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Abstract— In this work we address the problem of finding
the critical delays of a linear neutral delay system, i.e., the
delays such that the system has a purely imaginary eigenvalue.
Even though neutral delay systems exhibit some discontinuity
properties with respect to changes in the delays an essential part
in a non-conservative stability analysis with respect to changes
in the delays, is the computation of the critical delays.

We generalize previous results on critical delays and stability
switches for retarded time-delay systems, under some minor
assumptions on the delay system.

The work starts with stating a general equivalence theorem
between the spectrum and a matrix function condition. We show
how this theorem can be applied to the commensurate time-
delay system to compute the critical delays. It turns out that
the resulting method is closely related to parts of the results of
Fu, Niculescu and Chen[6]. For the incommensurate case we
present a scheme which allows the computation of the critical
curves, i.e., the points in delay-space for which the system has
a purely imaginary eigenvalue.

We apply the method to previously investigated examples, in
order to provide a verification of the results, as well as to an
example for which the stability picture is, to our knowledge,
not yet known.

I. INTRODUCTION
Time-delay systems are natural models of many phenom-

enas in engineering, biology and physics. Some applications
occur in the topics related to electric circuits, finite switch-
time controllers, networks with communication limitations,
population dynamics, traffic dynamics and congestion con-
trol, machine-tool cutting, simulation and control of chemical
processes. For a more thorough list of applications of time-
delay systems see [16].

In this work we treat neutral linear time-delay systems
with m discrete delays, i.e.,

Σ =


m∑

k=0

Bkẋ(t− hk) =
m∑

k=0

Akx(t− hk), t > 0

x(t) = ϕ(t), t ∈ [−hmax, 0]

(1)

where Ak, Bk ∈ Rn×n and hmax is the largest delay.
Without the loss of generality, we assume that h0 = 0 and
hm = hmax. The stability of the neutral system, can be
determined from the solutions of the characteristic equation,
i.e., the nontrivial solution of

M(s)v = 0,

where M(s) = −sB(s) + A(s),

A(s) =
m∑

k=0

Ake−hks and B(s) =
m∑

k=0

Bke−hks.
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We call s ∈ C an eigenvalue and v ∈ Cn an eigenvector of
the system. If the spectrum, i.e., the set of all eigenvalues,
is to the left of some vertical line in the open left complex
half-plane, then the system is exponentially stable.

It is known (e.g. [1] and [14]) that the spectrum of neutral
delay systems exhibits some discontinuity properties. Even
though each eigenvalue-path is continuous, an infinitesimal
change in the delays may cause the system to turn unstable.
These discontinuities of the cluster points of the real part of
the spectrum, are closely related to the essential spectrum
of the system, i.e., the solutions of det(B(s)) = 0. These
discontinuity properties can be characterized by strongly
exponential stability (e.g., [9] and [15]).

One way for a stability-switch of a neutral delay system
to occur is that the rightmost eigenvalue goes from the left
complex half-plane into the right complex half-plane by
passing the imaginary axis. In this work we find conditions
on the delay parameters such that the system has a purely
imaginary eigenvalue. This is clearly a first step in a non-
conservative stability analysis of neutral time-delay systems.

Unlike many (in practice) conservative stability-checking
methods formulated using linear matrix inequalities and the
theory of Lyapunov-Krasovskii (e.g., [5], [10], [19] and [7]),
we aim to find non-conservative stability conditions.

Explicit non-conservative stability conditions for neutral
systems have only received moderate amount of attention in
literature. For the single delay case, a method to compute
the imaginary eigenvalues as well as the critical delays
is presented in [12]. Another analysis using a Rekasius
substitution is done in [18] and [20]. A frequency sweep-
ing approach using a frequency dependent matrix pencil
is described in [2]. Gu, Niculescu and Chen [8] analyzes
a geometric approach for finding the crossing curves of
scalar problems corresponding to two-delay systems and
systems without delay cross-terms. More recently, for the
commensurate multi-dimensional system, the matrix-pencil
based method in [6] provides a way to compute the stability
margin. This is a generalization of [3] to neutral systems. In
[17] it is shown how one can apply these results to lossless
propagation systems.

Our main results are divided into two parts: the results
for commensurate delays and the results on incommensu-
rate delays. For the commensurate case we find a matrix
condition similar to that of [6]. For the incommensurate
case, we present a method to compute the critical curves
in delay-space, generalizing the method for retarded systems
[11]. Both of these results are shown by first proving an
equivalence relation between the spectrum of the time-delay
system and a matrix-condition.



II. RESULTS

We exclude the following case in order to simplify the
analysis.

Assumption 1 We assume that the problem is well posed
in the sense that B(s)v 6= 0 for all eigenpairs v, s. In other
words, we assume that A(s)v = 0 and B(s)v = 0 do not
have a solution s,v in common.

The assumption corresponds to the case where the discrete
operator corresponding to the neutral part, i.e., B(s), has an
eigenpair in common with the discrete operator correspond-
ing to the retarded part, i.e., A(s). This does not cause a
major restriction to the results as it is easy to identify and
verify, e.g., Assumption 1 is fulfilled for retarded systems as
B(s)v = v 6= 0. Other examples on how to check whether it
is fulfilled are shown in the examples section.

Note that this assumption is not equivalent to strong sta-
bility (e.g., [9]), which is a common assumption in stability
analysis of neutral time-delay systems. Assumption 1 is only
motivated by the fact that it is a natural assumption for the
proofs.

In order to make a rigorous but simple analysis, we state,
in a general form, an equivalence theorem which is used in
the analysis of the incommensurate as well as the commen-
surate case. To enable us to compactly state this theorem,
we introduce the following matrix function, defined from
the characteristic matrix function M(s) = −sB(s) + A(s).

Definition 2 Let

L(X, s) := M(s)XB(s)∗ + B(s)XM(s)∗ =
= A(s)XB(s)∗ + B(s)XA(s)∗ − 2B(s)XB(s)∗Re s.

(2)

Using this definition we can compactly state the funda-
mental equivalence theorem of this work.

Theorem 3 Given s ∈ C and v ∈ Cn such that B(s)v =
w 6= 0, then the following statements are equivalent

M(s)v = 0 (A)
L(vv∗, s) = 0 ∧ w∗M(s)v = 0 (B)

Proof: The implication (A) ⇒ (B) is clear from
the definition. The implication (B) ⇒ (A) holds from the
equality

L(vv∗, s)w = M(s)vv∗B(s)∗w + B(s)vv∗M(s)∗w.

We will now focus on finding the solutions of (B) for the
critical case, i.e., the case where there is a purely imaginary
eigenvalue. For this, we note that clearly Re s = 0 and the
non-exponential term of L disappears.

A. Commensurate delays

We now assume that the delays are integer multiples of
some delay h, i.e., hj = hj for j = 0, . . . ,m. We substitute
ζ = e−iωh, and rephrase the theorem. Note that results very
similar to this theorem are contained in [6].

Theorem 4 The commensurate m delay time-delay system
fulfilling Assumption 1 has the critical delay h if and only
if there is an ζ ∈ ∂D, ω ∈ R and v ∈ Cn such that

m∑
j,k

(
Ajvv∗BT

k + Bjvv∗AT
k

)
ζm+j−k = 0 (3)

and

ω = −i
w∗∑m

j Ajζ
jv

w∗w

and
h =

−Arg ζ + 2pπ

ω

for some p ∈ Z, where

w =
m∑
j

Bjζ
jv.

Proof: This follows from Theorem 3, if we let ζ =
e−iωh.

Now we note that (3) can be vectorized, i.e., stacking the
column of the matrix-equation on top of each other, into

m∑
j,k=0

(Bk ⊗Aj + Ak ⊗Bj) ζm+j−ku =

2m∑
q=0

min(m,q)∑
j=max(q−m,0)

(Bj−q+m ⊗Aj + Aj−q+m ⊗Bj) ζqu

(4)

where u = vec vv∗. This is polynomial eigenvalue problem.
There are numerical methods methods for computing its’
solution1.

The most common way of solving polynomial eigen-
problems is by transforming it to an eigenvalue problem,
constructing the companion matrices (for generalizations
of the companion form see [13]). Generally a polynomial
eigenproblem

N∑
k=0

Ckζku = 0

fulfills the equation

ζ

 I

. . .
I

CN

w =

 0 I

. . . . . .
0 I

−C0 ··· −CN−2 −CN−1

w, (5)

where w = (uT , ζuT , ζ2uT , · · · ζN−1uT )T , which is a
generalized eigenvalue problem, solvable on a computer (for
moderate sized problem) to sufficient accuracy.

1As of version 7.1.0 (R14) of Matlab, the command polyeig is available
for solving dense polynomial eigenproblems.



Here N = 2m and Cq =
∑min(m,q)

j=max(q−m,0) Bj−q+m⊗Aj +
Aj−q+m ⊗Bj for q = 0, . . . , 2m.

Remark 5 Again, a very similar matrix condition is con-
tained in [6]. Note however that the matrices Qk in [6] are
not identical to Cq, even though some numerical experiments
(not reported here) indicate that they share eigenvalues on the
unit circle, the exact relation is not obvious.

B. Incommensurate parametrization

For incommensurate time-delay systems, our aim is to
visualize for what points in delay-space the system has
a purely imaginary eigenvalue. For this we introduce the
free variable ~ϕ = (ϕ0, . . . , ϕm−1), where we for notational
purposes let ϕ0 = 0. If we have an m-delay system we aim
to parameterize a (m − 1)-dimensional hypersurface using
the free variable ~ϕ.

To simplify the notation we introduce A(~ϕ) :=∑m−1
k=0 Ake−iϕk and B(~ϕ) :=

∑m−1
k=0 Bke−iϕk . We are now

ready to state our main theorem for the incommensurate
time-delay system.

Theorem 6 Let h̄ = (h1, . . . , hm) be a point in delay-
parameter space. For the neutral TDS fulfilling Assump-
tion 1, the point h̄ lies on the critical surface only if there
are some ϕk ∈ [−π, π], k = 1, . . . ,m− 1, z ∈ C on the unit
circle, ω ∈ R such that

z2 (Amvv∗B(~ϕ)∗ + Bmvv∗A(~ϕ)∗) +
z (A(~ϕ)vv∗B(~ϕ)∗ + Amvv∗B∗

m+
B(~ϕ)vv∗A(~ϕ)∗ + Bmvv∗A∗

m) +
A(~ϕ)vv∗B∗

m + B(~ϕ)vv∗A∗
m = 0, (6)

ω = −i
w∗ (Amz + A(~ϕ)) v

w∗w
, (7)

w = (Bmz + B(~ϕ))v (8)

and hm = −Arg z+2pmπ
ω , hk = ϕk+2pkπ

ω , k = 1, . . . ,m− 1
for some pk ∈ Z, k = 1 . . .m.

Proof: This follows from the Theorem 3 by choosing
z = e−iωhm , ϕ0 = 0 and ϕk = hkω for k = 1, . . . ,m − 1.

Similar to the previous section we note that (6) is a matrix
equation which can be vectorized into

(z2M(~ϕ) + zC(~ϕ) + K(~ϕ))u = 0, (9)

where u = vec vv∗, M(~ϕ) = B(−~ϕ)⊗Am +A(−~ϕ)⊗Bm,
C(~ϕ) = B(−~ϕ)⊗A(~ϕ)+Bm⊗Am+A(−~ϕ)⊗B(~ϕ)+Am⊗
Bm and K(~ϕ) = Bm⊗A(~ϕ)+Am⊗B(~ϕ). Equation (9) is
a polynomial eigenproblem of degree two, i.e., a quadratic
eigenproblem (for details on the quadratic eigenproblem see
[21]). Again, the solutions of the quadratic eigenproblems
can be computed from a corresponding companion form, e.g.

z

(
I 0
0 M(~ϕ)

)(
u
zu

)
=
(

0 I
−K(~ϕ) −C(~ϕ)

)(
u
zu

)
.

(10)

Note that given a free parameter ~ϕ we can use Theorem 6
to compute a point on the critical curves, and that if we let
~ϕ run over the whole domain, Theorem 6 will generate all
critical points. In practice we typically let the free parameter
~ϕ run over a finite number of grid points with a grid
size small enough that we can convince ourselves of the
continuity of the critical curves. We outline a numerical
procedure for the two-delay case in pseudo-code

1. FOR ϕ = −π : ∆ : π
2. Find eigenpairs (zk, uk) of (10)
3. FOR k = 1 : length(z)
4. IF zk is on unit circle
5. Compute vk such that uk = vec vkv∗k
6. Compute ωk using (7)
7. Accept critical points (h1, h2)

h1 =
ϕ + 2pπ

ωk
, p = −pmax, . . . , pmax

h2 =
−Arg zk + 2qπ

ωk
, q = −pmax, . . . , pmax

8. END
9. END

10. END

In step 1, ∆ is the stepsize of the parameter ϕ. In step 7,
pmax is the number of branches which should be included in
the computation. Step 7 is not computationally demanding.
We can therefore select pmax so large that the computation
contains all relevant branches. The generalization to more
than two delays is straighforward. It involves a nesting of
the outer iteration (step 1) with for-loops of the new free
variables ϕk and computing the other delays in step 7 similar
to h1.

III. EXAMPLES

To increase the understanding of Theorem 6 and Theo-
rem 4 we apply them to previously well investigated time-
delay systems.

We also apply the theorems to scalar time-delay systems
and arrive at analytic expressions for the critical delays which
are (to the author‘s knowledge) not known.

The result of the application of the numerical scheme from
the previous section are presented in Example 12.

Example 7 (Classical) For the retarded time-delay system

ẋ(t) = a0x(t) + a1x(t− h)

we have that B(s) = 1 and A(s) = a0 + a1e
−hs. Note

that we have no free variables for a single delay system.
Assumption 1 is always fulfilled because B(s) = 0 has no
solution. In the notation of Theorem 6 we have that A(~ϕ) =
a0,B(~ϕ) = 1, Am = a1 and Bm = 0, and the quadratic
eigenvalue problem (9) is

z2a1 + 2za0 + a1 = 0.

It has the solutions

z =
−a0 ±

√
a2
0 − a2

1

a1
=
−a0 ± i

√
a2
1 − a2

0

a1
.



The solution z is of unit magnitude if and only if a2
0 ≤ a2

1. If
this is not the case, there are no critical delays. The critical
frequencies are

ω = −i
a0 + a1z

1
= ±

√
a2
1 − a2

0.

From Theorem 6 we now have the critical delays

h = −
atan

(±sgn(a1)
√

a2
1−a2

0
−sgn(a1)a0

)
+ 2pπ

±
√

a2
1 − a2

0

=

= −
sgn(a1)atan

( √a2
1−a2

0
−sgn(a1)a0

)
∓ 2pπ√

a2
1 − a2

0

,

where atan
(
a
b

)
denotes the four-quadrant inverse tangent,

i.e., atan
(
a
b

)
= Arg (b + ia), corresponding to the matlab

command atan2.
Using the formula

atan
(√

a2 − b2

−sgn(a)b

)
= acos

(
− b

a

)
we arrive at the final expression

h =
−sgn(a1)√

a2
1 − a2

0

(
acos

(
−a0

a1

)
+ 2pπ

)
for any p ∈ Z.

For the case that a1 < 0, which is necessary to have delay-
dependent stability, this is a classical result. See for instance
[4] or [16, Section 3.4.1].

Example 8 ([6]) For the neutral time-delay system

ẋ(t) + b1ẋ(t− h) = a0x(t) + a1x(t− h)

we have that B(iω) = 1 + b1e
−ihω and A(iω) = a0 +

a1e
−ihω. If we assume that a1 6= b1a0, then A(iω) = 0 and

B(iω) = 0 do not have any roots in common and Assump-
tion 1 holds. Moreover, we have that A(~ϕ) = a0,B(~ϕ) = 1,
Am = a1 and Bm = b1, and the quadratic eigenvalue
problem (9) is now

z2(a1 + b1a0) + 2z(a0 + a1b1) + a0b1 + a1 = 0

with the solutions

z =
−(a0 + a1b1)±

√
(a0 + a1b1)2 − (a0b1 + a1)2

a0b1 + a1
=

=
−(a0 + a1b1)± i

√
(a0b1 + a1)2 − (a0 + a1b1)2

a0b1 + a1
. (11)

The time-delay system has critical delays if and only if
(a0b1 + a1)2 > (a0 + a1b1)2, which implies that b1 6= ±1.
The crossing frequencies are

ω =
a0 + a1z

i(1 + b1z)
= −a0 + a1Re z

b1Im z
=

± a2
1 − a2

0√
(a0b1 + a1)2 − (a0 + a1b1)2

=

= ∓

√
a2
1 − a2

0

1− b2
1

. (12)

This formula is found in [6]. The critical delays are

h =
−Arg z + 2pπ

ω
=

− ρ

√
1− b2

1

a2
1 − a2

0

(
acos

(
−a0 + a1b1

a0b1 + a1

)
+ 2pπ

)
(13)

where ρ = sgn(a0b1 +a1). A similar formula is contained
in [16, Section 3.4.2].

Example 9 For the neutral two-delay system

b1ẋ(t− h1) + b2ẋ(t− h2) = x(t)

we have that A(ϕ) = 1, Am = 0, B(ϕ) = b1e
−iϕ, Bm = b2.

Assumption 1 is always fulfilled as A(s) = 1 6= 0. The
quadratic eigenproblem corresponding to (9) is

z2b2 + z2b1 cos(ϕ) + b2 = 0

and

z =
−b1 cos(ϕ)±

√
b2
1 cos2(ϕ)− b2

2

b2

=
−b1 cos(ϕ)± i

√
b2
2 − b2

1 cos2(ϕ)
b2

. (14)

The parametrization yields proper critical delays only if
we require that ϕ fulfills b2

2 ≥ b2
1 cos2(ϕ). The crossing

frequencies are

ω =
1

i(b1e−iϕ + (−b1 ± i
√

b2
2 − b2

1 cos2(ϕ)))
=

=
1

b1 sin(ϕ)∓
√

b2
2 − b2

1 cos2(ϕ)
. (15)

Hence, a parametrization of the critical delays are the func-
tions

h1 =
ϕ + 2pπ

ω
=(

b1 sin(ϕ)∓
√

b2
2 − b2

1 cos2(ϕ)
)

(ϕ + 2pπ)

h2 =
−Arg z + 2qπ

ω
=(

b1 sin(ϕ)∓
√

b2
2 − b2

1 cos2(ϕ)
)(

2qπ +

∓ sgn(b2)acos
(
−b1 cos(ϕ)

b2

))
,

for any p, q ∈ Z.

Example 10 We now consider the neutral system corre-
sponding to Example 8 where the two delays are not neces-
sarily equal, i.e.,

ẋ(t) + b1ẋ(t− h1) = a0x(t) + a2x(t− h2).



We have that b(ϕ) = 1 + b1e
−iϕ, bm = 0, a(ϕ) = a0 and

am = a2. The quadratic eigenproblem/equation correspond-
ing to (9) is

z2a2(1+b1e
iϕ)+2za0(1+b1 cos(ϕ))+a2(1+b1e

−iϕ) = 0.

After many simple manipulations, which we leave out for
brevity, we arrive at an expression for the critical frequencies.

ω(ϕ) =
a0 + a2Re z

b1 sin(ϕ)
= (16)

=
1

1 + 2b1 cos(ϕ) + b2
1

(
b1 sin(ϕ) +

∓
√

(a2
2 − a2

0)(1 + 2b1 cos(ϕ) + b2
1) + b2

1a
2
0 sin2(ϕ)

)
(17)

It is clear that even for examples like this, which may seem
simple, the explicit real trigonometric expression (17) is too
large to easily identify properties of the critical frequencies.

For brevity we only express the critical delays using the
complex expression.

h1 =
ϕ + 2pπ

ω(ϕ)
=

b1 sin(ϕ)(ϕ + 2pπ)
a0 + a2Re z

h2 =
−Arg z + 2qπ

ω(ϕ)
=

b1 sin(ϕ)(−Arg z + 2qπ)
a0 + a2Re z

Example 11 (From [10] and [19]) With this example we
show how one can find the critical delays of some multi-
dimensional systems analytically. The commonly occurring
example,

ẋ(t)− 0.1ẋ(t− h1) =(
−2 0
0 −0.9

)
x(t) +

(
−1 0
−1 −1

)
x(t− h2),

can be decoupled because all matrices are triangular. Hence,
the spectrum is the union of the spectrum of the two
decoupled systems

ẏ1(t)− 0.1ẏ1(t− h1) = −2y1(t)− y1(t− h2)
ẏ2(t)− 0.1ẏ2(t− h1) = −0.9y2(t)− y2(t− h2)

If we let h1 = h2 we can apply the result of Example 8. Here
the system corresponding to y1 does not have any critical
delays. For y2 we have a0 = −0.9, b0 = 1, b1 = −0.1,
a1 = −1 ρ = sgn(a0b1 + a1) = sgn(−0.1a0 − 1) = −1.
From (13) the critical delays are

h =

√
1− 0.12

1− 0.92

(
acos

(
−0.8
0.91

)
+ 2pπ

)
=

= 3

√
11
19

(
acos

(
−80
91

)
+ 2pπ

)
, (18)

which is an exact expression. For p = 0 we have h ≈ 6.0372
and ω ≈ ±0.4381.

For the case that h1 6= h2 we can apply the formula
from Example 10 (or directly apply the numerical scheme) to
produce the critical curves. The results are shown in Figure 1.
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Fig. 1. Critical curves for Example 11

Example 12 In this example we apply the numerical scheme
to an example for which we believe there is no simple
analytical expression.

Consider the delay-free-feedback version of the example
in [15, Section 5],

ẋ(t) + B1ẋ(t− h1) + B2ẋ(t− h2) = A0x(t),

where

B1 = −

 0 0.2 −0.4
−0.5 0.3 0
0.2 0.7 0

 ,

B2 = −

−0.3 −0.1 0
0 0.2 0

0.1 0 0.4

 ,

A0 =

−4.8 4.7 3
0.1 1.4 −0.4
0.7 3.1 −1.5

+ BT K,

B =
(
0.3 0.7 0.1

)T
,

K =
(
−2.593 1.284 1.826

)T
.

Assumption 1 holds because A0 is not singular, and hence
A(s)v = A0v = 0 has no solutions. The critical curves
computed by the numerical scheme are given in Figure 2.

IV. CONCLUSIONS AND FUTURE WORKS

We have presented a new method to compute the delays
of neutral multiple-delay time-delay system such that it has
a purely imaginary eigenvalue. This is done by, in a general
setting, stating an equivalence theorem between the spectrum
and the solutions of a constructed matrix condition.

For the case that the delays are commensurate, we show
that this equivalence theorem reduces to results which are
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Fig. 2. Critical curves for Example 12

very similar to parts of the method of Fu, Niculescu and
Chen[6]. For the incommensurate case, we find a way to
parametrize the curves along which the system has a purely
imaginary eigenvalue.

It is worth noting that most of the results are based on a
well-posedness assumption which is easy to check for many
problems. Even though this assumption is well suited for this
work, the work could possible be brought closer to other
characterizations of neutral systems by finding a connection
to the concept of strong stability.

In the examples section we show how analytical expres-
sions can be found for some problems and that for systems
of larger dimensions a numerical scheme can be applied to
compute the critical curves.
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