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Abstract

In this note we find an explicit expression for the
eigenvalues of a retarted time-delay system with one
delay, for the special case that the system matrices
are simultaneously triangularizable, which includes
the case where they commute. Using matrix
function definitions we define a matrix version of
the Lambert W function, from which we form the
expression. We prove by counter-example that some
expressions in other publications on Lambert W for
time-delay systems do not always hold.

1 Introduction

In this work we consider retarded linear single-delay
time-delay system (TDS) described by

Σ =

{

ẋ(t) = Ax(t) + Bx(t − τ), t > 0

x(t) = ϕ(t), t ∈ [−τ, 0]
(1)

where A, B ∈ Cn×n. The corresponding characteris-
tic equation is

0 = det
(

−sI + A + Be−sτ
)

.

We denote the set of all solutions of the characteristic
equation, i.e. the eigenvalues of Σ, with σΣ. Unlike
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delay free systems, time-delay systems have a count-
ably infinte number of eigenvalues. This is one of the
difficult aspects of time-delay systems from a com-
putational point of view. In the literature, there are
several results on qualitative properties of the spec-
trum. For instance, we know from [9] (Lemma 4.1)
that the eigenvalues are aligned along curves (called
root-chains) in the complex plane and that given any
vertical line in the complex plane, there are only a
finite number of eigenvalues to the right of this line.

There are efficient methods to approximate some
of the eigenvalues numerically. The eigenvalues with
smallest magnitude can be approximated using dis-
cretization of the infinitesimal generator [3] or using
discretization of the solution operator [8]. In prac-
tice, e.g. in the package DDE-BIFTOOL [8], the accu-
racy of these approximations is improved by Newton-
iterations.

In the present paper we deal with explicit expres-
sions of the eigenvalues for a special class of time-
delay systems, based on a matrix version of the Lam-
bert W function. It is well known that the spectrum
of a scalar single delay system can be computed using
the Lambert W function, see e.g. [7].

In [1] and the derivative works [22] and [23] a nice
generalization for multidimensional systems has been
given using a matrix version of the Lambert W func-
tion. Unfortunately, the result in [1] does not hold in
the stated generality. The goal of this paper therefore
is to give sufficient conditions on the system matrices
for the formula in [1] to hold. As the weakest suffi-
cient condition, we obtain simultaneous triangulariz-
ability of the matrices A and B. Independently of our
work, similar observations have been made recently
in [19], where basically the same spectral results are
obtained without explicit use of a matrix version of
the Lambert W function. Here we establish these
results for the representation in [1]. Moreover, we
present explicit counterexamples, which prove that
in general the formula may be wrong. This is im-
portant, since the results of [1] have found interest
and applications e.g. in [14], [21], [13], [6], [5], [16],
[2], [10], [17] and [4]. Even if most of the conclusions
drawn in these papers still seem to be valid, since
mainly the scalar case is considered, it is worthwhile
to clarify the range of applicability of the formula.
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We proceed as follows. In Section 2 we define a
matrix version of the Lambert W function. Our def-
inition is more general than the one used in previ-
ous papers, where only diagonalizable matrices are
considered. Then, in Section 3, we consider cases of
different generality to show that the formula in [1] is
correct if the system matrices A and B are simulta-
neously triangularizable. In particular, this includes
the case where the system matrices commute as well
as the pure delay case. Moreover, we explore uncon-
trollability properties of the pairs (A, B) and (B, A),
which guarantee that the formula gives at least some
correct eigenvalues. In Section 4 we present an ex-
ample of non-commuting matrices A and B, where
the formula does not hold. Thus we disprove results
stated in some of our references.

2 The Lambert W function

For scalar arguments z ∈ C, the Lambert W function
is defined as the (multivalued) inverse of the func-
tion z 7→ zez. It has a countably infinite number of
branches

Wk(z) ∈ {w ∈ C : z = wew} , k ∈ Z ,

which can be defined by the branchcuts in [15] and
[7]. With exception for the point z = −e−1, where
the principal branch W0 is not differentiable, each
of these branches is locally analytic. Hence, we may
define the Lambert W function in a standardized way,
given e.g. in [12] or [11]. We first define Lambert W
for matrices in Jordan canonical form, i.e.

J = diag(Jn1
(λ1), Jn2

(λ2), . . . , Jns
(λs)) ,

where Jn(λ) is the n-by-n Jordan block belonging to
eigenvalue λ with multiplicity n. Then

Wk(J) = diag(Wk1
(Jn1

(λ1)), . . . , Wks
(Jns

(λs))) .

Note that we are allowed to pick a different branch for
each Jordan block. If J has s Jordan blocks and the
index set for the branches of the scalar Lambert W
function is Z, then the index set for the branches of
Wk(J) is Z

s. For Jordan blocks of dimension 1, i.e.
single eigenvalues, we can use the scalar Lambert W

function. For larger blocks, we define the Lambert W
function (for a fixed branch) of a Jordan block by
the standard definition of matrix functions (e.g. see
(6.1.8) in [12]), i.e.

Wk(Jn(λ)) =

=











Wk(λ) W ′

k(λ) · · · 1
(n−1)!W

(n−1)
k (λ)

0 Wk(λ)
... 0

. . .

0 0 Wk(λ)











.

If k = 0 we have to assume additionally that λ 6=
−e−1 (since W ′

0(−e−1) is not defined).
We complete the definition of the Lambert W func-
tion for arbitrary matrices, by noting that all matri-
ces can be brought to Jordan canonical form by a
similarity transformation A = SJS−1. Thus we may
set

Wk(A) = SWk(J)S−1 ,

where for the principal branch k = 0 we from now on
tacitly assume that −e−1 is not an eigenvalue corre-
sponding to a Jordan-block of dimension larger than
1, i.e.

rank (A + e−1I) = rank (A + e−1I)2 . (2)

Remark 1. The limitation (2) lessens the elegance of
the matrix Lambert W function slightly. This point
was brought to our knowledge by Robert Corless.

Example 2. We illustrate the definition of the
Lambert W function for a 2 × 2-Jordan block with
λ 6= −e−1.

Let J =

[

λ 1
0 λ

]

, then Wk(J) =
[

Wk(λ) W ′

k(λ)
0 Wk(λ)

]

. We verify that indeed

J = Wk(J)eWk(J). To this end we note that
by differentiating the equation λ = Wk(λ)eWk(λ), we
obtain 1 = W ′

k(λ)eWk(λ) + W ′

k(λ)λ. Thus we have

Wk(J)eWk(J) = eWk(λ)

[

Wk(λ) W ′

k(λ)
0 Wk(λ)

] [

1 W ′

k(λ)
0 1

]

=

[

λ λW ′

k(λ) + eWk(λ)W ′

k(λ)
0 λ

]

= J .
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On the other hand, if λ = −e−1, then W0(λ) = −1

and the ansatz W =

[

−1 w
0 −1

]

yields WeW =

−e−1I for all w ∈ C. Hence σ(W ) = {−1} implies
WeW = −e−1I. We conclude that W0(J) is not de-
fined in this case, while W0(−e−1I) is not unique.

3 Main results

With the help of the Lambert W function we can
easily express the spectrum of triangular systems.

Lemma 3. If A and B are both upper or both lower
triangular matrices, then

σΣ =
⋃

k

σ

(

1

τ
Wk(Bτe−Aτ ) + A

)

. (3)

Proof. We exploit the fact that the determinant of
a triangular matrix is the product of the diagonal
elements. The characteristic equation is hence

0 = det
(

−sI + A + Be−sτ
)

=
∏

j

(−s+ajj+bjje
−sτ ).

Clearly, −s+ajj +bjje
−sτ = 0 for some j, if and only

if s is an eigenvalue. It follows that

(s − ajj)τe(s−ajj )τ = bjjτe−ajjτ ,

which, for any branch Wk results in

s = 1
τ
Wk(bjjτe−ajjτ ) + ajj ,

The expression holds for all choices j, hence

s ∈ σΣ =
⋃

k,j

1
τ
Wk(bjjτe−ajj τ ) + ajj

=
⋃

k

σ
(

1
τ
Wk(Bτe−Aτ ) + A

)

,

completing the proof.

Lemma 3 can easily be extended to the case where
A and B are simultaneously triangularizable in the
following sense.

Definition 4. The matrix pair A, B ∈ Cn×n is called
simultaneously triangularizable if there is a regular
S ∈ Cn×n and upper triangular matrices TA and TB

such that

A = S−1TAS and B = S−1TBS .

Assuming simultaneous triangularizability, we can
introduce new variables ξ = Sx, such that system (1)
can be written as a cascade of inhomogenous scalar
equations

ξ̇j(t) = αjξj(t) + βjξj(t − h) + γj(t) ,

where γj is a linear combination of the functions
ξ1, . . . , ξj−1. The spectrum of the whole system is
the union of the spectra of these scalar equations.
We thus obtain the most general case for the formula
to hold.

Theorem 5. If A and B are simultaneously trian-
gularizable, then (3) holds.

Proof. The characteristic equation is invariant under
simultaneous similarity transformation i.e.

det(−sI+A+Be−sτ ) = det(−sI+Ta+Tbe
−sτ ) .

Moreover, the exponentiation operator and Lam-
bert W commute with similarity transformation, i.e.,
W (S−1CS) = S−1W (C)S. This implies that (3) is
invariant under simultaneous similarity transforma-
tion of A and B. Hence we can assume without loss
of generality that A and B are both upper triangular
and apply Lemma 3.

We mention some interesting special cases.

Corollary 6. If A and B commute, then (3) holds.

Proof. This follows from Theorem 5 and the fact that
commutativity implies simultaneous triangularizabil-
ity (cf. [18]).

This result for τ = 1 is also stated (without proof)
in [7].
It implies that (3) also holds in the pure delay case.

Corollary 7. If A = 0 then σΣ =
⋃

k σ( 1
τ
Wk(τB)) =

1
τ

⋃

k Wk(τσ(B)) .
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Proof. The matrices B and 0 commute, which allows
us to apply the previous corollary.

Finally we note two partial results.

Lemma 8. Assume that the pair (A, B) is not con-
trollable and σu(A) denotes the corresponding set of
uncontrollable eigenvalues of A. Then

σu(A) ⊂ σΣ ∩
⋃

k

σ

(

1

τ
Wk(Bτe−Aτ ) + A

)

.

Proof. By the Kalman decomposition (e.g. [20,
Lemma 3.3.3]) there exists a nonsingular S so that

S−1AS =

[

A11 A12

0 A22

]

, S−1BS =

[

B11 B12

0 0

]

,

where σ(A22) = σu(A). We can assume A and B to
be in this form. Hence σ(A22) ⊂ σΣ. Now we con-
sider σ( 1

τ
Wk(Bτe−Aτ ) + A). Here Bτe−Aτ has the

form

[

X Y
0 0

]

, and W =

[

Wk(X) Y e−Wk(X)

0 0

]

satisfies WeW = Bτe−Aτ . Thus σ(A22) ⊂
σ

(

1
τ
Wk(Bτe−Aτ ) + A

)

for some branch of the Lam-
bert W function.

Analogously, by Corollary 7, we get the following
variant.

Lemma 9. Assume that the pair (B, A) is not con-
trollable and σu(B) denotes the corresponding uncon-
trollable eigenvalues of B. Then

1

τ
Wk(τσu(B)) ⊂ σΣ ∩

⋃

k

σ

(

1

τ
Wk(Bτe−Aτ ) + A

)

.

The proof is omitted for brevity.

4 A counter-example

To demonstrate that formula (3) is not applicable to
arbitrary TDS, we pick the following non simultane-
ously triangularizable (and non commuting) pair of
matrices

A =

(

0 0
α 0

)

, B =

(

0 1
0 0

)

,

for some α ∈ R, α > 0. We now find an explicit ex-
pression for the eigenvalues. The characteristic equa-
tion is given by

0 = det
(

−sI + A + Be−sτ
)

= s2 − αe−sτ . (4)

Eigenvalues s are thus characterized by

α = s2esτ ⇐⇒ ±1

2
τ
√

α =
1

2
sτe

1
2

sτ . (5)

In particular, s0 = 2
τ
W0

(

± 1
2 τ

√
α
)

is an eigenvalue,
where W0 denotes the principal branch of the Lam-
bert W function. The example becomes explicitly
tractable, if we pick τ = 1, α = π2 and make use
of the fact that W0(− 1

2π) = 1
2πi. Hence we obtain

s0 = πi.
By formula (3) we would have

σΣ =
⋃

k

σ
(

Wk(Be−A) + A
)

, (6)

where again τ = 1. It is clear from Fig. 1 that this
expression is not consistent with (5).

To prove this strictly, we first find an s such that
s ∈ σΣ, but not s ∈ ⋃

k σ
(

Wk(Be−A) + A
)

, and

hence prove that σΣ 6⊂ ⋃

k σ
(

Wk(Be−A) + A
)

. Sec-

ondly, we find an s such s ∈
⋃

k σ
(

Wk(Be−A) + A
)

but not s ∈ σΣ, and prove that σΣ 6⊃
⋃

k σ
(

Wk(Be−A) + A
)

.

We note that Be−A =

(

−α 1
0 0

)

, and

Wk(Be−A) =

(

Wk(−α) − 1
α
Wk(−α)

0 0

)

.

By (6), eigenvalues would be characterized via

0 = s2 − sWk(−α) + Wk(−α) , (7)

or more explicitly,

s =
Wk(−α) ±

√

Wk(−α)2 + 4Wk(α)

2
. (8)

In particular, for α = π2 and some k ∈ Z, the eigen-
value s0 = πi would have to satisfy (7). Thus

0 = (iπ)2 − (iπ)Wk(−π2) + Wk(−π2)

= Wk(−π2)(1 − iπ) − π2 .
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Hence we conclude Wk(−π2) = π2

1−iπ
. This is not

fulfilled for any branch k since

−π2 = π2

1−iπ
e

π2

1−iπ ⇐⇒ iπ − 1 = e
π2

1−iπ .

Taking absolute values, we get
√

π2 + 1 = e
π2

1+π2

which contradicts π > e. Hence σΣ 6⊂
⋃

k σ
(

Wk(Be−A) + A
)

.
Vice versa, we can also produce an explicit exam-

ple, where σΣ 6⊃ ⋃

k σ
(

Wk(Be−A) + A
)

. Let α = 1
2π.

For the principal branch of W equation (8) reduces
to

s =
iπ ±

√
−π2 + 8πi

4
.

It remains to show that s does not always satisfy the
characteristic equation s2 = π

2 e−s from (4).

Setting a+bi = ±
√
−π2 + 8πi with a > 0 we find that

a2 + b2 ≥ 2ab = 8π, whence also b > 0. This implies
|s|2 > (a2 + b2)/4 ≥ 2π and π

2 |e−s| < π
2 |e−π| < π

2 ,
i.e. s2 6= π

2 e−s.
Actually, the spectra are disjoint (Fig. 1), which is

consistent with Lemma 8 and the controllability of
(A, B).

One may ask, whether our counter-example hinges
on the controllability of (A, B). It is, in fact, an im-
mediate consequence of the Kalman decomposition
that any non simultaneously triangularizable pair of
2× 2 matrices is controllable. We may, however, em-
bed our example in a higher-dimensional uncontrol-
lable system Σ̃, setting

Ã =

(

A 0
0 1

)

, B̃ =

(

B 0
0 0

)

,

so that

det
(

−sI + Ã + B̃e−s
)

= (1 − s) det
(

−sI + A + Be−s
)

,

i.e. σΣ̃ = σΣ ∪ {1}, and (for all branches Wk)

det
(

−sI + Wk(B̃e−Ã) + Ã
)

= (1 − s) det
(

−sI + Wk(Be−A) + A
)

,

i.e. σ
(

Wk(B̃e−Ã) + Ã
)

= σ
(

Wk(Be−A) + A
)

∪
{1}. Our conclusions thus hold for this system
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⋃

k
σ( 1

τ
Wk(Bτe−Aτ ) + A)

2

τ
Wk(±1

2
τ
√

α)

Figure 1: Counter-example from Section 4 with τ =
α = 1

as well, where in accordance with Lemma 8 the
uncontrollable eigenvalue 1 is contained in σΣ̃ ∩
σ

(

Wk(B̃e−Ã) + Ã
)

.

5 Conclusions

Defining a general matrix-version of the Lambert W
function, we have provided a formula for the eigen-
values of a time-delay system, if the system matrices
commute, and the more general case where the ma-
trices are simultaneously triangularizable. If the pair
of system matrices is not controllable, then at least
the uncontrollable eigenvalues are given correctly by
the formula. For the general case, where the matri-
ces are not simultaneously triangularizable we have
given explicit examples where the formula fails.
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