.1: Stable region in delay-space

The two subfigures in Figure 3.1 show some ways to describe the stability
region. We discuss the advantages and disadvantages of these ways to analyze
stability next.

S1 In some applications, it is natural (e.g. for physical reasons) to assume
that the delays are equal, or almost equal. One way to provide information
about Ds (and hence information about Problem 3.4) is to determine what
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line segment along a given ray in delay space the DDE is stable. We now
establish the largest delay τ such that if h1 = h2 < τ then the DDE is
stable. This set of stable points in delay-space is

{(h1, h2) ∈ Ds : h1 = h2} = {(h1, h2) ∈ R2
+ : h1 = h2 < τ}.

If h1 = h2 then the DDE (3.8) reduces to a DDE with a single delay and we
can use the formula for the scalar case, i.e., (3.7). Here, the line segment
in delay space along the ray h1 = h2, for which the DDE is stable, is given
by

{(h1, h2) ∈ Ds : h1 = h2} ={
(h1, h2) ∈ R2

+ : h1 = h2 <
10√
21

acos
(
−10

11

)
≈ 5.92

}
.

From Figure 3.1 it is evident that such a coarse analysis does not reveal
that the size of the stability region along a ray is very sensitive with respect
to changes in the fraction h1

h2
, i.e., the slope of the ray in delay-space. The

same possibility to miss large parts of the stability region occur for any ray
in delay-space, e.g. when the delays are commensurate.

In fact, the situation can be even worse. Some directions in delay-space
may be stable independent of the size of the delay (i.e. τ = ∞), whereas
arbitrarily small perturbations of the slope of the ray makes τ finite. This
is known as the delay interference phenomenon [MN07a].

In this type of analysis the result of the analysis is one number, τ . This
information is easy to interpret, but it is of course only a sufficient condition
for stability. It does not reveal a lot of information about the geometry of
Ds.

S2 One definition of the stability radius is the largest τ such that the system
is stable for all h1 < τ and h2 < τ , i.e., geometrically, the largest square
with one corner in the origin completely contained in Ds. In terms of sets,
we wish to find the largest τ such that

{(h1, h2) ∈ R2
+ : (h1 < τ) ∧ (h2 < τ)} ⊂ Ds.

For this problem, the largest τ is given by

τ = h2 =
10√
399

acos
(
− 1

20

)
≈ 0.811.
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It is clear from Figure 3.1(b), that this type of stability analysis gives a
very conservative bound in the sense that a lot of information about Ds

can not be identified. For instance, this analysis does not reveal that if h2

is small, the system is stable independent of h1.

S3 One can think of generalizations of the stability radius in S2. For instance,
we can define the radius as the largest pair τ = (τ1, τ2) such that the system
is stable for all points inside the delay-space rectangle defined by τ1 and τ2.
Equivalently in terms of sets,

{(h1, h2) ∈ R2
+ : (h1 < τ1) ∧ (h2 < τ2)} ⊂ Ds.

To pose a well defined maximization problem we must define what is meant
by largest τ . The are several natural candidates. For instance, we may
optimize with respect to the area of the rectangle, i.e., τ1τ2 or pick a norm
for R2.

For this example, if we pick the area of the rectangle as measure, we get
τ ≈ (∞, 0.8) but if we optimize with respect to τ2 (and then τ1) we get
τ ≈ (1.79, 0.811).

Even though this method to analyze the stability region is less conserva-
tive, i.e., provides more information about Ds, in comparison to S2, the
wrong choice of optimization measure may yield very conservative results.
Moreover, for this example, the large stable region for h1 ≈ h2 will never
be identified.

See [GKC03, Theorem 3.9], [IND+03] for some stability results represented
by (unbounded) rectangles.

T (parameterization) Finally, we have the type of analysis to which the main
result of this chapter belongs. We saw that any result yielding a stability
statement of the form of S1, S2 or S3 will fail to describe the whole stability
region Ds. Since the stability region Ds and the boundary ∂Ds are com-
plicated geometrical objects (Ds is unbounded and ∂Ds not smooth), we
instead try an exact description of T , hoping that it is easier to represent.
We wish to state such a result by a finite number of explicit formulas con-
taining elementary functions or a finite number of numerically elementary
operations. This is the definition of Problem 3.2.
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The method for Problem 3.2 which will be presented in Section 3.3 is a
parameterization of the set T . Here, (using Corollary 3.17) the parameter-
ization is given by

T =
⋃

ϕ∈[−π,π]

p1,p2∈Z

(h1(ϕ), h2(ϕ)),

where

h1(ϕ) =
ϕ+ 2qπ
ω(ϕ)

,

h2(ϕ) =
atan

(ω(ϕ)+ 9
10 sin(ϕ)

−1+ 9
10 cos(ϕ)

)
+ 2pπ

ω(ϕ)
,

ω(ϕ) = ±

√
4−

(
−1 +

9
10

cos(ϕ)
)2

− 9
10

sin(ϕ).

We have denoted the four-quadrant inverse of tangent by atan
(
a
b

)
, i.e.,

atan
(
a
b

)
= Arg (b+ ai).

In comparison to the information provided in S1,S2 and S3, the suggested
parameterization of T is somewhat implicit as it is not easy to directly read
off as many properties of Ds, ∂Ds or T . It is however an exact description
of T . Moreover, since it only consists of elementary functions, theoretical
geometric information can be extracted by hand.

Apart from the parameterization presented in this chapter, a parameteri-
zation of T for (some) two-delay DDEs is given in [GNC05]. This work is
further discussed in Example 3.11.

3.2 Notes and references on delay-dependent sta-

bility results

The delay-dependent stability problem, i.e., Problem 3.4, has received a lot of
attention in the last couple of decades.

In order to restrict the discussion to works related to our results, we make
the following coarse classification of delay-dependent stability results. Apart from
the methods based on computing the spectra, i.e., those reviewed in Chapter 2,
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most of the literature on delay-dependent stability-conditions of DDEs can be
classified by their main ideas as follows:

• Stability can be stated as the existence of a certain functional, called
Lyapunov-Krasovskii functional (LKFs). In practice the existence condi-
tion of the LKF is typically restated as linear matrix inequality (LMI) which
is a fairly common problem in the field of convex optimization.

• At a point of where stability switches there is a purely imaginary eigenvalue
which can be computed or characterized, i.e., ∂Ds ⊂ T (some neutral DDEs
excluded).

As mentioned earlier, in this chapter we focus on the second approach. We
wish to point out that both types of approaches have advantages and disadvan-
tages. For instance, the methods in [Fri06], [Nic01b] and the methods summarized
in [GKC03] are examples of results where a Lyapunov-Krasovskii functional is
used to construct sufficient but conservative delay-dependent stability conditions
formulated as linear matrix inequalities (LMIs). An advantage of these types of
approaches is that the conditions can be elegantly formulated with LMIs which
allow the automatic application in engineering software. A disadvantage is that
the results are often conservative and may impose unnecessarily pessimistic con-
straints, cf. the stability analysis S2, S3 in Example 3.6. Moreover, the treatment
of LMIs of large dimension is currently computationally cumbersome.

In the sequel we will restrict the discussion to methods based on the analysis
of imaginary eigenvalues.

The large number of publications with sometimes large intersections make a
complete overview difficult. The book by Bellman and Cooke [BC63] still serves
as a standard reference in the field of time-delay systems. In order to limit the
discussion we will focus on works after the appearance of this book. The book
contains a fair amount of references to earlier works on time-delay systems in
general and stability conditions based on imaginary eigenvalues such as important
earlier methods, e.g. the Nyquist criterion and the root-locus methods. For more
complete overviews of more recent stability conditions and methods for stability
analysis, we refer the reader to the book of Niculescu [Nic01a] and the recent
book of Michiels and Niculescu [MN07b, Chapter 3-4].

It is not astonishing that works prior to the book of Bellman and Cook have
a focus on exact explicit conditions for systems of low order, and that research
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after the book has been in the direction of more general systems with expressions
computable on a computer.

We mention two representative early results.

Theorem 3.7 ([Hay50] see also [BC63, Theorem 13.8]) All the roots of pes+
q − ses = 0, where p, q ∈ R, have negative real parts if and only if

(a) p < 1, and

(b) p < −q <
√
a2
1 + p2

where a1 is the root of a = p tan(a) such that 0 < a < π. If p = 0, we let
a1 = π/2.

Theorem 3.8 ([BC63, Theorem 13.12], see also [Min48]) Let H(s) = s2es+
as+ b where a, b ∈ R. Denote by ca the root of the equation (there is such a root
if (a) below holds)

sin(ca) = a/ca

which lies on the interval (0, π/2). A necessary and sufficient condition that all
the roots of H(s) = 0 lie in C− is that

(a) 0 < a < π/2

(b) 0 < b < c2a cos(ca).

In Table 3.1 we have listed some of the important works in the field after
1963. From the table, it is clear that the main focus of the research has shifted.
Early research was done on single-delay scalar systems and typically yielding
Routh-Hurwitz criteria and exact trigonometric expressions. The recent advances
involve state-space representations and exact conditions expressed in terms of
eigenvalue problems (matrix pencil methods). In the last couple of years the
focus has been to generalize the theory from retarded systems with a single-delay
or commensurate systems to neutral systems with multiple delays.

We describe some of the works from Table 3.1 in more detail. Note that in
order to keep the discussion consistent and limited we explain some results in
a slightly less general setting than in the original works. Moreover, Table 3.1
should be interpreted with care as the characteristic equation does not reveal
other results in the analysis. For instance, the authors of [FR86] and [RV07] give
a thorough analysis of some classes of nonlinear time-delay systems.
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Year Characteristic equation Comment References

1964 s3 + a1s2 + a2s + a3 + a4e−τs = 0 Classification [Muf64]
1969 P (s) + Q(s)e−τs = 0, retarded τ-decomposition [LH69]
1980 −s +

Pm
k=0 ak(s)e−skh = 0 Rekasius [Rek80] [Tho81] [HJZ84]

1982 P (s) + Q(s)e−τs = 0 Geometric [Mah82]
1982 s2 + as + bse−τs + c + de−τs = 0 Trigonometric [CG82]
1986 P (s) + Q(s)e−τs = 0 Trigonometric [CvdD86] [Boe98]

1986 det

 
−sI +

 
a0 a1
a2 a3

!
+

 
b0e−sτ1 c1e−sτ2

b2e−sτ1 c3e−sτ2

!!
= 0 Estimates [FR86]

1987 P (s) + Q(s)e−τs = 0 Polynomial [WM87] [BP07]
1989 e.g. s2 + a + be−τ1s + be−τ2s = 0 Trigonometric [Sté89]
1991 s + a + be−sτ1 + ce−sτ2 = 0 Classification [Hal91],[HH93]
1994 −s + e−sτ1 + ae−sτ2 = 0 Geometric [BC94], [LRW99], [Pio07]

1995 s2 + s
P

ake−sτk +
P

bke−sτk = 0 Geometric [Boe95]

1995 det
“
−sI +

Pm
k=0 Ake−kτs

”
= 0 Matrix pencil [CGN95], [Nic98],[NFC05]

1995 s + a + be−τ1s + ce−τ2s = 0 Trigonometric [MJZ95]

1996 det
“
−sI + A0e−hs

”
= 0, A0 ∈ R2×2 Trace, Norm [HS96]

2000 det(−sI + αA + (1 − α)Ae−τs) = 0 Geometric [CS00]

2001 det
“

s(I + B1e−hs) − (A0 + A1e−hs)
”

= 0 Matrix pencil [Lou01]

2002 P (s, τ) + Q(s, τ)e−τs = 0 Trigonometric [BK02]

2002 det
“

sI + A0 + A1e−τs
”

= 0 =
Pn

k=0 ak(s)e−kτs = 0 Routh table [OS02]

2004 P (s, τ) + Q(s, τ)e−sτ + R(s, τ)e−2sτ = 0 Trigonometric [LM04]
2004 a0 + a1e−τs + b0s + b1se−τs + s2 = 0 Trigonometric [CS04]

2004 det
“
−sI + A0 + A1e−τs

”
= 0 Routh table [OS04]

2005 p0(s) + p1(s)e−τ1s + p2(s)e−τ2s = 0 Parameterization [GNC05]

2005 det
“
−sI + A0 + A1e−τ1s + A2e−τ2s

”
= 0, n = 3 Routh array [SO05]

2005 s4 + as3 + bs2 + cs + d + re−sτ = 0 Trigonometric [LW05]
2006 s(1 − ae−τ1s − be−τ2s)

−ce−τ1s − de−τ2s − fe−(τ1+τ2)s − g = 0

Routh table [SO06a]

2006 s2 + a1s + a0 + (b2s2 + b1s + b0)e−sh = 0 Trigonometric [MM06]
2006 det(−sI + A0 + A1e−τs) = 0 Single delay [SO06b]

2006 det
“
−B0s +

Pm
k=0 Ake−kτs

”
= 0, det(B0) = 0 Matrix pencil [NFC06]

2006 det
“
−sI +

Pm
k=0 Ake−τks

”
= 0 Matrix pencil [Jar06a] (Section 3.3)

2006 det
“
−s(I +

Pm
k=1 Bke−kτs) +

Pm
k=0 Ake−kτs

”
= 0 Matrix pencil [FNC06]

2006 s + ae−τ1s + be−τ2s = 0 Trigonometric [Lev06]

2007 det
“
−s

“Pm
k=0 Bke−τks

”
+
Pm

k=0 Ake−τks
”

= 0 Matrix pencil [Jar07] (Section 3.4)

2007 −s + a + b−sτ = 0 Nonlinear [RV07]
2007 a(τ)s + b(τ) + c(τ)e−sτ + d(τ)e−2sτ = 0 Trigonometric [SLHT07]

2007 det
“
−sI +

Pm
k=0 Ake−τks

”
= 0 Sum of sq. [MEA07]

2007 det
“
−s(I +

Pm
k=1 Bke−kτs) +

Pm
k=0 Ake−kτs

”
= 0 Multivariate [MVZ+07]

2007 det
“
−sI +

Pm
k=0 e−τks

”
= 0 Matrix pencil [EOF07]

2008 det(s(I − Ae−τ1s − Be−τ2s − Ce−(τ1+τ2)s)

− De−τ1s − F e−τ2s − Ge−(τ1+τ2)s + H) = 0

Routh, QPMR [OVS08]

Table 3.1: Some stability conditions based on imaginary eigenvalues between
1963-2007, i.e., from the book of Bellman and Cooke [BC63] until present.

Geometric/trigonometric analysis

The paper by Cooke and Grossmann [CG82] is a commonly cited important work
on exact stability conditions for single-delay scalar first-order and some second-
order systems. This is a clear example how explicit exact stability conditions can
sometimes be expressed as trigonometric functions. The most general result is
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for equations of the type ẍ(t) + aẋ(t) + bẋ(t − τ) + cx(t) + dx(t − τ) = 0. The
only possible imaginary eigenvalues for this DDE are iω, where

ω = ±

√
b2 − a2 + 2c±

√
1
4
(b2 − a2 + 2c)2 − (c2 − d2).

The critical delays are

τ =
1
ω

(
acos

(
d(ω2 − c)− ω2ab

b2ω2 + d2

)
+ 2pπ

)
.

Some parts of this work were generalized in [CvdD86] and later corrected
in [Boe98]. It was shown that the critical delays are characterized by the two
equations

sin(τω) =
PR(ω)QI(ω) +QR(ω)PI(ω)

Q2
R +Q2

I

and

cos(τω) =
−(PR(ω)QR(ω) +QI(ω)PI(ω))

Q2
R +Q2

I

,

where the PR, PI , QR and QI are the real/imaginary parts of the linear and ex-
ponential polynomials in the characteristic equation p(iω) = P (iω)+Q(iω)e−iωτ .
Furthermore, the crossing direction, i.e., the sign of the derivative with respect
to the delay at the critical imaginary eigenvalue iω is given by

sign Re
ds

dτ
= sign (PR(ω)P ′R(ω) + PI(ω)P ′I(ω)−QR(ω)Q′R(ω)−QI(ω)Q′I(ω)).

Another related geometric analysis is performed in [BK02] for the case that
the coefficients are dependent on the delays. The setting of the work is a general
single-delay setting, with characteristic equation p(λ, τ) = P (λ, τ) +Q(λ, τ)e−λτ

for given functions P and Q which are polynomials in λ. The authors present
necessary conditions for a stability switch. The condition is expressed using
the roots of the nonlinear equation F (ω, τ) = |P (iω, τ)|2 − |Q(iω, τ)|2. The
coefficients are dependent on the delay in some applications from population
dynamics.

The retarded scalar two-delay systems were further analyzed in [Hal91] and
[HH93], where the shape of the stability region as well as the Hopf bifurcation
curves (critical curves) were classified using a geometric interpretation of con-
structed comparison functions. In a sense, this work is extended in [GNC05]
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by generalizing it to some neutral systems and giving a parameterization of the
critical delays consisting of trigonometric expressions. We give an explicit exam-
ple of that method in Example 3.11. The analysis is relevant in applications in
population dynamics models for leukemia. [NKGL06] .

Exact conditions for second order systems with a single delay are revisited
and reformulated in [MM06].

We now mention some less known works where the stability of some DDEs
can be expressed as inequalities in terms of trace and norm. Explicit conditions
for time-delay systems containing only delay and differential-terms, i.e., ẋ(t) =
Ax(t− τ) where A ∈ R2×2 are treated in [HS96]. The conditions are compactly
stated in terms of trace of A and matrix-norms. One of the results is: The system
is stable if and only if

2
√
||A|| sin(τ

√
||A||) < −TrA <

π

2τ
+

2τ ||A||
π

(3.9)

and
0 < τ2||A|| <

(π
2

)
.

See also the results and reviews in [Mat07].

Rekasius-type analysis

Methods based on the Rekasius substitution represent another set of methods
used to analyze delay-space stability. The method can be used to find conditions
such that the delay-system has a purely imaginary eigenvalue by transforming
the characteristic equation containing exponential terms to a polynomial. In
its simplest form the Rekasius substitution does the following: The problem of
determining h ∈ R+ such that −iω + a+ be−hiω = 0 is replaced by the problem
to find T ∈ R (sometimes called pseudodelay) such that

−iω + a+ b
1− iωT

1 + iωT
= 0.

This equation can be solved for T and ω by separating real and imaginary parts,
which both are polynomials. Once T and ω are found, h can be computed by
inverting the transformation e−hiω = 1−iωT

1+iωT , i.e., h = 2
ω [atan(ωT ) + pπ] for

any p ∈ Z. We note that the Rekasius substitution is in other contexts called
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a Möbius transformation (bilinear transformation) and is a special case of the
Cayley transformation of e−hs.

These ideas were presented in [Rek80] and [Tho81]. It was further developed
in [HJZ84] (and references therein) where some inconsistencies were corrected by
introducing an additional Routh-Hurwitz type test. A related method (called
the direct method) was presented in [WM87] (reinterpreted in [Par04a]) and gen-
eralized to fractional delay systems in [BP07] where the idea is to find s and h

such that p(s, h) = 0 and p(−s, h) = 0 for the characteristic quasi-polynomial p.
A Rekasius approach was also recently used in a series of papers on time-delay
systems with multiple delays ([OS02], [OS03], [SO05], [SO06c], [FSO07]) and
on a restricted set of neutral systems in [OS04] and [SO06a]. For the multiple-
delay case the method allows the computation of the points where the eigenvalues
cross the imaginary axis (called crossing frequency) by setting up a parameterized
Routh array. These works also contain an analysis of the root-crossing direction
(called the root-invariance property) which allows the computation of the num-
ber of unstable roots for each stability region in delay-space in a semi-automatic
manner.

The Rekasius substitution was also used in a work by Ebenbauer and Allgöwer
[EA06] and Münz et al. [MEA07]. The authors derive sufficient conditions by
combining the Rekasius substitution with the sum of squares technique.

Matrix pencil methods

For larger problems, most of the results mentioned above are unsuitable as they
are based on a reasoning with scalar conditions. Some more recent results are
stated directly in terms of the system matrices without computing the coefficients
in the characteristic equation. One such group of results are those based on
eigenvalues of a matrix pencil. The simplest form is the characterization of the
critical delays for a DDE with a single delay ẋ(t) = A0x(t) + A1x(t − h). They
can be computed from the expression

h =
Arg z + 2pπ

ω
, where z : det(z2I ⊗A1 + z(I ⊗A0 +A0 ⊗ I) +A1 ⊗ I) = 0,

and iω ∈ σ(A0 +A1z),

where ⊗ is the Kronecker product as usual. This can be derived from The-
orem 3.18. A similar expression can be found for DDEs with commensurate
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delays in [CGN95] and for neutral DDEs in [Lou01].

To the authors knowledge, the following result was the first matrix pencil
method for neutral DDEs.

Theorem 3.9 ([Lou01, Theorem 3.1]) Let A0, A1, B1 ∈ Rn×n. Then all imag-
inary axis eigenvalues of the DDE

ẋ(t) +B1ẋ(t− τ) = A0x(t) +A1x(t− τ) (3.10)

are zeros of det((sI −A0)⊗ (sI +A0)− (sB1 −A1)⊗ (sB1 +A1)) = 0 and thus
also of

det

(
s

(
I ⊗ I B1 ⊗ I

I ⊗B1 I ⊗ I

)
−

(
A0 ⊗ I A1 ⊗ I

−I ⊗A1 −I ⊗A0

))
= 0. (3.11)

If s ∈ iR is an eigenvalue of (3.10) with associated eigenvector v then w =
vec vv∗ is the kernel corresponding to the matrix pencil in (3.11).

The first matrix pencil for commensurate DDEs was given in [CGN95] and
extended with a formula for the switching direction in [NFC05]. These results
were generalized to delay-differential algebraic equations (DDAEs) in [NFC06]
and to neutral systems in [FNC06].

One way to describe T for DDEs with multiple delays, is (as mentioned) to
give a parameterization of T . The parameterizations presented in Section 3.3
for retarded DDEs and for neutral DDEs in Section 3.4, are also matrix pencil
methods because each evaluation involves the solution of a quadratic eigenvalue
problem. Finally, the method in [EOF07] is also a matrix pencil method for
DDEs with multiple delays.

It is worthwhile to discuss technical and presentational details of [EOF07]
since the parameterization presented in Section 3.3 and the method presented in
[EOF07] are equivalent in exact arithmetic. Parts of the results of Section 3.3
were published in proceedings of international conferences [Jar06a]. Early results
of [EOF07] were presented in the proceedings of the same international conference
[EO06].

In the derivation in Section 3.3 we construct a matrix equation which can be
vectorized into a quadratic eigenvalue problem with matrix-coefficients expressed
with Kronecker products. The derivation in [EOF07] is done entirely in vectorized
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form, i.e., the authors construct the sum of Kronecker products (Kronecker sums)
with the characteristic equation.

The focus in Section 3.3 is to construct a parameterization, i.e., a mapping
containing computable expressions, and not to efficiently numerically compute
the critical delays . The method in [EOF07] is presented with the idea in mind
that a numerical procedure should be produced. The method constructed is
shown to be more efficient than some numerical procedures in previous publi-
cations of the authors. It is easy to think of other efficient numerical schemes,
e.g. the natural ideas to numerically compute T in Remark 3.3.

In the numerical examples, the authors of [EOF07] suggest to explicitly com-
pute the coefficients in the characteristic polynomial (of the quadratic eigenvalue
problem). This is known to be a numerically unstable representation of an eigen-
value problem, and particularly unsuitable for a numerical procedure.

Furthermore, even though the numerical procedure “works” for many practi-
cal cases, it easy to think of technical ambiguities for the definitions and theorems
of [EOF07]. For instance, the case that the origin can be an eigenvalue is not
properly excluded. Trivially, if all matrices are zero, then s = 0 is the only
eigenvalue for any choice of the delays. Since several expressions contain 1/ω
the results are not well defined. Even in the limit, there are ambiguities. The
(so-called) kernel hypersurfaces in [EOF07, Definition 1] contain 1/ω, which in
the limit means that the kernel hypersurfaces are in the limit (roughly speaking)
Rm

+ . In [EOF07, Corollary 1] it is stated that the number of kernel hypersurfaces
is bounded by n2. It is not clear how number of kernel hypersurfaces is defined.
In particular, there is no obvious definition if ω = 0 or in the limit case. The
same ambiguities occur for other singular DDEs.

Finally, in [EOF07], the numerical difficulties of the methods are discussed
and related to the NP-hardness results of Toker and Özbai [TÖ96]. The results
of Toker and Özbai have no impact on a numerical procedure for the critical
delays. See the discussion in Section 3.7.

3.3 A parameterization for retarded DDEs

The main problem of this chapter, i.e., Problem 3.2, is to determine an exact
representation of T which is useful in the sense that much stability information
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is available by inspection or by using a finite number of elementary operation.

The representation we suggest is a parameterization. In our context, a pa-
rameterization is a mapping from a simple mathematical object, which we will
(for the moment) call X, such that the union of the range of the mapping is
T . That is, h : X → {Rm

+} is a parameterization of T if it has the surjective
property,

T =
⋃

x∈X

h(x). (3.12)

Note that h is a mapping from X onto the set of all subsets of T . Clearly, if
h(x) consists of only one element for all x ∈ X, then (3.12) is the definition of a
surjective mapping onto T .

In order to have a result useful in practice, we want a mapping which is explicit
and consists of a finite number of elementary operations. At least, it should be
possible to evaluate h (at least on a computer) with moderate computational
effort.

In the parameterization we present (essentially given in Theorem 3.14), X =
[−π, π]m−1×Zm and the mapping h is expressed in terms of trigonometric expres-
sion for the scalar case, i.e., n = 1, and consists of a quadratic eigenvalue problem
for the general case n > 1. Quadratic eigenvalue problems can be rewritten into
a linear eigenvalue problem (see Appendix A.1), i.e., the problem of determining
the eigenvalues of a matrix. The eigenvalue problem is one of the fundamental
problems in numerical linear algebra and can be solved to sufficient precision in
a reasonable amount of time if the dimension is moderate. In our case, h(x) is
a finite set if the quadratic eigenvalue problem does not have infinite eigenval-
ues (since a quadratic eigenvalue problem of dimension N can have at most 2N
eigenvalues).

In order to make the presentation smoother in the example that follows, we
sketch the derivation for the scalar DDE with two delays and make notes how
the result changes for the general case.

Example 3.10 Suppose we have a purely imaginary eigenvalue s = iω with
corresponding eigenvector v, i.e., M(iω)v = 0. The characteristic equation for a
DDE with two delays is

M(iω)v =
(
−iωI +A0 +A1e

−ih1ω +A2e
−ih2ω

)
v = 0.
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We now set ϕ := h1ω as a free parameter in the parameterization and denote
z := eih2ω ∈ ∂D. As usual we denote the unit disc by D := {z ∈ R : |z| < 1} and
∂D the unit circle. The characteristic equation is now

M(iω)v =
(
−iωI +A0 +A1e

−iϕ +A2z
)
v = 0, v 6= 0. (3.13)

Clearly, it is 2π-periodic in ϕ, it will hence be enough to let ϕ run through the
whole span [−π, π]. That is, for each choice of ϕ in this interval we will find
some points on the critical curves. We will see later that it does indeed have the
surjective property (3.12).

If we first consider the scalar case, i.e., A0 = a0, A1 = a1, A2 = a2 ∈ R
the equation (3.13) corresponds to two scalar conditions (say real and imaginary
parts) and we can eliminate either ω or z. In the approach presented here, we
eliminate ω by forming the sum of (3.13) and its complex conjugate, i.e.,

0 = 2a0 + a1e
−iϕ + a2z̄ + a1e

iϕ + a2z = a2z̄ + 2a0 + 2a1 cos(ϕ) + a2z. (3.14)

Multiplying with z yields the quadratic equation,

a2z
2 + 2z(a0 + a1 cos(ϕ)) + a2 = 0,

since zz̄ = 1. It has the two solutions

z =
−(a0 + a1 cos(ϕ))± i

√
a2
2 − (a0 + a1 cos(ϕ))2

a2
,

assuming a2 6= 0. We can now give a formula for ω by inserting z into (3.13)
and rearrange the terms, i.e.,

iω = a0 + a1e
−iϕ + a2z = i

(
−a1 sin(ϕ)±

√
a2
2 − (a0 + a1 cos(ϕ))2

)
.

Since z = e−ih2ω and ϕ = h1ω, a parametrization of the critical curves is

h̄(ϕ) =

(
h1

h2

)
=

 ϕ+2pπ

−a1 sin(ϕ)±
√

a2
2−(a0+a1 cos(ϕ))2

−Arg z+2qπ

−a1 sin(ϕ)±
√

a2
2−(a0+a1 cos(ϕ))2

 , (3.15)

where Arg z = ±sign (a2)acos
(
−a0+a1 cos(ϕ)

a2

)
for any p, q ∈ Z and ϕ ∈ [−π, π].

Note that the signs must be matched, i.e., for each choice of the free parameter
ϕ and branches p and q, the parameterization has two critical delays.
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For the more general case, i.e., an arbitrary number of delays and any dimen-
sion of the system the same general elimination can be carried out. The number
of delays is compensated by introducing more free parameterization variables. If
the system matrices A0, A1 and A2 are not scalar, the elimination of ω in equa-
tion (3.14) must be modified. This step involves taking the sum of (3.13) and
its complex conjugate. Since v is typically a complex vector, the sum of (3.13)
and its complex conjugate will not eliminate ω. Taking the sum of (3.13) and
its complex conjugate transpose is of course also not possible as the dimensions
do not fit. Instead we form the sum of M(s)vv∗ and vv∗M(s)∗, where A∗ de-
notes the complex conjugate transpose of A. We believe this is a natural way to
generalize the elimination of ω. Clearly,

0 = M(s)vv∗ + vv∗M(s)∗ =

= A2vv
∗z + ((A0 +A1e

−iϕ)vv∗ + vv∗(AT
0 +AT

1 e
iϕ)) + vv∗AT

2 z̄,

which is a matrix equation. This equation can be rewritten into a quadratic eigen-
value problem by vectorization, i.e., stacking the columns of the matrix on top
of each other. Quadratic eigenvalue problems can be rewritten into a generalized
eigenvalue problem using a so-called companion linearization (see Appendix A.1).
As we will see later, if n is not large, there are numerical methods to find all z.
We can then compute the corresponding ω and the critical delays in a similar
way as for the scalar case.

Even though the motivation above is simple, it is not clear that all steps
involved are reversible, i.e., there is no convincing argument to ensure that we
get all critical delays. For that reason, we formalize the discussion in the sections
that follow. At the same time we generalize the method to an arbitrary number of
delays. The generalization is such that if we have m delays there are m− 1 free
parameters. We need to solve a quadratic eigenvalue problem for each choice of
the parameters. In order to compare the method with related approaches we also
discuss the case where the delays are (fixed) integer multiples of the first delay,
i.e., commensurate delays.

The parameterization of T we present is not the first in the literature. To
the author’s knowledge, it is however the first parameterization for an arbitrary
number of delays and arbitrary dimension.

The analysis of Gu et al. [GNC05] (see also [Mor06, Chapter 3] and [MN07b,
Chapter 3]) can be interpreted as a parameterization of T for some DDEs with
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two delays. They treat ω ∈ R, i.e., the imaginary eigenvalue (frequency), as
free parameter. This method has been successfully used to describe stability
properties of the Smith predictor [MNG07]. Similar ideas were used for DDEs
with a distributed delay-term which has applications in population dynamics and
in particular Cushings linear equation [MNG06] and [MN02].

In our context, they construct a parameterization h : X → R2
+ with X =

R+×Z2. The main result can be stated as follows. If the characteristic equation
can be rewritten as

1 + a1(s)e−h1s + a2(s)e−h2s = 0, (3.16)

where a1 and a2 are rational functions, a parameterization of the critical curves
is given by

h1 =
Arg (a1(iω)) + (2p− 1)π ± θ1

ω
, θ1 = acos

(
1 + |a1(iω)|2 − |a2(iω)|2

2|a1(iω)|

)
,

h2 =
Arg (a2(iω)) + (2q − 1)π ∓ θ2

ω
, θ2 = acos

(
1 + |a2(iω)|2 − |a1(iω)|2

2|a2(iω)|

)
.

Note that not all characteristic equations can be written on the form (3.16).

Example 3.11 (Different parameterizations) In order to demonstrate the
difference between (3.15) and the parameterization in [GNC05], we construct the
parameterizations of the critical curves for the case that a0 = a1 = −1, a2 = − 1

2

(taken from [MN07a, Figure 5.1]). According to (3.15), the critical curves are
given by,

h(ϕ) =

 ϕ+2pπ

sin(ϕ)± 1
2

√
5+8 cos(ϕ)+4 cos2(ϕ)

±acos(−2−2 cos(ϕ))+2qπ

sin(ϕ)± 1
2

√
5+8 cos(ϕ)+4 cos2(ϕ)

 .

The set critical curves are shown in Figure 3.2. The minimum of the 2-norm
of h(x), is ‖h(x)‖2 ≈ 2.896 and taken at x ≈ −0.7012 where ω ≈ 1.1139, h1 ≈
2.1078 and h2 ≈ 1.9853.

In the context of [GNC05], a1(iω) = 1
1+iω , a2(iω) = 1

2(1+iω) and the parame-
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Figure 3.2: The set of critical curves T for Example 3.11

terization is given by

h1 =
−Arg (1 + iω) + (2p− 1)π ± θ1(ω)

ω
=

=
1
ω

(
−atan(ω)± acos

(
1
2

√
1 + ω2 +

3
8
√

1 + ω2

)
+ (2p− 1)π

)
h2 =

−Arg (1 + iω) + (2q − 1)π ∓ θ2(ω)
ω

=
1
ω

(
−atan(ω)∓ acos

(√
1 + ω2 − 3

4
√

1 + ω2

)
+ (2q − 1)π

)
,

which represent the same set of curves, but has a surprisingly small obvious sim-
ilarity with the other parameterization (3.15).

3.3.1 Main results

We present the parameterization as follows. An equivalence between the charac-
teristic equation and a matrix equation involving the parameter dependent matrix
L(X, s) := M(s)X+XM(s)∗ is first given in Lemma 3.12. The operator L takes
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a particularly simple form for purely imaginary eigenvalues, which makes it pos-
sible to state a parameterization containing a matrix equation (Theorem 3.14).
It is desirable that the parameterization consists only of formulas containing
elementary operations. Here, this is possible because the matrix equation in
Theorem 3.14 can be vectorized yielding a quadratic eigenvalue problem. For the
scalar case, the quadratic eigenvalue problem is a quadratic equation which we
can solve explicitly and express the parameterization in terms of trigonometric
expressions.

Lemma 3.12 Suppose M is a parameter dependent matrix M : C → Cn×n. Let
s ∈ C, v ∈ Cn, v∗v = 1 and L : (Cn×n,C) → Cn×n defined by L(X, s) :=
M(s)X +XM(s)∗, then the following statements are equivalent:

M(s)v = 0 (3.17)

L(vv∗, s) = 0 ∧ v∗M(s)v = 0. (3.18)

Proof: The forward implication is clear from definitions. The backward implica-
tion, i.e., (3.18)⇒(3.17), is clear from the identity

M(s)v = L(vv∗, s)v − vv∗M(s)∗v.

�

In particular, if M is the characteristic matrix function (3.3) then s = iω is an
eigenvalue if and only if

0 =
m∑

k=0

(
Akvv

∗e−ihkω + vv∗AT
k e

ihkω
)

and

(
iω =

m∑
k=0

v∗Akve
−ihkω

)
.

Note that we have eliminated the linear term −sI in M when constructing L.
Similar to the sketch in Example 3.10 we introduce the free variables ϕk = hkω,
k = 1, . . . ,m − 1 and let z = e−ihmω. To simplify the formulation of the main
theorem the following singular case is treated separately.

Lemma 3.13 Suppose there is (h1, . . . , hm) ∈ Rm
+ such that 0 ∈ σ(Σ), then

T = Rm
+ .

Proof: If s = 0 ∈ σ(Σ) for h1, . . . , hm ∈ Rm
+ and h0 = 0 then

0 = det

(
−sI +

m∑
k=0

Ake
−hks

)
= det

(
−sI +

m∑
k=0

Ake
−τks

)
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for any τ1, . . . , τm and τ0 = 0. Hence, 0 ∈ iR is in σ(Σ) and σ(Σ)∩ iR ⊃ {0} 6= ∅
independently of τ1, . . . , τm. �

The parameterization is now given by the following theorem.

Theorem 3.14 Let Σ be the nonsingular DDE (3.1), i.e., 0 6∈ σ(Σ), with the
fixed coefficients Ak ∈ Rn×n, k = 0, . . . ,m. For any given combination of ϕk ∈
[−π, π], k = 1, . . . ,m− 1, pk ∈ Z, k = 1, . . . ,m, let z ∈ ∂D and v ∈ Cn, v∗v = 1
be a solution of the matrix equation

z2Amvv
∗ + z

(
m−1∑
k=0

Akvv
∗e−iϕk + vv∗AT

k e
iϕk

)
+ vv∗AT

m = 0, (3.19)

where ϕ0 = 0. Moreover, let

ω = −iv∗
(
Amz +

m−1∑
k=0

Ake
−iϕk

)
v, (3.20)

and

hk =
ϕk + 2pkπ

ω
, k = 1, . . . ,m− 1,

hm =
−Arg z + 2pmπ

ω
.

Then ω ∈ R and (h1, . . . , hm) ∈ T . Furthermore, every point in T corresponds
to (at least) one combination of ϕ1, . . . , ϕm−1, p1, . . . , pm, i.e., the mapping h =
(ϕ1, . . . , ϕm−1, p1, . . . pm) 7→ {(h1, . . . , hm)} is a parameterization and

T =
⋃

ϕk∈[−π,π],pk∈Z

h(ϕ1, . . . , ϕm−1, p1, . . . pm).

Proof: We first prove that ω ∈ R. Multiplication of (3.19) from the left with v∗

and from the right with v and z yields,

zv∗Amv +

(
m−1∑
k=0

v∗Akve
−iϕk + v∗AT

k ve
iϕk

)
+ z̄v∗AT

mv = 0. (3.21)

Denote α = zv∗Amv+
∑m−1

k=0 v∗Akve
−iϕk . Note that (3.21) implies that α+α∗ =

0. Hence, Re α = 0 and ω ∈ R.
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The rest of the proof consists of applying Lemma 3.12 in both directions.

We will first show that the construction of v ∈ Cn, ω, z, h1, . . . , hm yields
that M(iω)v = 0. From Lemma 3.12 it is sufficient to show that L(vv∗, iω) = 0
and v∗M(iω)v = 0. The construction of h1, . . . , hm yields that z = e−ihmω and
e−iϕk = e−ihkω. Let v ∈ Cn satisify (3.19) and ω ∈ R satisfy (3.20). Note that
(3.19) is zL(vv∗, iω) = 0 and (3.20) is iv∗M(iω)v = 0. Since z 6= 0, and z = z−1

we have that M(iω)v = 0.

It remains to show that h is surjective, i.e., for every point in (h1, . . . , hm) ∈ T
there is at least one combination of ϕ1, . . . , ϕm−1, p1, . . . , pm fullfilling (3.20) and
(3.19). Suppose Σ has eigenvalue iω 6= 0 for some combination of the delays
h1, . . . , hm. Again, using Lemma 3.12 and the construction of z, ϕk we have
(3.19) and (3.20). �

Note that the mapping h is in fact a mapping from ([−π, π]m−1,Zm) onto the
set of all subsets of T (and not to T ). That is, for each choice of ϕ1, . . . , ϕm−1,
p1, . . . , pm we may get several elements of T or possibly ∅.

For the problem we consider, i.e., Problem 3.2, the goal was to construct a
parameterization consisting of computable expressions. It remains to show that
(3.19) and (3.20) are computable expressions. It turns out that the matrix equa-
tion (3.19) can be vectorized into a quadratic eigenvalue problem, which can be
rewritten into a generalized eigenvalue problem, e.g. by companion linearization
(see Appendix A.1). Hence, Theorem 3.14 corresponds to a computable param-
eterization if we can solve the corresponding eigenvalue problem efficiently.

The matrix equation (3.19) can be restated into an eigenvalue problem as
follows. If we stack the columns of (3.19) on top of each-other, then

(
z2I ⊗Am + z

m−1∑
k=0

Lk(ϕk) +Am ⊗ I

)
u = 0, (3.22)

where u = v̄ ⊗ v and Lk(ϕk) := I ⊗ Ake
−iϕk + Ak ⊗ Ieiϕk . As usual ⊗ denotes

the Kronecker product. This operation of rearranging the equations of a matrix
equation into a vector equation is called vectorization. Problems of the type
(Mz2 +Gz+K)v = 0, e.g., (3.22), are known as a quadratic eigenvalue problems
in the field of numerical linear algebra. Theoretical and numerical properties of
the quadratic eigenproblem are reviewed in the survey article [TM01].
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The most commonly used methods used to analyze and numerically solve
quadratic eigenvalue problems are based on a transformation of the quadratic
eigenvalue problem into a generalized eigenvalue problem. In its simplest form,
this operation, often called linearization or companion linearization here yields,(

0 I

Am ⊗ I
∑m−1

k=0 Lk(ϕk)

)(
u

zu

)
= z

(
I 0
0 −I ⊗Am

)(
u

zu

)
. (3.23)

The formulations (3.23) and (3.22) are equivalent except from possibly the mul-
tiplicity of infinite eigenvalues. The equivalence essentially follows from the fact
that the first block row in (3.23) is the trivial statement zu = zu, and the second
block row is (3.22).

Historically, companion linearization of quadratic eigenvalue problems has a
strong connection with the corresponding operation on systems of ordinary dif-
ferential equations. It has been used in the field of ordinary differential for a long
time and could possibly be called folklore, at least in the field of ordinary differ-
ential equations. However, many companion linearizations and generalizations
were only recently classified in [MMMM06b]. The type of appropriate compan-
ion linearization typically depend on the structure of the matrices. An adequate
(structure preserving) linearization preserves properties such as symmetry and
eigenvalue pairing. In particular, a structure preserving linearization is often bet-
ter because a structured matrix can be represented (on a computer) in such a way
that rounding errors do not destroy the symmetry of the eigenvalues. Moreover,
structured matrices can often be stored (in memory) with less memory resources.

The structure of (3.22) as well as a structured linearization was recently
discussed in [FMMS07]. The quadratic eigenvalue problem (3.22) has the sym-
metry property that there exists a permutation matrix such that if the matrices
are conjugated and their order is reversed, we are back at the original eigen-
value problem. This stems from the fact there is a permutation matrix P such
that multiplication of this P from both sides reverses order of terms in a Kro-
necker product. That is, there is a permutation matrix P (independent of B
and C) such that B ⊗ C = P (C ⊗B)P . The class of quadratic eigenvalue prob-
lem (3.22) with this symmetry property were named PCP-eigenvalue problem
(permutation-conjugation-permutation) in [FMMS07].

The methods based on linearizations are by far the most common in the liter-
ature. There are however also other numerical methods to solve quadratic eigen-
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value problems which are not based on linearization, e.g., Jacobi-Davidson (for
polynomial eigenvalue problems) [SBFvdV96] and second order Arnoldi [BS05].

With these methods it is possible (unless n is large) to find the eigenpairs of
(3.23) to sufficient accuracy on a computer.

Note that it is not possible (in general) to exactly compute the eigenpairs of
an eigenvalue problem (e.g. on a computer) without rounding errors. Hence, a
numerically computed eigenvector of a solution to (3.23) will normally not fulfill
u = v̄⊗ v (exactly). Since we wish to be able to evaluate the parameterization h
to a high accuracy on a computer (only using elementary operations) it remains
to show how v can be determined to sufficient accuracy given a numerically
approximation of u (computed to sufficient accuracy). But first, we show that ṽ
is a good approximation of v, if ũ ≈ u = v̄ ⊗ v and ¯̃v ⊗ ṽ ≈ ũ.

Lemma 3.15 Let (z, u) be an eigenpair of the quadratic eigenvalue problem
(z2M+zG+K)u = 0 and u = v̄⊗v, ‖v‖ = 1, |z| = 1. Say ũ = u+δ1 = ¯̃v⊗ ṽ+δ2
then the sine of the angle between the approximation v and the vector ṽ is bounded
by

| sin(v, ṽ)| ≤
√
‖δ1‖ (‖M + I‖+ ‖G‖+ ‖K‖) + ‖δ2‖.

Proof: Multiplying the quadratic eigenvalue problem from the left with ũ∗ and
adding z2ũ∗u to both sides, yields

ũ∗uz2 = ũ∗(z2(M + I) + zG+K)u.

We exploit that ũ∗u = (ṽ ⊗ ¯̃v + δ2)∗(u ⊗ ū) = (ṽ∗v)(¯̃v∗v̄) + δ∗2v from which we
deduce that

z2|ṽ∗v|2 = z2(ṽ∗v¯̃v∗v̄) = ũ∗(z2(M + I) + zG+K)u− z2δ∗2u =

= u∗(z2(M + I) + zG+K)u+ δ∗2(z2(M + I) + zG+K)u− z2δ∗2x =

= z2 + δ∗1(z2(M + I) + zG+K)u− z2δ∗2u,

i.e.,
|ṽ∗v|2 = 1 + δ∗1((M + I) + z−1G+Kz−2)u− δ∗2u

and
|ṽ∗v|2 ≥ 1− ‖δ1‖ (‖M + I‖+ ‖G‖+ ‖K‖)− ‖δ2‖,

where we used that |z| = 1. Finally, the proof is completed by the fact that
| sin(v, ṽ)| =

√
1− |v∗ṽ|2. �
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The lemma essentially states that if ũ is a good approximation of a solution
u = v̄ ⊗ v to the quadratic eigenvalue problem (3.19), i.e., ‖δ1‖ is small, and
there is a ṽ such that ṽ⊗ ¯̃v is a good approximation of ũ, i.e., ‖δ2‖ is small, then
ṽ is a good approximation of v, i.e., | sin(ṽ, v)| is small.

Hence, in order to numerically find a solution ṽ, z̃ to (3.19), we should use
the approximate solution ũ of the quadratic eigenvalue problem (3.22), and we
need to determine ũ = ṽ ⊗ ¯̃v + δ2 such that ‖δ2‖ is small.

The problem of determining ṽ given ũ, ũ = ṽ ⊗ ¯̃v + δ2 such that ‖δ2‖ is
small, is a rank-one approximation problem in the following sense. Consider the
matrix-version of the conditions, i.e., we wish to find ṽ given Ũ ∈ Cn×n (where
vec Ũ = u) such

Ũ = ṽṽ∗ + ∆2

and ‖∆2‖ is small. That is, we wish to find the best rank-one approximation of Ũ .
This problem can be numerically solved with the so-called singular value decom-
position (SVD) . A fundamental property of the singular value decomposition of
a matrix M is that the outer product of the left and right vectors corresponding
to the largest singular value form the best rank-one approximation of M . Since
there are numerical methods for the singular value decomposition, we can nu-
merically compute ṽ from the vector corresponding to the largest singular value.

An important theoretical difference between the standard eigenvalue problem
and the generalized eigenvalue problem, e.g. the companion form (3.23), is that
generalized eigenvalue problems can have infinite eigenvalues if the right hand
side is singular, here if Am is singular. The following example demonstrates the
implications for Theorem 3.14 an infinite eigenvalue can have.

Example 3.16 (Singular case) Consider the DDE with

A0 =

(
0 0
0 0

)
, A1 =

(
2 ε

3 1

)
, A2 =

(
1 0
0 0

)
.

With this example we wish to show how an infinite eigenvalue of (3.22) can be
interpreted, and how this appears in Theorem 3.14. For this particular example it
is actually possible to circumvent the problem with the infinite eigenvalue simply
by switching A1 and A2. Here, we will not approach the problem that way, because
that type of reordering of the matrices is not always possible.
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Figure 3.3: Critical curves for Example 3.16

If (3.22) has an infinite eigenvalue, it must have a corresponding eigenvec-
tor such that the quadratic term disappears, i.e., here u = (0, 1)T ⊗ (0, 1)T =
(0, 0, 0, 1)T is the only eigenvector of the correct form. For this v = (0, 1)T , the
quadratic and the constant term in (3.19) are zero, and (3.20) is independent of
z. Since z 6= 0, v is a valid solution of (3.19) only if

A1vv
∗e−iϕ1 + vv∗AT

1 e
iϕ1 = 0. (3.24)

This means that the only choice of ϕ1 which generates a critical delay (corre-
sponding to this v) is when (3.24) is fulfilled. Here (3.24) and hence (3.19) is
fulfilled only if ε = 0 and for ϕ1 = −π

2 +2pπ with the corresponding critical curve
h1 = −π

2 + 2pπ (for any h2). The critical curves are plotted for three choices of
ε in Figure 3.3. From the figure it is easy to identify that for ε = 0 there are
a vertical critical curves, i.e., curves which are independent of h2 correspond-
ing to the contribution of the infinite eigenvalue. If ε > 0 there are no vertical
lines, no infinite eigenvalues and the critical curves are characterized by the finite
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eigenvalues.

A trigonometric parameterization for scalar DDEs

Recall that the goal is to parameterize T with simple exact formulas or expres-
sions. Naturally, for several special cases Theorem 3.14 can be simplified. We
stress an important special case. The parameterization can be expressed in terms
of trigonometric expressions if n = 1, i.e., if the DDE is scalar.

Corollary 3.17 Let Ak = ak ∈ R, k = 0, . . . ,m be the coefficients in the non-
singular DDE (3.1). Let

hk =
ϕk + 2pkπ

ω
, k = 1, . . . ,m− 1,

hm =
∓sign (am)acos

(
−
∑m−1

k=0
ak

am
cos(ϕk),

)
+ 2pmπ

ω
,

ω = −
m−1∑
k=0

ak sin(ϕk)±

√√√√a2
m −

(
m−1∑
k=0

ak cos(ϕk)

)2

,

where pk ∈ Z, k = 1 . . .m, ϕk ∈ [−π, π], k = 1, . . . ,m − 1 and ϕ0 = 0. Then
(h1, . . . , hm) ∈ T . Furthermore, every point in T corresponds to (at least) one
combination of ϕ1, . . . , ϕm−1, p1, . . . , pm, i.e., the mapping,

h = (ϕ1, . . . , ϕm−1, p1, . . . pm) 7→ {(h1, . . . , hm)}

is a parameterization

T =
⋃

ϕk∈[−π,π],pk∈Z

h(ϕ1, . . . , ϕm−1, p1, . . . pm).

Proof: For n = 1, (3.19) is a quadratic equation. We denote the quadratic equation
(3.19), amz

2 + 2bz + am = 0. Clearly,

z =
−b±

√
b2 − a2

m

am
,

which is of unit magnitude, i.e., z ∈ ∂D if and only if |a| ≥ |b|. Since b =∑m−1
k=0 ak cos(ϕk), inserting into (3.20) yields

ω = −
m−1∑
k=0

ak sin(ϕk)±

√√√√a2
m −

(
m−1∑
k=0

ak cos(ϕk)

)2

.
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The proof is completed by noting that

−Arg z = −atan
(
±
√
b2 − a2

m/am

−b/am

)
= ∓sign (am)acos

(
− b

am

)
where atan

(
a
b

)
denotes the four-quadrant inverse tangent atan

(
a
b

)
= Arg b + ia.

�

3.3.2 Plotting critical curves

We expect that the most common way to use the parameterization is to plot T
with a computer. To make our results easily available it is hence worthwhile to
describe the parameterization in an algorithmic way.

The pseudo-code to generate the critical curves for the two-delay DDE is
given in Algorithm 3.1.

Algorithm 3.1 Plotting critical curves

INPUT: Stepsize ∆, matrices A0, . . . , Am

OUTPUT: A list of pairs of critical delays (h1, h2)
1: for ϕ = −π : ∆ : π do

2: Find eigenpairs (zk, uk) of (3.23)
3: for k = 1 : length(z) do

4: if zk is on unit circle then

5: Compute vk such that uk = vec vkv
∗
k

6: Compute ωk = −iv∗k
(
A2zk +A0 +A1e

−iϕ
)
vk

7: Accept critical points (h1, h2)

h1 =
ϕ+ 2pπ
ωk

, p = −pmax, . . . , pmax

h2 =
−Arg zk + 2qπ

ωk
, q = −pmax, . . . , pmax

8: end if

9: end for

10: end for

In Step 1, ∆ is the stepsize of the parameter ϕ. The for-loop in Step 3 is
over all the eigenvalues found in Step 2. In Step 5, the operation of determining
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vk from uk can be done with a singular value decomposition as described after
Lemma 3.15. However, even though the singular value decomposition is in a
sense the most accurate approach, if the eigenvector uk is determined to high
accuracy it will be sufficient (for most cases) to pick any non-zero vector out
the matrificiation of uk, e.g. the first n entries of uk. In Step 7, pmax is the
number of branches which should be included in the computation. Step 7 is not
computationally demanding. We can select pmax so large that the computation
contains all relevant branches, say such that all delays smaller than some delay
tolerance are found. This is possible because the delays are monotonically in-
creasing or decreasing in the branch parameter. The generalization to more than
two delays is straightforward. It involves a nesting of the outer iteration (step
1) with for-loops of the new free variables ϕk and computing the other delays in
step 7 similar to h1.

Note that, as we mentioned in Remark 3.3, the parameterization is not nec-
essarily the most efficient way to plot T numerically. However, in order to have
a useful result it should be possible to evaluate the parameterization efficiently.
Hence, computational aspects of the parameterization are relevant, which is why
we consider more efficient methods for the quadratic eigenvalue problem for mod-
erate or large dimensions in Section 3.3.

3.3.3 Commensurate delays

In Section 3.3.1 we gave a parameterization for the set of critical delays T when
the delays were independent. We now wish to present results similar to the
parameterization in a different setting in order to provide further understanding
to results in the literature, in particular the method by Chen, Gu, Nett [CGN95].

A DDE is called commensurate if all delays are integer multiples of some delay,
say τ . That is, the delays are of the form (h1, . . . , hm) = (τn1, . . . , τnm), nk ∈ Z,
τ ∈ R+. The ordered set of integers (n1, . . . , nm) defines a ray in delay-space,
we now parameterize the critical delays along this ray, i.e., given (n1, . . . , nm) we
characterize the subset of T ,

{(h1, . . . , hm) ∈ T : hk/hj = nk/nj ∈ Q or nj = 0 for all k, j ∈ Z} .

The set is parameterized in the following theorem.

Theorem 3.18 Let Σ be a nonsingular DDE (3.1) with matrices Ak, k = 0, . . . ,m.
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Let nk ∈ Z+ define a direction in delay-space, i.e., (h1, . . . , hm) = (τn1, . . . , τnm),
τ > 0. The critical delays τ along this ray, i.e., T

⋂
(∪τ>0(τn1, . . . , τnm)) are

given by
(h1, . . . , hm) = (τn1, τn2, . . . , τnm),

where
τ =

−Arg z + 2pπ
ω

,

for any p ∈ Z and for v ∈ Cn, v∗v = 1, ω ∈ R, z ∈ ∂D fulfilling
m∑

k=0

(
Akvv

∗znk + vv∗AT
k z

−nk
)

= 0, (3.25)

and

ω = −iv∗
(

m∑
k=0

Akz
nk

)
v, (3.26)

where n0 = 0 for notational convenience.

Proof: The proof is analogous to Theorem 3.14. �

Analogously to Section 3.3.1, if it is possible to find the solutions z and v of
(3.25), then (3.26) yields ω and τ . Without loss of generality we let nm =
maxk∈[1,...,m] nk. After vectorizing the matrix equation (3.25) we find that

m∑
k=0

(
I ⊗Akz

nm+nk +Ak ⊗ Iznm−nk
)
u = 0 (3.27)

where u ∈ Cn2
is the vectorization of vv∗, i.e., u = v̄⊗ v. This equation is of the

form
N∑

k=0

Bkz
ku = 0, (3.28)

which in the literature is known as a polynomial eigenvalue problem. Similar to
quadratic eigenvalue problems, the most common way to solve polynomial eigen-
value problems is by companion linearization, which is analyzed and generalized
in [MMMM06b] and [MMMM06a]. For instance, the eigenvalues of (3.28) are
the eigenvalues corresponding to the generalized eigenvalue problem

z


I

. . .
I

BN

w =


0 I

. . . . . .
0 I

−B0 · · · −BN−2 −BN−1

w, (3.29)
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where w = (uT , zuT , z2uT , · · · zN−1uT )T . By selecting Bk according to the co-
efficients in (3.27), we can compute all solutions z, v to (3.25) by solving the
eigenvalue problem (3.29). Other methods, such as the Jacobi-Davidson method
could be applied directly to the polynomial eigenvalue problem without lineariz-
ing it, as in e.g. [SBFvdV96].

From the approximate solution of (3.28), the Hermitian rank-one matrix ap-
proximating vv∗ can be chosen similar to the choice in the previous section, i.e.,
the principal vector in the singular value decomposition, since the accuracy result
in Lemma 3.15 generalizes to the polynomial case.

Lemma 3.19 Let (z, x) be an eigenpair of the polynomial eigenvalue problem
(3.28) and x = v̄ ⊗ v, ‖x‖ = 1, |z| = 1. Say x̃ = x + y = u ⊗ ū + q is an
approximation of x, then the sine of the angle between the approximation u and
the vector v is bounded by

| sin(u, v)| ≤

√√√√‖y‖(1 +
N∑

k=0

‖Bk‖

)
+ ‖q‖.

Proof: The proof is analogous to the proof of Lemma 3.15. �

Remark 3.20 Theorem 3.18 combined with the companion linearization is very
similar to the results in [CGN95]. If we let hk = hk and transpose the left
terms in (3.27), the companion form (3.29) is the eigenvalue problem occurring
in [CGN95]. The derivation in [CGN95] is based on a vectorized form directly.
The transpose can be explained in our context by fact that we started with L =
M(s)X + XM(s)∗ and X = vv∗. If we started with M(s)X + XM(s), X =
vwT , where w is the left eigenvector, i.e., w∗M(s) = 0 we get an additional
transpose. We found this presentation slightly easier because of the symmetry of
the eigenvector.

3.3.4 Examples

We discuss some particularly interesting examples for the parameterization given
in Theorem 3.14.

Example 3.21 (Classical) Even though the scalar single-delay DDE,

ẋ(t) = a0x(t) + a1x(t− h),
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is well studied in the literature, it is illustrative to rederive classical results using
Theorem 3.14. We will see that T is parameterized with only one integer p. The
quadratic eigenvalue problem (3.22) is

z2a1 + 2za0 + a1 = 0

which has the solutions

z =
−a0 ±

√
a2
0 − a2

1

a1
=
−a0 ± i

√
a2
1 − a2

0

a1
.

The solution z is of unit magnitude if and only if a2
0 ≤ a2

1. If this is not the case,
there are no critical delays. The critical frequencies are given by (3.20)

ω = −i(a1z + a0) = ±
√
a2
1 − a2

0.

From Theorem 3.14 we now have the critical delays

h = −
atan

(±sgn(a1)
√

a2
1−a2

0
−sgn(a1)a0

)
+ 2pπ

±
√
a2
1 − a2

0

= −
sgn(a1)atan

( √a2
1−a2

0
−sgn(a1)a0

)
∓ 2pπ√

a2
1 − a2

0

,

where atan
(
a
b

)
denotes the four-quadrant inverse tangent atan

(
a
b

)
= Arg b+ ia.

Using the identity

atan
(√

a2 − b2

−sgn(a)b

)
= acos

(
− b
a

)
we arrive at the final expression

h =
−sgn(a1)√
a2
1 − a2

0

(
acos

(
−a0

a1

)
+ 2pπ

)
(3.30)

for any p ∈ Z.

This equation is very similar to formulas found in the literature. See for
instance [CG82] or [Nic01a, Section 3.4.1]. In the results in the literature, e.g.
[Nic01a, Section 3.4.1] it is commonly assumed that a1 ≤ −|a0| as otherwise the
differential equation resulting in the assumption that h = 0 is not stable. With
this assumption a stability interval around h = 0 is given. We note that the more
general formula for the critical delays (3.30) can be used to compute other stable
intervals.
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Example 3.22 The parameterization is applicable to DDEs with an arbitrary
number of delays. It is however difficult to visualize T for n > 3. We here
apply the parameterization (i.e., Algorithm 3.1) to the following DDE with three
delays. Consider

ẋ(t) = A0x(t) +A1x(t− h1) +A2x(t− h2) +A3x(t− h3)

where

A0 =

(
3.8 0.3
−0.1 4.6

)
, A1 =

(
−1.1 0

0 −1.9

)
,

A2 =

(
−1.1 0.2
0.2 −1.9

)
, A3 =

(
−1.9 0.4
−0.2 −1.0

)
.

Since, the eigenvalues of A0 +A1 +A2 +A3 are all in the left half plane the origin
in delay-space is stable and the first critical surface is the stability boundary.
The first critical surface is plotted in Figure 3.4a. The critical curve for h1 = 0
are plotted in Figure 3.4b. For verification, some special cases are computed
with the method of Chen, Gu and Nett [CGN95] are given in both subfigures of
Figure 3.4.
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Figure 3.4: Critical surface and curves for Example 3.22



110 Chapter 3. Critical Delays

Example 3.23 We now apply the parameterization to a partial differential equa-
tion (PDE) with a delay. We first prove some theoretical properties of the PDE
for some particular choices of the parameters without discretizing it. For the
general case we discretize the PDE and apply the parameterization using Al-
gorithm 3.1. We also wish to investigate how well the method scales to larger
problems.

The following partial delay-differential equation (PDDE) belongs to a more
general class of functions known as partial functional differential equation (PFDE).
This type of equations in treated in the book [Wu96]. Consider

∂u

∂t
=
∂2u

∂x2
+ a0(x)u+ a1(x)u(x, t− τ1) + a2(x)u(x, t− τ2),

u(0, t) = u(π, t) = 0, t ≥ 0
(3.31)

where a0(x) = a0 + α0 sin(x), a1(x) = a1 + α1x(1 − ex−π) and a2(x) = a2 +
α2x(π − x). We let u = u(x, t) for notational convenience. This equation is a
generalization of [Wu96, Example 1.12, Chapter 3]. We first discuss some exact
analytic results and later treat a discretization of the PFDE. It is of interest to
determine sufficient conditions on a0(x), a1(x), a2(x) such that the corresponding
(delay-free) PDE, i.e., τ1 = τ2 = 0, is stable. Since the spectrum of the Laplace-
operator with zero boundary conditions is {−k2}, k ∈ N+\{0}, it follows from the
min-max principle that all eigenvalues have negative real part if a0(x) + a1(x) +
a2(x) < 1 for all x. In particular, if α1, α2 < 0, α0 > 0 (which will be the case
below) then it suffices that a0 + a1 + a2 + α0 − α1π

2/4 < 1.

For some cases, the critical delays can be computed explicitly. If α0 = α1 =
α2 = 0 and τ1 = τ2 = τ we have that the spectrum is given by the solutions of

−λ+ (a0 − q2) + (a1 + a2)e−τλ = 0.

This follows from the separation of variables, i.e., if the coefficients in (3.31) are
constant, then the equation can be separated in space and time by the ansatz,
u(x, t) = X(x)T (t), yielding the separated equations

X ′′(x) = (k − a0)X(x), X(0) = X(π) = 0 (3.32)

and

T ′(t) = kT (t) + (a1 + a2)T (t− τ). (3.33)
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Since the eigenvalues of the DDE (3.32) are −q2, q ∈ N+ the feasible values of k
are k = a0 − q2 and from the equation in T (3.33)

λ = (a0 − q2) + (a1 + a2)e−τλ.

This corresponds to a scalar DDE and has a purely imaginary eigenvalue iff
(cf. Example 3.21)

τ =
−sign (a1 + a2)√

(a1 + a2)2 − (a0 − q2)2

(
acos

(
q2 − a0

a1 + a2

)
+ 2πp

)
.

If a0(x) is not constant, then the same procedure can be applied with k as
an eigenvalue of the operator corresponding to ∂2

∂x2 + a0 with zero boundary
conditions. However, if either a1 or a2 is not constant the problem can not be
explicitly analyzed by separation of time and space in the same way. We wish
to study this case which is not treatable with the separation of variables using
a numerical scheme. We will hence treat the case where a1 and a2 have a small
first derivative by discretization and verify that it is a small perturbation of the
constant case.

We discretize the PFDE with central difference and uniform stepsize h =
π/(N + 1) in space and get the DDE of dimension N

v̇(t) =
(N + 1)2

π2


−2 1

1
. . . 1
1 −2

 v(t) +


a0(x1) 0

0
. . . 0
0 a0(xN )

 v(t)+


a1(x1) 0

0
. . . 0
0 a1(xN )

 v(t− h1) +


a2(x1) 0

0
. . . 0
0 a2(xN )

 v(t− h2).

For the nonlinear case we pick a0 = 2, α0 = 0.3, a1 = −2, α1 = 0.2, a2 = −2 and
α2 = −0.3. The delay-free PFDE is stable since a0 + a1 + a2 + α0 − α2π

2/4 ≈
−0.96 < 1. The result of the parameterization of the critical curves for different
number of nodes N is compared to the constant case a0 = 2.191, a1 = −1.819
and a2 = −2.509 is shown in Figure 3.5. Some special cases can be computed
with other methods. Note that the constant case can be solved analytically, since
all matrices can be diagonalized. For instance, as mentioned, if h1 = h2, a0(x),
a1(x) and a2(x) are constant then the (smallest) critical delay for the constant
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case is

h1 = h2 =
1√

(a1 + a2)2 − (a0 − 1)2

(
acos

(
1− a0

a1 + a2

))
≈ 0.3105.
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Figure 3.5: Critical curves for Example 3.23 for different step-lengths

The points marked with circles in Figure 3.5 were computed with [CGN95].
The computational effort to compute one point using Algorithm 3.1 for the small-
est stepsize N = 14, was in average 6.5 seconds. The free parameter was dis-
cretized with 63 points and the plot was produced in 6.9 minutes.

The figures indicate that for this particular PDDE, N = 14 discretization
nodes is enough to determine the general geometry of the critical delays. This
example will be treated for a finer discretization using a more efficient solver in
Section 3.5.2.
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3.4 A parameterization for neutral DDEs

The parameterization presented in the previous section can be generalized to
neutral DDEs, i.e., DDEs with delayed derivative terms. Parts of these results
were published in [Jar07]. We consider neutral DDEs of the type,

Σ =


m∑

k=0

Bkẋ(t− hk) =
m∑

k=0

Akx(t− hk), t ≥ 0

x(t) = ϕ(t), t ∈ [−hm, 0],

(3.34)

where we again let h0 = 0 without loss of generality. The characteristic equation
for (3.34) is

M(s)v := (−sB(s) +A(s)) v = 0, ||v|| = 1, (3.35)

where A(s) = A0+
∑m

k=1Ake
−hks and B(s) = B0+

∑m
k=1Bke

−hks. As mentioned
in the introduction, the spectrum is defined as σ(Σ) := {s ∈ C : det(M(s)) = 0}.
In the literature, it is common to assume that B0 = I. We will assume this in
the description of some continuity and stability properties that follows. This is
however not necessary for the parameterization of T .

Discontinuity properties of neutral DDEs as well as sufficient conditions for
continuity have been presented in [AH80] and more recently [MERD02]. We
follow the notation and characterizations of continuity and stability in the book
of Michiels and Niculescu [MN07b, Section 1.2].

In our context, neutral DDEs have two unpleasant properties which makes an
analysis more involved. The origin can be a clustering point of the real part of
the spectrum. Stability is hence only guaranteed if the supremum of the real part
of the spectrum is negative, i.e., the spectral abscissa defined in (3.6) is negative,
α(h1, . . . , hm) < 0. Unlike retarded DDEs, it is not sufficient for stability that
the spectrum is contained in the open left half plane. Moreover, the spectral
abscissa is not always continuous.

More precisely, the real part of the spectrum of neutral DDEs can have finite
clustering points. Suppose {sk} is a sequence with sk ∈ σ(Σ) and |Im sk| →
∞. For the retarded case, this implies that Re sk is unbounded, and Re sk →
−∞. However, for neutral DDEs, this limit can be finite, i.e., Re sk → ζ ∈ R.
These limits ζ are the clustering points of the real part of the so-called difference
operator corresponding to (3.34). Here the real part of the spectrum of the
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associated difference operator is

ZD =

{
Re s : det

(
I +

m∑
k=1

Bke
−shk

)
= 0

}
.

The clustering points of the real part of the spectrum of the neutral DDE is given
by the closure of ZD, i.e., ζ ∈ closZD. For the retarded case ZD = ∅, from which
we verify that the real part of the spectrum of retarded DDEs have indeed no
finite clustering points.

The finite clustering points of the real part of the spectrum are closely related
to the fact that the spectral abscissa α(h1, . . . , hm) is not always continuous. This
important property unfortunately breaks the continuity argument as it implies
that a stability switch does not necessarily mean that there is a purely imaginary
eigenvalue. That is, ∂Ds ⊂ T does not hold in general.

Fortunately, there is theory available in the literature which gives sufficient
conditions for a continuous spectral abscissa. In particular, if the associated
difference operator is strongly exponentially stable then the spectral abscissa is
continuous [MN07b, Theorem 1.39]. The associated difference operator is (de-
fined as) strongly exponentially stable, if and only if

max
z∈Zk

rσ

(
m∑

k=1

Bkzk

)
< 1, (3.36)

where rσ(A) denotes the spectral radius of A ∈ Cn×n, i.e., rσ(A) = max{|s| :
s ∈ σ(A)}. It is now important to note that (3.36) and hence the continuity of
the spectral abscissa is only dependent on Bk, k = 0, . . . ,m and not the delays,
h1, . . . , hm, nor the system matrices on right hand side, A0, . . . , Am.

Note that the definition (3.36) is not stated such that it is easy to verify for a
given example. In practice, the sufficient condition

∑m
k=1 ‖Bk‖ < 1 is often used.

Despite these somewhat pessimistic properties regarding the continuity of
the spectrum and the spectral abscissa, our goal remains the same. We wish to
construct a parameterization h expressed as computable expressions, mapping a
simple mathematical object onto T . Even though the discontinuity properties of
the spectrum will prevent a stability analysis using a parameterization of T for
the general case an explicit representation of T can still be useful in a practical
analysis of the stability region in delay-space. Moreover, if the difference operator
corresponding to the neutral part of (3.34) is strongly exponentially stable, e.g.
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if
∑m

k=1 ‖Bk‖ < 1 then ∂Ds ⊂ T and the analysis can be carried out similar to
the retarded case.

Lemma 3.24 Suppose A, B and M(s) = −sB(s) + A(s) are parameter depen-
dent matrices and let

L(X, s) := M(s)XB(s)∗ +B(s)XM(s)∗ =

= A(s)XB(s)∗ +B(s)XA(s)∗ − 2B(s)XB(s)∗Re s.
(3.37)

For any ω ∈ R and v ∈ Cn, such that v∗v = 1 and w := B(iω)v 6= 0 the following
are equivalent

M(iω)v = 0 (3.38)

L(vv∗, iω) = 0 ∧ w∗M(iω)v = 0 (3.39)

Proof: The implication (3.38) ⇒ (3.39) is clear from the definition. For the
implication (3.39) ⇒ (3.38) we have

L(vv∗, s)w = M(s)vv∗B(s)∗w +B(s)vv∗M(s)∗w.

Clearly, since v∗B(s)∗w = w∗w 6= 0, (3.38) holds. �

Suppose iω, v is an eigenpair of the DDE, then either B(iω)v = 0 or B(iω)v 6=
0. Many results for neutral DDEs are stated under mild conditions on the differ-
ence equation

B0x(t) +B1x(t− h1) + · · ·Bmx(t− hm) = 0. (3.40)

As usual, the solutions s ∈ C of det(B(s)) = 0 are called the eigenvalues of the
difference equation. First note that, the condition B(iω)v = 0 means that the
difference equation has a purely imaginary eigenvalue. Also note that if B0 = I

then this will not occur if (3.40) is strongly exponentially stable. The difference
equation (3.40) has a purely imaginary only for very special cases. We treat this
separately in the main results that follow.

3.4.1 Main results

Similar to the retarded case, we identify some special cases which are easy to
treat. This allows us to exclude the cases in the main theorem.
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Lemma 3.25 The following special cases hold for the neutral DDE (3.34) Σ:

a) If 0 ∈ σ(Σ) for some (h1, . . . , hm) then T = Rm
+ .

b) If the difference operator (3.40) has a purely imaginary eigenvalue for
some (h1, . . . , hm), i.e., there is v ∈ Cn\{0} and ω ∈ R such that 0 =∑m

k=0Bke
−ihkωv, h0 = 0, then (h1, . . . , hm) ∈ T with corresponding eigen-

vector v and imaginary eigenvalue iω if and only if 0 =
∑m

k=0Ake
−ihkωv.

Proof: The proof of part a) is identical to the proof of Lemma 3.13.

It remains to show b). Suppose v ∈ Cn\{0} and ω ∈ R are such that(∑m
k=0Bke

−ihkω
)
v = 0. Then,

M(iω)v =

(
−iω

m∑
k=0

Bke
−ihkω +

m∑
k=0

Ake
−ihkω

)
v =

(
m∑

k=0

Ake
−ihkω

)
v.

Hence, (h1, . . . , hm) ∈ T with corresponding eigenvector v and eigenvalue iω if
and only if the right hand side is zero. �

Similar to the parameterization for retarded DDEs we now introduce the free
variables ϕk = hkω, k = 1, . . . ,m− 1 and z = e−ihmω. To simplify the notation
we denote C(~ϕ) :=

∑m−1
k=0 Ake

−iϕk and D(~ϕ) :=
∑m−1

k=0 Bke
−iϕk , and introduce

the parameterization vector ~ϕ = (ϕ1, . . . , ϕm) and ϕ0 = 0.

Lemma 3.26 Let Σ be a neutral DDE with 0 6∈ σ(Σ) and fixed coefficients
Ak, Bk ∈ Rn×n, k = 0, . . . ,m, such that the difference equation (3.40) does
not have a purely imaginary eigenvalue. For any given ~ϕ = (ϕ1, . . . , ϕm−1) ∈
[−π, π]m−1 let z ∈ ∂D and v ∈ Cn be a solution to

z2 (Amvv
∗D(~ϕ)∗ +Bmvv

∗C(~ϕ)∗) +

z (C(~ϕ)vv∗D(~ϕ)∗ +Amvv
∗B∗m+

D(~ϕ)vv∗C(~ϕ)∗ +Bmvv
∗A∗m) +

C(~ϕ)vv∗B∗m +D(~ϕ)vv∗A∗m = 0, (3.41)

and define
w := (Bmz +D(~ϕ))v. (3.42)

Then w 6= 0 and

ω := −iw
∗ (Amz + C(~ϕ)) v

w∗w
∈ R. (3.43)
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Proof: The assumption is that the difference equation does not have a purely
imaginary eigenvalue, i.e., B0v+

∑m
k=1Bkzkv 6= 0 for all z1, . . . , zm ∈ ∂D. Hence,

w 6= 0.

Note that since z ∈ ∂D, (3.41) can be written as

Pvv∗Q∗ +Qvv∗P ∗ = 0, (3.44)

where P = Amz + C(~ϕ) and Q = Bmz + D(~ϕ). With this notation w = Qv.
Since, w∗w ∈ R, in order to have ω ∈ R it remains to show that w∗Pv ∈ iR. If
we multiply (3.44) with w∗ from the left and w from the right, then

w∗Pvw∗w + w∗wv∗P ∗w = 0.

Since w∗w 6= 0 by (3.42) it follows that 0 = w∗Pv + v∗P ∗w = w∗Pv + (w∗Pv)∗

and w∗Pv ∈ iR. �

Lemma 3.27 Let Σ be as in Lemma 3.26. For any (ϕ1, . . . , ϕm−1) ∈ [−π, π]m−1

let z ∈ ∂D and v ∈ Cn be a solution to (3.41), w 6= 0 as in (3.42) and ω ∈ R be
defined by (3.43). Moreover, let

hk =
ϕk + 2pkπ

ω
, k = 1, . . . ,m− 1, (3.45)

hm =
−Arg z + 2pmπ

ω
. (3.46)

For any p0, . . . , pm, the point in delay-space (h1, . . . , hm) is a critical delay, i.e.,
(h1, . . . , hm) ∈ T .

Proof: We will show that the construction of v ∈ Cn, ω, z, h1, . . . , hm, i.e.,
(3.41), (3.43), (3.45) and (3.46), yields that M(iω)v = 0. From Lemma 3.24
it is sufficient to show that L(vv∗, iω) = 0,w 6= 0 and w∗M(iω)v = 0. First
note that e−iϕk = e−ihkω, k = 1, . . . ,m− 1 from (3.45) and z = e−ihmω from
(3.46). Hence, (3.41) is exactly zL(vv∗, iω) = 0. Since z 6= 0, L(vv∗, iω) = 0.
Moreover, by rearranging the terms of (3.43), we have w∗A(iω)v − iωw∗w = 0.
Hence, the conditions (3.39) are fullfilled and M(iω)v = 0 for this construction
of v, ω, h1, . . . , hm. �

Lemma 3.28 Let Σ be as in Lemma 3.26. If (h1, . . . , hm) ∈ T then there exist
(ϕ1, . . . , ϕm−1) ∈ [−π, π]m−1 and p0, . . . , pm such that (3.41), (3.42), (3.43),
(3.45) and (3.46) are fulfilled.
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Proof: We show that for any (h1, . . . , hm) ∈ T (with eigenvalue iω and eigenvector
v) there is a ϕ1, . . . , ϕm−1 such that the construction of v, ω, z yields exactly this
(h1, . . . , hm).

From Lemma 3.24 it is clear that L(vv∗, iω) = 0 and w∗M(iω)v = 0. Let
z = e−ihmω and pm such that (3.46) is fulfilled. Similarly we pick ϕk = ωhk+2pkπ

such that ϕk ∈ [−π, π] and pk ∈ Z and (3.46) holds. Note that since L(vv∗, iω) =
0, zL(vv∗, iω) = 0 and hence (3.41) also holds. Finally, (3.43) follows from (3.39),
i.e., the fact that w∗M(iω)v = 0. The constructed ϕ1, . . . , ϕm−1 yield the given
h1, . . . , hm. �

The two lemmas imply that the construction is a parameterization.

Theorem 3.29 Let Σ be as in Lemma 3.26. The map

(ϕ1, . . . , ϕm−1) 7→
⋃

p∈Zm

(h1, . . . , hm)

where h1, . . . , hm are defined by (3.45) and (3.46) is a parameterization of T .

Proof: This follows directly from the forward implication Lemma 3.27 and the
backward implication Lemma 3.28. �

Similar to the previous section we note that (3.41) is a matrix equation which
can be vectorized into

(z2M(~ϕ) + zG(~ϕ) +K(~ϕ))u = 0, (3.47)

where u = vec vv∗, M(~ϕ) = D(−~ϕ) ⊗ Am + C(−~ϕ) ⊗ Bm, G(~ϕ) = D(−~ϕ) ⊗
C(~ϕ) + Bm ⊗ Am + C(−~ϕ) ⊗ D(~ϕ) + Am ⊗ Bm and K(~ϕ) = Bm ⊗ C(~ϕ) +
Am ⊗ D(~ϕ). Equation (3.47) is a polynomial eigenproblem of degree two, i.e.,
a quadratic eigenproblem. Again, the solutions of the quadratic eigenproblems
can be computed from a corresponding companion form, e.g.

z

(
I 0
0 M(~ϕ)

)(
u

zu

)
=

(
0 I

−K(~ϕ) −G(~ϕ)

)(
u

zu

)
. (3.48)

We can hence compute the critical delays for neutral DDEs analogously to
Algorithm 3.1.

At the cost of technicality, the scalar parameterization in Corollary 3.17 can
be generalized to neutral DDEs.
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Corollary 3.30 Let Ak = ak ∈ R, Bk = bk, k = 0, . . . ,m be the coefficients
in the nonsingular DDE (3.4). The mapping h = (ϕ1, . . . , ϕm−1, p1, . . . , pm) 7→
{(h1, . . . , hm)} is a surjective mapping onto T where

hk =
ϕk + 2pkπ

ω
, k = 1, . . . ,m− 1

hm =
1

ω(~ϕ)

(
Arg (amb(~ϕ)∗ + bma(~ϕ))∓ acos

(
−ambm + Re (b(~ϕ)a(~ϕ)∗)

|amb(~ϕ)∗ + bma(~ϕ)|

)
+ 2pmπ

)
ω(~ϕ) =

amIm z(~ϕ) + Im a(~ϕ)
bmRe z(~ϕ) + Re b(~ϕ)

z(~ϕ) =
−α±

√
(ambm + Re (b(~ϕ)a(~ϕ)∗))2 − |amb(~ϕ)∗ + bma(~ϕ)|2

amb(~ϕ)∗ + bma(~ϕ)
.

where pk ∈ Z, k = 1 . . .m, ϕk ∈ [−π, π], k = 1, . . . ,m− 1, a(~ϕ) =
∑m

k=0 ake
−iϕk ,

b(~ϕ) =
∑m

k=0 bke
−iϕk and ϕ0 = 0.

Proof: For n = 1, (3.41) is a quadratic equation. We temporarily introduce
q = amb(~ϕ)∗ + bma(~ϕ) ∈ C and 2α = a(~ϕ)b(~ϕ)∗ + 2ambm + b(~ϕ)a(~ϕ)∗ ∈ R. The
quadratic equation (3.41) is now

z2q + 2zα+ q∗ = 0,

i.e.,

z =
−α±

√
α2 − qq∗

q
. (3.49)

There are critical delays if and only if z ∈ ∂D, i.e., |q| ≥ |α|. Now let q = reiθ,
r > 0. Hence,

−Arg z = θ ∓ atan
(√

r2 − α2

−α

)
= θ ∓ acos

(
−α
r

)
=

= Arg (amb(~ϕ)∗ + bma(~ϕ))∓ acos
(
−ambm + Re (b(~ϕ)a(~ϕ)∗)

|amb(~ϕ)∗ + bma(~ϕ)|

)
(3.50)

We now find an explicit expression for ω. Clearly,

ω(bmz + b) = −i(amz + a)
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and

ω =
amIm z(~ϕ) + Im a(~ϕ)
bmRe z(~ϕ) + Re b(~ϕ)

.

�

3.4.2 Commensurate delays

Following the same ideas as in Section 3.3.3, we now assume that the delays are
integer multiples of some delay h, i.e., hj = hj for j = 0, . . . ,m. We substitute
ζ = e−iωh, and rephrase the theorem. We also note that these results are similar
to the results of the method by Fu, Niculescu and Chen [FNC06].

Theorem 3.31 Consider the nonsingular, commensurate m delay DDE with the
corresponding difference equation (3.40) which does not have a purely imaginary
eigenvalue. The DDE has the critical delay h, if and only if there is an ζ ∈ ∂D,
ω ∈ R and v ∈ Cn such that

m∑
j,k

(
Ajvv

∗BT
k +Bjvv

∗AT
k

)
ζm+j−k = 0 (3.51)

and

ω = −i
w∗
∑m

j Ajζ
jv

w∗w

and

h =
−Arg ζ + 2pπ

ω

for some p ∈ Z, where

w =
m∑
j

Bjζ
jv.

Proof: This follows from Lemma 3.24, if we let ζ = e−iωh. �
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We now note that (3.51) can be vectorized, i.e., stacking the columns of the
matrix-equation on top of each other, into

m∑
j,k=0

(Bk ⊗Aj +Ak ⊗Bj) ζm+j−ku =

2m∑
q=0

min(m,q)∑
j=max(q−m,0)

(Bj−q+m ⊗Aj +Aj−q+m ⊗Bj) ζqu (3.52)

where u = vec vv∗. This is a polynomial eigenvalue problem for which numerical
methods exist.

For instance the companion form of the polynomial eigenvalue problem
N∑

k=0

Ckζ
ku = 0,

fulfills the equation

ζ


I

. . .
I

CN

w =


0 I

. . . . . .
0 I

−C0 · · · −CN−2 −CN−1

w, (3.53)

where w = (uT , ζuT , ζ2uT , · · · ζN−1uT )T , which is a generalized eigenvalue prob-
lem, solvable on a computer (for moderate sized problem) to sufficient accuracy.

For the polynomial eigenvalue problem (3.52), we have N = 2m and

Cq =
min(m,q)∑

j=max(q−m,0)

Bj−q+m ⊗Aj +Aj−q+m ⊗Bj

for q = 0, . . . , 2m.

Remark 3.32 A similar matrix condition is contained in [FNC06]. Note that
the matrices Qk in [FNC06] are not identical to Cq. Similar to the relation in
Remark 3.20 the eigenvalue problems are identical apart from transposes.

3.4.3 Examples

To demonstrate the value of Theorem 3.29 we consider some interesting special
cases. We derive some explicit expression which are to our knowledge not known,
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and show by example how the parameterization can be used to numerically com-
pute the critical curves (Example 3.37).

Example 3.33 ([FNC06]) For the neutral time-delay system

ẋ(t) + b1ẋ(t− h) = a0x(t) + a1x(t− h)

we have that B(iω) = 1 + b1e
−ihω and A(iω) = a0 + a1e

−ihω. If we assume
that b1 6= 0 and a1 6= b1a0 then A(iω) = 0 and B(iω) = 0 and we can apply
Theorem 3.29. Moreover, we have that C(~ϕ) = a0,D(~ϕ) = 1, Am = a1 and
Bm = b1. Even though the mapping can be found by simply inserting A and B

into Corollary 3.30 it is illustrative to perform the derivation using Theorem 3.29.
The quadratic eigenvalue problem (3.47) is now

z2(a1 + b1a0) + 2z(a0 + a1b1) + a0b1 + a1 = 0

which has the solutions

z =
−(a0 + a1b1)±

√
(a0 + a1b1)2 − (a0b1 + a1)2

a0b1 + a1
=

=
−(a0 + a1b1)± i

√
(a0b1 + a1)2 − (a0 + a1b1)2

a0b1 + a1
. (3.54)

The DDE has critical delays if and only if (a0b1 + a1)2 > (a0 + a1b1)2, which
implies that b1 6= 1. Note that if |z| = 1 then

−Arg (z) = ∓sign (a0b1 + a1)acos
(
−a0 + a1b1
a0b1 + a1

)
.

The imaginary eigenvalues are iω, where

ω =
a0 + a1z

i(1 + b1z)
= −a0 + a1Re z

b1Im z
= ± a2

1 − a2
0√

(a0b1 + a1)2 − (a0 + a1b1)2
=

± sign (a2
1 − a2

0)

√
(a2

1 − a2
0)2√

(b21 − 1)(a2
0 − a2

1)
= ∓sign (a2

0 − a2
1)

√
a2
1 − a2

0

1− b21
. (3.55)

Finally, the critical delays are now given by Theorem 3.29

h =
−Arg z + 2pπ

ω
= ρ

√
1− b21
a2
1 − a2

0

(
acos

(
−a0 + a1b1
a0b1 + a1

)
+ 2pπ

)
, (3.56)
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where ρ = sgn
(

a2
0−a2

1
a0b1+a1

)
. Note that the signs of ± were matched and canceled.

Also note that if b1 = 0, i.e., the retarded case (cf. (3.30)), ρ = −sgn(a1) as
expected, because a2

1 ≥ a2
0 if there are any critical delays.

Even though single delay scalar neutral DDEs have been extensively studied,
we have not seen this expression for the critical delays in the literature.

There are however very similar expressions in the literature. We point out the
minor differences. In the book of Niculescu [Nic01a, Proposition 3.16] the first
stability interval including h = 0 is expressed exactly using atan. We find the
parameterization (3.56) slightly simpler than the expression of Niculescu. More-
over, (3.56) can be used to determine stability intervals not necessarily including
h = 0. The expression for ω (sometimes called switching frequency or crossing
frequency) is contained in [FNC06]. A formula for the critical delays expressed
as the angle of a complex number is given in the same article. This is expected
to be a different form of (3.56).

Example 3.34 For the neutral two-delay system

b1ẋ(t− h1) + b2ẋ(t− h2) = x(t)

we have that C(ϕ) = 1, Am = 0, B(ϕ) = e−iϕ, Bm = b2. The case that the
difference operator has a purely imaginary eigenvalue can be excluded by the fact
that A(s) = 1 6= 0. The quadratic eigenproblem corresponding to (3.47) is

z2b2 + z2b1 cos(ϕ) + b2 = 0

and

z =
−b1 cos(ϕ)±

√
b21 cos2(ϕ)− b22

b2
=
−b1 cos(ϕ)± i

√
b22 − b21 cos2(ϕ)

b2
. (3.57)

For the parametrization to yield proper critical delays we require that ϕ fulfills
b22 ≥ b21 cos2(ϕ). The frequencies ω are

ω =
1

i(b1e−iϕ + (−b1 ± i
√
b22 − b21 cos2(ϕ)))

=
1

b1 sin(ϕ)∓
√
b22 − b21 cos2(ϕ)

.

(3.58)
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Hence, a parametrization of the critical delays is given by

h1 =
ϕ+ 2pπ

ω
=
(
b1 sin(ϕ)∓

√
b22 − b21 cos2(ϕ)

)
(ϕ+ 2pπ)

h2 =
−Arg z + 2qπ

ω
=(

b1 sin(ϕ)∓
√
b22 − b21 cos2(ϕ)

)(
2qπ ± sgn(b2)acos

(
−b1 cos(ϕ)

b2

))
,

(3.59)

for any p, q ∈ Z.

Example 3.35 We now consider the neutral system corresponding to Exam-
ple 3.33 where the two delays are not necessarily equal, i.e.,

ẋ(t) + b1ẋ(t− h1) = a0x(t) + a2x(t− h2).

We have that b(ϕ) = 1 + b1e
−iϕ, bm = 0, a(ϕ) = a0 and am = a2. The quadratic

eigenproblem/equation corresponding to (3.47) is

z2a2(1 + b1e
iϕ) + 2za0(1 + b1 cos(ϕ)) + a2(1 + b1e

−iϕ) = 0.

After many simple manipulations, which we leave out for brevity, we arrive at an
expression for the critical frequencies.

ω(ϕ) =
a0 + a2Re z
b1 sin(ϕ)

= (3.60)

=
a0

b1 sin(ϕ)
− a0

b2 sin(ϕ)
+

a0b1 sin(ϕ)
1 + 2b1 cos(ϕ) + b21

+ (3.61)

∓
√
a2
2(1 + b21 + 2b1 cos(ϕ))− a2

0(1 + b1 cos(ϕ))2

1 + 2b1 cos(ϕ) + b21

It is clear that even for examples like this, which may seem simple, the explicit
real trigonometric expression (3.61) is too large to easily identify properties of
the critical frequencies. Moreover, the complex expression (3.60) might be to
prefer from a computational point of view as it requires less operations.

For brevity we only express the critical delays using the complex expression,

h1 =
ϕ+ 2pπ
ω(ϕ)

=
(b1 sin(ϕ))(ϕ+ 2pπ)

a0 + a2Re z
,

h2 =
−Arg z + 2qπ

ω(ϕ)
=

(b1 sin(ϕ))(−Arg z + 2qπ)
a0 + a2Re z

.
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Example 3.36 (From [IND+03] and [RKDD04]) With this example we show
how one can find the critical delays of some multi-dimensional systems analyti-
cally. The commonly occurring example,

ẋ(t)− 0.1ẋ(t− h1) =

(
−2 0
0 −0.9

)
x(t) +

(
−1 0
−1 −1

)
x(t− h2),

can be decoupled because all matrices are triangular. The spectrum is hence the
union of the spectrum of the two decoupled systems

ẏ1(t)− 0.1ẏ1(t− h1) = −2y1(t)− y1(t− h1),

ẏ2(t)− 0.1ẏ2(t− h2) = −0.9y2(t)− y2(t− h2).

If we let h1 = h2 =: h we can apply the result of Example 3.33 (or [FNC06]).
Here the system corresponding to y1 does not have any critical delays. For y2
we have a0 = −0.9, b0 = 1, b1 = −0.1, a1 = −1. Hence, ρ = 1. From (3.56) the
critical delays are

h =

√
1− 0.12

1− 0.92

(
acos

(
−0.8
0.91

)
+ 2pπ

)
= 3

√
11
19

(
acos

(
−80
91

)
+ 2pπ

)
, (3.62)

which is an exact expression. For p = 0 we have h ≈ 6.0372.

For the case that h1 6= h2 we can apply the formula from Example 3.35
(or directly apply the numerical scheme Algorithm 3.1) to produce the critical
curves. The resulting critical curves are shown in Figure 3.6. The delay margin
is the smallest delay which a system turns unstable. The delay margin for this
example, e.g. [IND+03] is also plotted.

Example 3.37 As a last example we apply the numerical scheme to an example
for which we believe there is no simple analytical expression.

We now consider a modification of the example in [MV05, Section 5]. The
example involves stabilization of a time-delay system using delayed feedback. We
set the delay in the feedback to zero and investigate stability with respect to the
closed stabilized system. The DDE is

ẋ(t) +B1ẋ(t− h1) +B2ẋ(t− h2) = A0x(t),
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Figure 3.6: Critical curves for Example 3.36

where

B1 = −

 0 0.2 −0.4
−0.5 0.3 0
0.2 0.7 0

 , B2 = −

−0.3 −0.1 0
0 0.2 0

0.1 0 0.4


A0 =

−4.8 4.7 3
0.1 1.4 −0.4
0.7 3.1 −1.5

+BKT ,

B =
(
0.3 0.7 0.1

)T

,K =
(
−2.593 1.284 1.826

)T

.

Note that A0 is not singular, and hence A(s)v = A0v = 0 has no solutions
and we can apply Theorem 3.29. The critical curves are plotted in Figure 3.7.

3.5 Solving the quadratic eigenproblem

The eigenvalue problems (3.22) and (3.47) are vectorizations of matrix equations
of size 2n2 × 2n2 and can hence be of large size, even if the dimension n of the
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Figure 3.7: Critical curves for Example 3.37

DDE is moderate3. More precisely, to compute all eigenvalues of a full N × N

matrix, a computational effort essentially proportional to N3 is required. Here
N = 2n2 and the computational effort is proportional to n6. Since this is likely
to be the computationally dominating part of the parameterization, we now wish
to show that it is possible to improve the efficiency by exploiting the structure
of the matrices. The efficiency is improved by using the fact that the shift-
invert operation of the companion matrix can be computed from the solution of
a Lyapunov-equation.

An analogous approach was taken by the author in [Jar06b], but with the
Cayley-transformed system.

Note that we here use the companion linearization even though there are lin-
earizations (3.22) which preserves the structure. We mentioned in Section 3.3.1
that structured linearizations are likely to have better numerical stability prop-
erties. Moreover, a structured linearization may allow the construction of a

3On a current desktop computer (say AMD 2.2. GHz) moderate here means less than 100.

Eigenvalue problems of order 2000 can be solved in a matter of minutes, hence, n = 31 ≈
√

1000

can be treated. However, eigenvalues of full matrices with dimension N = 20000, i.e., n = 100,

can not be computed on a desktop computer with standard software in “adequate” time.
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more efficient numerical method, if, for instance, a structure-preserving similar-
ity transformations can be constructed. In particular, a structured linearization
of the quadratic eigenvalue problem considered here is discussed in [FMMS07].

The idea to exploit the structure of matrices to compute fast inverse and
shift-and-inverse operations was also used in a method to efficiently compute
the distance to uncontrollability (of a dynamical system) in [GMO+06]. In that
application, the computational complexity was reduced from O(n6) to O(n4).

3.5.1 Exploiting the structure

The first companion form of the quadratic eigenvalue problem (3.22) is(
0 I

K G

)(
u

zu

)
= z

(
I 0
0 −M

)(
u

zu

)
,

where

M = I ⊗Am, G =

(
m−1∑
k=0

I ⊗Ake
−iϕk +Ak ⊗ Ieiϕk

)
,K = Am ⊗ I.

For simplicity we will assume that M is non-singular and that m = 1. In an
iterative method for eigenvalue problems an efficient matrix-vector product can
often be exploited to improve efficiency of one iteration. The traditional approach
is to compute the LU-decomposition of the matrix before starting the iteration
and solve two triangular systems in each matrix vector product. For instance,
in standard procedures such as shift-and-inverted Arnoldi, the matrix vector
product (A− σI)−1x must be solved for many right hand sides x. For the shift-
and-inverted Arnoldi, the LU-decomposition of A − σI is computed before the
iteration starts, i.e., A − σI = LU and the two triangular systems U−1(L−1x)
are solved in each iteration. Linear systems where the matrix is triangular can
be solved efficiently with forward or bachward substitution.

It turns out that we can produce a method which is even faster that the
standard LU-decomposition-approach by exploiting the structure of this problem.

We wish to construct an efficient shift-invert operation of the matrix

A =

(
I 0
0 −M

)−1(
0 I

K G

)
,
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i.e., the operation
x = (A− σI)−1b. (3.63)

The shift invert operation (3.63) is equivalent to

b = (A− σI)x

and (
I 0
0 −M

)
b =

((
0 I

K G

)
− σ

(
I 0
0 −M

))
x.

Hence,

x = −

(
(σ2M + σG+K)−1 0

0 (σ2M + σG+K)−1

)(
G+ σM M

−K σM

)
b =

1
σ

(
L−1((G+ σM)b1 +Mb2)
L−1(−Kb1 + σMb2)

)
,

where L = σM+G+σ−1K and b1, b2 are the first n2 and last n2 components of b.
The main idea now is that the computationally dominating part in the computa-
tion of the shift-invert operation is the solving of the linear system corresponding
to the matrix L, i.e., given c ∈ Cn2

compute y ∈ Cn2
such that Ly = c. It turns

out that if we choose a shift for which σ−1 = σ (i.e., σ ∈ ∂D) the operator L is
the vectorization of a Lyapunov operator in the following sense. Note that

L = σI⊗A1 + I⊗A0 +A0⊗ I+σA1⊗ I = I⊗ (σA1 +A0)+(σA1 +A0)⊗ I.

Suppose C, Y ∈ Cn×n are vectorizations of c, y ∈ Cn2
correspondingly. Then

(σA1 +A0)Y + Y (σA1 +A0)∗ = C. (3.64)

This type of matrix equation is often referred to as a Lyapunov equation.

We have just shown that if we can solve (3.64) efficiently, we can improve
the efficiency of the shift-invert operation. There are several efficient methods
to solve (3.64). In the example below we will use the solver lyap bundled with
Matlab 7.1.0.183 R14 (which is based on the SLICOT routines SB03MD, SG03AD,

SB04MD).

The Lyapunov equation (3.64) must be solved several times for the same
shift σ but for different B. It may therefore be a good idea to first transform
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the Lyapunov equation to triangular form with a Schur decomposition of σA1 +
A0, as the Lyapunov equation for triangular matrices can be solved with back-
substitution. This turns out to be the most efficient approach for the example
below.

3.5.2 Example

We now wish to show one example where the improved shift-invert operation
allows us to treat larger systems, too large to be treated by directly computing
all eigenvalues. Consider the partial delay-differential equation in Example 3.23
with τ = τ1 = τ2.

We will now use multiple grid-sizes to treat larger systems. In the example
we saw that it was possible to treat the problem directly for n = 14. From
Figure 3.8b, it is clear that this can not be done in practice for system of di-
mension larger than n = 40. It can be seen in Figure 3.8a that the solutions to
the quadratic eigenvalue problem are only moderately perturbed when the grid
is refined. Hence, it is natural to use the solutions z for the coarse grid n = 14
as shifts for a finer grid. Since we are only interested in eigenvalues on the unit
circle, we ignore eigenvalues in the coarse grid which have a distance larger than
0.1 from the unit circle. In the Lyapunov exploitation above (i.e. (3.64)) we as-
sumed that the shift is on the unit circle. The shifts are hence forced to be of unit
magnitude. We fit the eigenvalue solver eigs bundled with Matlab, with differ-
ent shift-invert operations. The LU-decomposition of (3.63) is a common choice
for a shift-invert operation. For this particular example, the LU-decomposition
is very sparse (since A0 and A1 are tridiagonal matrices) which makes this shift-
invert operation perform rather well. However, the two optimizations using lyap

described above perform better and are expected to have an even larger effi-
ciency improvement in comparison to the LU-decomposition if A0 and A1 are
full matrices.

It is interesting to note that only 4 eigenvalues z are on the unit circle (closer
than 10−13) whereas there are 20 eigenvalues which have a distance to the unit
circle less than 0.02.
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Figure 3.8: Computational complexity with structure exploitation

3.6 Multiparameter problems and matrix pencil

methods

We mentioned in the review of delay-dependent stability results in Section 3.2
that one class of delay-dependent stability results for DDEs yield an exact way
to give conditions in terms of an eigenvalue problem constructed by Kronecker
products. These type of methods are referred to as matrix pencil methods.

We wish to provide further understanding to these methods, i.e., the main
results of the articles [CGN95], [Lou01], [FNC05], [NFC05], [NFC06], [FNC06]
and [EOF07], by deriving the essential parts of the methods in a unified way.
The parameterizations in Section 3.3 and Section 3.4 also belong to this class of
problems.

Eigenvalue problems consisting of Kronecker products also occur in the field
for multiparameter eigenvalue problems [Atk72]. See also [HP03] for a presen-
tation of some numerical properties of multiparameter eigenvalue problems. In
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particular, multiparameter eigenvalue problems can be rewritten into an equiva-
lent generalized eigenvalue problem which is formed by Kronecker products.

The main result of this section is that the matrix pencil methods are all differ-
ent determinental forms of a generalized multiparameter eigenvalue with a poly-
nomial term. We refer to this generalization of the multiparameter eigenvalue
problem as a polynomial multiparameter eigenvalue problem. The determinen-
tal forms of the polynomial multiparameter eigenvalue problems are polynomial
eigenvalue problems. Note that there are methods for the two-parameter eigen-
value problem which does not explicitly use the determinental form, e.g. the
variant Jacobi-Davidson [HKP05].

Multiparameter eigenvalue problems and multivariate polynomials have pre-
viously been used in the field of time-delay systems, e.g. [Kam82], [Kam80],
[HIT85], [Chi88] and summarized in the book of Niculescu [Nic01a, Section 4.1.2]
and the book of Gu, Kharitonov and Chen [GKC03, Section 4.6]. However, these
works do not apply theory in the context or derivation of matrix pencil methods.

We start by developing a general theory for the polynomial multiparameter
eigenvalue problems in Section 3.6.1. In particular we prove some determinental
form of the generalization of the two-parameter eigenvalue problem. The main
idea of this section is shown by applying the theory to the single delay DDE in
Section 3.6.2. These results are generalized to neutral DDEs in Section 3.6.3 and
to commensurate delays in Section 3.6.4.

Parts of the results of this section were produced in collaboration with Michiel E.
Hochstenbach.

3.6.1 Polynomial two-parameter eigenvalue problems

Consider the two-parameter eigenvalue problem

{
A1x = λB1x+ µC1x

A2y = λB2y + µC2y.
(3.65)

with Ak, Bk, Ck ∈ Cn×n, k = 1, 2. See the book [Atk72] for a detailed study of
multiparameter eigenvalue problems. A generalized eigenvalue problem associ-
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ated with (3.65) can be stated in terms of the matrix determinants

∆0 = B1 ⊗ C2 − C1 ⊗B2

∆1 = A1 ⊗ C2 − C1 ⊗A2

∆2 = B1 ⊗A2 −A1 ⊗B2

(3.66)

where ∆i ∈ Cn2×n2
, i = 0, 1, 2. The two-parameter eigenvalue problem (3.65) is

expressed as the decoupled generalized eigenvalue problems

∆1z = λ∆0z (3.67a)

∆2z = µ∆0z, (3.67b)

where z ∈ Cn2
. These two formulations are equivalent if ∆0 is nonsingular. In

this work we refer to these two eigenvalue problems as the determinental forms of
(3.65). It is important to note that there are two generalized eigenvalue problems
corresponding to the two-parameter eigenvalue problem (3.65). We will see in
the derivations of the matrix pencil methods that some correspond to (3.67a)
and some to (3.67b).

The determinental forms can be generalized to two wider classes of problems.
We will make extensive use of the following two lemmas in the derivation of the
matrix pencil methods in the following subsections.

Consider the problem of determining x, y ∈ Cn and λ, µ ∈ C such that{
A1x = λB1x+ µC1x+ µλD1x

A2y = λB2y + µC2y + µλD2y.
(3.68)

This is clearly a generalization of the two-parameter eigenvalue problem (3.65).
This problem can also be restated into an eigenvalue problem. Unlike the de-
terminental forms of the two-parameter eigenvalue problem, the determinantal
forms of the polynomial two-parameter eigenvalue problem (3.68) are quadratic
eigenvalue problems.

Lemma 3.38 If (λ, µ) is an eigenvalue of (3.68) with corresponding eigenvector
(x, y) then

a) λ is an eigenvalue of the quadratic eigenvalue problem

[(A1 ⊗ C2 − C1 ⊗A2) + λ(A1 ⊗D2 −D1 ⊗A2+

−B1 ⊗ C2 + C1 ⊗B2) + λ2(D1 ⊗B2 −B1 ⊗D2)
]
(x⊗ y) = 0. (3.69)
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b) µ is an eigenvalue of the quadratic eigenvalue problem

[(A1 ⊗B2 −B1 ⊗A2) + µ(A1 ⊗D2 −D1 ⊗A2+

−C1 ⊗B2 +B1 ⊗ C2) + µ2(D1 ⊗ C2 − C1 ⊗D2)
]
(x⊗ y) = 0. (3.70)

Proof: It is sufficient to show a), since the problem (3.68) is symmetric with
respect to switching of λ with µ and B1, B2 with C1, C2.

Equation (3.69) holds because

λ2(D1 ⊗B2 −B1 ⊗D2)(x⊗ y) =

λ(D1 ⊗ (A2 − µC2 − µλD2)− (A1 − µC1 − µλD1)⊗D2)(x⊗ y) =

λ(D1 ⊗ (A2 − µC2)− (A1 − µC1)⊗D2)(x⊗ y) =

(λ(D1 ⊗A2 −A1 ⊗D2) + λµ(C1 ⊗D2 −D1 ⊗ C2))(x⊗ y) =

(λ(D1 ⊗A2 −A1 ⊗D2) + (C1 ⊗ (A2 − λB2)− (A1 − λB1)⊗ C2)(x⊗ y),

where we used that

λµ(C1 ⊗D2 −D1 ⊗ C2)(x⊗ y) =

(C1 ⊗ (A2 − λB2 − µC2)− (A1 − λB1 − µC1)⊗ C2)(x⊗ y) =

(C1 ⊗ (A2 − λB2)− (A1 − λB1)⊗ C2)(x⊗ y).

�

At the cost of technicalities and longer formulas in the derivation, the lemma
partially generalizes to the following class of problems. Find λ, µ ∈ C, x, y ∈
Cn\{0} such that{

A1x = λ
∑m

k=0 µ
kB1,kx+

∑m
k=1 µ

kC1,kx

A2y = λ
∑m

k=0 µ
kB2,ky+

∑m
k=1 µ

kC2,ky
. (3.71)

Note that symmetry with respect to µ and λ is broken. For this generalization
of the two-parameter eigenvalue problem, we only find one determinental form.
The corresponding problem is a polynomial eigenvalue problem. Note that λ is
not occuring in the polynomial eigenvalue problem below.
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Lemma 3.39 If (λ, µ) is an eigenvalue of (3.71) with eigenvector (x, y) then[
(A1 ⊗B2,0 −B1,0 ⊗A2) +

m∑
k=1

µk(A1 ⊗B2,k −B1,k ⊗A2 − C1,k ⊗B2,0 +B1,0 ⊗ C2,k)+

m∑
k=1,i=1

µk+i(B1,k ⊗ C2,i − C1,k ⊗B2,i)

 (x⊗ y) = 0.

Proof: From (3.71) it follows that

A1x = λB1x+ µC1x+ µλD1x

A2y = λB2y+ µC2y + µλD2y,

if we let Bi = Bi,0, Di =
∑m

k=1 µ
k−1Bi,k and Ci =

∑m
k=1 µ

k−1Ci,k for i = 1, 2.
Applying Lemma 3.38 yields that

0 =

[
(A1 ⊗B2,0 −B1,0 ⊗A2) +

+µ(A1 ⊗
m∑

k=1

µk−1B2,k −
m∑

k=1

µk−1B1,k ⊗A2+

−
m∑

k=1

µk−1C1,k ⊗B2,0 +B1,0 ⊗
m∑

k=1

µk−1C2,k)+

µ2(
m∑

k=1

µk−1B1,k ⊗
m∑

k=1

µk−1C2,k −
m∑

k=1

µk−1C1,k ⊗
m∑

k=1

µk−1B2,k)

]
(x⊗ y) =

=

[
(A1 ⊗B2,0 −B1,0 ⊗A2) +

+(A1 ⊗
m∑

k=1

µkB2,k −
m∑

k=1

µkB1,k ⊗A2+

−
m∑

k=1

µkC1,k ⊗B2,0 +B1,0 ⊗
m∑

k=1

µkC2,k)+

(
m∑

k=1

µkB1,k ⊗
m∑

k=1

µkC2,k −
m∑

k=1

µkC1,k ⊗
m∑

k=1

µkB2,k)

]
(x⊗ y),
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which completes the proof. �

3.6.2 One single delay

In order to ease the presentation, we start the discussion by treating retarded
DDEs with a single delay. We generalize the results to multiple delays and the
neutral case in later subsections.

We derive a polynomial two-parameter eigenvalue problem from the char-
acteristic equation for the case that there is a purely imaginary eigenvalue. It
turns out that the eigenvalue problems which are the results of the applications
of Lemma 3.38 and Lemma 3.39, are the polynomial eigenvalue problems in the
works on matrix pencil methods.

Consider
B0ẋ(t) = A0x(t) +A1x(t− τ), (3.72)

where A0, A1, B0 ∈ Cn×n. The characteristic equation is

B0sv = (A0 +A1e
−sτ )v. (3.73)

Suppose that there is an imaginary eigenvalue s = iω. We denote z = e−sτ . Note
that for an imaginary eigenvalue s∗ = −s and z∗ = z−1. Hence, we form the
conjugate of (3.73)

−B0su = (A0 +A1z
−1)u, (3.74)

where u = v. We now rearrange the terms of (3.73) and (3.74) in such a way
that we can easily compare it to (3.68). The equations (3.73) and (3.74), yield
that {

A0v = sB0v −zA1v

A1u = −zA0u −szB0u
(3.75)

from which we identify that it is a special case of the polynomial two-parameter
eigenvalue problem (3.68). Note that there are other ways to construct a polyno-
mial two-parameter eigenvalue problem from the characteristic equation. Instead
of using the complex conjugate as a second condition we might just as well take
the complex conjugate transpose.

The two quadratic eigenvalue problems in Lemma 3.38 correspond to the
two types of elimination done for z in [Lou01] (and mentioned in the review in
Theorem 3.9) and for s in [CGN95],[Nic98], [Jar06a].
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By applying Lemma 3.38 to (3.75), we find that[
(A1 ⊗A1) + s(B0 ⊗A0 −A0 ⊗B0) + s2(B0 ⊗B0)

]
(v ⊗ u) = 0 (3.76)

and [
(B0 ⊗A1) + z(A0 ⊗B0 +B0 ⊗A0) + z2(A1 ⊗B0)

]
(v ⊗ u) = 0. (3.77)

The method of Louisell [Lou01] is constructed for neutral DDEs. For the
retarded case, the eigenvalue problem which must be solved in his method cor-
responds exactly to a linearization of (3.76). More precisely, suppose that all
matrices in Theorem 3.9 are real and B0 = I, B1 = 0 (in the notation in The-
orem 3.9), then (3.76) reduces to the eigenvalue problem in Theorem 3.9. We
discuss the more general case of neutral DDEs in the next subsection.

The derivation of a special case of [CGN95] can be done by considering the
complex conjugate transpose of (3.73) (instead of the conjugate). The resulting
equations are {

A0v = sB0v −zA1v

A∗1z = −zA∗0z −szB∗0z,
(3.78)

where z is the left eigenvector of (3.72), i.e., M(s)∗z = 0. Lemma 3.38 yields
that (

z2(A1 ⊗B∗0) + z(B0 ⊗A∗0 +A0 ⊗B∗0) +B0 ⊗A∗1
)
(x⊗ z) = 0,

which is a special case of the eigenvalue problem occurring in [CGN95, Nic98]
for the commensurate (but real) case, for delay-differential algebraic equations in
[NFC06] and for neutral delay-differential equations in [FNC06].

We consider these more general cases in the following subsections.

3.6.3 Neutral systems

Consider the neutral DDE

B0ẋ(t) +B1ẋ(t− τ) = A0x(t) +A1x(t− τ),

where A0, A1, B0, B1 ∈ Cn×n. It turns out that Lemma 3.38 can be applied
analogously to this more general case and delay-dependent matrix-pencil methods
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for neutral DDE can be derived similarly. As in Section 3.6.2, we set s = iω and
z = e−iτω, and note that the characteristic equation and its complex conjugate
can be expressed as {

A0v = sB0v −zA1v + szB1v

A1u = −sB1u −zA0u− szB0u.
(3.79)

After applying Lemma 3.38 we get that

[
(−A0 ⊗A0 +A1 ⊗A1) + s(−A0 ⊗B0 −B1 ⊗A1+

B0 ⊗A0 +A1 ⊗B1) + s2(−B1 ⊗B1 +B0 ⊗B0)
]
(v ⊗ u) = 0,

and after rearrangement of the terms(
(sB0 −A0)⊗ (sB0 +A0)− (sB1 −A1)⊗ (sB1 +A1)

)
(v ⊗ u) = 0, (3.80)

which is the same general form of the eigenvalue problem as presented by Louisell
in [Lou01] and Theorem 3.9, if we assume that B0 = I and that the matrices
are real. Louisell suggests that (3.80) should be solved by solving the generalized
eigenvalue problem

s

(
I ⊗ I B1 ⊗ I

I ⊗B1 I ⊗ I

)
x =

(
A0 ⊗ I A1 ⊗ I

−I ⊗A1 −I ⊗A0

)
x,

motivated by a connection to a differential equation. Here, we note that this is
just one possible linearization of (3.80) and any of the linearizations in [MMMM06b,
MMMM06a] could be used.

3.6.4 Commensurate delays

Consider the DDE with commensurate delays,

B0ẋ(t) =
m∑

k=0

Akx(t− hk),

which has the characteristic equation(
m∑

k=0

e−hksAk − sI

)
v = 0.
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As in the previous section we substitute s = iω and z = e−iτω and consider the
conjugate of the characteristic equation. After rearrangement of the terms and
sums we have {

−Amu = szmB0u+
∑m

k=1 z
kAm−ku

A0v = sB0v −
∑m

k=1 z
kAkv.

(3.81)

This is the polynomial two-parameter eigenvalue problem in (3.71) with A1 =
−Am, B1,m = B0, B1,k = 0, k = 0, . . .m − 1, C1,k = Am−k, k = 1, . . . ,m,
A2 = A0, B2,0 = B0, B2,k = 0, k = 1, . . .m, C2,k = −Ak, k = 1, . . . ,m.

Lemma 3.39 and several manipulations of the sums yield

0 =

[
−Am ⊗B0 + zm(−B0 ⊗A0) +

m∑
k=1

zk(−Am−k ⊗B0)+

m∑
i=1

zm+i(−B0 ⊗Ai)

]
(v ⊗ u) =[

−
m∑

k=0

zm−k(Ak ⊗B0)−
m∑

i=0

zm+i(B0 ⊗Ai)

]
(v ⊗ u). (3.82)

Note that (3.82) is the same polynomial eigenvalue problem we derived in Sec-
tion 3.3.3, i.e., (3.27).

Similarly, if we consider the conjugate transpose instead of the transpose,
Lemma 3.39 gives the polynomial eigenvalue problem in [CGN95, Theorem 3.1].

Finally, our most general result is for neutral commensurate DDEs. We show
that the eigenvalue problem in [FNC06] is also a determinental form of a polyno-
mial two-parameter eigenvalue problem, with a similar analysis as for the previous
cases. The price for the wider generality is payed with technicalities and larger
expressions. Consider the characteristic equation of the neutral commensurate
DDE

m∑
k=0

Bkẋ(t− hk) =
m∑

k=0

Akx(t− hk),

i.e., (
A0 +

m∑
k=0

−szkBk +
m∑

k=1

zkAk

)
v = 0. (3.83)
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The complex conjugate transpose is(
zmA∗0 +

m∑
k=0

szm−kB∗k +
m∑

k=1

zm−kA∗k

)
u = 0. (3.84)

We can now combine (3.83) and (3.84) into a polynomial two-parameter eigen-
value problem{

A0v = s
(∑m

k=0 z
kBk

)
v −

∑m
k=1 z

kAkv

−A∗mu = s
∑m

k=0 z
kB∗m−ku+

∑m
k=1 z

kA∗m−ku.
(3.85)

This corresponds to (3.71) with A1 = A0, B1,k = Bk, k = 0, . . .m, C1,k = −Ak,
k = 1, . . . ,m, A2 = −A∗m, B2,k = B∗m−k, k = 1, . . .m, C2,k = A∗m−k, k =
1, . . . ,m. Lemma 3.39 yields

[
(A0 ⊗B∗m−0 +B0 ⊗A∗m) +

m∑
k=1

zk(A0 ⊗B∗m−k +Bk ⊗A∗m +Ak ⊗B∗m−0 +B0 ⊗A∗m−k)+

m∑
k=1,i=1

zk+i(Bk ⊗A∗m−i +Ak ⊗B∗m−i)

 (v ⊗ u) = 0. (3.86)

The coefficients of (3.86) can now be compared to the coefficients of the eigen-
value problem in [FNC06, Theorem 2]. With some effort it can be verified that
the matrix coefficients Qk in [FNC06, Theorem 2] are the matrix coefficients in
polynomial eigenvalue problem (3.86).

3.7 NP-hardness issues

The result on NP-hardness by Toker and Özbai [TÖ96] is commonly cited in
works related to stability margin for time-delay systems. We now discuss how
these results relate to the proposed methods in Section 3.3 and Section 3.4. Large
parts of the discussion are the results of a collaboration with Henrik Bäärnhielm.

With the discussion we wish to clarify a common misinterpretation of these
results and stress that the NP-hardness results do not imply that the problem
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considered in this chapter is difficult in the sense normally relevant in numerical
analysis. Moreover, the methods proposed in previous sections neither contradict
nor verify the NP-hardness results. We will discuss the following reasons:

• The problem we consider in this chapter and the problem in [TÖ96] are
not the same.

• The method we suggest involves the computation of eigenvalues and can
not deliver exact results on a Turing machine.

• A problem considered difficult in computer science is not necessarily difficult
in the context of numerical analysis.

We will also discuss variants of the results by Toker and Özbai attempted in
[GKC03].

In theoretical computer science, the class of problems referred to as NP-
hard corresponds to some problems considered particularly hard to solve, but
computationally easy to verify (problems at least as difficult as nondeterministic
polynomial-time). See [BSS98] or any undergraduate text-book in complexity
theory for a precise definition. It is generally believed but not proven that NP-
hard problems do not allow a polynomial-time solution scheme. The theorem
below by Toker and Özbai [TÖ96] states, in rough terms, that given rational
matrices and rational delays defining a rectangle in delay-space, the problem of
determining whether all points in the delay-space rectangle are stable is NP-hard.

Theorem 3.40 ([TÖ96]) The following robust stability problem is NP-Hard:
Given A0, . . . , Am where Ai ∈ Qn×n and nonnegative numbers h−i , h+

i ∈ Q,
i = 1, . . . ,m, is the system

ẋ(t) = A0x(t) +
m∑

k=1

Akx(t− hk)

asymptotically stable for all hi ∈ [h−i , h
+
i ], i = 1, . . . ,m?

At first sight, the result above may seem to suggest that the problem we are
considering in this chapter is difficult. This interpretation is not correct in the
context of numerical analysis. It does not imply that the problem is difficult from
a numerical point of view.
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Clearly, the problem is formulated in a different way in comparison to what
is considered in the previous sections. That is, the determination of the stability
of any delay-space rectangle is not the same as parameterizing the delay-space
points which are stable and also not the same as the problem of determining for
which points there are imaginary eigenvalues. The problems are not necessarily
computationally equivalent which is one simple motivation why the NP-hardness
result can not be applied to the problem considered in this chapter. For the sake
of argument we will ignore this difference of formulation in the discussion that
follows.

Typically in computer science (as is the case in Theorem 3.40) it is assumed
that the hardware upon which the problem is NP-hard is a Turing machine.

Thus, another motivation why Theorem 3.40 has no implications on our
method is the fact that our method presented in this chapter can not deliver
exact results on a Turing-machine.

One step of the method we propose involves finding the unit-magnitude eigen-
values of a matrix, which is (theoretically but not numerically) equivalent to find-
ing roots of a polynomial. It follows from the fundamental theorem of Galois-
theory (e.g. [BB90]) that there are real roots of polynomials which are not
representable by the elementary operations and hence in particular not com-
putable with a Turing-machine. That is, even though an eigenvalue problem is
considered to be a tractable problem in numerical analysis, it is not solvable on
a Turing-machine. Since the polynomial root-finding problem belongs to an un-
solvable class of problems, our method is not implementable exactly on a Turing
machine. Moreover, for multiple delays the delay-space is parameterized and to
determine if a given rectangle is stable from the parameterization is not neces-
sarily easy (polynomial-time).

We believe that an important reason why the complexity results are often
incorrectly interpreted stems from the fact that the meaning of difficult (prob-
lem) is context dependent. In computer science, problems for which there is a
polynomial-time algorithm delivering an exact answer, are typically considered
easy. Whereas in numerical analysis we are satisfied with an answer which is
correct up to machine precision. But, more importantly, in numerical analysis,
polynomial time is normally not enough to classify an algorithm as efficient (and
the problem as easy to solve). In fact, in numerical analysis and specifically in
numerical linear algebra, the goal is often to be optimal, i.e., to have a compu-
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tational effort proportional to the size of the input data.

Consider the problem of computing 2x where x ∈ N is the input. We call
size in bits of the input n := bits(x) = log2(x). The size of the output is
bits(2x) = log2(2x) = x = 2n. Since all of the bits in the output can not be
touched in polynomial time, the problem of computing 2x can never be computed
in polynomial time on a Turing machine and is in a sense considered to be a
difficult problem in computer science. The corresponding problem in numerical
analysis is clearly not considered difficult. In fact, exponentiation is typically seen
as a fundamental operation provided by the processor, i.e., it can be computed to
machine precision in constant time. With this simple example we have shown that
what in computer science is considered difficult may not necessarily be difficult
in the context of numerical analysis.

Note that our arguments hold in general; if a problem is considered difficult
in computer science it is not necessarily so in numerical analysis, nor does an
easy problem (polynomial-time) in computer science imply that is easy from a
numerical point of view. In particular, the many NP-hardness results in control
theory reviewed by Blondel and Tsitsiklis in [BT00] have very little impact on
the difficulty of the corresponding problems from a numerical point of view. It
seems that the authors were aware of this, telling from the statement “However
this [NP-hardness] is not a reason enough for declaring the problem intractable
and refraining from further research”.

Another slightly different variant of Theorem 3.40 is presented by Gu, Khar-
itonov and Chen in [GKC03, Chapter 3.4] where similar NP-hardness results are
presented for real input data. The character of complexity theory changes con-
siderably if one allows the underlying hardware to handle (exact) real arithmetic
which is here implicitly assumed (see [BSS98]). In particular, it is not clear as to
whether the Knapsack-problem used in the proof by Gu et al. is indeed NP-hard
on a computer which can handle exact arithmetic. This would indicate that the
proof in [GKC03] requires some clarification.

Finally, it is relevant to know if a problem can be approximated in poly-
nomial time. One such class of problems (in computer science) is referred to as
FPTAS. Such problems allow a fully polynomial-time approximation scheme (e.g.
[ACG+99]), i.e., given an accuracy ε the problem can be solved to that accuracy
in polynomial time. It turns out (as seen in [IK75]) that the Knapsack-problem is
FPTAS. Since the proof of Theorem 3.40 involves the reduction to the Knapsack-
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problem, this would indicate that the corresponding approximate problem could
allow a polynomial-time approximation. However, still, determining if a problem
is FPTAS does not reveal if a problem is easy or difficult in the context of numer-
ical analysis. In particular, if the problem in Theorem 3.40 is FPTAS, then that
does not necessarily mean that the problem is easy in the context of numerical
analysis.



Chapter 4

Perturbation of nonlinear

eigenproblems

In a survey paper on eigenvalue problems in year 2000, two experts in the field
of numerical linear algebra wrote:

Perturbation theorems play a very essential role in computational
processes for eigenproblems.

Gene Golub and Henk van der Vorst [GvdV00]

The survey paper is mostly on linear eigenvalue problems. It is however to
expect that the role of perturbation results for nonlinear eigenvalue problems is,
or will be, equally important. In this chapter we will present some notes on how
some perturbation results can be generalized to nonlinear eigenvalue problems
and how we can use them to determine convergence properties of some numerical
methods.

In rough terms, the eigenvalue perturbation is described as the qualitative
analysis of the behavior of an eigenvalue s of a matrix A ∈ Cn×n when the
matrix is perturbed. That is, the analysis of the relation between s̃ ∈ σ(Ã) and
s ∈ σ(A) when some relation between A and Ã is given, e.g. in terms of bounds
of the norm ‖A− Ã‖ ≤ δ.

We will distinguish between two types of perturbation results. The behavior of
each individual eigenvalue when δ → 0 is described by the sensitivity or condition

145
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number of the eigenvalue, which is a local property of individual eigenvalues. We
will also present some non-local results where we bound the maximum movement
of all eigenvalues in some region. Some sensitivity analysis will be presented in
Section 4.3 and some nonlocal results based on a famous perturbation theorem
for linear eigenvalue problems (the Bauer-Fike theorem) will be presented in
Section 4.4.

One of our goals is to generalize perturbation results for linear eigenvalue
problems to nonlinear eigenvalue problems. In order to construct true general-
izations to nonlinear eigenvalue problems, we will not use the same form of the
nonlinear eigenvalue problem we used in Chapter 2. In Chapter 2 the nonlinear
eigenvalue problem was to determine s ∈ C such that a parameter dependent
matrix M is singular, that is,

M(s)v = 0, v ∈ Cn\{0}. (4.1)

Instead we will use a fixed point form of a nonlinear eigenvalue problem. The
nonlinear eigenvalue problem in (set-valued) fixed point form is the problem of
determining s ∈ C such that the parameter dependent matrix G has an eigenvalue
s, i.e., s ∈ σ(G(s)) or equivalently

sv = G(s)v, v 6= 0. (4.2)

Some of the many ways to transform (4.1) to (4.2) are discussed in Section 4.2.
We will exclusively use the fixed point form (4.2) in this chapter because,

1. it allows us to easier state generalizations of perturbation results for the
linear case, because the linear case is G(s) = A and a special case of (4.2);

2. the relation s ∈ σ(G(s)) is a (so-called) set-valued fixed point problem
known in the field of fixed point theory (see e.g. [KB01]);

3. some numerical methods for nonlinear eigenvalue problems can be written
as sk+1 ∈ σ(G(sk)).

In particular, we will state and prove a sensitivity formula in terms of left and
right eigenvectors in Section 4.3 and use some results from fixed point theory to
generalize the Bauer-Fike theorem to a class of nonlinear eigenvalue problems in
Section 4.4. Moreover, we will see how one can define the convergence order of a
fixed point iteration sk+1 ∈ σ(G(sk)) in terms of right and left eigenvectors.
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4.1 Notes on current literature

We mention some standard references in perturbation theory. The book by Stew-
art and Sun [SS90] contains many perturbation results for matrices, often ex-
pressed in terms of matrix norms. The book by Kato [Kat95] and Baumgärtel’s
monograph [Bau85] serve as comprehensive studies of perturbation theory includ-
ing (more generally) linear operators. The book of Trefethen and Embree [TE05]
contain many perturbation results related to non-normal eigenvalue problems.

Even though perturbation theory has received a lot of attention for a long
period of time, the amount of literature directly applicable to the nonlinear eigen-
value problem we are considering here is limited. We will now discuss some of
the more recent results related to the nonlinear eigenvalue problem.

The pseudospectra (or sometimes spectral value set) are popular when it comes
to visualization and analysis of perturbations. The most popular overview of
pseudospectra is the commonly cited book of Trefethen and Embree [TE05].
The ε-pseudospectrum of matrix A is the set of values s ∈ C for which s is an
eigenvalue of a perturbed matrix Ã such that ‖Ã−A‖ ≤ ε, i.e.,

σε(A) := {s ∈ C : ∃E ∈ Rn×n, ‖E‖ ≤ ε such that s ∈ σ(A+ E)}. (4.3)

Several attempts have been made to generalize results on pseudospectra to non-
linear eigenvalue problems. The first appearance of pseudospectra for nonlinear
eigenvalue problems directly related to the type of problems here, was proba-
bly the article of Cullum and Ruehli [CR01]. Cullum and Ruehli defined the
nonlinear pseudospectra for the problem det(T (s)) = 0 as

Φnl
ε (T ) := {s ∈ C : κ2(T (s)) = ‖T (s)‖2‖(T (s))−1‖2 ≥ ε−1}. (4.4)

They presented a numerical procedure to plot Φnl
ε (T ) in a specified region and

applied it to determine the nonlinear pseudospectra corresponding to the poles
and zeros of a delay system from a model of a partial element equivalent circuits.
Note that the definition (4.4) is not a generalization of the usual definition of
pseudospectra of a matrix as it does not reduce to (4.3) if T = A− sI. This can
be seen as follows: We know, from e.g. [TE05, Theorem 2.1], that the definition
(4.3) is equivalent to σε(A) = {s ∈ C : ‖(A − sI)−1‖ > ε−1}. This should be
compared to the definition of Cullum and Ruehli applied to T (s) = A− sI, i.e.,
Φnl

ε (A− sI) = {s ∈ C : ‖A− sI‖‖(A− sI)−1‖ ≥ ε−1}. We note that Φnl
ε has the

additional (nonlinear) factor ‖A− sI‖.
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Several properties of the usual definition of pseudospectra are however main-
tained in the modified extension (4.4). The eigenvalues are always contained in
the pseudospectrum, i.e., for all eigenvalues s, i.e., s such that det(T (s)) = 0,
s ∈ Φnl

ε (T ) for any ε > 0 (since the condition number of a singular matrix is
defined as ∞). Moreover, Φnl

ε1
(T ) ⊂ Φnl

ε2
(T ) when ε1 < ε2.

Michiels, Green, Wagenknecht and Niculescu have published several results
on pseudospectra for nonlinear eigenvalue problems and in particular the delay
eigenvalue problem [GW06], [WMG08] and [MGWN06]. Their definition of pseu-
dospectra for nonlinear eigenvalue problems is a true generalization of (4.3). In
the most general form (e.g. [MGWN06]), they consider problems which consist
of a sum of products of matrices and analytic functions. In particular, they con-
sider perturbations of T (s) =

∑m
k=0Akfk(s), where Ak ∈ Cn×n, f : C → C, and

define the pseudospectra as

σε(T ) := {s ∈ C : det(T (s)−∆T (s)) = 0 where

∆T (s) =
m∑

k=0

fk(s)δAk and δAk ∈ Cn×n, ‖δAk‖ < εαk}. (4.5)

This is a direct generalization of the definition of pseudospectra for polynomial
eigenvalue problems in [TH01]. Note that the uncertainty ∆T (s) is a perturbation
of the coefficient matrices, i.e., the functions fk in T and ∆T are not changed.
Generalizations of the definition of pseudospectra as well as several equivalence
relations and relations to stability radii were presented for the polynomial case,
i.e., fk(s) = sk, in [TH01]. A computational procedure was also presented.
Many of these results, including the computational procedure, were generalized
to arbitrary (analytic) fk in [MGWN06] and [WMG08].

Green and Wagenknecht compared definition (4.5) with an alternative (not
equivalent) definition for DDEs in [GW06]. We saw in Chapter 2 that the eigen-
values of a DDE are the eigenvalues of a corresponding linear infinite-dimensional
system (i.e., infinitesimal generator). Since pseudospectra for linear operators
can be defined analogous to (4.3), the pseudospectra of the infinitesimal genera-
tor is an alternative definition of the pseudospectra of a DDE. In the numerical
method, the discretization infinitesimal generator is refined until the change of
the pseudospectra (of the corresponding matrix) in the relevant region is less
than some tolerance. In [GW06], the infinitesimal generator is discretized using
a Chebyshev method.
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Structured (eigenvalue) perturbation is a description of the change of the eigen-
values when the perturbation is such that the perturbed problem is restricted to
some subset of the general problem. Typically, the subset is such that some prop-
erties of either the solution or the problem are preserved under the perturbation.
For instance, if an application for physical reasons generates a real matrix, then
a perturbation analysis with a complex perturbation matrix is likely to yield
pessimistic bounds on the eigenvalues in comparison to an analysis where the
perturbed matrix is also real. Other examples of relevant structured problems
are symmetric, skew-symmetric, persymmetric, orthogonal, symplectic, nonneg-
ative matrices, matrix products, etc. See [FK06] for more types of structures.

The pseudospectra definition (4.5) maintains the functions whereas the ma-
trices are perturbed. Therefore, σε(T ) in (4.5) is sometimes referred to as a
structured pseudospectrum. See also [TE05, Chapter 50] for structured pseu-
dospectra.

Various results for linear eigenvalue problems have been generalized to spe-
cific structured eigenvalue problems. This holds in particular for the polynomial
eigenvalue problem. Without being exhaustive we will mention some results.
Apart from the already mentioned result [TH01], a numerical method based on
a predictor-correction tracing was suggested in [LP05]. The Bauer-Fike theorem
(see Section 4.4.1), which is a popular way to bound the spectra using the condi-
tion number has been generalized to polynomial eigenvalue problems in [Chu03].

The polynomial eigenvalue problem is a very special nonlinear eigenvalue
problem since it allows a transformation to a linear eigenvalue problem. The
most common (so-called) linearization is the companion linearization, which we
have used several times in other chapters. This simple form is unfortunately
unsuitable for many cases as the linearization does not preserve structure of the
underlying matrices. Different linearization should be used for different matrix
structures. A complete characterization of the possible linearizations was given
by Mackey, Mackey, Mehl and Mehrmann [MMMM06b]. The same authors dis-
cussed different structured linearizations in [MMMM06a].

The pseudospectra of the companion form (mostly for scalar problems) was
investigated in [TT94], where the importance of balancing was geometrically
established. That is, the similarity transformation with the diagonal matrix may
change the conditioning (and pseudospectra) of the eigenvalue problem a lot.
See also the method for optimal scaling for polynomial eigenvalue problems in
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[Bet07b].

Finally, we have results on structured condition numbers, i.e., the modulus
of the sensitivity of individual eigenvalues under structured perturbations. In
[KKT06], computable expressions for many different structures are given. It is
interesting that for some structured (normwise) perturbations the structured and
unstructured condition number is the same [Rum06].

4.2 The fixed point form and a similarity trans-

formation

The nonlinear eigenvalue problem is often written as the problem of finding s ∈ C
such that M(s) is singular, i.e.,

M(s)v = 0, v ∈ Cn\{0}. (4.6)

For the scalar case (n = 1) this is a root-finding problem. Clearly, for any M we
can rewrite (4.6) into a fixed point form

sv = G(s)v, v ∈ Cn\{0} (4.7)

in a number of ways. That is, instead of searching for s ∈ C such that M(s) is
singular we search for s ∈ C such that s is an eigenvalue of G(s), i.e., s ∈ σ(G(s)).
We will denote the solutions of (4.7) with σ(G), that is σ(G) := {s ∈ C : s ∈
σ(G(s))}. Note that this generalizes the definition of the spectrum of a matrix A,
σ(A) where A is constant. The fixed point form (4.7) is often used in literature
on delay eigenvalue problems, where G(s) =

∑m
k=0Ake

−τks.

In this chapter we will use the fixed point form (4.7) because it allows direct
generalizations of perturbation results for eigenvalue problems and several meth-
ods for nonlinear eigenvalue problems can be written as fixed point iterations
sk+1 ∈ σ(G(sk)). Moreover, in Section 4.4 we will use that (4.7) is a special case
of a set-valued fixed point problem.

A similarity transformation

Similar to scalar fixed point problems, the set-valued nonlinear eigenvalue prob-
lem (4.7) can be written in many mathematically equivalent ways. Different
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mathematically equivalent forms may have very different numerical properties.
Apart from the obvious similarity transformation, σ(G(s))= σ(Q(s)−1G(s)Q(s))
for any invertible Q(s) ∈ Cn×n, we have the following more general class of
equivalent nonlinear eigenvalue problems.

Lemma 4.1 (Similarity transformation) Let G : C → Cn×n be a parameter
dependent matrix (corresponding to a nonlinear eigenvalue problem). For any
parameter dependent matrices A, B such that 1 6∈ σ(A(s)) and B(s) nonsingular
for all s ∈ C, the nonlinear eigenvalue problems corresponding to G and H share
solutions, i.e., σ(G) = σ(H) where

H(s) := (I −A(s))−1(B(s)G(s)B(s)−1 − sA(s))). (4.8)

Moreover, the eigenvectors u, v are related by

u = B(s)v

where u, v are eigenvectors of H(s) and G(s) correspondingly.

Proof: Since B(s) is invertible sv = G(s)v ⇔ su = B(s)G(s)B(s)−1u where
u = B(s)v. Let F (s) := B(s)G(s)B(s)−1 then

su = F (s)u ⇔ s(I −A(s))u = (F (s)− sA(s))u.

Since I −A(s) is invertible for all s ∈ C by assumption,

su = (I −A(s))−1(F (s)− sA(s))u = H(s)u.

�

Later, we will make special use of the special case that B(s) = I, i.e., σ(G) =
σ(H), where

H(s) = (I −A(s))−1(G(s)− sA(s))). (4.9)

Note that the lemma above (Lemma 4.1) is a true generalization of the sim-
ilarity transformation for matrices. If G is constant, i.e., G(s) = C, then we
the lemma reduces to the usual similarity transformation if we set A(s) = 0 and
B(s) = B0.

This similarity transformation is not a unique property of the fixed point
form. For instance, (4.9) can be interpreted in the context of the matrix singular
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form (4.6) as the identity M(s) = −sI + A(s)−1(M(s) + sA(s)). Many results
in this chapter can be stated as equivalent results for the matrix singular form
(4.6). We will stick to the fixed point form and discuss the interpretations in the
matrix singular form only where it is illustrative.

In the later sections we will choose A(s) = G′(s), B(s) = I and see that the
corresponding fixed point iteration is a form of Newton’s method. Other methods
for nonlinear eigenvalue problems can be interpreted as fixed point iterations with
similarity transformations.

We have introduced the similarity transformation in order to make it easier
to interpret some numerical methods for nonlinear eigenvalue problems. Note
that some nonlinear eigenvalue problems can be analyzed analytically with the
transformation. In the following example we show that Lemma 4.1 can be used
to transform the problem to a triangular form where the classical transforma-
tion σ(B−1G(s)B) = σ(G(s)) fails, since the matrices are not simultaneously
triangularizable.

Example 4.2 Consider the nonlinear eigenvalue problem

G(s) =

(
0 0
α 0

)
+

(
0 1
0 0

)
f(s).

This problem can be explicitly treated by forming the determinant. Here we will
demonstrate the use of Lemma 4.1 by solving it using the similarity transfor-
mation. Note that for α 6= 0 and f(s) 6= 0 the matrices in G(s) can not
be transformed to triangular form simultaneously using the classical similarity
transformation B−1G(s)B(s). If we assume that s 6= 0, we can apply (4.9) with

A(s) =

(
0 f(s)/s
0 0

)
and transform G to a triangular nonlinear eigenvalue prob-

lem H. Here

H(s) =

(
1 − 1

sf(s)
0 1

)−1(
0 0
α 0

)
=

(
αf(s)

s 0
α 0

)
.

We can characterize all solutions (apart from possibly 0) by σ(G)\{0} = σ(H)\{0} =
{s ∈ C : s2 = αf(s)}\{0}. If we pick f(s) = e−s the problem reduces to the ex-
ample for the Lambert W in Section 2.2.1.
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4.3 Local perturbation and convergence

4.3.1 Local perturbation and sensitivity analysis

The problem we now consider is, given an eigenvalue, bound or describe the
change of this eigenvalue when the problem is perturbed. This is a local property
in the sense that we suppose that one eigenvalue is given and that we try to find
expressions of the perturbed eigenvalue using the original one. Sensitivity is one
such local property.

For linear eigenvalue problems the sensitivity of an eigenvalue is defined as
follows. The individual eigenvalues of the matrix A(h) ∈ Cn×n (dependending
on parameter h) move continuously with respect to changes in h (e.g. [HP05,
Corollary 4.2.1]). The union of the spectrum of A(h) for a h in some interval is
the union of n continuous functions. Suppose these eigenvalue paths are differ-
entiable at some point h, then the sensitivity of the eigenvalue is the derivative
of the corresponding eigenvalue path. For linear eigenvalue problems, the sensi-
tivity of eigenvalue s ∈ σ(A(h)) is given (in e.g. [Lan64, Theorem 5] or [HP05,
Proposition 4.2.12]) by

s′h(h) =
u∗A′(h)v
u∗v

(4.10)

where u, v are the left and right eigenvectors correspondingly. This sensitivity
quotient (or Rayleigh quotient) is derived in a couple of different ways in the
literature. For instance, in [SS90, Theorem IV.2.3] the formula follows from
Gerschgorin’s theorem, Lancaster [Lan64] uses a Taylor series whereas the very
simple proof in [HP05, Proposition 4.2.12] is based on implicit differentiation of
the eigenvalues and the eigenvectors.

We wish to generalize this sensitivity formula. But first we note some conse-
quences of two types of mean-value theorems.

Lemma 4.3 (Vector-valued mean value theorem) Suppose f is a continu-
ous function of [a, b] into Rk and f is differentiable in (a, b). Then there exists
ξ ∈ (a, b) such that

‖f(b)− f(a)‖ ≤ (b− a)‖f ′(ξ)‖.

Proof: See [Rud76, Theorem 5.19]. �
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Note that the lemma holds in particular for functions with a complex range, i.e.,
f : R → C (since the real and imaginary parts of C can be seen as R2). We use
this to derive the following bound of the change of the eigenvalue.

For the upper bound, we need a different mean value theorem.

Theorem 4.4 (Sensitivity) Suppose sv∗ = v∗G(s), zu = H(z)u and v∗(G(z)−
H(z))u 6= 0. If G(s) is differentiable, then,

|s− z| ≥ |v∗(G(z)−H(z))u|
|v∗(I −G′(ξ))u|

(4.11)

for some ξ ∈ l(s, z), where l(a, b) denotes the line-segment between a and b.

Proof: Note that

|v∗(G(z)−H(z))u| = |v∗(sI −G(s))u− v∗(zI −G(z))u|.

Let ϕ(θ) = sθ + z(1 − θ), i.e., a line going through s and z. We define f(θ) =
v∗(ϕ(θ)I−G(ϕ(θ)))u. Note that by the chain-rule f ′(θ) = v∗(I−G′(ϕ(θ)))u(s−
z). It follows from Lemma 4.3 that

|v∗(sI −G(s))u− v∗(zI −G(z))u| = |f(1)− f(0)| ≤ |f ′(x)| =
|v∗(I −G′(ϕ(x)))u||(s− z)|,

for some x ∈ (0, 1). Hence,

|s− z| ≥ |v∗(G(z)−H(z))u|
|v∗(I −G′(ϕ(x)))u|

.

�

This local perturbation result gives a lower bound on the movement of the
individual eigenvalue s. Note that the range of applicability of Theorem 4.4 is
limited, as it does not yield any information if H → G.

Theorem 4.5 (Complex mean-value theorem [EJ92]) Suppose Ω is an open
convex set in C, suppose f is a holomorphic function f : Ω → C, and suppose a,
b are distinct points in Ω. Then there exist points u, v on l(a, b) such that

f(b)− f(a)
b− a

= Re (f ′(u)) + iIm (f ′(v)),

where l(a, b) denotes the line-segment between a and b.
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Proof: See [EJ92]. �

Theorem 4.6 Suppose sv∗ = v∗G(s), zu = H(z)u and v∗(G(z) −H(z))u 6= 0,
and suppose G(s) is differentiable. Moreover, let q(ζ) := v∗(I −G′(ζ))u. Then,

|s− z| ≤ |v∗(G(z)−H(z))u|∣∣∣Re (q(ζ1)q(ζ2))
∣∣∣
∥∥∥∥∥
(

Re q(ζ2) Im q(ζ1)
−Im q(ζ2) Re q(ζ1)

)∥∥∥∥∥
2

(4.12)

= |v∗(G(z)−H(z))u|

(
σmin

(
Re q(ζ1) −Im q(ζ1)
Im q(ζ2) Re q(ζ2)

))−1

(4.13)

for some ζ1, ζ2 ∈ l(s, z).

Proof: Let f(θ) := v∗ (ϕ(θ)I −G(ϕ(θ)))u and ϕ(θ) := sθ − z(1 − θ), i.e., as in
the proof of Theorem 4.4. Then f(1) − f(0) = v∗(G(z) − H(z))u =: α and
f ′(θ) = v∗(I −G′(ϕ(θ)))u(s− z), i.e., q(ϕ(θ))(s− z) = f ′(θ).

Now note that from the complex mean-value theorem (Theorem 4.5), there
are θ1, θ2 ∈ l(0, 1) such that

Re α = Re f ′(θ1) = Re (q(ϕ(θ1))(s− z)) = Re q1Re (s− z)− Im q1Im (s− z)

Im α = Im f ′(θ2) = Im (q(ϕ(θ2))(s− z)) = Im q2Re (s− z) + Re q2Im (s− z),

where we let q1 = q(ϕ(θ1) and q2 = q(ϕ(θ2) for notational convenience. This is,
in matrix form (

Re α
Im α

)
= A

(
Re (s− z)
Im (s− z)

)
, (4.14)

where

A =

(
Re q1 −Im q1
Im q2 Re q2

)
.

Now note that |z| = ‖(Re (z), Im (z))T ‖2 for any z ∈ C. We use this by solving
(4.14) for (Re (s− z), Im (s− z))T and applying the triangle inequality,

|s− z| ≤
∥∥A−1

∥∥
2
|α|.

In order to prove (4.12), it remains to show that the determinant ofA is Re (q1q2)).
We use the rule for complex numbers that Re (ab) = Re aRe b + Im aIm b, to
show that

det

(
Re q1 −Im q1
Im q2 Re q2

)
= Re q1Re q2 + Im q1Im q2 = Re (q1q2).
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It follows from the definition of singular values that the 2-norm of the inverse of
a matrix is the the inverse of the smallest singular value. We have proven (4.13).
This completes the proof.

�

This theorem can be used to analyze sensitivity as follows. Consider a nonlin-
ear eigenvalue problem depending on a parameter h, Gh. We wish to apply Theo-
rem 4.6, and let the two nonlinear eigenvalue be let the two nonlinear eigenvalues
problems to be compared be G = Gh and H = Gh+∆. Moreover, s(h) ∈ σ(Gh)
and z = s(h+∆) ∈ σ(H). Note that if ∆ → 0 then in Theorem 4.6, ζ1, ζ2 → s(h)
and hence q(ζ1) = q(ζ2). The matrix

A =

(
a −b
b a

)

for any a, b ∈ R has only one singular value σmin(A) =
√
a2 + b2. Hence, the

singular value in (4.13) is
√

(Re q(s(h)))2 + (Im q(s(h))2 = |v∗(I −G′(s(h)))u|.
We note, that in the limit, the formula (4.13) coincides with the upper bound
(4.11).

In fact, the sensitivity of individual eigenvalues can be derived with the chain-
rule in the following way. We know from [HP05, Corollary 4.2.4] that the spec-
trum of a parameter dependent matrix is the union of n continuous functions.
That is, for a fixed s ∈ C

σ(Gh(s)) =
n⋃

k=1

gk(h, s)

for some functions gk continuous in h ∈ R. Hence, there is a k such that s =
gk(h, s) for the nonlinear eigenvalue problem s ∈ σ(G(h, s)). Note that this
implicitly defines a function s(h), which derivative we now assume to exist. From
the chain-rule,

s′(h) =
d

dh
gk(h, s(h)) = (gk)′h(h, s(h)) + (gk)′s(h, s(h))s

′(h),

where we denote the partial derivatives of g, by (g)′h and (g)′s with respect to h
and s correspondingly. Rearrangement of terms yields,

s′(h) =
(gk)′h(h, s(h))

1− (gk)′s(h, s(h))
.
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We note that (gk)′s = v∗ dGh

ds u and (gk)′s = v∗ dGh

dh u with the normalization v∗u =
1 from (4.10), where v and u are the left and right eigenvector correspondingly.
Hence, the sensitivity of a solution to the nonlinear eigenvalue problem s ∈
σ(Gh(s)) is given by the formula

s′(h) =
v∗ dGh

dh (s)u

v∗(I − dGh

ds (s))u
. (4.15)

This is clearly a generalization of the sensitivity formula for the linear case (4.10).

Example 4.7 We demonstrate the use of the sensitivity formula on the single
delay DDE

G(s) = A0 +A1e
−hs,

for the left-most eigenvalues with respect to perturbations in h. The derivatives
are

dG

dh
(s) = −sA1e

−hs and
dG

ds
(s) = −hA1e

−hs.

Suppose h > 0. The sensitivity quotient (4.15) is

s′h(h) =
−sv∗A1e

−hsu

v∗(I + hA1e−hs)u
=

−sv∗A1u

v∗(Iehs + hA1)u
. (4.16)

The real part of the eigenvalues of the DDE have an unbounded negative real
part. It is hence interesting to see how the left-most eigenvalues move. Hence, if
Re s→ −∞ then

s′h(h) → − s
h
. (4.17)

From this we conclude that the larger the negative real part and the smaller the
delay is, the larger the sensitivity. Moreover, the left eigenvalues move to the
right.

There are some sensitivity results for DDEs with multiple delays. The con-
tinuity of the rightmost eigenvalue (spectral abscissa) with respect to changes in
the delays was proven in [Dat78] and can be extended to perturbation in the coef-
ficient matrices. See the book by Michiels and Niculescu [MN07b, Theorem 1.14].
The local continuity of each individual eigenvalue can be proven with Rouché’s
theorem. See Proposition 1.13 in the same book.
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4.3.2 Convergence of fixed point iterations

It is natural to consider the fixed point iteration corresponding to the fixed point
form as an iterative method to find the solutions of the nonlinear eigenvalue
problem. We now wish to prove some theorems on the convergence and conver-
gence order of such methods. The main result (Theorem 4.10) is that the local
order of convergence to solution s∗ is the largest k for which G′(s∗)v = · · · =
G(k−1)(s∗)v = 0, where v is the eigenvector, i.e., G(s∗)v = s∗v.

It turns out that the method known as the method of successive linear prob-
lems (MSLP) in the literature is such a method. The convergence order of MSLP
is known to be two for simple eigenvalues. This is local quadratic convergence is
a simple consequence of the main theorem.

We will now state and prove a sufficient condition for an iteration sk+1 ∈
σ(G(sk)) to have a local convergence domain.

We characterize linear convergence with the following theorem which is a
consequence of Lemma 4.3.

Theorem 4.8 Let sk+1 ∈ σ(G(sk)) with left eigenvector wk+1 for a differen-
tiable parameter dependent matrix G. Suppose s∗ ∈ C is a fixed point, i.e.,
s∗ ∈ σ(G(s∗)) with right eigenvector v. Then

|sk+1 − s∗| ≤
|wT

k+1G
′(ζ)v|

|wT
k+1v|

|sk − s∗|, (4.18)

for some ζ on the line-segment between sk+1 and s∗, i.e., ζ ∈ l(sk, s∗).

Proof: The proof consists of multiplying with left and right eigenvectors and ap-
plying Lemma 4.3. Since sk+1w

T
k+1 = wTG(sk) and s∗v = G(s∗)v the difference

is
|sk+1 − s∗||wT

k+1v| = |wT
k+1(G(sk)−G(s∗))v|. (4.19)

Let ϕ be the line going through s∗ and z, i.e., ϕ(θ) = skθ + s∗(1 − θ). We
define f(θ) = wT

k+1G(ϕ(θ))v. Implying that f ′(θ) = wT
k+1G

′(ϕ(θ))vϕ′(θ) =
wT

k+1G
′(ϕ(θ))v(sk − s∗). Finally, from Lemma 4.3,

|wT
k+1(G(sk)−G(s∗))v| = |f(1)− f(0)| ≤ |f ′(x)| = |sk − s∗||wT

k+1G
′(ϕ(x))v|,

(4.20)
for some x ∈ (0, 1). The proof is completed by dividing (4.19) and (4.20) by
|wT

k+1v|. �
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Example 4.9 We now present a simple example of a convergent fixed point it-
eration. Consider the set of nonlinear eigenvalue problems

G(s) =

(
(1 + α)s2 −αs
q ln(s) s

)
,

with the iteration
sk+1 ∈ σ(G(sk)). (4.21)

For any choice of α and q, s = 1 is an eigenvalue with right eigenvector v =
(1, 1)T and left eigenvector u = (0, 1)T . The derivative is

G′(ζ)v =

(
2(1 + α)ζ − α

q/ζ + 1

)
.

At the fixed point, the coefficient in (4.18) is zero when w∗G′(s)v = 0. Hence,
we should have fast (local) convergence if q/s+ 1 = 0, i.e., q = −1. We consider
the specific choice α = −2 and q = −1, G′(1)v = (0, 0)T . Since u∗v = 1, there
is a neighborhood of s = 1 for which ‖G′(ζ)v‖/|w∗v| < 1. Thus, there is a
convergence region for the iteration sk+1 ∈ σ(G(sk)).

s0 3.0
σ(G(s0)) −8.4229 2.4229 = s1
σ(G(s1)) −5.3165 1.8688 = s2
σ(G(s2)) −3.0139 1.3902 = s3
σ(G(s3)) −1.6292 1.0868 = s4
σ(G(s4)) −1.0984 1.0040 = s5
σ(G(s5)) −1.0040 1 + 8.0 · 10−6 = s6
σ(G(s6)) −1.0000 1 + 3.2 · 10−11 = s7
σ(G(s7)) −1.0000 1

Table 4.1: The iteration (4.21) converges to an accuracy of machine precision in
7 steps for s0 = 3.0.

The speed of convergence is dependent on G′(ζ)v where v is the eigenvector
corresponding to the solution. If G′(ζ)v is small, then the convergence is expected
to be fast. It is somewhat remarkable that it is sufficient for fast convergence that
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G′(s) is small (in magnitude) in one direction, i.e., the direction of the eigenvector.
This is a property of the set-valued nature of the fixed point iteration. There is
no corresponding property for normal (scalar) fixed point iterations.

The quotient κe := 1
|w∗v| (with proper normalization) is known as the eigen-

value condition number corresponding to an eigenvalue s of the matrix G(s) with
left eigenvector w and right eigenvector v. The convergence is hence expected to
be slow if the eigenvalue condition number of G(s) is large unless |w∗G′(s)v| is
small.

Theorem 4.8 can be extended to arbitrary order in the following sense.

Theorem 4.10 Let sk+1 ∈ σ(H(sk)) with left eigenvector wk+1 for a m times
differentiable matrix-function H : C → Cn×n. Suppose s∗ ∈ C is a fixed point,
i.e., s∗ ∈ σ(H(s∗)) with right eigenvector v for which 0 = H ′(s∗)v = H ′′(s∗)v =
· · · = H(m−1)(s∗)v. Then

|sk+1 − s∗| ≤

∣∣∣∣∣w∗k+1H
(m)(ζ)v

w∗k+1v

∣∣∣∣∣ |sk − s∗|m

for some ζ ∈ l(sk, s∗).

Proof: The proof is an by induction over m. For m = 1, we have Theorem 4.8.
Suppose the theorem holds for m− 1. Then

|sk+1 − s∗| ≤

∣∣∣∣∣w∗k+1H
(m−1)(ζ2)v
w∗k+1v

∣∣∣∣∣ |sk − s∗|m−1

for some ζ2 ∈ l(sk, s∗). Since H(m−1)(s∗)v = 0,

|w∗k+1H
(m−1)(ζ2)v| = |w∗k+1H

(m−1)(ζ2)v − w∗k+1H
(m−1)(s∗)v|

= |w∗k+1H
(m)(ζ)v||ζ2 − s∗|,

for some ζ ∈ l(ζ2, s∗) from Lemma 4.3. From the fact that |ζ2 − s∗| ≤ |sk − s∗|
and the induction principle, we conclude that the theorem holds. �

We illustrate the theorem by determining the convergence order of Exam-
ple 4.9.

Example 4.11 (Example 4.9 continued) We already saw that u∗G′(s)v = 0
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if and only if q = −1. The second derivative of G is

G′′(s)v =

(
2(1 + α)
−q/s2

)
.

Since u∗G′′(s)v = −q/s2, the local convergence order (in the sense of Theo-
rem 4.10) is m = 2 if q = −1 and m = 1 otherwise.

We now wish to construct a method with high local convergence order from an
(arbitrary) nonlinear eigenvalue problem. Suppose we have a nonlinear eigenvalue
problem represented by G. We now constructing a new nonlinear eigenvalue
problem (represented by H) using the similarity transformation (Lemma 4.1).
We transform the problem with A such that H ′(s)v = 0, from which we deduce
that the convergence is quadratic in the sense of Theorem 4.10.

Suppose G is such that 1 6∈ σ(G′(s)) within some region V . It is then possible
to do a Cayley similarity transformation using Lemma 4.1 with A(s) = G′(s),
B = I. We will now show that this choice turns out to giveH ′(s∗)v = 0 as desired.
Moreover, the choice corresponds to the Newton’s method (on fixed point form)
for the scalar case and is equivalent to the so-called method of successive linear
problems (MSLP) [Ruh73] for the non-scalar case (i.e., the nonlinear eigenvalue
problem). From Lemma 4.1 we get the transformed problem

H(s) = (I −G′(s))−1(G(s)− sG′(s)).

The derivative of H is in general

H ′(s) = (I −A(s))−1
(
G′(s)−A(s) +A′(s)(I −A(s))−1(G(s)− sI)

)
, (4.22)

and for this particular choice of A, i.e., A = G′,

H ′(s) = (I −G′(s))−1G′′(s)(I −G′(s))−1(G(s)− sI).

Clearly H ′(s∗)v = 0 if s ∈ σ(G) and v the corresponding eigenvector. Since,
H ′′(s∗)v = −(I −G′(s∗))−1G′′(s∗)v the convergence is in general not more than
quadratic. Again, for the scalar case, the iteration sk+1 = H(sk) is the Newton
iteration sk+1 = sk − F (sk)/F ′(sk) with F (s) = s −H(s). Correspondingly for
the non-scalar case, we have the iteration sk+1 ∈ σ(H(sk)) where sk+1 is chosen
as the eigenvalue of H(sk) closest to some given target st. As usual, the inverse
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in H(s) is not computed explicitly, but instead the corresponding generalized
eigenvalue problem is solved in each step.

The local quadratic convergence to simple eigenvalues of MSLP was proven
by H. Voss in [Vos04b] using the implicit function theorem. In our context, it
is a straightforward consequence of Theorem 4.10 and the fact that H ′(s)v = 0
and that w∗v 6= 0 for simple eigenvalues.

Example 4.12 It is illustrative to apply the theory above to another method for
nonlinear eigenvalue problems. We revisit a method mentioned by Liao, Bai, Lee
and Ko [LBLK06] to solve the nonlinear eigenvalue problem T (s)v = 0, where

T (s) = K − sM + E(s) and E(s) = i

p∑
j=1

(s− σ2
j )

1
2Wj ,

and all matrices are symmetric and real. The iteration, which is a special case
of the so-called self-consistent iteration (SCI), can be written in our context as
the set-valued fixed point iteration

sk+1 ∈ σ(M−1(K + E(sk))).

Thus, we immediately see from Theorem 4.8 that the convergence is at most locally
linear to eigenvalue s∗ unless w∗M−1E′(s∗)v = 0. Moreover, the method is is
not expected to converge if w∗M−1E′(s∗)v > 1 (with normalization w∗v = 1).

These results are somewhat pessimistic for SCI. However, they should be in-
terpreted with care, as they only reflect local convergence properties. Global con-
vergence properties are also important in many applications, e.g. sometimes only
a very inaccurate initial approximation is available. Moreover, in a complete
computation analysis of a method, it is also necessary to investigate how expen-
sive one step of the iteration is.

4.4 Non-local perturbation results and the Bauer-

Fike theorem

The local perturbation analysis similar to the previous section can give the behav-
ior of the change of the individual eigenvalues expressed in terms of the eigenvalue
and left and right eigenvectors.
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However, the local behavior does unfortunately not give all the information
relevant in a perturbation analysis. In many cases we do not have the eigen-
value or its eigenvectors available a priori. In particular, the local sensitivity
in formula (4.15) depends on the left and right eigenvectors. We wish to do a
more qualitative analysis where this information is not necessary. For instance,
the following questions are not necessarily answered by the local analysis: Is the
spectrum continuous as a set? Since the spectrum is typically unbounded, this
is not directly solved by the sensitivity analysis. What is the maximum (supre-
mum) movement of an eigenvalue? Given a bound of the perturbation, in what
regions will the eigenvalues move? Can finite perturbation cause eigenvalues to
appear somewhere? For which starting values do the corresponding fixed point
iterations converge?

We do not aim to answer the questions. Our goal is more modest. We wish
to present a way to generalize the very famous perturbation result, known as the
Bauer-Fike theorem [BF60]. The generalization is done to nonlinear eigenvalue
problems corresponding to (set-valued) contractions.

We present the result by first noting that the nonlinear eigenvalue problem is a
set-valued fixed point problem. The real gain of this interpretation is that we can
use some of the results in set-valued fixed point theory. We try to adapt known
fixed point theory from the field of (mostly) topology (e.g. [KB01]), such that
they fit our purposes. For instance, we will see in Theorem 4.18 that parts of the
famous Banach’s contraction mapping principle (Theorem 4.17) generalize nicely
to set-valued fixed point problems. More importantly, we make use of a com-
parison lemma for (contractive) set-valued fixed point problems by Lim [Lim85]
and get a generalization of the Bauer-Fike theorem. It is indeed a generalization,
as the main theorem reduces to the Bauer-Fike theorem for the constant case.
However, it is not applicable to all nonlinear eigenvalue problems, but only those
which have a certain contraction property.

Most of the results in this section only apply to a restricted class of problems
(when G has a contraction property). Despite this, the analysis is worthwhile,
as, to the author’s knowledge, this is the first non-local perturbation result with
explicit bounds for the set of solutions of nonlinear (non-polynomial) eigenvalue
problems (apart from possibly the method to compute the pseudospectra of non-
linear eigenvalue problems in [MGWN06]).

Non-local explicit perturbation bounds for (linear) eigenvalue problems are
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typically stated as bounds on some set-valued distances. Two popular distance
measures for sets are the Hausdorff-distance here denoted dH (sometimes spec-
tral variance in this context) and the matching distance, for further discussion
on metrics for spectra see the book by Stewart and Sun [SS90]. Here we will
focus on the Hausdorff-distance as the Bauer-Fike theorem can be elegantly
stated with this metric and the matching distance is difficult to define and
interpret for (countable) infinite sets. The Hausdorff-distance dH is defined
as the maximum of the two max-min-distances between two sets (defined in
Section 4.4.1). For the linear eigenvalue problem there are several bounds on
the change of the spectrum expressed in norms. For instance, the bound in
[Els85] (sometimes referred to as Elsner-type bounds) states that the Hausdorff-
distance between the spectrum of the two matrices A,B ∈ Cn×n is bounded
by dH(σ(A), σ(B)) ≤ (‖A‖ + ‖B‖)1−1/n‖A − B‖1/n. This is an optimal bound
in the sense that equality is sometimes attained. However, the bound is very
pessimistic for most cases, in particular when the matrices are diagonalizable.
In fact, if we assume that the matrices are diagonalizable then the distance can
be reduced to a linear condition in ‖A − B‖, known as the Bauer-Fike theorem
dH(σ(A), σ(B)) ≤ max (κV (A), κV (B)) ‖A − B‖ where κV (A) is the condition
number of the eigenvector matrix of A.

Before discussing how the set-valued interpretation of the nonlinear eigenvalue
problem can be used, we wish to demonstrate an important property of set-valued
mappings not present for (normal) fixed point problems: Successive application of
set-valued fixed point problem to a fixed point, does not necessarily yeild a fixed
point. For instance, let s∗ ∈ C be a fixed point of (4.7), i.e., s∗ ∈ σ(G(s∗)) and
suppose s̃ ∈ σ(G(s∗)). For normal fixed point problems, s̃ = s∗ and as s̃ is a fixed
point, for set-valued fixed point problems this is obviously not necessarily the
case. This phenomenon was characterized (mostly for set-valued contractions)
by Nadler in [Nad69].

Example 4.13 We show an example of how successive application of set-valued
fixed point problems differs from the single-valued case as mentioned in [Nad69].
Consider the nonlinear eigenvalue problem

G(s) =

(
s3 − 6 0

0 4s− 9

)
.

The solutions, i.e., the fixed points of s ∈ σ(G(s)) are σ(G) = {2, 3,−1 ±
√

2i}.
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For scalar fixed point problem, one would expect that if s ∈ σ(G) and s̃ ∈ σ(G(s))
⇒ s̃ ∈ σ(G). This is clearly not the case. We now define σ(G(·)) for set argu-
ments in the natural way σ(G(S)) = ∪s∈Sσ(G(s)). One would expect that σ(G) is
related to σ(G(σ(G))) or σ(G(σ(G(σ(G(· · · (σ(G)) · · · )))))). Here σ(G(σ(G))) =
σ(G)∪{−1, 21,−13± i

√
32i}. Except for the containment, there seems to be very

little relation between the fixed points σ(G) and the additional values.

4.4.1 The Bauer-Fike theorem

In the literature, the following form of the Bauer-Fike theorem1 is often used.
Essentially, it bounds the change of eigenvalues in terms of norm of the difference
and condition number of the eigenvector matrix.

Theorem 4.14 ([BF60]) If λ1 ∈ σ(A1) and λ2 ∈ σ(A2) then

a) dist(λ1, σ(A2)) ≤ κ(V2)‖A1 −A2‖
b) dist(λ2, σ(A1)) ≤ κ(V1)‖A1 −A2‖

where dist(λ, S) = mins∈S |λ − s| assuming A1 and A2 are diagonalizable with
Ai = V −1

i ΛiVi and κV (V ) = ‖V ‖‖V −1‖.

For brevity, we will denote the condition number of the eigenvector matrix
corresponding to the diagonalizable matrix A by κV (A). As usual, we say that
κV (A) = ∞ when A is not diagonalizable.

Geometrically, the theorem states that the union of discs with radius κ(A2)‖A1−
A2‖ centered at σ(A2) covers the spectrum of A1. Note that Bauer-Fike theorem
yields different perturbation information depending on the direction it is applied,
i.e., it also holds that the union of discs with radius κV (A1)‖A1 − A2‖ centered
at σ(A1) covers the spectrum of A2. This is consistent with the fact that the
max-min distance2 from one set to the other is not symmetric and therefore not
a metric. It is hence natural to consider the maximum of the two max-min dis-
tances, which is a metric. This is in fact the Hausdorff distance or Hausdorff

1In fact, the theorem is somewhat unfairly called the Bauer-Fike theorem. The results

of Bauer and Fike [BF60] are much more general than the partial result presented here and

commonly described in the literature (as pointed out in [SS90, p 177]).
2The max-min distance for eigenvalue perturbation theory is often called spectral variance.
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metric (following the notation in [HP05, Chapter IV]), defined by

dH(S1, S2) := max
(

max
s1∈S1

dist(s1, S2), max
s2∈S2

dist(s2, S1)
)
,

for finite sets S1, S2, where as usual dist(·, ·) is the minimum distance, dist(s, S1) :=
mins1∈S1 |s− s1|. With a slight loss of generality the Bauer-Fike theorem can be
formulated elegantly using the Hausdorff metric.

Theorem 4.15 ([BF60] see also [SS90, Theorem IV.3.3]) Suppose A1, A2 ∈
Cn×n are diagonalizable. Then,

dH(σ(A1), σ(A2)) ≤ max(κV (A1), κV (A2))‖A1 −A2‖.

4.4.2 Contraction mappings in set-valued fixed point the-

ory

We pointed out earlier that the nonlinear eigenvalue problem in fixed point form
is a so-called set-valued fixed point problem. We will now state some known
theorems for set-valued fixed point problems which will be used in the next
subsection to generalize the Bauer-Fike theorem.

We first state some definitions and fundamental principles for normal fixed
point problems ϕ(x) = x. Contractivity and Banach’s contraction mapping prin-
ciple is often used to prove convergence and to analyze the convergence order of
fixed point iterations. Since this is also our goal, we first define contraction in a
connected region V ⊂ C and then state Banach’s contraction mapping principle.
We follow the terminology in [KB01] and refer the reader to this book for proofs
of the theorems.

Definition 4.16 A mapping ϕ : V → V is said to be lipschitzian (in a region
V ) if there is a contraction constant L ≥ 0 such that |ϕ(x)−ϕ(y)| ≤ L|x− y| for
all x, y ∈ V . The smallest such value L is called the Lipschitz constant and the
mapping is said to be a contraction mapping if this value is less than one.

In the following ϕn denotes the successive application of ϕ, i.e., ϕn(s) =
ϕ(ϕn−1(s)).
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Theorem 4.17 (Banach’s Contraction Mapping Principle) Let ϕ be a con-
traction mapping with contraction constant L < 1. Then the mapping ϕ has a
unique fixed point s∗. Moreover, for each s ∈ V ,

lim
n→∞

ϕn(s) = s∗, (4.23)

and for each s ∈M ,

|ϕn(s)− s0| ≤
Ln

1− L
|s− ϕ(s)|, n ∈ Z+. (4.24)

Parts of the Banach’s contraction principle generalizes to set-valued fixed
point problems here denoted by,

s ∈ T (s),

where T is a set-valued mapping. In the later sections on perturbation theory
we will apply the results to T (s) = σ(G(s)) or T (s) = σ(G(s)) ∩ V . We saw
in Example 4.13 that successive application of T (s∗) for set-valued fixed points
introduced additional points, which is one of the reasons why it is not obvious
how the generalization of the contraction mapping principle should be done.

In the literature the set-valued generalization of Theorem 4.17 is only an
existence result. The following theorem does not guarantee uniqueness and does
not have corresponding formulas (4.23) and (4.24).

Theorem 4.18 ([Nad69]) Let M be the collection of all nonempty bounded
closed subsets of V endowed with the Hausdorff metric. Suppose T : V → M

is a contraction in the sense that for some L < 1:

dH(T (x)), T (y)) ≤ L|x− y|, x, y ∈ V,

Then there exists a point s∗ ∈ V such that s∗ ∈ T (s∗).

We will also use a comparison lemma by Lim [Lim85]. The result gives a
bound of the (Hausdorff) distance of the set of fixed points for two set-valued
contraction mappings. We denote the set of fixed points of the set-valued fixed
point problem x ∈ T (x) with F (T ).
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Theorem 4.19 ([Lim85]) Suppose M is the collection of all nonempty bounded
subsets of V endowed with the Hausdorff metric, and let Ti : M → M , i = 1, 2,
be two contraction mappings each having Lipschitz constant L < 1. Then,

dH(F (T1), F (T2)) ≤
1

1− L
sup
s∈V

dH(T1(s), T2(s)).

4.4.3 A Bauer-Fike theorem for nonlinear eigenvalue prob-

lems

The idea is now to combine Lim’s comparison lemma (Theorem 4.19) and the
Bauer-Fike theorem (Theorem 4.15) in order to get non-local perturbation re-
sults for nonlinear eigenvalue problems. We will first do so by applying Lim’s
comparison lemma to the set-valued mappings Ti := σ(Gi(s)) ∩ V = σV (Gi(s)).
We use the notation σV (G) := {s ∈ V : s ∈ σ(G(s)) ∩ V }.

Under the assumption that the set-valued fixed point problems T1 and T2

are contractions we can apply Lim’s comparison lemma yielding the following
comparison theorem. We will see how it reduces to the Bauer-Fike theorem in
Corolloary 4.23.

Theorem 4.20 Let V ⊂ C be a given convex subset of C. Suppose that Gi : C →
Cn×n, i = 1, 2 are differentiable in V and that there are constants and ε ≥ 0 and
κ > 0 such that, κε < 1, ε ≥ sups∈V ‖G′i(s)‖, and

dH(σV (G1(s)), σV (G2(s))) ≤ κ‖G1(s)−G2(s)‖ (4.25)

for all s ∈ V and for any s1, s2 ∈ V ,

dH(σV (Gi(s1)), σV (Gi(s2))) ≤ κ‖Gi(s1)−Gi(s2)‖. (4.26)

Then,
dH(σV (G1), σV (G2)) ≤

κ

1− κε
sup
s∈V

‖G1(s)−G2(s)‖. (4.27)

Proof: We wish to apply Theorem 4.19 and therefore first want to bound the
contraction constant. It follows from the mean value theorem that ‖Gi(x) −
Gi(y)‖ ≤ ‖G′i(ζ)‖|x − y| for some ζ ∈ l(x, y) which is also in V because V is
convex. Hence, from (4.26) we have that for any s1, s2 ∈ V ,

dH(σV (Gi(s1)), σV (Gi(s2))) ≤ κε|s1 − s2|
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and the set-valued fixed point problems Ti(s) = σV (Gi(s)) are contractions be-
cause L = κε < 1 by assumption. We can now apply Theorem 4.19 to Ti, since
Ti(s) = σV (Gi(s)) is bounded (even if V is unbounded). It yields that

dH(σV (G1), σV (G2)) ≤
1

1− κε
sup
s∈V

dH(σV (G1(s)), σV (G2(s))).

We get (4.27) and complete the proof by applying assumption (4.25). �

It is tempting to directly use the Bauer-Fike theorem to bound κ and get
(4.25) and (4.26). This is however not in general possible because (4.25) and
(4.26) involve the restriction of the spectrum, i.e., σV (Gi(s)) and not σ(Gi(s)).
The distance of the restriction of two sets S1, S2 is sometimes larger and some-
times smaller than the distance between S1 and S2, i.e., dH(S1, S2) 6≤ dH(S1 ∩
V, S2 ∩ V ) nor dH(S1, S2) 6≥ dH(S1 ∩ V, S2 ∩ V ) in general. This prevents us
from directly applying the Bauer-Fike theorem. However, clearly if σV (Gi(s)) =
σ(Gi(s)) then the Bauer-Fike theorem can be applied. We show this with two
examples, and summarize the result as a corollary. With the examples we aim
to illustrate how to apply Theorem 4.20. There are certainly other more efficient
and less pessimistic ways to do a perturbation analysis of the problems.

Example 4.21 Consider the small nonlinear perturbation of a matrix,

G1(s) = A1,

G2(s) = A1 +A2 cos(|s|).

Note that G2(s) is differentiable in s ∈ C. Clearly, if we set ε = ‖A2‖, ε ≥
sups∈C ‖G′i(s)‖. We can numerically verify that κV (G2(s)) < 1.08 if

A1 =

(
7 10
8 −15

)
, A2 =

1
10

(
−1 −1
0.7 0.6

)
.

Equations (4.25) and (4.26) are fulfilled for κ = 1.08 from the Bauer-Fike The-
orem 4.15. Hence, Theorem 4.20 yields that

dH(σ(G1), σ(G2)) ≤
κ‖A2‖

1− κ‖A2‖
< 0.223.

Since Theorem 4.20 is a non-local perturbation result, we have now proven that
all elements of σ(G2) are indeed small perturbations of σ(A1), i.e., all eigenval-
ues corresponding to G2 lie within the discs of radius 0.223 centered around the
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eigenvalues of A1, σ(A1) ≈ {10.177,−18.177}. It is not generally the case that
all solutions of a perturbed problem are close to the unperturbed problem even
if the nonlinear perturbation is small in magnitude. This phenomenon (which
we have now managed to exclude for this example) is typically explained, loosely
speaking, as a perturbation of the eigenvalues from infinity.

Example 4.22 Now suppose V = R and G1(s) and G2(s) normal matrices for
any s ∈ R. Since (4.25) and (4.26) hold for κ = 1, Theorem 4.20 can be applied
if ‖G′1(s)‖ and ‖G′2(s)‖ are less than one for every s ∈ R. Consider the two
nonlinear eigenvalue problems

G1(s) = A0 +A1 sin(s)

G2(s) = A0 +A1 sin(αs)

where α > 1. Then,

sup
s∈R

‖G1(s)−G2(s)‖ = sup
s∈R

‖A1‖| sin(s)− sin(αs)| ≤ 2‖A1‖.

If we let ε = α‖A1‖ and assume that α‖A1‖ < 1 then

dH(σR(G1), σR(G2)) ≤
2‖A1‖

1− α‖A1‖
.

independent of A0.

The two examples above are both cases where σV (G(s)) = σ(G(s)) s ∈ V . This
is summarized in the following corollary.

Corollary 4.23 Let V ⊂ C be a given convex subset of C. Suppose that Gi :
C → Cn×n, i = 1, 2 are differentiable in V , σ(Gi(s)) ⊂ V for all s ∈ V , and
that there are ε ≥ 0 and κ > 0 such that κε < 1, ε ≥ sups∈V ‖G′i(s)‖ and
κ ≥ sups∈V κV (Gi(s)), for i = 1, 2. Then,

dH(σV (G1), σV (G2)) ≤
κ

1− κε
sup
s∈V

‖G1(s)−G2(s)‖. (4.28)

Proof: By assumption σ(Gi(s)) ⊂ V for all s ∈ V and σV (Gi(s))) = σ(Gi(s)).
The left hand sides in (4.25) and (4.26) can be estimated by the Bauer-Fike
theorem, Theorem 4.15 yielding the bound if κ = maxi=1,2 sups∈V κV (Gi(s)). �
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Appendix

A.1 Linearization of polynomial eigenproblems

The problem of determining λ ∈ C and v ∈ C\{0} such that

P (λ)v =
(
A0 +A1λ+ · · ·+ANλ

N
)
v = 0, (A.1)

where A0, . . . , AN ∈ Cn×n is often called a polynomial eigenvalue problem (PEP).
The PEP (A.1) includes many important sub-problems. If N = 1 (A.1) is a
standard generalized eigenvalue problem (GEP), if N = 2 the (A.1) is called
a quadratic eigenvalue problem and if n = 1 then (A.1) is a polynomial root-
finding problem. The following known results follow the style of [MMMM06a]
and [MMMM06b].

The classical way to analyze or solve a PEP (A.1) is by transforming it to
a standard generalized eigenvalue problem. The most common approach is to
consider the matrix pencil L(λ) = λX + Y such that there are E(λ), F (λ) and

E(λ)L(λ)F (λ) =

(
P (λ) 0

0 I

)
.

Among this class of problems the first and second companion linearizations are
the most common. The first companion linearization C1(λ) = λX1 + Y1 is given
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by

X1 =


AN

I
. . .

I

 , Y1 =


AN−1 AN−2 · · · A0

−I 0 · · · 0
. . . . . .

...

−I
...

 (A.2)

and the second companion form C2(λ) = λX2 + Y2 by

X2 = X1, Y1 =


AN−1 −I 0

AN−2 0
. . . 0

...
...

. . . −I
A0 0 · · · 0

 .

The two companion linearizations are by no means the only way to transform
the PEP to a GEP of larger dimension. Mackey, et al. [MMMM06b] construct
vector-spaces of (potential) linearizations L1 and L2 generalizing the first and sec-
ond companion form. This turns out to be advantageous for many applications,
since a correct choice of linearizations L1 and or L2 can preserve properties of
the original problem. This includes different types of palindromic and hermitian
structures [MMMM06a]. As mentioned in Section 3.3.1, a linearization which
preserves the eigenvalue pairing of the polynomial eigenvalue problem in Theo-
rem 3.29 is given in [FMMS07].

Linearization can be used to numerically solve the PEP, by applying, e.g., a
general purpose eigenvalue solver such as the QZ-algorithm implemented in eig

in MATLAB (which is based on LAPACK library). There are also approaches
which are not based on linearization, such as the second order Arnoldi [BS05]
and generalizations of Jacobi-Davidson [SBFvdV96]. Moreover, any of the meth-
ods for nonlinear eigenvalue problems discussed in Section 2.3 are applicable to
polynomial eigenvalue problems.

In this work we almost exclusively use the first companion form (A.2) to
numerically solve the polynomial eigenvalue problem.
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successives aux équations différentielles ordinaires du premier or-
dre, Comptes rendus hebdomadaires des séances de l’Académie des
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[MNG06] C.-I. Morărescu, S.-I. Niculescu, and K. Gu, Remarks on the stabil-
ity crossing curves of some distributed delay systems, Proc. of the
int. conf. on differential and difference equations and their appl.,
Melbourne, USA, August, 2005., 2006, pp. 815–823. (Cited on
pages 74 and 94.)

[MNG07] , On the geometry of stability regions of smith predictors
subject to delay uncertainty, IMA J. Math. Control Inf. 24 (2007),
no. 3, 411–423. (Cited on page 94.)
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distributed-delay controllers, Int. J. Control 78 (2005), no. 16, 1295–
1301. (Cited on page 45.)

[PW79] G. Peters and J. Wilkinson, Inverse iterations, ill-conditioned
equations and Newton’s method, SIAM Rev. 21 (1979), 339–360.
(Cited on page 52.)

[Rei05] T. Reis, Model reduction for a class of PDAE sys-
tems, Proc. of GAMM Annual meeting, vol. 5, 2005,
doi:10.1002/pamm.200510068, pp. 179–180. (Cited on page 46.)

[Rek80] Z. Rekasius, A stability test for systems with delays, Proc. of joint
Autom. Contr. Conf San Francisco, 1980, pp. TP9–A. (Cited on
pages 85 and 88.)

[RKDD04] S. Rodr̀ıguez, V. Kharitonov, J.-M. Dion, and L. Dugard, Robust
stability of neutral systems: A Lyapunov-Krasovskii constructive
approach, Int. J. Robust Nonlinear Control 14 (2004), no. 16, 1345–
1358. (Cited on page 125.)

[Rog64] E. Rogers, A minimax theory for overdamped systems, Arch. Ra-
tion. Mech. Anal. 16 (1964), 89–96. (Cited on page 50.)

[RR00] H. Radjavi and P. Rosenthal, Simlutaneuos triangularization,
Springer Verlag, 2000. (Cited on page 20.)

[Rud76] W. Rudin, Principles of mathematical analysis. 3rd ed, McGraw-
Hill, 1976. (Cited on page 153.)



BIBLIOGRAPHY 191

[Ruh73] A. Ruhe, Algorithms for the nonlinear eigenvalue problem, SIAM
J. Numer. Anal. 10 (1973), 674–689. (Cited on pages 11, 47, 49,
50, and 161.)

[Rum06] S. M. Rump, Eigenvalues, pseudospectrum and structured pertur-
bations, Linear Algebra Appl. 413 (2006), 567–593. (Cited on
page 150.)

[RV07] R. Rand and A. Verdugo, Hopf bifurcation formula for first order
differential-delay equations, Communications in Nonlinear Science
and Numerical Simulation 12 (2007), no. 6, 859–864. (Cited on
pages 84 and 85.)

[SBFvdV96] G. L. Sleijpen, A. G. Booten, D. R. Fokkema, and H. A. van der
Vorst, Jacobi-Davidson type methods for generalized eigenprob-
lems and polynomial eigenproblems, BIT 36 (1996), no. 3, 595–633.
(Cited on pages 34, 54, 100, 107, and 172.)

[SLHT07] C. Sun, Y. Lin, M. Han, and S. Tang, Analysis for a special
first order characteristic equation with delay dependent parame-
ters, Chaos, Solitons & Fractals 33 (2007), no. 2, 388–395. (Cited
on page 85.)

[SM06] H. Shinozaki and T. Mori, Robust stability analysis of linear time-
delay systems by Lambert W function: Some extreme point results,
Automatica 42 (2006), no. 10, 1791–1799. (Cited on page 17.)

[SO05] R. Sipahi and N. Olgac, Complete stability robustness of third-order
LTI multiple time-delay systems, Automatica 41 (2005), no. 8,
1413–1422. (Cited on pages 74, 85, and 88.)

[SO06a] , Complete stability analysis of neutral-type first order two-
time-delay systems with cross-talking delays, SIAM J. Control Op-
timization 45 (2006), no. 3, 957–971. (Cited on pages 85 and 88.)

[SO06b] , Stability robustness of retarded LTI systems with single de-
lay and exhaustive determination of their imaginary spectra, SIAM
J. Control Optim. 45 (2006), no. 5, 1680–1696. (Cited on page 85.)



192 BIBLIOGRAPHY

[SO06c] , A unique methodology for the stability robustness of mul-
tiple time delay systems, Syst. Control Lett. 55 (2006), no. 10,
819–825. (Cited on page 88.)

[Son98] E. Sontag, Mathematical control theory, deterministic finite dimen-
sional systems, 2nd ed., Springer-Verlag, New York, 1998. (Cited
on page 21.)

[SR02] K. V. Singh and Y. M. Ram, Transcendental eigenvalue problem
and its applications, AIAA Journal 40 (2002), no. 7, 1402–1407.
(Cited on page 49.)

[SS90] G. Stewart and J. Sun, Matrix perturbation theory, Academic
Press, 1990. (Cited on pages 147, 153, 164, 165, and 166.)

[SS06] H. Schwetlick and K. Schreiber, A primal-dual Jacobi-Davidson-
like method for nonlinear eigenvalue problems, Tech. Report ZIH-
IR-0613, pp. 1–20, Techn. Univ. Dresden, Zentrum für Informa-
tionsdienste und Hochleistungsrechnen, 2006. (Cited on page 54.)
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