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Abstract: The method called Arnoldi is currently a very popular method to solve large-
scale eigenvalue problems. The general purpose of this paper is to generalize Arnoldi to
the characteristic equation of a time-delay system, here called a delay eigenvalue problem.
The presented generalization is mathematically equivalent to Arnoldi applied to the problem
corresponding to a Taylor approximation of the exponential. Even though the derivation of
the result is with a Taylor approximation, the constructed method can be implemented in
such a way that it is independent of the Taylor truncation paramater N . This is achieved by
exploiting properties of vectors with a special structure, the vectorization of a rank one matrix
plus the vectorization of a matrix which right-most columns are zero. It turns out that this
set of vectors is closed under the matrix vector product as well as orthogonalization. Moreover,
both operations can be efficiently computed. Since Arnoldi only consists of these operations,
if Arnoldi is started with the special vector structure, the method can be efficiently executed.
The presented numerical experiments indicate that the method is very efficient in comparison
to methods in the literature.
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1. INTRODUCTION

The following problem will be referred to as the delay
eigenvalue problem (DEP): given matrices A,B ∈ Rn×n
and delay τ > 0, find s ∈ C and v ∈ Cn\{0} such that

sv = (A+Be−τs)v. (1)

The DEP is an important problem since the solutions s are
the characteristic roots of the delay-differential equation
(DDE),

ẋ(t) = Ax(t) +Bx(t− τ). (2)

The characteristic roots, which are sometimes called eigen-
values, are most importantly relevant when studying the
stability of (2) but they are also used to characterize other
properties such as exponential decay rate, oscillation, con-
trollability and observability. See Michiels and Niculescu
(2007) for recent results related to the stability of (2) and
generalizations expressed in terms of the eigenvalues.

The DEP (1) reduces to a standard eigenvalue problem
if τ = 0 or B = 0. The method called Arnoldi is the
most widely used method for large scale standard eigen-
value problems. It is implemented in the Fortran software
package ARPACK (see, e.g., Lehoucq et al. (1998)) which
is the underlying software in the commonly used matlab
function eigs. The general goal of this paper is to gen-
eralize Arnoldi to the DEP (1) in such a way that the
appealing properties for the standard eigenvalue problem
are preserved.

Arnoldi is truly efficient only if we can compute the cor-
responding matrix vector efficiently. The first important
result of our study (presented in Section 3.1) is that for
vectors with a special structure, the matrix vector oper-
ation corresponding to a truncated Taylor approximation
of (1) can be computed efficiently. More importantly, the
representation is such that it can be implemented with-
out introducing any Taylor series truncation error. The
efficient representation of the matrix vector product and
a corresponding orthogonalization scheme allows us to
construct an efficient method mathematically equivalent
to the Arnoldi method.

The currently most common approach to solve the DEP
is a two-stage approach, where the first step consists of
estimating many eigenvalues (predictor) and then use a
local correction scheme to gain high precision (correction).
The two-stage predictor-corrector approach is used in
the software package DDE-BIFTOOL (Engelborghs et al.
(2001, 2002)) but also in other context, e.g., Gumussoy
and Michiels (2009).

The estimation step normally consists of approximating
the eigenvalues of (1) by solving an eigenvalue problem of
larger dimension. The approximation in DDE-BIFTOOL
is based on a linear multi-step scheme and with (psuedo)
spectral methods in other works Breda et al. (2004, 2005,
2006). The associated large eigenvalue problem is solved
with the Matlab command eig or eigs in most implemen-
tations.



Unlike the classical two-stage predictor-corrector ap-
proach, the method presented in this paper is a direct
generalization of Arnoldi. An advantage of this is that
several eigenvalues can be found and made more accurate
by simply iterating further. Moreover, the predictor step
in the two-stage approach typically involves some form of
heuristics. This is not necessary for the presented Arnoldi
approach.

The DEP belongs to a class of problems called non-
linear eigenvalue problems. There are several general
purpose method for nonlinear eigenvalue problems; see
Ruhe (1973); Mehrmann and Voss (2004). There is for
instance the nonlinear Arnoldi method (Voss (2004)),
some Newton-type methods (Schreiber (2008); Neumaier
(1985)), a nonlinear version of Jacobi-Davidson (Betcke
and Voss (2004)). In comparison to these methods, the
presented method is expected to be more reliable since
it inherits most properties of Arnoldi, e.g., simultaneous
convergence to several eigenvalues and robustness.

The block Newton method was recently generalized to
nonlinear eigenvalue problems (Kressner (2009)) and has
been applied to the delay eigenvalue problem. The dif-
ferences between block Newton and Arnoldi for standard
eigenvalue problems seem to hold here as well. Arnoldi is
often more efficient for very large systems since only the
right-hand side and not the matrix of the linear system
changes in each iteration. A LU-decomposition can be
computed before the iteration starts and the linear system
can be solved very efficiently. Moreover, in Arnoldi, it
is not necessary to fix the number of vectors before the
iteration starts.

There are other approaches for the DEP, e.g., the method
QPMR (Vyhĺıdal and Źıtek (2009)) which is based on the
coefficients of characteristic equation and hence likely not
very suitable for very large and sparse problems which is
the context of the presented approach. See (Jarlebring,
2008, Chapter 2) for more methods.

Finally, we note that Arnoldi has been generalized in dif-
ferent contexts, e.g., to the quadratic eigenvalue problem
in Bai and Su (2005); Meerbergen (2008).

2. ARNOLDI

Consider the space generated by the linear combination of
a power sequence associated with matrix A ∈ Rn×n and
vector b ∈ Rn,

Kk(A, b) := span{b, Ab, . . . , Ak−1b}.
This subspace is called a Krylov subspace and is fundamen-
tal for the understanding, analysis and presentation of the
method called Arnoldi; first presented in Arnoldi (1951).
Let {vi}ki=1 be an orthogonal basis of Kk(A, b) and let the
matrix V be the composition of vectors, V = (v1, . . . , vk).
The eigenvalues of V HAV are called Ritz values. They are
the approximations to eigenvalues of A obtained from a
Galerkin projection of Ax = sx on the Krylov space.

Arnoldi is (in exact arithmetic) a method to construct an
orthogonal basis of the Krylov subspace Kk(A, b). Roughly
speaking, Arnoldi consists of expanding the matrix V
containing the basis by the Avk (or A−1vk) orthogonalized
to V . The orthogonal component of Avk is (in exact

arithmetic) x = (I−V V H)Avk. The vector x is normalized
and added to the vectors V . Note that in this fashion the
projected matrix V HAV is an upper Hessenberg matrix
that consists of the Gram-Schmidt coefficients from the
orthogonalization procedure. In some cases, it is preferred
to explicitly compute V HAV , which requires k matrix
vector products and k(k + 1)2/2 vector innerproducts.

It is known from the theory of Krylov subspaces that the
Ritz values first converge to the well-separated extreme
eigenvalues of A. In our case, and many cases in the
literature,the eigenvalues of interest are not the extreme
well-separated eigenvalues. They often are close to a target
point in the complex plane. Suppose the target is the
origin. To this end, we consider the Krylov subspace
associated with A−1. Note that s−1 is an eigenvalue of
A−1. Let V be an orthogonal basis of Kk(A−1, b), then
the eigenvalues of V HA−1V will first approximate the
eigenvalues corresponding to the extreme well-separated
eigenvalues of the inverted spectrum. These eigenvalues
typically correspond to the eigenvalues of A close to the
origin.

Also, note that the convergence and numerical stability of
Arnoldi heavily depends on the the type of orthogonaliza-
tion used. We will use iterative reorthogonalization as in
ARPACK (Lehoucq et al. (1998)).

3. TDS ARNOLDI

If we approximate the exponential in (1) with a polynomial
or rational function, the DEP turns into the problem of
finding the characteristic roots of a matrix polynomial,
often called a polynomial eigenvalue problem (PEP). PEPs
are commonly solved by rewriting the problem into a gen-
eralized eigenvalue problem (GEP). If the GEP is solved
with a general purpose eigenvalue solver, the approach is
similar to the predictor step in a classical two-stage ap-
proach and has the drawback that the corresponding GEP
may be very large and we introduce an approximation
error.

In this section we will see that if we truncate the Taylor
expansion, do a clever linearization and use a clever
starting vector we do not have any approximation error.

We will make some assumptions in order to simplify the
presentation. Without loss of generality (but possibly nu-
merical stability) it is assumed that τ = 1. With minor loss
of generality we assume that A+B is invertible. As usual
with Arnoldi, we suppose we are looking for eigenvalues
close to some target. Because the set of solutions can
always be shifted, we can set the target equal to the origin
without loosing generality.

Let a0 = 1, a1 = −1, a2 = 1/2, a3 = −1/6 . . . , be the
Taylor coefficients for e−s, i.e.,

e−s ≈ a0 + a1s+ · · ·+ aNs
N . (3)

If we replace the exponential with the truncated Taylor
series, the polynomial eigenvalue problem approximating
the DEP (1) turns into

(A+a0B+(a1B−I)s+a2Bs
2+a3Bs

3+· · ·+aNBsN )x = 0.

The most common approach to solve PEPs is to rewrite
the problem into a generalized eigenvalue problem. This



operation is called companion linearization and there are
many ways to do such an operation (see e.g. Mackey et al.
(2006)). Even though we have carried out experiments for
several linearizations, we will only present the one where
we observed the best numerical and theoretical properties.
Consider the companion matrix AN ∈ CNn×Nn, where

s−1


x

−1
2
sx

...

(−1)N
sN−1

N !
x

 = AN


x

−1
2
sx

...

(−1)N
sN−1

N !
x

 , (4)

and

AN =
(A+B)−1(I +B) (A+B)−1B · · · (A+B)−1B

−1
2
I

. . .

− 1
N
I

 .

(5)

In the subsections that follow we will need a special
representation of the matrix vector product. We denote
column i of matrix Y by yi and the operation of stacking
the columns of a matrix into a vector by vec(Y ) :=
(yT1 , . . . , y

T
N )T .

Lemma 1. Let AN be the companion matrix (5). For any
Y ∈ Cn×N ,

ANvec(Y ) = vec(x̂, Y DN,N−1)

where

x̂ = (A+B)−1

(
y1 +B

N∑
i=1

yi

)
, (6)

and

DN,N−1 =


−1

2
. . .

− 1
N

0 0 0

 ∈ RN×(N−1).

Proof. The general idea of the proof is to express AN in
terms of Kronecker products and apply vectorization rules.
Note that,

AN =
(
eT1 ⊗ (A+B)−1 + eT ⊗ (A+B)−1B

DT
N,N−1 ⊗ I

)
,

where eT = (1, . . . , 1) and e1 is the first unit vector.
Moreover,

ANvec(Y ) =((
eT1 ⊗ (A+B)−1 + eT ⊗ (A+B)−1B

)
vec(Y )

(DT
N,N−1 ⊗ I)vec(Y )

)
(7)

The rest of the proof consists of applying the vectorization
rule (CT ⊗ A)vec(Y ) = vec(AY C). The first block row in
(7) reduces to,

vec
(
(A+B)−1Y e1 + (A+B)−1BY e

)
=

(A+B)−1y1 + (A+B)−1B

N∑
i=1

yi = x̂,

proving (6). Similarly, by again applying the vectoriza-
tion rule, we find that the second block row in (7) is
vec(Y DN,N−1). The proof is complete.
Remark 2. (Generalizations). Lemma 1 is somewhat fun-
damental for this paper. In fact, it is not difficult to show
a generalization of Lemma 1 for systems with multiple
delays. The rest of the results of the paper, including
the proposed methods can also be generalized. If we have
multiple delays, the top right block-element of AN is not
constant with respect to N . We observed numerical sta-
bility problems when the top right block-element of AN is
unbounded with respect to N , and will in this work only
focus on single delays.

The similar reasoning for neutral systems and systems
with distributed delays is also left for topics of future
research.

3.1 Version 1: Hessenberg version

Ideally, we would like N to be very large since that implies
that the approximation error introduced by the truncation
of the Taylor series (3) is small. It is already mentioned
that this causes computational difficulties in a classical
approach since AN becomes large. We will now present an
approach which resolves this in a perfect sense. If we start
the Arnoldi process with a special type of vector, Arnoldi
applied to AN can be carried out efficiently in a way which
is independent of N , i.e., in a way such that there is no
truncation error.

Suppose we start the iteration with a structured vector
x0 = vec(y, 0, . . . , 0) ∈ RnN and y ∈ Rn. From Lemma 1,
we see that the operation AN shifts and scales the vector
y and a new vector x̂ is added to the left of the vectorized
matrix. The operation can be formalized and generalized
in the following sense.
Theorem 3. Let AN be the companion matrix (5). Sup-
pose

Y = (Ŷ , 0, . . . , 0) ∈ Cn×N

and Ŷ ∈ Cn×k, k < N . Then,

ANvec(Y ) = vec(x̂, Ŷ Dk,k, 0, . . . , 0),
where

x̂ = (A+B)−1

(
y1 +B

k∑
i=1

yi

)
,

and

Dk,k =


−1

2
. . .

− 1
k + 1

 ∈ Rk×k.

It is important to note that the number of floating point
operations to compute ANvec(Y, 0, . . . , 0) is independent
of the number of zero elements. Hence, roughly speaking
we have an infinite number of zeros and no approximation
error.



Note 1. (Orthogonalization). Let Y1, . . . , YN be the ma-
trix version of the vectors after N Arnoldi iterations. Note
that the tailing zeros of the new vector ANvec(YN ) are
preserved even if we orthogonalize it against Y1, . . . , YN .

We have shown that the representation Y = (Ŷ , 0, . . . , 0)
is almost closed under AN since the structure of the vector
is only changed by expanding the number of first non-zero
block. It is also closed under orthogonalization. Since these
are the only operations necessary for Arnoldi, we conclude
that the representation is suitable.
Note 2. (Comparison with standard Arnoldi). In principle
one could apply the standard Arnoldi directly to the com-
panion matrix (5). This would be mathematically equiv-
alent to our approach. The presented representation has
several advantages.

• One matrix vector product of TDS Arnoldi is more
efficient than for standard Arnoldi since the non-zero
elements of (5) are not explicitly stored.
• The orthogonalization is more efficient for the TDS

Arnoldi since in the beginning, the vectors are smaller
than for the standard Arnoldi.
• In the standard Arnoldi we would have to choose
N before we start the iteration. In our presented
approach N does not have to be chosen a priori. One
can inspect the eigenvalues during the iteration and
stop once sufficient accuracy is observed.

3.2 Version 2: Projection version

In the previous subsection we considered vectors of the
form x = vec(Y, 0, . . . , 0). We see from (4) that the
eigenvector is not of this form. Since the method is
expected to converge to an eigenvector of that form, a
form where such an eigenvector can be accurately and
compactly represented seems advantegous. Hence, we will
now consider the case that x = vec(uv∗) where v is
possibly very long vector. This representation allows a
compact but accurate representation of an eigenvector.

In the following we use subscript to denote an element of
a vector, e.g., vi ∈ C is the ith element of v ∈ Cn.
Theorem 4. (Rank one). Let AN be the companion matrix
(5) and u ∈ Cn, v ∈ CN . Then,

ANvec(uv∗) = vec((x̂, 0, . . . , 0) + uv̂∗)
where v̂∗ = (0, v∗DN,N−1) and

x̂ = (A+B)−1(uv∗1 +Bu(
N∑
i=1

v∗i )).

Note 3. (Rank one is not almost closed). We saw in the
previous section that the set of vectors of the form
vec(Ŷ , 0, . . . , 0) were almost closed under operation of AN .
The rank-one vectors are not closed in the same sense since
the result of the application of AN to a rank-one vectors
is a different vector of rank one plus a term (x̂, 0, . . . , 0).
However, (x̂, 0, . . . , 0) is of the form Y = (Ŷ , 0, . . . , 0). We
can combine the results Theorem 3, Theorem 4 to again
find a set which contains rank one matrices and is almost
closed as in Theorem 3.
Corollary 5. (Combined). Let AN be the companion ma-
trix (5) and u ∈ Cn, v ∈ CN as in Theorem 3 and
Y ∈ Cn×N , Ŷ ∈ Cn×k as in Theorem 4. Then

ANvec(Y + uv∗) = vec(Ỹ + uv̂∗),
where v̂∗ = (0, v∗DN ),

x̂ = (A+B)−1

(
uv∗1 +Bu(

N∑
i=1

v∗i ) + y1 +B

k∑
i=1

yi

)
,

and
Ỹ = (x̂, Ŷ Dk,k, 0, . . . , 0).

Note 4. (Number of flops). It is important to note that
Corollary 5 describes a method to compute the result
of AN applied to a vector vec(Y + uv∗) efficiently. In
rough terms the computational effort is as follows. The
dominating part is the computation of x̂. In order to
compute x̂ we need to solve one linear system (which
remains the same througout the iteration) of dimension
n, sum N scalars and sum k vectors of dimension n. Since
the vector operations and not the sum of scalars is the
dominating part for large n, we can choose N very large
without any considerable extra computational effort.
Note 5. (Orthogonalization and projection). The standard
orthogonalization procedure does not seem suitable for the
rank one structure, since it would involve orthogonalizing
vectors of size nN . Note that in exact arithmetic, Arnoldi
is independent of the type of orthogonalization. We can
hence use a different orthogonalization without and still
have a method mathematically equivalent to Arnoldi. For
the rank-one structure we propose an orthogonalization
scheme, where we only orthogonilize the first n elements
of the vectors in each vector. This approach has been taken
in several other works, e.g., Bai and Su (2005).

For this type of orthogonalization it is also more suitable to
project the nonlinear problem instead of the large Taylor
approximation. Let V ∈ Rn×k be the first n parts of the
result of Arnoldi, i.e., V ∗V = I. The projected nonlinear
problem is now

(−sI + V ∗AV + V ∗BV e−τs)w = 0. (8)
At this point we are no longer mathematically equivalent
to Arnoldi. However, V will typically contain very accurate
approximation of the eigenvectors. This implies that the
projected problem also contains a very accurate solution.
One of the solutions of the projected problem is hence very
similar to Arnoldi in exact arithmetic.

Also note that (8) is a small delay eigenvalue problem
solvable with any method for small delay eigenvalue prob-
lems. We solve the small projected problem with a spectral
discretization of the infinitesimal generator Breda et al.
(2006).

3.3 Remarks about infinite dimensionality

In a sense it is not extremely surprising that we can apply
Arnoldi without approximation error, since a DDE can be
represented as a linear infinite dimensional system (see,
e.g. Curtain and Zwart (1995); Hale and Verduyn Lunel
(1993)) and Arnoldi can be applied to infinite dimensional
systems (see, e.g., Chatelin (1983)).

It is however a bit surprising that the infinite-dimensional
vectors can be represented in such a way that the action
of the infinite dimensional operator can be computed with
standard (finite-dimensional) linear algebra operations.



4. NUMERICAL EXAMPLES

4.1 Example: Arnoldi version 1

We use the example in Verheyden et al. (2008), where

A =

−1 0 0 0
0 1 0 0
0 0 −10 −4
0 0 4 −10

 , B =

3 3 3 3
0 −1.5 0 0
0 0 3 −5
0 5 5 5

 .

The convergence history of the Ritz values are shown in
Figure 2. After 100 iterations we find 21 eigenvalues to an
accuracy 10−10 (shown in Figure 1). Note that the higher
eigenvalues are large in magnitude and badly conditioned,
which is likely the reason why not full accuracy is achieved.
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Fig. 1. Ritz values of Example 1
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Fig. 2. Convergence for Example 1

4.2 Example: Arnoldi version 2

The second example is a large scale problem inspired by
the discretization of a boundary controlled heat equation
in Berrone and Mannucci (2004).

The discretized problem is
ẋ(t) = Ax(t) +Bx(t− τ),

where A ∈ Rn×n is the discretized two-dimensional Lapla-
cian with zero boundary conditions and B is a matrix of
rank

√
n− 2 corresponding to a feedback on one edge.

We illustrate the usefulness of the possibility to start with
a vector corresponding to a large rank one matrix. This

is done by starting the iteration with a quite accurate
approximation.

We see the error history in Figure 3 for n = 3600.
The computation time for N = 40 is 18 seconds on a
Intel 2.66 GHz computer with 3 Gb of memory. Note
that DDE-BIFTOOL is not suitable for problems of this
size. It returns out of memory error due to the very
large companion matrices which have to be explicitly
constructed.
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Fig. 3. Convergence for Example 2

5. CONCLUSIONS AND OUTLOOK

The result of this paper is a construction of an Arnoldi
method for the delay eigenvalue problem. We have con-
sidered structured sets of starting vectors. It turns out
that for these structured vectors, the matrix vector prod-
uct corresponding to the companion linearization Taylor
approximation of the delay eigenvalue problem can be
computed efficiently and (more importanly) without any
truncation error.

The presented method is mathematically equivalent to
Arnoldi and we have shown by examples that these prop-
erties makes the method very competitive in comparison
to current state of the art methods. It is competitive in
terms of computation time and reliability.

Finally, we wish to point out some issues not addressed
in this paper. The computational effort of the presented
Arnoldi method grows with the number of iterations. For
standard Arnoldi this is resolved by (so called) implicit or
explicit restarting and deflation. In this paper we assumed
that the shift is zero. This is not really a restriction if
the shift remains constant. However, in standard Arnoldi
the shift is sometimes updated to gain convergence speed.
We also note that for standard eigenvalue problem, if the
shift is updated in each step of Arnoldi there is a strong
connection with block Newton methods which have been
developed (in Kressner (2009)) for the delay eigenvalue
problem. This interesting relation is not addressed here.
Even though some of these techniques and results about
restart, deflation, shift updates, stopping criteria and
relations with block Newton seem to carry over naturally
to TDS Arnoldi, we leave these topic as possible future
research.
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