
Noname manuscript No.
(will be inserted by the editor)

A linear eigenvalue algorithm for
the nonlinear eigenvalue problem

Elias Jarlebring · Wim Michiels · Karl Meerbergen

Received: date / Accepted: date

Abstract The Arnoldi method for standard eigenvalue problems possesses several at-

tractive properties making it robust, reliable and efficient for many problems. The

first result of this paper is a characterization of the solutions to an arbitrary (ana-

lytic) nonlinear eigenvalue problem (NEP) as the reciprocal eigenvalues of an infinite

dimensional operator denoted B. We consider the Arnoldi method for the operator B

and show that with a particular choice of starting function and a particular choice

of scalar product, the structure of the operator can be exploited in a very effective

way. The structure of the operator is such that when the Arnoldi method is started

with a constant function, the iterates will be polynomials. For large class of NEPs, we

show that we can carry out the infinite dimensional Arnoldi algorithm for the operator

B in arithmetic based on standard linear algebra operations on vectors and matrices

of finite size. This is achieved by representing the polynomials by vector coefficients.

The resulting algorithm is by construction such that it is completely equivalent to the

standard Arnoldi method and also inherits many of its attractive properties, which are

illustrated with examples.

Keywords Nonlinear eigenvalue problems · The Arnoldi method · Krylov subspaces ·

Spectral methods · Chebyshev polynomials

1 Introduction

Consider a given function T : Ω → Cn×n where Ω ⊂ C is an open disc centered at
the origin and T is assumed to be analytic in Ω. We will here consider the (analytic)

nonlinear eigenvalue problem given by finding λ ∈ Ω and x ∈ Cn\{0} such that

T (λ)x = 0. (1)

This general problem has been extensively studied. See, e.g., the standard references

[21,18] and the problem collection [4].

2

In the literature there exists a number of nice methods specialized for different

types of structures of T , such as methods for the quadratic eigenvalue problem (QEP)

[3,17] and more generally the polynomial eigenvalue problem (PEP) [22,10] and also

other types of structures [23,16,7,13,11]. Apart from the specialized methods there

also exist general methods which have a sense of local convergence for one or a few

eigenvalues [20,25,19,12].

Our goal in this paper is to present a general algorithmic framework, applicable to

a large class of NEPs allowing us, in a quite automatized and reliable way, to find all

eigenvalues of (1) close to a given target. We will assume that the target is the origin.

Note that there is no loss of generality to use the origin as a target in this sense, since

a substitution allows us to shift the origin to an arbitrary complex point.

Fundamental for the construction is an equivalence between (1) and the eigenvalues

of an operator denoted B. The operator B is an integration-type operator and infinite

dimensional in the sense that it is a map between infinite dimensional function spaces.

In the equivalence (presented in Section 2) we show that the reciprocal eigenvalues of

B are the solutions to (1).

We will here make a construction with the Arnoldi method, which is a common

method for standard and generalized eigenvalue problems. In Section 3 we summarize

the Arnoldi method, when applied to the operator B. We subsequently show that the

structure of B is such that when the Arnoldi method for B is started with a constant

function, the iterates will be polynomials. By representing the polynomials in a given

basis (here, either with monomials or Chebyshev polynomials) we show how we can

carry out the action of B on a polynomial using only finite arithmetic, i.e., standard

linear algebra operations applied to matrices of finite size. With this construction, we

show (in Section 4) that with a particular choice of starting function and a particular

scalar product, the Arnoldi method for the operator B can be carried out in finite

arithmetic.

In Section 5 we characterize the algorithm in a different way. We show an equiva-

lence with the presented algorithm and the Arnoldi method on a large matrix, either

consisting of a companion linearization of the truncated Taylor expansion or the pencil

corresponding to a spectral discretization.

Due to the fact that the algorithm only consists of standard linear algebra opera-

tions, it is suitable for large-scale problems. This is illustrated in the examples section

(Section 6).

We finally wish to mention some other methods which have some components

similar to our method. The method in [26] is also motivated by the Arnoldi method

and it is a generalization in the sense that it reduces to the standard Arnoldi method

for the linear eigenvalue problem, i.e., if T (λ) = A − λI. The action of the operator

B is integration. There are other methods for NEPs based on integration. Unlike the

method presented in this paper, the methods in [2,5] are based on a contour integral

formulation.

2 Operator equivalence formulation

In this paper it will be advantageous to slightly reformulate the nonlinear eigenvalue

problem (1). We will first of all assume that λ = 0 is not an eigenvalue of the original

problem and define,

B(λ) := T (0)−1 T (0)− T (λ)

λ
, λ �= 0 (2)

3

and B(0) := −T (0)−1T �(0). With this transformation, (1) yields that,

λB(λ)x = x. (3)

Note that B is analytic in Ω since T is analytic in Ω.

In order to characterize the solutions to (3), we will in this paper take an approach

where the iterates can be interpreted as functions. We will commonly work with func-

tions ϕ : R → Cn and denote the function variable θ.

For notational convenience we will use the concise functional analysis notation

B(d
dθ), which can consistently defined (since B is analytic), e.g., with the Taylor ex-

pansion. In particular, if we apply B(d
dθ) to a function ϕ : R → Cn and evaluate at

θ = 0, we can express it as

�
B(

d

dθ
)ϕ
�
(0) =

∞�

i=0

1

i!
B(i)(0)ϕ(i)(0). (4)

With the notation above we are now ready to present a characterization of (3) based

on an operator denoted B, which maps functions in D(B) ⊂ C∞(R,C
n), i.e., infinitely

differentiable functions ϕ : R → Cn, to functions in C∞(R,C
n). In the following we

define the operator B and characterize some important properties. In particular, we

show that the non-zero eigenvalues of B are the reciprocal solutions λ to (3).

Definition 1 (The operator B) Let B denote the map defined by the domain D(B) :=

{ϕ ∈ C∞(R,C
n) :

�∞
i=0B

(i)(0)ϕ(i)(0)/(i!) is finite} and the action

(Bϕ)(θ) =

� θ

0

ϕ(θ̂) dθ̂ + C(ϕ), (5)

where

C(ϕ) :=

∞�

i=0

B(i)(0)

i!
ϕ(i)(0) =

�
B(

d

dθ
)ϕ
�
(0). (6)

Proposition 2 (Linearity) For any two functions ϕ,ψ ∈ D(B) and any two constant

scalars α, β ∈ C, the map B satisfies the linearity property,

B(αϕ+ βψ) = αBϕ+ βBψ.

Proof Note that C is linear in the sense that, C(αϕ + βψ) :=
�∞

i=0
B(i)

i! (αϕ
(i)(0) +

βψ(i)(0)) = αC(ϕ)+βC(ψ). The proof is completed by noting that integration is linear

and hence the sum in (5) is linear.

Theorem 3 (Operator equivalence) Let x ∈ Cn\{0}, λ ∈ Ω ⊂ C and denote

ϕ(θ) := xeλθ. Then the following statements are equivalent.

i) The pair (λ, x) is a solution to the nonlinear eigenvalue problem (3).

ii) The pair (λ, ϕ) is a solution to the infinite dimensional eigenvalue problem

λBϕ = ϕ. (7)

Moreover, all eigenfunctions of B depend exponentially on θ, i.e., if λBψ = ψ then

ψ(θ) = xeλθ.

4

Proof We first show that an eigenfunction of B always is exponential in θ. Suppose

ϕ ∈ D(B) satisfies (7) and consider the derivative

d

dθ
(λBϕ) = λ

d

dθ
(Bϕ) = ϕ�, (8)

which exists since all functions of the domain of B are differentiable. Due to the fact

that the action of B is integration, the left-hand side of (8) is λϕ. The result of (8) is

hence the differential equation λϕ = ϕ�, for which the solution always is of the form

ϕ(θ) = xeλθ.

In order to show that i) implies ii), suppose (λ, x) is a solution to (3). Let ϕ(θ) :=

xeλθ and note that ϕ ∈ D(B) since

∞�

i=0

1

i!
B(i)(0)ϕ(i)(0) =

∞�

i=0

λi

i!
B(i)(0)ϕ(0) = B(λ)x,

is finite. We here used that λ ∈ Ω implies that the series is convergent. Now note that

the derivative of the left-hand side of (7) is λ d
dθ (Bϕ) = λϕ, since Bϕ is a primitive

function of ϕ. From the fact that an eigenfunction takes the form ϕ(θ) = xeλθ it

follows that the derivative of the right-hand side of (7) is λϕ. Hence, the derivative of

the function equality (7) is satisfied. It remains to show that (7) holds in one point.

Consider (7) evaluated at θ = 0. The left-hand side is λ(Bϕ)(0) = λC(ϕ) and the

right-hand side ϕ(0) = x. It follows that the difference is,

λC(ϕ)− x = λ(B(
d

dθ
)ϕ)(0)− x = λB(λ)ϕ(0)− x = 0,

where in the last step we used that (λ, x) is an eigenpair of (3). We have shown i)

implies ii).

In order to show the converse, suppose (λ, ϕ) ∈ (C,D(B)) is a solution to (7). We
already know that a solution to (7) is an exponential times a vector (which we call x),

i.e., ϕ(θ) = xeλθ. Now evaluate the difference between the left and right-hand side of

(7) at θ = 0,

0 = λ(Bϕ)(0)− ϕ(0) = λC(ϕ)− x = λ(B(
d

dθ
)ϕ)(0)− x = λB(λ)x− x. (9)

In the last step we used ϕ(θ) = xeλθ, which implies that ϕ(i) = λiϕ for any i. Since

(9) is the nonlinear eigenvalue problem (3), we have completed the proof.

Remark 1 (Eigenvalue properties) The set of solutions λ of (1) is exactly the root set

of the characteristic equation det(T (λ)) = 0. Recall that T and hence det(T (λ)) is

assumed to be an analytic function in Ω. A direct consequence of Cauchy’s residue

theorem (and the principle of argument) is that an analytic function which is not

identically zero will only have a finite number of zeros in any compact subset of the

complex plane. Hence, (1) will not have any clustering points in Ω (unless λ = 0 is

an eigenvalue). Note that this carries over to the operator with the equivalence in

Theorem 3, implying that the reciprocal eigenvalues of B will not have any clustering

points in Ω.

5

Remark 2 (Connection with differential equation in work by Gohberg, Lancaster and

Rodman) In several works of Gohberg, Lancaster and Rodman, e.g., [8], the authors

use a differential equation associated with the polynomial eigenvalue problem. It is

straightforward to show that the equation in the domain of B−1 is precisely this asso-

ciated differential equation. We can hence interpret B and Theorem 3 as follows. The

operator B and Theorem 3 corresponds to an (integration) operator formulation of the

differential equation associated with the polynomial (or nonlinear) eigenvalue problem.

3 The Arnoldi method in a function setting

Now consider the Arnoldi method (first presented in [1]) where instead of applying it

to a matrix, which is the common construction, we apply it to the operator B.

Fundamental in the Arnoldi method is the Krylov subspace, for the operator B

defined as,

Kk(B, ϕ) := span(ϕ, Bϕ, . . . ,B
k−1ϕ) ⊂ C∞(C,C

n),

where ϕ ∈ D(B) ⊂ C∞(R,C
n). The Arnoldi method can be interpreted as a con-

struction of an orthogonal basis of Kk(B, ϕ) and simultaneously forming an orthogonal

projection of B onto this subspace. The orthogonal projection is achieved by a Gram-

Schmidt orthogonalization process associated with a (for the moment) arbitrary scalar

product. For a given scalar product we can directly formulate the Arnoldi method in

an abstract setting. This is summarized in Algorithm 1.

In this paper we use the notation for the elements of the Hessenberg matrix common

when working with the Arnoldi method. The upper block of the rectangular Hessenberg

matrix Hk ∈ C(k+1)×k is denoted Hk ∈ Ck×k and the (i, j) element of Hk is denoted

hi,j .

Algorithm 1 The Arnoldi method for B

Require: ϕ1 ∈ D(B) such that < ϕ1, ϕ1 >= 1
1: for k = 1, 2, . . . until converged do
2: ψ = Bϕk

3: for i = 1, . . . , k do
4: hi,k =< ψ,ϕi >
5: ψ = ψ − hi,kϕi

6: end for
7: hk+1,k =

�
< ψ,ψ >

8: ϕk+1 = ψ/hk+1,k

9: end for
10: Compute the eigenvalues {µi}

k
i=1 of the Hessenberg matrix Hk

11: Return eigenvalue approximations {1/µi}
k
i=1

Recall that our ultimate goal is to construct a method which favors solutions of (3)

close to the origin. From this perspective, it is quite natural to consider the Arnoldi

method corresponding to B, since the Arnoldi method favors extreme isolated eigenval-

ues of B. We know from Theorem 3 that the reciprocal eigenvalues of B are solutions to

(3) and the reciprocal of extreme isolated eigenvalues are usually indeed the solutions

λ close to origin, since the extreme eigenvalues are often of large magnitude. This is

consistent with the common construction for matrices of shift-invert Arnoldi method,

e.g., used in the software package ARPACK [14].

6

4 Finite arithmetic implementation of Algorithm 1

It is now for our purposes important to note that Algorithm 1 has some free compo-

nents. In Algorithm 1, we are free to choose

i) a starting function ϕ1; and

ii) a scalar product < ·, · >.

Algorithm 1 is an iteration where the iterates are elements of the infinite dimensional

vector space C∞(R,C
n). We will now see that with particular choice of starting func-

tion and a particular choice of scalar product we can reformulate Algorithm 1 to an

iteration involving only standard linear algebra operations on matrices and vectors of

finite dimension.

4.1 Constant starting function and action on polynomials

First note that B satisfies a closure property over polynomials of growing degree, in the

sense that if ϕ is a vector of polynomials of degree k, then Bϕ is a vector of polynomials

of degree k+1. This follows from the fact that the action of B corresponds to forming

a primitive function. Also note that the linear combination of two polynomials is also

a polynomial.

Algorithm 1 consists of applying B to function and forming corresponding linear

combinations. Hence, we can start Algorithm 1 with a constant function ϕ1 and we get

iterates which are polynomials. After N steps we have the Krylov subspace KN (B, ϕ) =

span(ϕ1, . . . , ϕN), which is a space of vectors of polynomials of degree N − 1.

In the following result we formalize the closure property of B for polynomials, when

considering a given polynomial basis.

Theorem 4 (General coefficient map) Let {qi}
∞
i=0 be a sequence of polynomials

such that qi is of degree i and has a non-zero leading coefficient and let q0(θ) = 1.

Moreover, let LN ∈ RN×N denote the integration map of the polynomials q0, . . . , qN−1,

in the sense that for any N ∈ N,

q0(θ)

q1(θ)
...

qN−1(θ)

 = LN

q�1(θ)

q�2(θ)
...

q�N (θ)

 . (10)

Let the columns of (x0, . . . , xN−1) =: X ∈ Cn×N denote the vector coefficients in the

basis {qi}
∞
i=0 and denote the corresponding vector of polynomials ϕ,

ϕ(θ) :=

N−1�

i=0

qi(θ)xi. (11)

Correspondingly, let y0, . . . , yN denote the coefficients of ψ := Bϕ, i.e.,

ψ(θ) = (Bϕ)(θ) =

N�

i=0

qi(θ)yi.

7

Then, the coefficients of Bϕ are given by

(y1, . . . , yN) = XLN , (12)

and

y0 =

�
N−1�

i=0

B(
d

dθ
)qi(θ)xi

�

(0)−

N�

i=1

qi(0)yi. (13)

Proof From the expansion of ϕ, i.e., (11), and the integration map LN we find that

� θ

0

ϕ(θ̂) dθ̂ =

� θ

0

X

q0(θ̂)
...

qN−1(θ̂)

 dθ̂ = XLN

q1(θ)
...

qN (θ)

−XLN

q1(0)
...

qN (0)

 . (14)

We can now insert (14) into (5) and find that

(y0, . . . , yN)

q0(θ)
...

qN (θ)

 =

Ö

C(ϕ)−XLN

q1(0)
...

qN (0)

 , XLN

è

q0(θ)
...

qN (θ)

 , (15)

where we used that q0(θ) := 1. Note that the polynomials q0, . . . , qN are linearly

independent. Hence, the matrix in front of the coefficients on the left-hand side in (15)

equals the matrix in front of the coefficients on the right-hand side. The relation (12)

follows from the corresponding last N columns and (13) follows from the first column

and (12).

4.2 Action in monomial basis and Chebyshev basis

In Theorem 4 we characterized the map B for vectors of polynomials, where the vec-

tors of polynomials were given as vector coefficients in a given polynomial basis. The

best choice of basis depends on the problem at hand and in order to have a general

algorithmic framework we now provide the specialization of Theorem 4 for two choices

of basis functions.

The Taylor coefficients correspond to a simple way of representing polynomials.

That is, we represent the polynomial with the coefficients in the monomial basis,

qi(θ) = θi. (16)

Since q�i(θ) =
1
i qi−1, the integration map LN in (10) is the diagonal matrix

LN = LT,N :=

1
1
2
. . .

1
N

. (17)

In Theorem 4 we also need find an expression for y0. Note that from the definition of

B(d
dθ) we have property (4) which for formula (13) simplifies to,

�
B(

d

dθ
)qi(θ)

�
(0) =

�
B(

d

dθ
)θi

�
(0) = B(i)(0).

8

Hence, from definition (13), we can express y0 in terms of derivatives of B,

y0 =

�
N−1�

i=0

B(
d

dθ
)qi(θ)xi

�

(0)−

N�

i=1

qi(0)yi =

N−1�

i=0

B(i)(0)xi. (18)

By using that
�N

i=1 qi(θ)yi is a primitive function of
�N−1

i=0 qi(θ)xi we can also

express the formula for y0 in terms of the original nonlinear eigenvalue problem (1). If

we insert the Taylor expansion of T in the definition of B, i.e., (2), and simplify (18)

we find that

y0 = −T (0)−1
N�

i=1

T (i)(0)yi. (19)

We have shown that if a vector of polynomials is given in terms of vector coef-

ficients in a monomial basis, the action of B can be computed by first computing

y1, . . . , yN with the matrix-matrix multiplication (12) with LT,N given by (17) and

then computing y0 using formula (18) or (19). These operations only involve linear

algebra operations applied to matrices and vectors of length n.

Apart from the monomials, we will in this work also consider functions represented

in the Chebyshev basis. Here, we define the shifted and scaled Chebyshev polynomials

for an interval [a, b] ⊂ R as

T̂i(θ) := Ti (kθ + c) , c =
a+ b

a− b
and k =

2

b− a
, (20)

where Ti(θ) := cos(i arccos(θ)).

By using the properties of Chebyshev polynomials, in particular T̂ �
i (θ) = ikUi−1(kθ+

c), where Ui is the Chebyshev polynomial of the second kind, it is straightforward to

verify that the integration map LN for Chebyshev polynomials T̂i is given by

LN = LC,N =
b− a

4

2

0 1
2

−1 0 1
3

− 1
2 0 1

4
. . .

. . .
. . .

− 1
N−2 0 1

N

(21)

Since we want to implement our algorithm with arithmetic operations on a com-

puter, we need to be able to evaluate (13) for a given problem B, we also need to derive

a computable expression for

y0 =

�
N−1�

i=0

B(
d

dθ
)T̂i(θ)xi

�

(0)−

N�

i=1

Ti(c)yi. (22)

The last term in (22) is already easy to evaluate and it remains to study the first

term. In order to find an explicit efficient expression we will decompose B into a sum

of scalar nonlinearities,

B(λ) = B0b0(λ) + · · ·+Bmbm(λ), i = 0, . . . ,m. (23)

where bi : C → C are analytic functions in Ω. Note that (23) is not a restriction of

generality in theory since B0, . . . , Bm ∈ Cn×n can be chosen as the n2 unit matrices

9

with m = n2−1. In many examples, such as those in the example collection [4], m can

be chosen small. The first term in (22) can now be written as

N−1�

i=0

((B(
d

dθ
)T̂i)xi)(0) =

m�

j=0

Bj

N−1�

i=0

�
bj(

d

dθ
)T̂ixi

�
(0). (24)

The problem is hence reduced to a sum of scalar problems, given by
�

N−1�

i=0

b(
d

dθ
)T̂ixi

�

(0), (25)

for b = bj , j = 0, . . . ,m. The handling of the expression (25) is a matter of analysis with

properties of Chebyshev polynomials. In Appendix A we give the explicit expression for

several elementary functions b and also present a constructive procedure for computing

formulas for (25) given the Taylor expansion of b.

Finally, note that in many situations the coefficients Bi involve an inverse, due to

the definition (2). This inverse should not be computed explicitly. It is often possible

to rearrange terms in the formula such that we need to solve only one linear system

for each evaluation of y0.

4.3 Scalar product consistent with polynomial basis

We showed above that if we represent the vector of polynomials ϕ with vector coeffi-

cients using either the monomial basis or Chebyshev basis, we can express the action

of Bϕ using only matrices and vectors of size n.

We will now propose a scalar product (between vectors of polynomials) which can

also be implemented using only vectors when applied to vectors of polynomials. The

scalar product can be defined in a way which is consistent with the basis. Consider

(for the moment) any of the two polynomials bases {qi}
∞
i=0 in the previous section and

consider two functions

ϕ(θ) =

N�

i=0

qi(θ)xi, ψ(θ) =

N�

i=0

qi(θ)yi. (26)

We will propose to use the following construction, which consists of summing the

Euclidean scalar product of the coefficients,

< ϕ,ψ >:=

N�

i=0

yHi xi. (27)

It is important to note that this does indeed define a scalar product, in the following

sense. The proof consists of direct verification of the properties in the definition of a

scalar product.

Lemma 5 (Scalar product) The map defined by (27) satisfies the properties of a

scalar product when ϕ and ψ are given by (26), where qi(θ) = θi or qi(θ) = T̂i(θ).

We will respectively refer to the scalar product corresponding to qi(θ) = θi and qi(θ) =

T̂i(θ) as the Taylor scalar product (and denote it < ·, · >T) and the Chebyshev scalar

product (and denote it < ·, · >C).

Further characterization of the scalar product is given in Section 5.

10

4.4 Algorithm

We are now ready to combine Section 3, i.e., the function setting Arnoldi method with

the results in Section 4.1-4.3 into a practical algorithm. Algorithm 2 is started with

a constant function, we represent the functions in a basis {qk}
∞
k=0, where qk is the

monomial basis or the Chebyshev basis, and use the consistent scalar product defined

by (27).

It turns out to be advantageous to store the coefficients of the vectors of polynomials

in vectorized form, i.e., stacking of the coefficients on top of each other. The scalar

product (27) can in this way be carried out as the Euclidean inner product of the

vectorized coefficients. This is efficient since it is only based on a few matrix operations

and it naturally suggests the use of reorthogonalization to remedy possible loss of

orthogonality. With this stacking of coefficients we arrive at an algorithm where the

basis matrix is growing with one column and one block row in each iteration, which is

visualized in Figure 1 and explicitly given in Algorithm 2.

In the previous sections we have presented two versions of the function representa-

tion and scalar products. We will call the construction with monomials (corresponding

to (17)-(19)) the Taylor version and the construction with Chebyshev polynomials (cor-

responding to (21) and (22)) the Chebyshev version. The Taylor version and Chebyshev

version are denoted a) and b) respectively in Algorithm 2.

Note that we have constructed the algorithm such that it is a (finite arithmetic)

implementation of Algorithm 1.

• The Taylor version of Algorithm 2 is equivalent to Algorithm 1 started with the

constant function ϕ1(θ) = x0 and the scalar product < ·, · >T .

• The Chebyshev version of Algorithm 2 is equivalent to Algorithm 1 started with

the constant function ϕ1(θ) = x0 and the scalar product < ·, · >C .

Vk =
Hk =

vk

Step 3-5: B action

wk

Step 7-9: Orthogonalization

vk+1

Step 10: Subspace expansion

Fig. 1 Visualization of Algorithm 2, illustrating growth of the basis matrix Vk.

Remark 3 (Implementation issues) Several implementation issues need to be taken into

account when implementing Algorithm 2. We use the same techniques for eigenvector

11

Algorithm 2 A finite arithmetic implementation of Algorithm 1

Require: x0 ∈ Cn

1: Let V1 = x0/�x0�2, k = 1, H0 =empty matrix
2: for k = 1, 2, . . . until converged do
3: Let vec(X) = vk
4: Compute y1, . . . , yk+1 according to (12) with sparse Lk

a) using Lk = LT,k given by (17); or
b) using Lk = LC,k given by (21).

5: Compute y0 by either

a) using y0 given by (18) or (19); or
b) using y0 given by (22).

6: Expand Vk with one block row (zeros)
7: Let wk := vec(y0, . . . , yk+1), compute hk = V H

k wk and then ŵk = wk − Vkhk

8: Compute βk = �ŵk�2 and let vk+1 = ŵk/βk

9: Let Hk =

�
Hk−1 hk

0 βk

�
∈ C(k+1)×k

10: Expand Vk into Vk+1 = [Vk, vk+1]
11: end for
12: Compute the eigenvalues {µi}

k
i=1 of the Hessenberg matrix Hk

13: Return approximations {1/µi}
k
i=1

extraction, reorthogonalization, stopping criteria and related issues as described in [11,

Section 3.2].

5 Interpretations as Arnoldi’s method on a matrix

In order to provide further insight into what version of Algorithm 2 is suitable given

for a given problem type, we will now give characterizations for the two versions in a

different way. We will provide reasoning based on the result that k steps of the Taylor

version as well as k steps of the Chebyshev version both have an equivalence with

the (standard) Arnoldi’s method applied to a (finite) matrix of size Nn×Nn for any

N > k.

5.1 Interpretation of Taylor version and companion linearization

Consider the truncated Taylor expansion of B,

B(λ) =

∞�

k=0

B(k)(0)

k!
λk ≈

N�

k=0

B(k)(0)

k!
λk. (28)

If we insert this approximation in (3), we arrive at the polynomial eigenvalue problem

Ç

−I + λ̃B(0) + λ̃2
B(1)(0)

1!
+ λ̃3

B(2)(0)

2!
+ · · ·+ λ̃N+1B

(N)(0)

N !

å

x̃ = 0.

The standard approach to solve and study polynomial eigenvalue problems is by means

of the transformation called companion linearization. We will here consider the com-

12

panion linearization

λ̃CN

x̃

λ̃x̃
λ̃2

2! x̃
...

λ̃N

N ! x̃

=

x̃

λ̃x̃
λ̃2

2! x̃
...

λ̃N

N ! x̃

,

where

CN =

B(0) B(1)(0) · · · B(N−1)(0) B(N)(0)

I
1
2I

. . .
1
N I 0

. (29)

Now note that due to the approximation (28) we expect that the reciprocal eigenvalues

of CN approximate the eigenvalues of (3). We will now consider the standard Arnoldi

method applied to CN . By comparison of the formulas for the Taylor version of Algo-

rithm 2 given by (17), i.e., the formula for Lk, and (18), i.e., the formula for y0, with

the action of CN we reach the following equivalence.

Theorem 6 (Equivalence with Taylor version of Algorithm 2) Let k,N be such

that N > k. The result of k steps of the standard Arnoldi method for matrix CN started

with (xT0 , 0 . . . , 0)
T is equivalent to k steps of the Taylor version of Algorithm 2 started

with x0. The equivalence holds in the sense that the Hessenberg as well as the matrix

of basis vectors are equal.

Remark 4 (Generality of Taylor version) With the above reasoning we reach the in-

dication that the Taylor version works well when the truncated Taylor expansion is

an accurate approximation of the function B. Due to the fact that B is analytic in

Ω, it has a convergent power series expansion (and hence also Taylor expansion) and

we expect the Taylor version of Algorithm 2 to work in general. We expect it to work

particularly well when the power series expansion of B converges quickly.

5.2 Interpretation of Chebyshev version for functional differential equations

For the moment, consider a slightly different form of the nonlinear eigenvalue problem

λx = A(λ)x. (30)

This formulation is common for nonlinear eigenvalue problems stemming from linear

functional differential equations (FDEs) acting on an interval

Ĩ = [ã, b̃]. (31)

Here, by FDE we mean (as usual in e.g. [9])

ż(t) = f(zt) = (A(
d

dθ
)zt)(0), (32)

where f is a (linear) functional and zt : [ã, b̃] → Cn denotes the function segment

of z given by zt(θ) = z(t + θ), θ ∈ [ã, b̃]. The function A : C → Cn×n, which also

13

characterizes the eigenvalues of (32) via (30), is often a simple function, e.g., for a

retarded delay-differential equation with a single delay, A(λ) := C0 + C1e
−τλ.

We can directly approach this problem with the main algorithm of this paper

(Algorithm 2). If we set T (λ) = A(λ) − λIn and use the transformation (2) we have

that,

B(λ) = A(0)−1A(0)−A(λ) + λIn
λ

. (33)

One common approach to compute the eigenvalues of FDEs similar to (32) consists

of doing a spectral discretization of the corresponding operator. This approach is taken

in, e.g., [6]. We will use a discretization very similar to [11, Section 2] and only point

out the elements of the derivation which need to be modified. The FDE (32) is first

discretized for an (at this moment) arbitrary interval I = [a, b] using a spectral method.

We will use a grid which generalizes the grid in [11, Section 2.3]. The grid is given by,

θi =
αi − c

k
, αi = cos

πi

N + 1
, i = 1, . . . , N and θN+1 = 0, (34)

where c and k are given in (20). By defining the matrices,

Ri := (A(
d

dθ
)T̂i)(0),

the steps in the derivation of the discretization [11, Section 2.3] can be followed and

result in the discretized eigenvalue problem

(λΠN −ΣN)z = 0, z �= 0, (35)

where

ΠN =
b− a

4

4
b−a T̂0(0)

4
b−a T̂1(0)

4
b−a T̂2(0) · · · 4

b−a T̂N−1(0)
4

b−a T̂N (0)

2 0 −1
1
2 0 − 1

2

1
3 0

. . .

. . .
. . . − 1

N−1
1
N 0

⊗In, (36)

and

ΣN =

Å
R0 R1 · · · RN

0 INn

ã

. (37)

This grid and this type of formulation of the discretization has the property that ΠN1

and ΣN1
are the leading submatrices of ΠN2

and ΣN2
if N2 > N1. This structure will

allow us to now form a connection with the Chebyshev version of Algorithm 2.

We first show that the action of Σ−1
N ΠN is equivalent to the action of B in the

sense of the following lemma. The proof is available in Appendix B.

Lemma 7 (Matrix-vector product equivalence) Let N > k and let the columns

of (x0, . . . , xk) and (y0, . . . , yk+1) be coefficients of two polynomials given by

ϕ(θ) :=

k�

i=0

T̂i(θ)xi and ψ(θ) :=

k+1�

i=0

T̂i(θ)yi,

14

such that the coefficients fulfill

Σ−1
N ΠNvec(x0, . . . , xk, 0, . . . , 0) = vec(y0, . . . , yk+1, 0, . . . , 0), (38)

where ΣN and ΠN are given by (36)-(37) and correspond to the discretization of (32).

Then, the operator B corresponding to the nonlinear eigenvalue problem (33) is equiv-

alent to Σ−1
N ΠN in the sense that,

ψ = Bϕ. (39)

A discretization approach to compute eigenvalues of (32) typically consists of first

discretizing the functional differential equation (32), yielding a large generalized eigen-

value problem, similar to (35). The second step normally consists of computing the

eigenvalues of the generalized eigenvalue problem with a general purpose method for

eigenvalue problems. Suppose we now use the standard Arnoldi algorithm to solve (35).

We saw that the action of Σ−1
N ΠN was (in the sense of Lemma 7) equivalent to

the action of B. Using this result we reach the conclusion that the two-step approach

of a discretization and the Arnoldi method is equivalent to Algorithm 1 and hence also

equivalent to Algorithm 2. The equivalence holds in the following sense.

Theorem 8 (Equivalence with Chebyshev version of Algorithm 2) Let k,N be

such that N > k. The result of k steps of the standard Arnoldi method for Σ−1
N ΠN

started with (xT0 , 0 . . . , 0)
T is equivalent to k steps of the Chebyshev version of Algo-

rithm 2 with interval [a, b] started with x0. The equivalence holds in the sense that the

Hessenberg as well as the matrix of basis vectors are equal.

5.3 Choice of the interval for functional differential equations

In the equivalence in Section 5.2, we saw that if we discretize an FDE (32) acting

on an interval Ĩ = [ã, b̃] using the grid (34), with θ1, . . . , θN ∈ I, and apply the

standard Arnoldi algorithm to the resulting GEP, the approximations are equal to

the approximations of the Chebyshev version of Algorithm 2 where the Chebyshev

polynomials are scaled to the interval [a, b]. We will now set the discretization interval

I, equal to the interval of the FDE Ĩ, i.e.,

[a, b] = [ã, b̃]. (40)

The assumption (40) is very common in literature on discretization of FDEs similar

to (32), e.g. [6] and references therein. An intuitive reasoning is that it is natural to

distribute the points such that the function values of interest are well approximated.

On the contrary, if we would choose a discretization interval I which is larger than

the FDE interval Ĩ, we would also approximate function values not relevant for the

FDE. For functional differential equations the interval normally involves the origin,

i.e., θN+1 = 0 ∈ Ĩ. Hence, if we set the intervals equal (as in (40)), all grid points (34)

are in the discretization interval I = Ĩ.

In spectral discretization approaches it is common to distribute the points in a non-

uniform manner with more grid points at the boundary. Grids which asymptotically

have a Chebyshev distribution are in some sense optimal [24, Chapter 5]. The grid

points (34) are asymptotically distributed in this way.

Hence, under the condition (40), i.e., that we set the intervals equal, the spectral

discretization in Section 5.2 is good in the sense that,

15

• it corresponds to approximating the correct interval; and

• the grid distribution (34) is a Chebyshev like distribution.

The above arguments lead to a natural choice (40) of the interval I = [a, b]. Fur-

thermore, the fact that with the choice (40) the Chebyshev version of Algorithm 2

corresponds to a good spectral discretization of the problem suggests the use of the

Chebyshev version of Algorithm 2 with interval (40) for functional differential equa-

tions.

0 10 20 30 40 50 60 70 80 90 100

10−15

10−12

10−9

10−6

10−3

100

k

|λ
−

λ
∗
|

Fig. 2 Convergence history for the Taylor version of Algorithm 2 applied to the example in
Section 6.1. After k = 80 iterations 22 eigenvalues have been found (with absolute error less
than 10−10)

6 Examples

6.1 Delay eigenvalue problem with a quadratic term

Although the method is primarily designed for large scale problems, we will for illus-

trative purposes first consider a small nonlinear eigenvalue problem. This allows us to

study the impact of the different versions of the algorithm and the scalar product.

Consider a nonlinear eigenvalue problem of the form,

T (λ) = −λ2In +A0 +A1e
−τλ,

which can be seen as the characteristic equation of a second order time-delay system,

i.e., a combination of a QEP and a DEP. We choose A0 and A1 in a random way,

A0 =
1

10

3 −6 0 4

−3 4 −8 19

1 −16 −13 0

−14 −9 2 9

 , A1 =

1

10

8 2 −13 −3

−11 9 12 5

5 2 −16 −13

7 4 −4 0

 .

16

For the Taylor version of Algorithm 2 we use the formula for y0 in (19) and the

Taylor expansion of e−τλ and find that

y0 = (A0 +A1)
−1

�

y1 −A0

N�

i=1

(−τ)iyi

�

.

The convergence diagram for the Taylor version of Algorithm 2 is given in Figure 2.

10−2 10−1 100 101 102

10−15

10−12

10−9

10−6

10−3

100

−a

|λ
−

λ
∗
|

(a) Accuracy of the eigenvalues after
k = 20 iterations for different intervals.

−8 −6 −4 −2 0 2 4

−10

−5

0

5

10

Real

Im
a
g

λ∗

λ, k = 20

(b) Eigenvalue approximations after
k = 20 iterations (Chebyshev ver-
sion)

Fig. 3 Illustration of the approximations of the Chebyshev version of Algorithm 2 for the
problem in Section 6.1.

In order to implement the Chebyshev version we first need to transform the problem

to the form (3), i.e., find an expression for B. The result of the reformulation (2) is

B(λ) = (A0 +A1)
−1(λIn +A1q(λ)),

where q is given by (47). In order to study the convergence as a function of the interval

we will now derive the method for the interval I = [a, 0], where a < 0 is treated as

a free parameter. From the formulas in Table 1 and the same manipulations as those

leading up to (49), we find that y0 in (22) can be simplified to

y0 = (A0 +A1)
−1

�
N−1�

i=1

�
2i

a
Ui−1(1)xi

�
−A0

N�

i=1

yi −A1

N�

i=1

Ti(1 + 2τ/a)yi

�

.

By carrying out several runs, we study the accuracy of the solution after k = 20

for different choices of a. This is visualized in Fig. 3a, where we see that choosing

−a = τ = 1 produces high accuracy for many eigenvalue approximations. From the

figure it is also clear that choosing −a not equal to the delay, can slow down convergence

considerably, in particular if the interval is chosen much larger than the delay. This is

consistent with the theory in Section 5.3 which suggests that we should choose a = −τ .

17

By comparing the convergence diagrams Fig. 2 and Fig. 4 we see that with the

correct choice of the interval, the Chebyshev version has faster convergence than the

Taylor version.

0 10 20 30 40 50 60 70 80 90 100

10−15

10−12

10−9

10−6

10−3

100

k

|λ
−

λ
∗
|

a = −1

a = −5

Fig. 4 Convergence history for the Chebyshev version of Algorithm 2 applied to the example
in Section 6.1. The illustration shows two different choices of a. The first eigenvalue reaches
accuracy 10−10 at k = 17 and k = 23 for a = −1 and a = −5 respectively. After k = 80
iterations, the method finds 30 and 10 eigenvalues (with error less that 10−10) for a = −1 and
a = −5 respectively.

6.2 A large nonlinear eigenproblem involving a square root

The standard Arnoldi method has turned out to be very useful for large eigenvalue

problems. We will now illustrate that this appears to be the case also for Algorithm 2.

We apply it to a non-standard nonlinearity, in this case a function which is not an

entire function. With this we also wish to illustrate the generality of our approach. Let

T (λ) = A0 − λA1 + i
»

λ− σ2
1A2 + i

»
λ− σ2

2A3,

where σ1 = 0 and σ2 = 108.8774. The notation complex square root,
√
· denotes the

principal branch and the domain of interest are such that Re (λ) > σ2
1 , i.e., bounded

away from the branch points λ = 0 and λ = σ2
2 . This problem appears in the simulation

related to accelerator modeling in [15] and the sparse matrices A0, A1, A2, A3 ∈ Rn×n,

where n = 9956, are available in the problem collection [4].

We shift and scale the problem by λ̂ = κλ + µ. The scaling is selected (to κ =

3002 − 2002) such that it corresponds to a transformation of the region of interest for

a similar problem [15, Fig. 1] to be roughly within unit magnitude. In the standard

(shift-and-invert) Arnoldi method, the general rule-of-thumb is to pick the shift close

to the eigenvalues of interest. Note that T has branch points at λ = σ2
2 and λ = 0, i.e.,

points where T is not analytic. We only have guaranteed convergence for eigenvalues

within Ω which is small if σ is close to any of the branch points. Hence, when using

Algorithm 2 on a problem where B is not an entire function, we additionally need to

take into account that the region of guaranteed convergence is smaller when the shift

is close to a branch point.

18

We carry out the algorithm for two different shifts in order to illustrate the impor-

tance of the shift and the region of guaranteed convergence. We use µ = µ0 = 146.71
2,

in the first run, since one eigenvalue of interest is close to this point [4]. Inspired by

the region of interest for a similar problem [15, Fig. 1] we also carry out the algorithm

with the shift µ = µ1 = 2502, which corresponds to a larger guaranteed region of

convergence.

For completeness, we carry out the algorithm with the Taylor version as well as

the Chebyshev version. The problem does not correspond to a differential equation on

a finite interval and the reasoning in Section 5.3 does not provide a recommendation

about how the interval should be chosen. For simplicity we use the unscaled Chebyshev

polynomials (I = [−1, 1]) and note that the behavior of the algorithm for this problem

is very similar for many other choices of the interval. The formula for y0 was derived

using the automatic symbolic procedure for b̂, i.e., symbolic representation of Taylor

coefficients and symbolic differentiation and the application of Theorem 9.

The convergence diagram for the Taylor version and Chebyshev version are given

in Fig. 5 and Fig. 6. We use, as in [15], the quantity

E(λ, v) :=
�T (λ)v�2

�A0�1 + �A1�1|λ|+
�

|λ|�A2�1 +
�

|λ− σ2
2 |�A3�1

, (41)

to measure the convergence. Similar convergence and properties are observed for both

versions, with the exception that the Taylor version sometimes produced an overflow

error in the evaluation of y0.

0 5 10 15 20 25 30 35 40 45 50

10−16

10−12

10−8

10−4

100

k

R
es
id
u
a
l
n
o
rm

E
(λ

,v
)

µ = µ0

µ = µ1

Fig. 5 Convergence history for the Taylor version of Algorithm 2 applied to the example in
Section 6.2. The figure visualizes the simulation for two different shifts µ. The error indicator
is the relative residual norm (41). Note that when µ = µ0, overflow occurs (for N = 21) in the
evaluation of y0.

Note that when we select the shift µ = µ0, only one eigenvalue has converged

after 50 iterations and the convergence to the other eigenvalues appears stagnated.

For the shift µ = µ1, we find 23 eigenvalues accurately after k = 50 iterations. The

dramatic difference in the shift, is actually quite natural when taking into account the

eigenvalues and the region of guaranteed convergence, both visualized in Fig. 7. We

clearly see that there is only one eigenvalue within Ω0 the region of convergence for

19

0 5 10 15 20 25 30 35 40 45 50

10−16

10−12

10−8

10−4

100

k

R
es
id
u
a
l
n
o
rm

E
(λ

,v
)

µ = µ0

µ = µ1

Fig. 6 Convergence history for the Chebyshev version of Algorithm 2 applied to the example
in Section 6.2. The figure visualizes the simulation for two different shifts µ. The error indicator
is the relative residual norm (41).

µ = µ0, and the theory only supports the convergence to this eigenvalue. With the

shift µ = µ1 we successfully find the eigenvalues given in [15]. Note that we also find

eigenvalues outside the region of guaranteed convergence Ω1.

The computational effort is more or less the same for both shifts and both versions

of the algorithm. The LU decomposition carried out before the iteration starts was done

in 2.5s. The Arnoldi iteration (Algorithm 2 excluding LU decomposition) finished in

37.0s, of which the matrix vector product, i.e., computing y0, in total took 5.7s and

the orthogonalization 28.0s.

The robustness and attractive global convergence properties of Algorithm 2 for this

example can be observed in two ways. The convergence shown in Fig. 5 and Fig. 6,

behaves in a very regular way. In order to find more eigenvalues, we just have to carry

out more iterations. In Fig. 7 we see that we find more eigenvalues in the region of

interest than the local correction schemes used in [15]. This illustrates the property

that Algorithm 2 is reliable in the sense that it is not likely to miss solutions. As usual,

the local correction schemes, e.g., those in [15], are however likely to be faster.

7 Concluding remarks

The two most important properties of the algorithm we have presented here is that it

is equivalent to the Arnoldi method and it is applicable to a wide class of NEPs. This

has the nice consequence that many properties of the Arnoldi method are inherited.

We also wish to point out that the Arnoldi method is well understood. The equivalence

hence opens up possibilities to improve the method presented here in the same way

the Arnoldi method has been improved.

The resources required for the orthogonalization is substantial and even dominating

in the example in Section 6.2. Hence, it can be worthwhile to work with other scalar

products. One may consider only using the first n components of the matrix of basis

vectors for the orthogonalization. This would be cheaper, but it is in general not a

scalar product but only a semidefinite bilinear form. In related methods, e.g., [3], this

20

80 100 120 140 160 180 200 220 240 260 280 300 320 340
0

50

100

150

Re
√
λ

Im
√
λ

√
λ

√
λ conv.

branch points

Liao, et al.
√
σ0,

√
σ1

Ω0

Ω1

Fig. 7 The figure is a visualization of the simulations in Section 6.2 in a square-root-scale as in
[15]. It shows the approximate eigenvalues, the shifts and the region of guaranteed convergence.
There is apparently only one eigenvalue within the region of guaranteed convergence for µ =
µ0 = 146.712 (Ω0). For µ = µ1 = 2502 all solutions (from [15]) within the region of guaranteed
convergence Ω1 are found.

type of orthogonalization is combined with the solving of a projected small nonlinear

eigenvalue problem instead of computing the eigenvalues of a Hessenberg matrix.

Finally, we wish to point out that the main algorithm of this paper is a framework

in the sense that it can be adapted to the problem at hand. In this paper we work

out formulas for the scalar products associated with the monomials and Chebyshev

polynomials and show that they both can be interpreted as Arnoldi’s method on a

companion matrix and the matrix stemming from a spectral discretization. As for the

standard Arnoldi method, depending on the problem at hand, a modified scalar product

may be more efficient. Our framework allows the use of different scalar products.

Acknowledgements This work has been supported by the Programme of Interuniversity
Attraction Poles of the Belgian Federal Science Policy Office (IAP P6- DYSCO), by OPTEC,
the Optimization in Engineering Center of the K.U. Leuven, and by the project STRT1-09/33
of the K.U. Leuven Research Council. We thank Dr. Ben-Shan Liao for the assistance in
reproducing the data of [15] in Fig. 7.

References

1. W. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue
problem. Q. appl. Math., 9:17–29, 1951.

2. J. Asakura, T. Sakurai, H. Tadano, T. Ikegami, and K. Kimura. A numerical method for
nonlinear eigenvalue problems using contour integrals. JSIAM Letters, 1:52–55, 2009.

3. Z. Bai and Y. Su. SOAR: A second-order Arnoldi method for the solution of the quadratic
eigenvalue problem. SIAM J. Matrix Anal. Appl., 26(3):640–659, 2005.

4. T. Betcke, N. J. Higham, V. Mehrmann, C. Schröder, and F. Tisseur. NLEVP: A collection
of nonlinear eigenvalue problems. Technical report, Manchester Institute for Mathematical
Sciences, 2008.

5. W. J. Beyn. An integral method for solving nonlinear eigenvalue problems. Technical
report, Bielefeld University, 2010.

6. D. Breda, S. Maset, and R. Vermiglio. Pseudospectral approximation of eigenvalues of
derivative operators with non-local boundary conditions. Applied Numerical Mathematics,
56:318–331, 2006.

21

7. H. Fassbender, D. Mackey, N. Mackey, and C. Schröder. Structured polynomial eigen-
problems related to time-delay systems. Electronic Transactions on Numerical Analysis,
31:306–330, 2008.

8. I. Gohberg, P. Lancaster, and L. Rodman. Matrix polynomials. Academic press, 1982.
9. J. Hale and S. M. Verduyn Lunel. Introduction to functional differential equations.

Springer-Verlag, 1993.
10. M. E. Hochstenbach and G. L. Sleijpen. Harmonic and refined Rayleigh-Ritz for the

polynomial eigenvalue problem. Numer. Linear Algebra Appl., 15(1):35–54, 2008.
11. E. Jarlebring, K. Meerbergen, and W. Michiels. A Krylov method for the delay eigenvalue

problem. Technical Report TW558, K.U. Leuven, 2010. to appear in SIAM J. Sci. Comp.
12. D. Kressner. A block Newton method for nonlinear eigenvalue problems. Numer. Math.,

114(2):355–372, 2009.
13. D. Kressner, C. Schröder, and D. S. Watkins. Implicit QR algorithms for palindromic and

even eigenvalue problems. Numer. Algorithms, 51(2):209–238, 2009.
14. R. Lehoucq, D. Sorensen, and C. Yang. ARPACK user’s guide. Solution of large-scale

eigenvalue problems with implicitly restarted Arnoldi methods. SIAM publications, 1998.
15. B.-S. Liao, Z. Bai, L.-Q. Lee, and K. Ko. Nonlinear Rayleigh-Ritz iterative method for

solving large scale nonlinear eigenvalue problems. Taiwanese Journal of Mathematics,
14(3):869–883, 2010.

16. D. Mackey, N. Mackey, C. Mehl, and V. Mehrmann. Numerical methods for palindromic
eigenvalue problems: Computing the anti-triangular Schur form. Numer. linear Algebr.,
16:63–86, 2009.

17. K. Meerbergen. The quadratic Arnoldi method for the solution of the quadratic eigenvalue
problem. SIAM J. Matrix Anal. Appl., 30(4):1463–1482, 2008.

18. V. Mehrmann and H. Voss. Nonlinear eigenvalue problems: A challenge for modern eigen-
value methods. GAMM Mitteilungen, 27:121–152, 2004.

19. A. Neumaier. Residual inverse iteration for the nonlinear eigenvalue problem. SIAM J.
Numer. Anal., 22:914–923, 1985.

20. G. Peters and J. Wilkinson. Inverse iterations, ill-conditioned equations and Newton’s
method. SIAM Rev., 21:339–360, 1979.

21. A. Ruhe. Algorithms for the nonlinear eigenvalue problem. SIAM J. Numer. Anal.,
10:674–689, 1973.

22. G. L. Sleijpen, A. G. Booten, D. R. Fokkema, and H. A. van der Vorst. Jacobi-
Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT,
36(3):595–633, 1996.

23. Y. Su and Z. Bai. Solving rational eigenvalue problems via linearization. Technical report,
Department of Computer Science and Mathematics, University of California, Davis, 2008.

24. L. N. Trefethen. Spectral Methods in MATLAB. SIAM Publications, Philadelphia, 2000.
25. H. Unger. Nichtlineare Behandlung von Eigenwertaufgaben. Z. Angew.

Math. Mech., 30:281–282, 1950. English translation: http://www.math.tu-
dresden.de/˜schwetli/Unger.html.

26. H. Voss. An Arnoldi method for nonlinear eigenvalue problems. BIT, 44:387 – 401, 2004.

A Computing y0 for the Chebyshev basis

Consider one of the terms in (24), b = bj and define the vector,

b̂T :=

�
(b(

d

dθ
)T̂0)(0), . . . , (b(

d

dθ
)T̂N−1)(0)

�
. (42)

If we can compute this vector, we can evaluate (24) since one term in the outer sum of (24)
can be expressed as,

N−1�

i=0

(b(
d

dθ
)T̂ixi)(0) = (x0, . . . , xN−1)b̂. (43)

We present two procedures to compute the vector b̂.

22

A.1 Computing b̂ from the Taylor expansion

The function b is a scalar function and we first present results for the case where the Taylor
expansion of b is available. The Taylor expansion can be computed, e.g., by hand, with methods
for symbolic manipulations or using some high accuracy numerical approach. This computation
can be done as a precomputation to Algorithm 2, and will for large-scale systems not dominate
the computation-time of the algorithm.

In the following result we see how the vector b̂ can be computed from the Taylor expansion
of the b. When using Theorem 9 in practice it is advisable to represent the Taylor coefficient
with high-precision arithmetic and also solve the linear systems in Theorem 9 with high-
precision arithmetic.

Theorem 9 (Computing b̂ from the Taylor expansion of b) Let {bj}
∞
0 be the coefficients

in the power series expansion of an arbitrary function b : C → C, i.e.,

b(λ) =

∞�

j=0

bjλ
j .

Consider the matrix
ZN = (z0, . . . , zN−1) ∈ RN×N ,

with columns defined by

zi =

ï
0

L−1
C,N−1

ò

· · ·

ï
0

L−1
C,N−i

ò

T̂0(0)

...

T̂N−i−1(0)

 .

Then,

(b(d

dθ
)T̂0)(0)

...

(b(d
dθ

)T̂N−1)(0)

 = ZN

b0
...

bN−1

 . (44)

Proof First note that since T̂i is a polynomial of order i, we only need a finite number of
Taylor coefficients in the definition of b̂,

b̂ = b0

T̂0(0)

...

T̂N−1(0)

+ b1

T̂ �
0(0)
...

T̂ �
N−1(0)

+ · · ·+ bN−1

T̂
(N−1)
0 (0)

...

T̂
(N−1)
N−1 (0)

 . (45)

We will now use the inverse of the integration map LC,N given in (21) in order to compute

the derivatives. Consider only one term in (45) and apply L−1
C,i several times,

(T̂
(i)
0)(0)
...

(T̂
(i)
N−1)(0)

 =

ï
0

L−1
C,N−1

ò

(T̂
(i−1)
0)(0)

...

(T̂
(i−1
N−2)(0)

 = · · · =

ï
0

L−1
C,N−1

ò

· · ·

ï
0

L−1
C,N−i

ò

T̂0(0)

...

T̂N−i−1(0)

 . (46)

The proof is completed by defining the matrix ZN as the columns given by (46), i = 0, . . . , N−1
and using (45).

23

Used in NEP b(λ) (b(d
dθ

)ϕ)(0) =
�N−1

i=0
(b(d

dθ
)T̂ixi)(0)

GEP 1
�N−1

i=0
Ti(c)xi

QEP λ
�N−1

i=1 kiUi−1(c)xi

PEP λp (x0, . . . , xN−1)

ï
0

L−1
C,N−1

ò

· · ·

ï
0

L−1
C,N−p

ò

T0(c)

..

.
TN−p−1(c)

DEP q(λ)
�N

i=1
(T̂i(0)− T̂i(−τ))yi

Neutral DEP e−τλ
�N−1

i=0
T̂i(−τ)xi

Table 1 Formulas for scalar nonlinearities appearing in some common nonlinear eigenvalue
problems: generalized eigenvalue problems (GEPs), quadratic eigenvalue problems (QEPs),
polynomial eigenvalue problems (PEPs), delay eigenvalue problems (DEPs) and neutral DEPs.
These are to be used in the derivation of expressions for y0 in (22). The Chebyshev polyno-
mials of the second kind are denoted Ui. The variables x0, . . . , xN−1,y1, . . . , yN and LC,i are
defined in Theorem 4 and (21), and k and c are the constants in the scaling of the Chebyshev
polynomials defined in (20). The function q(λ) is defined in (47).

A.2 Formulas for b̂ for some common elementary functions

Direct manipulations of the definition of b̂ in (43) and using properties of Chebyshev polyno-
mials can in several situations result in quite simple formulas. The formulas for some common
nonlinearities are summarized in Table 1. We briefly summarize the derivations.

The first three rows in Table 1 follow directly from Theorem 9. For the delay eigenvalue
problem

T (λ) = −λI +A0 +A1e
−τλ,

we find from (2) that

B(λ) = (A0 +A1)
−1(In +A1q(λ)) with q(λ) :=

1− e−τλ

λ
. (47)

We have tacitly defined q(0) as the analytic extension of q. Now note that q can be interpreted
as integration, in the sense that

�
q(

d

dθ
)ϕ

�
(0) =

� 0

−τ

ϕ(θ̂) dθ̂. (48)

This can be established by comparing the terms in the Taylor expansion of the left and right-
hand side in (48).

We will here use that ψ = Bϕ in Theorem 4 is given by the coefficients of yi and is a
primitive function of ϕ. Hence, we have that

N−1�

i=0

(q(
d

dθ
)T̂ixi)(0) =

� 0

−τ

ϕ(θ̂) dθ̂ = ψ(0)− ψ(−τ) =

N�

i=1

�
T̂i(0)− T̂i(−τ)

�
yi. (49)

The nonlinear eigenvalue problem corresponding to time-delay systems known as neutral time-
delay system have terms involving λe−λτ . By the transformation (3) we arrive at a decomposi-
tion (23) with a scalar nonlinearity b(λ) = e−τλ. We derive it by forming the Taylor expansion
of b from which it follows that,

(b(
d

dθ
)ϕ)(0) = ϕ(−τ) =

N−1�

i=0

T̂i(−τ)xi. (50)

24

The last two rows of Table 1 follow from (49) and (50).

B Proof of Lemma 7

Let tTN := (T̂0(0), . . . , T̂N (0)) and Xk := (x0, . . . , xk). From the definition of ΣN and ΠN it
follows that

ΠNvec(x0, . . . , xk, 0, . . . , 0) = vec(Xktk, XkLk+1). (51)

and

ΣNvec(y0, . . . , yk+1, 0, . . . , 0) = vec (R0y0 +R1y1 + · · ·+Rk+1yk+1, y1, . . . , yk+1) . (52)

The equality of (51) and (52) can be interpreted as conditions on the functions ϕ and ψ. From
the last k + 1 block rows of (51) and (52) it follows that

ψ�(θ) = ϕ(θ) (53)

and the first column correspondingly gives the condition that

ϕ(0) = (A(
d

dθ
)ψ)(0). (54)

Consider the Taylor expansion of A, and denote the coefficients, A(λ) = A0+λA1+λ2A2+· · · .
We now solve (54) for ψ(0) and use (53),

ψ(0) = A−1
0 (ϕ(0)−A1ψ

�(0)−A2ψ
��(0)− · · ·)

= A−1
0 (ϕ(0)−A1ϕ(0)−A2ϕ

�(0)− · · ·). (55)

When we insert the expansion of A into B in the definition (33) and compare with (55) we see
that,

(B(
d

dθ
)ϕ)(0) = A(0)−1(ϕ(0)−A1ϕ(0)−A2ϕ

�(0)− · · ·) = ψ(0). (56)

From (53) and (56) it follows that ψ is the action of B onto ϕ, i.e., (39) holds. This completes
the proof.

