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Abstract

If iω ∈ iR is an eigenvalue of a time-delay system for the delay τ0 then iω is also an eigenvalue for the delays τk := τ0 +k2π/ω,
for any k ∈ Z. We investigate the sensitivity, periodicity and invariance properties of the root iω for the case that iω is a double
eigenvalue for some τk. It turns out that under natural conditions (the condition that the root exhibits the completely regular
splitting property if the delay is perturbed), the presence of a double imaginary root iω for some delay τ0 implies that iω is a
simple root for the other delays τk, k 6= 0. Moreover, we show how to characterize the root locus around iω. The entire local
root locus picture can be completely determined from the square root splitting of the double root. We separate the general
picture into two cases depending on the sign of a single scalar constant; the imaginary part of the first coefficient in the square
root expansion of the double eigenvalue.
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1 Introduction

Consider functions f : C×R→ C of the form f(s, τ) =
p(s, e−sτ ) where p is a bivariate function p : C2 →
C, (x, y) 7→ p(x, y). We will also assume that p is suf-
ficiently smooth and independent of τ , i.e., the depen-
dence of f on τ is only via the exponential e−sτ . The
roots of this type of function f are very important in
the analysis of stability of time-delay systems, which is
the context of this paper. For instance, the characteris-
tic equation of the time-delay system with a single delay
and constant coefficients,

ẋ(t) = A0x(t) +A1x(t− τ), A0, A1 ∈ Cn×n, (1)

is
0 = det

(
−sI +A0 +A1e

−τs) = p(s, e−τs). (2)

See [9,8] for results on the stability of linear time-delay
systems. Note that the characteristic equation of many
different generalizations of (1) also correspond to the
type f(s, τ) = p(s, e−sτ ). In particular, the characteris-
tic equation of neutral time-delay systems and systems
with multiple commensurate delays can be written as

? Parts of the results of this paper were presented at the
8th IFAC Workshop on Time-Delay Systems, Sinaia. Corre-
sponding author E. Jarlebring.

f(s, τ) = p(s, e−sτ ), as well as the characteristic equa-
tion of time-delay systems with multiple delays if per-
turbations in only one of the delays are considered.

When analyzing the stability of (1), the delays τ for
which (2) has a purely imaginary root s = iω ∈ iR play a
crucial role. In this work, these delays will be referred to
as critical delays. They are important, since the critical
delays and the sensitivity of the imaginary roots, i.e.,
the derivative with respect to the delay, can be used to
produce a complete stability picture by keeping track of
the number of roots entering and leaving the right half-
plane. This type of reasoning is used in several works
in the literature, e.g., [2,10], and many more. This is
often combined with a theory crossing direction, as in
e.g. [3,14].

It is widely known, and often exploited, that the pres-
ence of an imaginary root at iω is periodic in the delay
parameter with periodicity 2π

ω .

As a first result we will see that in general the same type
of periodicity property does not hold for the presence of
a double imaginary root. That is, if iω is a double root
for some delay τ0 then for τk = τ0 + 2πk

ω , k 6= 0, iω is
generally not a double root. This somewhat unexpected
result motivates our study of properties of double imagi-
nary roots and sequences of critical delays {τk} for which
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the time-delay system has a double imaginary root for
one of the delays.

Stability conditions based on reasoning with imaginary
roots are often some form of elimination of either the ex-
ponential e−τs or the scalar s in the characteristic equa-
tion. The resulting condition is typically expressed in
terms of roots of a polynomial (as in e.g., [13,10,11]) or in
terms of the eigenvalues of a generalized eigenvalue prob-
lem (as in e.g., [7,1,5,6]). See also [8, Section 4.3.2] and
[9, Section 4.4] for more references to delay-dependent
stability results expressed in terms of imaginary eigen-
values. These standard results on imaginary eigenvalues
do not reveal properties of repeated imaginary eigenval-
ues.

Some results of high-order analysis are given in [4] in-
cluding results for multiple imaginary roots [4, Theo-
rem 4]. The focus in this paper is on invariance properties
of the imaginary root for the other critical delays when
there is a repeated imaginary root. Invariance properties
are not treated in [4]. A higher order analysis is adapted
for the direct method in [12], where several involved cases
are discussed. The invariance properties for double roots
are however not treated.

Throughout this work we will implicitly assume that
iω 6= 0 since otherwise, zero is a root for any delay, and
the periodicity of the critical delays is not defined.

2 Main results

2.1 Root-path derivatives

Suppose that for τ = τ0 the characteristic equation (2)
has a double root at iω. The following theorem states
iω is a simple root for all other delays in the sequence
T = {τ0+ 2πk

ω }k under the condition that fτ (iω, τ0) 6= 0.
Since the roots are simple, we can compute its sensitiv-
ity. It turns out that the sensitivity is purely imaginary
telling us that the root path close to the iω is vertical,
and at one point, s(τ) = iω. The behavior of the root
path w.r.t. the imaginary axis can then be determined
from a second order analysis.

Theorem 1 Let T = {τk}k∈Z := {τ0+k 2π
|ω|}k∈Z be a set

of delays for which iω ∈ iR is an eigenvalue. Let s(τ) be a
continuous eigenvalue path defined in a neighborhood of
τk for some k ∈ Z\{0}, i.e., s(τk) = iω. Suppose that for
the delay τ0 ∈ T , iω is a double (not triple) eigenvalue
and fτ (iω, τ0) 6= 0. Then, iω is a simple eigenvalue for
the delay τk. Moreover,

s′(τk) = −iω|ω|
2πk

(3)

and

s′′(τk) = 2i
ω3

(2πk)2
+ i

ω5|ω|
(2πk)3

fss(iω, τ0)
fτ (iω, τ0)

. (4)

PROOF. The characteristic equation of a time-delay
system can be written as f(s, τ) = p(s, e−sτ ) where p :
(x, y) 7→ p(x, y) is a bivariate function. It follows that

fs(iω, τk) = fs(iω, τ0)︸ ︷︷ ︸
=0

+
fτ (iω, τk)

iω
(τk − τ0)

and s = iω is simple for τ = τk and k 6= 0. A root path
τ 7→ s(τ) satisfies

f(s(τ), τ) = 0.

At s = sk for k 6= 0 we can differentiate this expression
twice with respect to τ , yielding

fs(s, τ)s′ + fτ (s, τ) = 0,

[fss(s, τ)s′ + fsτ (s, τ)] s′ + fsτ (s, τ)s′

+fs(s, τ)s′′ + fττ (s, τ) = 0.

Hence,

s′(τ) = − fτ (s,τ)fs(s,τ)
,

s′′(τ) = − fττ (s,τ)−fss(s,τ)s
′2−2fτs(s,τ)s

′

fs(s,τ)
.

(5)

We will now interpret the substitution (s, τ) 7→
(s, e−τs) = (x, y) as a coordinate transformation. Let
A(s, τ) denote the matrix transforming the deriva-
tives, i.e., Df (s, τ) = A(s, τ)Dp(s, e−τs) with Df :=
(f, fs, fτ , fss, fsτ , fττ )T ,Dp := (p, px, py, pxx, pxy, pyy)T .
The transformationA(iω, τk) can be explicitly computed
from f(s, τ) = p(s, e−sτ ). Note that if τk ∈ T then in the
p-coordinate system, Dp(iω, e−iωτk) = Dp(iω, e−iωτ0).
Hence,

Df (iω, τk) = A(iω, τk)A(iω, τ0)−1Df (iω, τ0). (6)

The relations (3) and (4) follow from several algebraic
manipulations of (6) and insertion into (5). The details
of the algebraic manipulations are omitted due to space
limitations.

Corollary 2 Under the same conditions as in Proposi-
tion 1, let s(τ) be the continuous path close to τk. Then,
the relation s(τ) = a(τ)+ ib(τ) implicitly defines a func-
tion a(b), where

a(b) = −ω|ω|
4πk

(
Im

fss(iω, τ0)
fτ (iω, τ0)

)
(b− ω)2 +O((b− ω)3).

(7)

PROOF. This results follows from (3)-(4) and the Tay-
lor expansion of the root

s(τ) = iω+s′(τk)(τ−τk)+
1
2
s′′(τk)(τ−τk)2+O(τ−τk)3.
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Remark 3 If Im (fss(s0, τ0)/fτ (s0, τ0)) = 0 we have a
degenerate case. In this case, a second order analysis is
inconclusive and does not reveal if roots enter or leave the
right half-plane. An analysis using higher order deriva-
tives would be necessary to analyze that situation.

2.2 The double eigenvalue

In the previous section we saw that if k 6= 0 then iω is
a simple eigenvalue and we found formulae for the first
terms in the Taylor expansion. When k = 0, we have
a square root splitting for the double eigenvalue, in the
sense that the derivative of the root path at τ0, i.e., s′(τ0),
is undefined, but the function s(τ) can be expanded in a
Puiseux series around τ0 where the first term is a square
root. The following result gives a formula for the first
coefficient in this expansion, and is a specialization of [4,
Theorem 4].

Theorem 4 Under the same conditions as in Proposi-
tion 1, let s(τ) be a path for which s(τ0) = iω is the double
eigenvalue. Then,

s(τ) = iω ±
(
−2

fτ (iω, τ0)
fss(iω, τ0)

(τ − τ0)
)1/2

+ o(
√
τ − τ0).

2.3 Combination of results

Note that expressions for the coefficients of the expan-
sions in the square root splitting (Theorem 4) and the ex-
pression (7) in Corollary 2) both contain the expression
fss(iω, τ0)/fτ (iω, τ0). Hence, the local root behaviour of
all τk ∈ T can be determined by the function f (and
the derivatives) at τ = τ0. This allows us to categorize
the local behaviour of the roots into two separate cases.
Without loss of generality we assume that ω > 0 for this
categorization.

1) If Im fss(iω, τ0)/fτ (iω, τ0) > 0, then for critical de-
lays τk ∈ T greater than τ0 (positive k) the root path
touches the imaginary axis from above and in the left
half-plane. For delays τk ∈ T less than τ0 (negative
k) the imaginary axis is touched from the left and up-
ward.
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2) Analogously, if Im fss(iω, τ0)/fτ (iω, τ0) < 0, the root
path for critical delays τk ∈ T less than τ0 touch the
imaginary axis in the left half-plane and for delays
greater than τ0 touch the imaginary axis from above
and in the right half-plane.
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3 Example

Let

A0 =

(
0 1

−9π2 2

)
and A1 =

(
0 0

0 2

)
.

For this example s = iω = 3πi is a double (not triple)
root for τ = τ0 since f(3πi, 1) = 0 and fs(3πi, 1) = 0 but
fss(3πi, 1) = −2+6πi 6= 0. Moreover, fτ (3πi, 1) = 18π2.
Note that

Im
fss(3πi, 1)
fτ (3πi, 1)

= Im
−2 + 6πi

18π2
=

1
3π

> 0.

The first case in the behavior described in Section 2.3
can be observed in Figure 1. We see that for k = −1,
i.e., τ = 1/3 (which is the only negative k for which
the delay is positive) the root path is in the right half
plane whereas for k > 0 all root paths lie in the left half-
plane. In Figure 1 we have also plotted the truncated
expansions for the roots touching the imaginary axis by
using Corollary 2 and Theorem 4.
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Fig. 1. The root locus close to the imaginary eigenvalue
s = 3πi for k = −1, 0, 1, . . . and the expansions correspond-
ing to Theorem 4 and Corollary 2. This corresponds to case 1.
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Fig. 2. The real part vs τ . The touching points to the right
of the τ0 = 1 are from below. This corresponds to case 1.

In Figure 2 we see that the parabola corresponding to
the critical delay to the left of the double eigenvalue is
from above, i.e., the path lies in the right half-plane.
Conversely, all the critical delays (touching points) to
the right of the double eigenvalue are touching Re s = 0
from below, which means that they lie in the left half-
plane.

The above system shows the first case. The second situ-
ation occurs for the system

A0 =


0 1 0

0 0 1

−a3 −a2 −a1

 , A1 =


0 0 0

0 0 0

−b3 −b2 −b1

 ,

where

a1 =
2
5

(65π + 32)
8 + 5π

, a2 =
9π2(13 + 5π)

8 + 5π
,

a3 =
324
5
π2(5π + 4)

8 + 5π
, b1 =

260π + 128 + 225π2

10(8 + 5π)
,

b2 =
45π2

10(8 + 5π)
and b3 =

81π2(40π + 32 + 25π2)
10(8 + 5π)

.

This system is constructed such that 0 = f(3πi, 1) =
fs(3πi, 1) and Im fss(3πi, 1)/fτ (3πi, 1) ≈ −0.0667 < 0.

4 Conclusions

It is well known that for a simple imaginary roots, the
root tendency, i.e., the sign of the derivative of the root
path sign(Re s′(τ)), is independent of k for τk ∈ T =
{τ0 + 2πk

ω }k. τk ∈ T determines the root tendency for all
τ ∈ T . In this work we have considered the case where
the time-delay system has a double imaginary root for
τ0 ∈ T , and shown that the multiplicity is not the same
for all τ ∈ T . Thus, the multiplicity is not invariant with

respect to k. However, a consequence of the results in
this paper is that an invariance property similar to the
case of simple roots still holds: the crossing behavior of
all τ ∈ T is completely determined from the crossing
directions at τ = τ0.

More precisely, we demonstrate that the local behavior
of the root path s(τ) around any associated critical delay
τ ∈ T can be completely characterized by the sign of
Im fss(iω, τ0)/fτ (iω, τ0). In the technical derivation we
have used that the coefficients in the Taylor expansion
of s(τ) around τ = τk ∈ T , can be expressed in terms of
the first coefficient of the Puiseux series around τ = τ0.
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