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Abstract. Double eigenvalues are not generic for matrices without any particular structure.
A matrix depending linearly on a scalar parameter, A + µB, will however generically have double
eigenvalues for some values of the parameter µ. In this paper we consider the problem of finding
those values. More precisely, we construct a method to accurately find all scalar pairs (λ, µ) such
that A+ µB has a double eigenvalue λ, where A and B are given arbitrary complex matrices. The
general idea of the globally convergent method is that if µ is close to a solution then A+µB has two
eigenvalues which are close to each other. We fix the relative distance between these two eigenvalues
and construct a method to solve and study it by observing that the resulting problem can be stated as
a two-parameter eigenvalue problem, which is already studied in the literature. The method, which
we call the method of fixed relative distance (MFRD), involves solving a two-parameter eigenvalue
problem which returns approximations of all solutions. It is unfortunately not possible to get full
accuracy with MFRD. In order to compute solutions with full accuracy, we present an iterative
method which returns a very accurate solution, for a sufficiently good starting value. The approach
is illustrated with one academic example and one application to a simple problem in computational
quantum mechanics.

1. Introduction. For two arbitrary, given matrices A,B ∈ Cn×n, we will look
for pairs (λ, µ) ∈ C2 such that the matrix A+µB has a double eigenvalue at λ. More
precisely, we will consider this problem and present a globally convergent, accurate
method for all the solution pairs (λ, µ). The set of pairs (λ, µ) for which λ is an
eigenvalue of A+ µB of multiplicity two or greater will be denoted by B(A,B), i.e.,

B(A,B) := {(λ, µ) ∈ C2 : λ is a non-simple eigenvalue of A+ µB}.

In the same way that double eigenvalues for matrices without a particular structure are
not generic, we also have that an element of B(A,B) corresponding to an eigenvalue
of multiplicity greater than two is not generic. That is, λ is generically an eigenvalue
of A + µB with multiplicity two if (λ, µ) ∈ B(A,B). We will see (in Section 2) that
the degenerate situation corresponds to a badly conditioned problem and there is
little hope to construct a very accurate algorithm. We will for this reason focus the
study on the generic situation where λ is a double eigenvalue of A+µB, although the
algorithm is applicable to the degenerate case.

Our study is in a sense a simultaneous numerical characterization of the perturba-
tion of several double eigenvalues for a structured perturbation. Repeated eigenvalues
have received a lot of attention in the field of perturbation theory. See, e.g., the stan-
dard works [16, 5, 13]. Despite the fact that the research field related to repeated
eigenvalues is quite mature, there appears to be no globally convergent numerical
method for the problem of finding all elements of B(A,B).

There exist, for instance, the results on generalizations of condition numbers for
repeated eigenvalues [17, 22, 28, 15, 7, 6], which provide a theory for small perturba-
tions of the repeated eigenvalue. Note that these results do not provide information
about all the elements of B(A,B). In our problem formulation, µ is generally not
small, and the set B(A,B) is not well approximated by an asymptotic characteriza-
tion for µ close to zero.
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There is also recent research on the Wilkinson distance [2, 26, 9, 18, 19, 20],
which is defined as the size of the smallest perturbation E such that A + E has a
multiple eigenvalue. Suppose the direction of the perturbation is known, i.e., E = µB,
where B is a known matrix and µ is unknown. It is easy to compute this structured
Wilkinson distance with a method which computes B(A,B) by choosing the smallest
µ in B(A,B). Note, however, that with the methods in this paper we can compute
all elements of B(A,B) and not only the smallest µ. Moreover, although there are
estimates and numerical methods for the Wilkinson distance (see e.g. the references
in [2]), they do not seem to be easily restricted or extended to this structured case.
In particular, there exist local iterative methods such as [18]. The method in [18] is
for an unstructured problem and designed for repeated eigenvalues with an a priori
known Jordan structure. There is also a method in [19] which is a min-max formula
for the Wilkinson distance. Note that the optimization problem is possibly difficult
to solve in a reliable way. We present a method which is globally convergent and only
involves linear algebra operations.

For general matrices, double eigenvalues correspond to a degenerate case and the
study of double eigenvalues has traditionally been somewhat theoretically oriented.
However, the results of this paper were initiated and motivated by an application. In
quantum mechanical perturbation theory, the radius of convergence of a perturbation
series in powers of µ for eigenvalues of A + µB are determined by certain points in
B(A,B) [27]. These points are of course not known for realistic problems, and a
method to actually estimate the radius of convergence for different perturbations is
of great utility. The points where there is a repeated eigenvalue are also used in the
analysis of root loci in control theory. For other applications of repeated eigenvalues
see the references in [18].

In order to outline the contents of the paper we first briefly introduce some ter-
minology. Perturbations of double eigenvalues are considerably different from the
theory of simple eigenvalues. For instance, the eigenvalues typically do not behave
in an analytic way. Throughout this paper we will make use of the fact that λ as a
function of µ is an algebraic function and can be expanded in a Puiseux series [16,
Chapter II, Section 1.2.]

λ(µ+ ∆) = λ(µ) + c∆α + o(∆α), (1.1)

where α is a rational number and µ such that λ(µ) is a repeated eigenvalue. For
double eigenvalues we have α ∈ 1

2Z and c can be chosen non-zero. If α is not an
integer, then (1.1) characterizes a branch point of the eigenvalue map λ(µ).

Before presenting the numerical schemes, we prove some properties of the prob-
lem (in Section 2). It turns out that the problem is numerically well posed in the
generic case. We motivate this by proving preservation of existence of solutions for
infinitesimal perturbations as well as continuity and conditioning properties. It turns
out that if λ is an eigenvalue of A+µB with multiplicity higher than two, the problem
is not well conditioned. Although the theory only supports the generic case that λ is
a double eigenvalue, the construction of the methods is, however, such that they are
expected to work also in these situations.

It follows from the continuity of eigenvalue paths that if a matrix is a sufficiently
small perturbation of a matrix having a double eigenvalue, it will have two eigenvalues
close to each other. In the method presented in Section 3, we will use this property to
construct a globally convergent method, based on fixing the relative distance between
two eigenvalues to a small value. This turns out to be equivalent to a so-called two-
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parameter eigenvalue problem and can be solved with methods in the literature. We
call it the method of fixed relative distance (MFRD).

The construction of the method in Section 3 (MFRD) is such that it will not
yield an exact solution; not even in exact arithmetic. Hence, in practice, the solution
will not be of full precision. Since we wish to have an accurate solution, an iterative
Newton type method for elements of B(A,B) is presented (in Section 4). The starting
value of the iterative method is taken as the result of MFRD. The combined algorithm
is globally convergent and produces accurate solutions. We illustrate the methods and
theory with some examples in Section 5.

2. Properties of the problem. In later sections we will construct numerical
algorithms for B(A,B). One can only expect numerically relevant results if the prob-
lem is posed in a numerically reasonable way. For this reason, we will in this section
demonstrate some important properties of B(A,B). Without these, one could not
expect to reliably solve the problem numerically. We study

• the cardinality of B(A,B);
• the continuous preservation of elements under perturbation; and
• the conditioning of the problem.

The conclusion of the study is that the elements of B(A,B) are generically finite, that
the elements are always preserved under sufficiently small perturbations and that the
sensitivity is generically finite.

In the technical reasoning we will make use of the property that if (λ, µ) ∈ B(A,B)
then µ is explicitly given as the root of a polynomial. To this end let

f(λ, µ; A,B) := det(λI −A− µB). (2.1)

Since λ is a double eigenvalue, a pair (λ, µ) ∈ B(A,B) can now equivalently be
characterized as

f(λ, µ; A,B) = 0 (2.2a)

fλ(λ, µ; A,B) = 0, (2.2b)

where fλ is the short notation for ∂f
∂λ (λ, µ; A,B). Let µ 7→ M1(µ; A,B) ∈ Cn×n

respectively µ 7→ M2(µ; A,B) ∈ C(n−1)×(n−1) represent the companion matrices
corresponding to the polynomial f(·, µ; A,B), respectively fλ(·, µ; A,B). Then we
can write (2.2) as

λ ∈ σ(M1(µ; A,B)) (2.3a)

−λ ∈ σ(−M2(µ; A,B)), (2.3b)

which allows us to eliminate one of the variables, say λ.
Proposition 2.1 (Explicit form). Let µ∗ ∈ C. The following assertions are

equivalent.
1. (λ, µ∗) ∈ B(A,B) for some λ ∈ C.
2. µ∗ is a solution of the polynomial eigenvalue problem

det (M1 (µ; A,B)⊕ (−M2 (µ; A,B))) = 0. (2.4)

Here, we have as usual (in e.g. [13]) denoted the Kronecker sum by ⊕. The
Kronecker sum is defined as A ⊕ B = A ⊗ I1 + I2 ⊗ B, where I1, I2 are the identity
matrices of appropriate size. We have used the property of the Kronecker sum that
any eigenvalue of A⊕B is the sum of an eigenvalue of A and an eigenvalue of B.
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Remark 2.2 (Numerical stability of the explicit form). Proposition 2.1 directly
gives rise to a conceptual algorithm for the computation of B(A,B), which consists of
first solving (2.4) for µ, and, next, computing the corresponding values of λ from (2.3).
From a numerical point of view this approach is to be avoided as it requires the explicit
computation of the scalar characteristic equation, i.e., the symbolic computation of the
determinant (in (2.1)) and the derivative.

2.1. Cardinality. It is not reasonable to expect that a numerical algorithm can
find all solutions of a problem if the problem has an infinite number of solutions.
Fortunately, the generic situation is that B(A,B) only contains a finite number of
elements.

Proposition 2.3 (Cardinality). The following classification holds.

1. If the nondegeneracy condition

det(M1(µ; A,B)⊕ (−M2(µ; A,B))) 6≡ 0

is satisfied, then the set B(A,B) consists of a finite number of isolated pairs
(λ, µ) in C× C.

2. Conversely, if

det(M1(µ; A,B)⊕ (−M2(µ; A,B))) ≡ 0, (2.5)

then for all µ ∈ C there exists a λ ∈ C such that (λ, µ) ∈ B(A,B).

In this work we will focus on the first case since it is generic and the second case
can be easily handled in practice by computing the eigenvalues of A+ µB for several
µ.

2.2. Continuity. A numerical algorithm will always introduce rounding errors.
If the output is not continuous with respect to the input or (more critically) solutions
appear or disappear under sufficiently small perturbations, there is little hope to
construct a robust numerical scheme. The problem we are considering fulfills this
necessary condition, as the set B(A,B) is continuous with respect to changes in A
and B in the following sense.

Proposition 2.4 (Continuity). Let (λ∗, µ∗) be an isolated pair of B(A,B). Then
there exists a number γ̂ > 0 such that for all γ ∈ (0, γ̂) there is a number δ > 0 such
that B(A+ ∆A,B + ∆B) contains at least one pair (λ, µ) satisfying |λ− λ∗| < γ and
|µ− µ∗| < γ, whenever ‖∆A‖ < δ and ‖∆B‖ < δ.

Proof. The proof follows from the continuous dependence of the solutions of (2.4),
a one-parameter polynomial eigenvalue problem, with respect to A and B, combined
with the continuous dependence of the zeros of f(·, µ; A,B) with respect to A,B and
µ.

2.3. Conditioning. Continuity with respect to changes in the input is not suf-
ficient for the problem to be numerically well posed. If the output is highly sensitive
to perturbations in the input, the problem is also considered very difficult from a nu-
merical point of view. This comes from the fact that the first operation in a numerical
algorithm will introduce rounding errors. In the following we present a characteriza-
tion of the case that such ill-conditioning, i.e., high sensitivity with respect to input,
occurs.

Let (λ∗, µ∗) be an isolated pair of B(A,B) and consider the corresponding solu-
tions of B(A+ εEa, B + εEb), where ε > 0 is a small perturbation parameter and Ea
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and Eb are n-by-n arbitrary complex matrices. The characterization (2.2) brings us
to the equations

f(λ∗ + ∆λ, µ∗ + ∆µ; A+ εEa, B + εEb) = 0 (2.6a)

fλ(λ∗ + ∆λ, µ∗ + ∆µ; A+ εEa, B + εEb) = 0, (2.6b)

where we made the substitutions λ = λ∗ + ∆λ and µ = µ∗ + ∆µ. From the implicit
function theorem, we conclude that if the Jacobian matrix

C(λ∗, µ∗) :=

[
0 fµ(λ∗, µ∗; A,B)

fλλ(λ∗, µ∗; A,B) fλµ(λ∗, µ∗; A,B)

]
(2.7)

is invertible, then (2.6) locally defines a unique function ε 7→ (∆λ(ε),∆µ(ε)) that can
be expanded as

[
∆λ
∆µ

]
= −C(λ∗, µ∗)

−1
[

∂
∂εf(λ∗, µ∗; A+ εEa, B + εEb)

∣∣
ε=0

∂
∂εfλ(λ∗, µ∗; A+ εEa, B + εEb)

∣∣
ε=0

]
ε+O(ε2). (2.8)

We note that the matrix C(λ∗, µ∗) is invertible if and only if

fλλ(λ∗, µ∗)fµ(λ∗, µ∗) 6= 0. (2.9)

This condition corresponds to the generic situation where λ∗ is a double, non-semisimple
eigenvalue of A+µ∗B that satisfies the completely regular splitting property. The local
behavior of a perturbation is said to have a completely regular splitting if the order
of the root in the first non-vanishing term in the Puiseux series of the eigenvalue
coincides with the partial multiplicities in the Jordan structure. See, e.g., [14] and
the references therein for literature on completely regular splitting. Here we will only
use the fact that complete regular splitting is the generic case. We summarize it as
follows.

Proposition 2.5. Let (λ∗, µ∗) be an isolated pair of B(A,B).
1. If (2.9) holds, then the sensitivity of the pair (λ∗, µ∗) is determined by

‖C(λ∗, µ∗)
−1‖,

where C(λ∗, µ∗) is defined by (2.7). Furthermore, the expansion (2.8) is ap-
plicable.

2. The pair (λ∗, µ∗) is ill conditioned if fλλ(λ∗, µ∗) = 0, i.e., the eigenvalue λ∗
of A+ µ∗B has multiplicity larger than two.

3. The pair (λ∗, µ∗) is ill conditioned if fµ(λ∗, µ∗) = 0. This includes the case
where λ∗ is a double semisimple eigenvalue of A+ µ∗B.

3. A method of fixed relative distance. Consider for the moment a fixed
scalar µ ∈ C. Suppose λ ∈ C is a complex scalar fulfilling two conditions; it is an
eigenvalue of A+ µB, i.e.,

λ ∈ σ(A+ µB) (3.1)

and (1 + ε)λ is also an eigenvalue of A+ µB, i.e.,

(1 + ε)λ ∈ σ(A+ µB), (3.2)
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for a fixed non-zero complex scalar ε. The fundamental idea of the method we will
present in this section is that the solutions of (3.1) and (3.2), where λ and µ are
the unknowns, approximate the elements of B(A,B) for sufficiently small ε. We will
denote the set of all solutions of (3.1) and (3.2) by D(A,B, ε), i.e.,

D(A,B, ε) := { (λ, µ) ∈ C2 : (3.1) and (3.2) hold }.

Note that if (λ, µ) ∈ D(A,B, ε), then the matrix A+µB has two eigenvalues with rela-
tive distance ε. The conceptual method to estimate B(A,B) by computing D(A,B, ε)
for sufficiently small ε will be referred to as the method of fixed relative distance
(MFRD).

We will first see that D(A,B, ε) can be computed by solving a generalized eigen-
value problem and then we will study the elements of D(A,B, ε) as a function of ε.
In Section 3.1 we show that the finite limits (as ε→ 0) correspond to the elements of
B(A,B). We study the case where an element is unbounded as ε→ 0 in Section 3.2.
The error of the approximation is characterized in Section 3.3 and used to find a
reasonable choice of ε in Section 3.4.

In Proposition 2.1 we saw that if (λ, µ) ∈ B(A,B), then µ was a root of a poly-
nomial. The direct method to compute the roots of this polynomial is not attractive
from a the point of view of numerical stability. This is resolved with the regularized
formulation of D(A,B, ε). We will now see that determining D(A,B, ε) is a problem of
the type called two-parameter eigenvalue problems, which are solvable in a numerically
stable way. The relations (3.1) and (3.2) can be reformulated as follows.

Problem 3.1 (The associated two-parameter eigenvalue problem). Given A,B ∈
Cn×n, ε ∈ C, find (λ, µ) ∈ C2 and a pair of non-trivial vectors (u, v) ∈ Cn×2 such
that

Au = (λI − µB)u,

Av = (λ(1 + ε)I − µB)v.

There is a general theory for the two-parameter eigenvalue problem available in the
classical works [4, 3]. There are also more recent results which are more numerically
oriented [12]. Some results are focused on the singular problem [24] and some are for
different types of generalizations [23]. We also note that multiparameter eigenvalue
problems have been used for (relative) placement of eigenvalues [8].

There are several ways to numerically solve two-parameter eigenvalue problems,
e.g., the Jacobi-Davidson type method in [11]. For further methods, see the refer-
ences in [11]. The most common way to solve and analyze two-parameter eigenvalue

problems is by means of three matrices ∆0,∆1,∆2 ∈ Cn2×n2

, called the matrix de-
terminants. In the case of Problem 3.1, the matrix determinants are,

∆0(ε) = −I ⊗B + (1 + ε)B ⊗ I = ((1 + ε)B)⊕ (−B), (3.3)

∆1 = −A⊗B +B ⊗A, (3.4)

∆2(ε) = I ⊗A− (1 + ε)A⊗ I = (−(1 + ε)A)⊕A. (3.5)

One reason why the matrix determinants are important in the context of two-parameter
eigenvalue problems, stems from the fact that the two-parameter eigenvalue problem is
(under sufficient non-singularity conditions) equivalent to the solutions of two coupled
generalized eigenvalue problems. In this case

λ(ε)∆0(ε)z = ∆1z (3.6)
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and

µ(ε)∆0(ε)z = ∆2(ε)z, (3.7)

where z is a decomposable tensor z = u ⊗ v. Although not always very efficient,
we will solve the relative distance problem by solving (3.6) and (3.7). It follows
from the generalized eigenvalue problems (3.6) and (3.7) that the set D(A,B, ε) is
(generically) a union of a finite number of functions in ε. For this reason we have
denoted the solutions by λ(ε) and µ(ε) when we wish to stress the dependence on ε.
Note that since all eigenvalue paths are continuous (but not necessarily differentiable),
the elements of D(A,B, ε) are also continuous with respect to ε.

A two-parameter eigenvalue problem for which ∆0(ε) is non-singular is completely
characterized by the eigenvalues of ∆0(ε)−1∆1 and ∆0(ε)−1∆2(ε), and hence some-
what easier from a theoretical and numerical perspective. The condition that ∆0(ε)
is singular is one way to define singularity of the two-parameter eigenvalue (also used
e.g. in [24]). The two-parameter eigenvalue problem in Problem 3.1 is in this sense
indeed generically non-singular for sufficiently small non-zero ε ∈ C\{0}, as can be
seen in the following lemma.

Lemma 3.2 (Non-singularity). The two-parameter eigenvalue problem (Prob-
lem 3.1) is singular, i.e., det (∆0(ε)) = 0, iff there is γ ∈ σ(B) such that γ(1 + ε) ∈
σ(B).

Remark 3.3 (The non-zero regularization parameter ε). If ε is set to zero, it
is easy to see from Lemma 3.2 that the two-parameter eigenvalue problem is singular.
Although there are results on singular two-parameter eigenvalue problems [24] such
an approach seems impossible for this problem. Note that if ε = 0, then the two
eigenvalue problems (3.1) and (3.2) are identical and the solution corresponds to the
eigenvalue curves λ(µ) ∈ σ(A+ µB). The points on these curves do, generically, not
correspond to double eigenvalues.

The two-parameter eigenvalue problem for ε = 0 is singular and the corresponding
problem for D(A,B, ε) is not singular. Hence, the problem associated with MFRD is
in a sense a regularized problem and we will call the parameter ε a regularization
parameter.

In the remaining parts of this section, we wish to show properties of D(A,B, ε)
and in particular in what sense D(A,B, ε) approximates B(A,B).

3.1. Consistency. The first property which we will illustrate in a remark and
a theorem is that the method is consistent, in the sense that (generically) all finite
limits of D(A,B, ε) as ε → 0 belong to B(A,B). Moreover, this limit is independent
of the angle of ε.

Remark 3.4 (The angle of ε). Since ε is the relative distance, fixing the complex
angle of ε fixes the angle of the separation of the eigenvalues λ(ε) and (1 + ε)λ(ε).
We will now see that the angle of ε will asymptotically only influence the angle of the
approximation error. The asymptotic effect of changing ϕ where ε = |ε|eiϕ can be
roughly motivated as follows. Consider the first terms in a completely regular square
root splitting, λ(µ(ε)) = λ∗ ±

√
µ∗ − µ(ε). The condition that the relative distance

is ε implies that µ∗ − µ(ε) = cε2 = c|ε|2ei2ϕ. This in turn implies that the error
of the approximation is given by λ(µ(ε)) − λ∗ = ±

√
µ∗ − µ(ε) = ±c1/2|ε|e±iϕ. Now

note that ϕ, i.e., the angle of the relative distance ε, only changes the angle of the
error and not the magnitude. The phenomenon is illustrated in Figure 3.1. The same
reasoning holds for an arbitrary splitting of the eigenvalue.
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Im
λ

Re λ

λ∗

λ1(ϕ)

λ2(ϕ)

(a) λ(ε) runs 1
2

lap

Im
µ

Re µ

µ∗

µ(|ε|)

µ = µ
(
|ε|eiϕ

)

(b) µ(ε) runs one lap

Figure 3.1. The approximations rotate around the solutions λ∗ and µ∗ as the angle of ε
is changed. The plots show the curves for ϕ ∈ [0, π]. We have denoted λ1(ϕ) := λ

(
|ε|eiϕ

)
and

λ2(ϕ) := λ1(ϕ)(1+ |ε|eiϕ). The dashed line corresponds to ϕ = 0. In subfigure (a), the same dashed
line (asymptotically) corresponds to the line to the origin.

In the following theorem we formalize the argument above and see that the set of
finite limits of D(A,B, ε) as ε→ 0 is generically equal to the set B(A,B).

Theorem 3.5 (Consistency). Consider the pair A,B ∈ Cn×n. The sets D(A,B, ε)
and B(A,B) are related by the following statements:

i) If B is non-singular, the set D(A,B, ε) is the union of n2 pair of functions
(λ(ε), µ(ε)) for sufficiently small ε 6= 0.

ii) If (λ(ε), µ(ε)) ∈ D(A,B, ε) and (λ(ε), µ(ε)) → (λ∗, µ∗) ∈ C2 as |ε| → 0 and
λ∗ 6= 0 then (λ∗, µ∗) ∈ B(A,B).

iii) If (λ∗, µ∗) ∈ B(A,B) is an isolated pair and λ∗ 6= 0 then there exists a path
ε 7→ (λ(ε), µ(ε)) such that (λ(ε), µ(ε)) ∈ D(A,B, ε) for every ε > 0 in a
neighborhood of ε = 0 and such that (λ(ε), µ(ε))→ (λ∗, µ∗) as ε→ 0.

Proof. The paths λ(ε) and µ(ε) are solutions of the generalized eigenvalue prob-
lems corresponding to the pencils ∆1−λ(ε)∆0(ε) and ∆2(ε)−µ(ε)∆0(ε). The eigen-
values of a matrix depending continuously on a parameter is a collection of paths,
where the number of paths equals the dimension of the matrix, here n2 (see e.g. [10,
Corollary 4.2.4]). The generalized eigenvalue problems can be rewritten as standard
eigenvalue problems if ∆0(ε) is non-singular. Hence, to show i) it is sufficient to show
that ∆0(ε) is non-singular for sufficiently small ε.

It follows from the sum-property of Kronecker sums that the eigenvalues of ∆0(ε)
are (1 + ε)bi − bj for i, j = 1, . . . n where bi are the eigenvalues of B. Since bi 6= 0, all
eigenvalues of ∆0(ε) are non-zero for sufficiently small ε 6= 0. This proves i).

Let f(λ, µ) = det(−λI + A + µB). In order to show ii) we will show that
fλ(λ∗, µ∗) = 0. First note that

f(λ(ε), µ(ε)) = f(λ(ε)(1 + ε), µ(ε)) = 0.

Hence, by Taylor expansion,

0 = f(λ(ε)(1 + ε), µ(ε)) = f(λ(ε), µ(ε)) + λ(ε)εfλ(λ(ε), µ(ε)) +O(λ(ε)ε)2.
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Since λ(ε)→ λ∗ ∈ C\{0} when ε→ 0, we have that fλ(λ∗, µ∗) = 0.
In order to show part iii), let λ0(r, θ) and λ1(r, θ) be two eigenvalues of A+ (µ∗+

reiθ)B with λi(0, 0) = λ∗. We have an expansion

λ1(r, θ) = λ∗ + Crαeiθα + o(rα), (3.8)

where C 6= 0 and α > 0, and a similar expansion for λ0(r, θ). Since the double eigen-
value is isolated, the difference does not vanish identically, and we have an expansion

λ1(r, θ)− λ0(r, θ) = Drβeiθβ + o(rβ), (3.9)

for some D 6= 0. (Note that λi can be chosen as different branches from one expansion
or from different Puiseux expansions.)

We first construct a function θ(r) such that the relative distance function g(r, θ(r))
is real,

g(r, θ(r)) :=
λ1(r, θ(r))− λ0(r, θ(r))

λ0(r, θ(r))
∈ R.

The angle of the relative distance is

arg(g(r, θ)) = arg(D) + θβ + o(rβ)− arg(λ∗) + o(rα). (3.10)

If arg(g(r, θ)) = 0, then g(r, θ) ∈ R. We use the implicit function theorem on this
condition and ∂

∂θ (arg(g(r, θ))r=0 = β 6= 0, which shows that there is a function θ(r),
such that g(r, θ(r)) is real for every r in a neighborhood of r = 0. Without loss
of generality, we can impose that g(r, θ(r)) is positive since switching λ1 and λ0
corresponds to switching sign of g(r, θ(r)) for r → 0.

We now use 1/(1 + x) = 1 − x + o(x), where x = λ−1∗ λ0(r, θ(r)) − 1 and the
expansion (3.9) and find that,

g(r, θ(r)) = λ−1∗ Drβeiθ(r)β + o(rβ) = |λ∗|−1|D|rβ + o(rβ) (3.11)

where in the last step we used the explicit formula for θ(r) from (3.10). Now consider,

h(r, ε) := ε1/β −
(
λ1(r, θ(r))− λ0(r, θ(r))

λ0(r, θ(r))

)1/β

= ε1/β − |λ∗|−1/β |D|1/βr + o(r).

(3.12)
We again use the implicit function theorem; now on h(r, ε). Since ∂h

∂r (0, 0) 6= 0, there
exists a function r(ε) such that

ε =
λ1(r(ε), θ(r(ε)))− λ0(r(ε), θ(r(ε)))

λ0(r, θ(r(ε)))
, (3.13)

for every ε > 0 in a neighborhood of ε = 0. By construction, λ0(r(ε), θ(r(ε))) and
λ1(r(ε), θ(r(ε))) are eigenvalues of A + (µ∗ + r(ε)eiθ(r(ε)))B and from (3.13) the rel-
ative distance is ε. Hence, ε 7→ (λ1(r(ε), θ(r(ε))), µ∗ + r(ε)eiθ(r(ε))) is a function
corresponding to an element of D(A,B, ε).

Remark 3.6 (λ∗ = 0). Note that the case λ∗ = 0 has to be explicitly excluded
in Theorem 3.5. This stems from the fact that the relative distance is defined by
(3.1) and (3.2), which are trivially fulfilled if λ = 0 (and if µ is an eigenvalue of the
generalized eigenvalue problem A + µB) for any ε. The special case where λ = 0 is
a double eigenvalue can be easily handled by hand, and the solutions corresponding to
λ = 0 can be safely and easily excluded from the solution set in the implementation.
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3.2. Unbounded limits. We now know (from Theorem 3.5) that the finite
limits of D(A,B, ε) form, in a relevant way, the set B(A,B). At this point, it is
important to note that this does not necessarily imply that the elements of D(A,B, ε)
always approximate a corresponding element of B(A,B) as ε → 0. It turns out
that some elements of D(A,B, ε) can be unbounded as ε → 0. This is illustrated in
Theorem 3.8, for which we first need the following result which relates D(A,B, ε) with
the converse problem D(B,A, ε).

Lemma 3.7 (A converse identity). Let ε, µ ∈ C \ {0} be given. Then,

(λ, µ) ∈ D(A,B, ε) ⇔ (λ/µ, 1/µ) ∈ D(B,A, ε).

Proof. Define f(λ, µ) = det(A + µB − λI) and g(γ, ν) = det(B + νA − γI).
Now, (λ, µ) ∈ D(A,B, ε) if and only if f(λ, µ) = f ((1 + ε)λ, µ) = 0 if and only
if g(λ/µ, 1/µ) = g ((1 + ε)λ/µ, 1/µ) = 0, since f(µ, λ) = µng(λ/µ, 1/µ). Since the
relative distance between λ/µ and (1+ε)λ/µ is ε, (λ/µ, 1/µ) ∈ D(B,A, ε) as claimed.

Theorem 3.8 (Unbounded elements). Suppose B is invertible and B(A,B) only
consists of isolated elements. Let γ∗ ∈ C \ {0}. Then these statements are equivalent:

1. γ∗ is a multiple eigenvalue of B
2. There exists a punctured disc D = {ε : |ε| < ε̂} \ {0} ⊂ C and functions

ε ∈ D 7→ (λ(ε), µ(ε)) ∈ C× C

satisfying (λ(ε), µ(ε)) ∈ D(A,B, ε) for all ε ∈ D with

lim
ε→0
|λ(ε)| = lim

ε→0
|µ(ε)| =∞,

and

lim
ε→0

λ(ε)

µ(ε)
= γ∗.

Proof. Let f(λ, µ) and g(γ, ν) be as in Lemma 3.7. We first prove that state-
ment 1 implies statement 2. Since B is invertible, we have γ∗ 6= 0. By point (iii) of
Theorem 3.5, there exists a small punctured disk D and functions γ, ν : D → C × C
with (γ(ε), ν(ε)) ∈ D(B,A, ε) and limε→0(γ(ε), ν(ε)) = (γ∗, 0).

By Lemma 3.7,

(λ(ε), µ(ε)) :=

(
γ(ε)

ν(ε)
,

1

ν(ε)

)
∈ D(A,B, ε) ∀ε ∈ D.

Moreover,

lim
ε→0
|λ(ε)| = lim

ε→0

∣∣∣∣
γ(ε)

ν(ε)

∣∣∣∣ =∞,

and

lim
ε→0
|µ(ε)| = lim

ε→0

∣∣∣∣
1

ν(ε)

∣∣∣∣ =∞
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since ν(ε)→ 0 and γ(ε)→ γ∗ 6= 0. We also have

lim
ε→0

λ(ε)

µ(ε)
= lim
ε→0

γ(ε) = γ∗.

The implication is thus proven.

To prove that statement 2 implies statement 1, we suppose that the functions
λ, µ : D → C × C exists, with the desired limits. Define γ(ε) := λ(ε)/µ(ε) and
ν(ε) := 1/µ(ε). By Lemma 3.7, (γ(ε), ν(ε)) ∈ D(B,A, ε). Since λ(ε) ∈ σ(A+ µ(ε)B)
and λ(ε)→∞ we must also have µ(ε)→∞ as ε→ 0.

Consequently,

lim
ε→0

ν(ε) = lim
ε→0

1

µ(ε)
= 0,

and (γ(ε), ν(ε))→ (γ∗, 0) as ε→ 0. By point (ii) of Theorem 3.5, γ∗ is then a double
eigenvalue of B. This concludes the proof.

This illustrates that there are situations where some elements of D(A,B, ε) do not
converge to a (finite) value. However, from statement (iii) of Theorem 3.5, we have
that elements which do not converge, also do not correspond to elements of B(A,B).
This justifies that although elements of D(A,B, ε) are not always convergent, we still
capture all solutions of B(A,B).

3.3. Regularization error. Since ε must be chosen non-zero and not too small
in practice (see Remark 3.3), the construction with relative distance will always gen-
erate some error, which we will call the regularization error. In this section we will
see that this error is reasonably behaved. We show this by proving some results about
the asymptotic error as a function of the regularization parameter ε. In particular, if
the repeated eigenvalue has a completely regular square root splitting, which is the
generic case, the accuracies are λ(ε)− λ∗ = O(ε), i.e., linear, and µ(ε)− µ∗ = O(ε2),
i.e., quadratic.

We will later use this result to propose a rough argument for how to choose ε in
practice.

Theorem 3.9 (Regularization error). Let (λ∗, µ∗) be an isolated pair in B(A,B),
then there exists a pair of functions (λ(ε), µ(ε)) ∈ D(A,B, ε) such that

lim
ε→0

|λ(ε)− λ∗|
|ε|α

= C1|λ∗|α, (3.14)

and

lim
ε→0

|µ(ε)− µ∗|
|ε|β

= C2|λ∗|β , (3.15)

where C1, C2 ∈ R and α, β ∈ R+ are independent of ε. Moreover, if λ(·) has a
completely regular square root splitting with λ(ε) = λ∗±C(µ∗−µ(ε))1/2+o(µ∗−µ(ε))
and C 6= 0, then the constants are α = 1, β = 2, C1 = 1

2 and C2 = 1
|4C2| .

Proof. The proof of (3.14) and (3.15) is done for the general setting where the
eigenvalue λ(ε) has a Puiseux expansion,

λ(ε) = λ∗ + C(µ(ε)− µ∗)q + o((µ(ε)− µ∗)q), (3.16)
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and λ2(ε) is either a different branch from the same Puiseux series or a different
Puiseux expansion. First consider the Puiseux expansion of the difference,

λ(ε)− λ1(ε) = D(µ(ε)− µ∗)p + o((µ(ε)− µ∗)p),

where C,D ∈ C. Note that C and D can be chosen non-zero since (λ∗, µ∗) is isolated.
The two equations can now be solved by eliminating (µ(ε)− µ∗)qp,

((λ(ε)− λ∗)p/Cp + o(µ(ε)− µ∗)q)p = (µ(ε)− µ∗)qp =

(λ(ε)− λ2(ε))q/Dq + o(µ(ε)− µ∗)p)q.

The relative distance is ε by construction, i.e., λ2(ε) = λ(ε)(1 + ε). Inserting λ2(ε) =
λ(ε)(1 + ε) into the second equality, yields that

|λ(ε)− λ∗|p/|C|p = |ε|q|λ(ε)|q/|D|q + o((µ(ε)− µ∗)p).

Hence, by taking the pth root,

|λ(ε)− λ∗|
|ε|q/p

=
|C|
|D|q/p

|λ(ε)|q/p + o(µ(ε)− µ∗).

This proves (3.14). From (3.16) we find that

|µ(ε)− µ∗| =
(|λ(ε)||ε|)1/p

|D|1/p
+ o(|ε|1/p).

This implies (3.15). For a completely regular square root splitting we can choose
p = q = 1/2 and D = 2C. Hence, α = 1, β = 1/p = 2, C1 = |C/2C| = 1/2,
C2 = 1/(4C2).

Remark 3.10 (Extrapolation). The algebraic convergence of the solution as
ε→ 0 can be used to accelerate convergence by evaluating for several ε. This extrapo-
lation technique will not be used in this work since evaluating (λ(ε), µ(ε)) is the most
computationally dominating part of the method. In order to gain full accuracy we will
(in Section 4) instead use a local iterative method to gain high accuracy.

3.4. The regularization parameter trade-off. In practice we must fix the
regularization parameter ε before the carrying out the algorithm. If ε is chosen too
large, the regularization error will (according to Theorem 3.9) be large. If ε is chosen
too small it is natural to expect that rounding errors will destroy the accuracy of the
solution since the problem is very close to singular. We now wish to derive a rough
estimate of ε providing a reasonable resolution to the trade-off. We will restrict the
study to the generic case where λ is a double (not triple) eigenvalue of A+ µB.

In this subsection we will also restrict the error analysis to the matrix determi-
nant approach to solve the two-parameter eigenvalue problem, i.e., we will solve the
generalized eigenvalue problem corresponding to the pencil

Dε(λ) := ∆1 − λ∆0(ε).

We now wish to outline in what way the magnitude of ε affects the condition of the
eigenvalue problem of Dε for ε 6= 0. This will lead us to a reasonable choice of ε to
be used in the implementation.

We start with a technical lemma showing that the structure of the problem is
such that the first terms in the expansion of det(Dε(λ)) (in powers of ε) vanish.

12



Lemma 3.11. The following expansion holds:

detDε(λ) =

n2∑

k=2

εkfk(λ),

where the functions fk, k = 2, . . . , n2, are polynomials of degree smaller than or equal
to n2.

Proof. By explicitly computing the determinant it follows that

detDε(λ) =

n2∑

k=0

εkfk(λ),

where fk, k = 0, . . . , n2, are polynomials. Due to the fact that the pencil D0(λ) is
singular, we have f0 ≡ 0. It remains to prove that f1 ≡ 0.

For an arbitrary fixed value of λ, we get

f1(λ) = ∂ detDε(λ)
∂ε

∣∣∣
ε=0

= Tr
{

adj(D0(λ)) ∂Dε(λ)
∂ε

∣∣∣
ε=0

}
.

We can express

D0(λ) = (−A⊗B +B ⊗A)− λ(−I ⊗B +B ⊗ I)
= B ⊗ (A− λI)− (A− λI)⊗B.

If (A−λI) is invertible, then we get from Lemma A.1 in the appendix that adj D0(λ) =
0. We conclude that f1(λ) = 0 for all λ 6∈ σ(A). Because f1 is a polynomial this implies
that f1 ≡ 0 and the proof is completed.

In what follows we investigate the condition of the eigenvalue problem of the
pencil Dε, for a fixed value of ε 6= 0. In order to assess the effect of perturbations
of the matrices ∆0 and ∆1 on the eigenvalues of Dε we consider the pseudospectra
Λγ(Dε), γ > 0, defined here as:

Λγ(Dε) :=
{
λ ∈ C : det {(∆1 + δ∆1)− λ(∆0(ε) + δ∆0)} = 0 for some

δ∆0, δ∆1 ∈ Cn
2×n2

, satisfying
‖δ∆0(ε)‖2
‖∆0‖2

< γ and
‖δ∆1‖2
‖∆1‖2

< γ
}
. (3.17)

Thus, the pseudospectrum Λγ(Dε) is a subset of the complex plane consisting of all
possible positions of the eigenvalues of Dε when the system matrices are subject to
perturbations with relative size smaller than γ. From [21, Theorem 1] the following
computational formula can be derived:

Λγ(Dε) =

{
λ ∈ C : ‖(Dε(λ))−1‖2(‖∆0(ε)‖2 + |λ|‖∆1‖2) >

1

δ

}
. (3.18)

Now, let λε be an isolated eigenvalue of Dε, that is,

detDε(λε) = 0,
d

dλ
detDε(λ)

∣∣∣∣
λ=λε

6= 0.

If |λ− λε| is small we can approximate

‖(Dε(λ))−1‖2(‖∆0(ε)‖2 + |λ|‖∆1‖2)

≈ ‖adj Dε(λε)‖2∣∣∣ ddλ detDε(λ)
∣∣
λ=λε

∣∣∣ |(λ− λε)|
(‖∆0(ε)‖2 + |λε|‖∆1‖2). (3.19)
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From (3.18) and (3.19) we conclude that for sufficiently small values of γ, the pseu-
dospectrum Λγ contains a disc centered around λε, with radius equal to r(λε)δ, where

r(λε) :=
‖adj Dε(λε)‖2∣∣∣ ddλ detDε(λ)

∣∣
λ=λε

∣∣∣
(‖∆0(ε)‖2 + |λε|‖∆1‖2). (3.20)

In words, the number r(λε) is the growth rate of the pseudospectrum Λγ(Dε) around
the eigenvalue λε when δ is increased from zero.

Remark 3.12. The number r(λε) corresponds to the (structured) condition num-
ber for the eigenvalue λε as defined in [1, Equation (4)]. We will now use the property
adjDε(λε) = c uv∗, where u and v are normalized right and left null vectors of Dε(λε)
and c ∈ C. Moreover,

d

dλ
detDε(λ)

∣∣∣∣
λ=λε

= tr (D′ε(λε) adjDε(λε)) = cv∗D′ε(λε)u.

The expression (3.20) can now be simplified to

r(λε) =
1

|v∗D′ε(λε)u|
(‖∆0(ε)‖2 + |λε|‖∆1‖2),

which is consistent with the expression formulated in [1, Lemma 2.1].
Taking into account Lemma 3.11 we can simplify (3.20) to

r(λε) =
1

ε2
‖adj Dε(λε)‖2∣∣∣
∑n2

k=2 f
′
k(λε)εk−2

∣∣∣
(‖∆0(ε)‖2 + |λε|‖∆1(λε)‖2).

Hence, if limε→0 λε is finite, say λ∗, then the pseudospectral growth rate increases
inversely proportional to ε2 as ε→ 0. We will now reach the main point of this section.
On the one hand, if we apply a stable algorithm to compute the eigenvalues of Dε

(for instance, the celebrated QZ algorithm) it is expected that the computational
error on the result is comparable to the error induced by rounding errors on the data.
Therefore, for a fixed value of ε the worst-case computational error on the eigenvalue
λε is expected to be proportional to

Ec(ε) := r(λε) εmach ∼
εmach

ε2
, (3.21)

where εmach is the machine precision. On the other hand, recall from Theorem 3.9
that the approximation error, that is Ea := (λ(ε)− λ∗)/λ∗, satisfies

Ea(ε) ∼ ε, (3.22)

which needs to be small, in order to obtain good approximations of all solutions of
B(A,B). The optimal choice of ε involves a trade-off between (3.21) and (3.22). It
leads us to the choice

ε ∼ ε1/3mach, (3.23)

for which both

Ec ∼ ε1/3mach, Ea ∼ ε1/3mach.

As demonstrated in Section 5, this must be treated as a rule of thumb.
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4. Local methods. The method in Section 3 (MFRD) has the attractive prop-
erty that it approximates all solutions of B(A,B). A drawback of the method is that
a regularization error is introduced dependent on the parameter ε which can not be
chosen zero or too small. In this section, we show how, in a post-processing step,
approximations can be improved using local iterative methods. These methods are
based on solving systems of nonlinear equations that fully characterize the elements
of B(A,B). Since they are iterative methods, they rely on having reasonable starting
values. These can be generated from the solutions of D(A,B, ε), i.e., MFRD.

4.1. An augmented system of equations. A double eigenvalue can either be
semisimple or non-semisimple. If it is semisimple then

(A+ µB − λI)v1 = 0 (4.1a)

(A+ µB − λI)v2 = 0, (4.1b)

for non-parallel v1 and v2, whereas for non-semisimple eigenvalues, we have a gener-
alized eigenvector u associated with the eigenvector v, such that

(A+ µB − λI)v = 0 (4.2a)

(A+ µB − λI)u = v. (4.2b)

In our setting, we do not know a priori which case occurs. In order to construct a local
iterative method which works for both semisimple and non-semisimple eigenvalues we
will consider the null space of (A + µB − λI)2. It is easy to verify, by multiplying
(4.1) and (4.2) from the left by (A + µB − λI), that (A + µB − λI)2 must have a
null-space of at least dimension two, if λ is an eigenvalue of A + µB of multiplicity
two. The converse also holds [19, Lemma 1]. That is, we have that A + µB has a
multiple (semisimple or non-semisimple) eigenvalue λ if and only if (A + µB − λI)2

has a null-space of at least dimension two.

One common approach to the standard eigenvalue problem is to write it as a
system of equations by introducing a normalization condition, e.g., a∗v = 1, where
the normalization vector a can be arbitrary but not orthogonal to the eigenvector.
We will use a similar construction, where we need several normalization constraints.

We will use the following general property of a matrix E ∈ Cn×n with a two-
dimensional null-space. For almost any a1, a2 ∈ Cn, the set of equations

Ev1 = 0 (4.3a)

Ev2 = 0 (4.3b)

a∗1v1 = 1 (4.3c)

a∗2v1 = 1 (4.3d)

a∗1v2 = 1 (4.3e)

v∗1v2 = 0 (4.3f)

uniquely defines an orthogonal basis (v1, v2) ∈ Cn×2 of the null-space of E.

This can be directly derived from the singular value decomposition of E. Let
W ∈ Cn×(n−2) denote the (right) singular vectors corresponding to the n−2 non-zero
singular values of E. The singular vectors are orthonormal and hence Ev1 = 0 is
equivalent to W ∗v1 = 0. The equations (4.3a), (4.3c), (4.3d) can now be written as a
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linear system



W ∗

a∗1
a∗2


 v1 =




0
1
1


 ,

which has a unique solution v1, provided that

rank



W ∗

a∗1
a∗2


 = n. (4.4)

From the same reasoning with (4.3b), (4.3e) and (4.3f), we have that v2 is unique,
provided that

rank



W ∗

a∗1
v∗1


 = n. (4.5)

We will now combine this result with [19, Lemma 1], stating that E = (A +
Bµ− λI)2 has a null-space of dimension at least two, iff λ is a non-simple eigenvalue
of A + µB. This leads us to the following equations, which characterize a multiple
eigenvalue λ of A+ µB,

(A+Bµ− λI)2v1 = 0 (4.6a)

(A+Bµ− λI)2v2 = 0 (4.6b)

a∗1v1 = 1 (4.6c)

a∗2v1 = 1 (4.6d)

a∗1v2 = 1 (4.6e)

v∗1v2 = 0 (4.6f)

for any a1 and a2 satisfying (4.4) and (4.5), i.e., for almost any choice of a1 and a2.

4.2. A zero-residual Gauss-Newton iteration. If we consider (λ, µ, v1, v2)
as unknowns, the system (4.6) has 2(n+ 1) unknowns and consists of 2(n+ 2) condi-
tions. It is hence an over-determined system. The Gauss-Newton (GN) method is the
standard approach to solve over-determined systems of equations, and we propose to
use GN to solve (4.6). We briefly summarize GN for our setting. The Gauss-Newton
method is a method to find the minimum of a residual in the two-norm sense. Given
a function r : Rp → Rq, which will correspond the difference between the left- and
right-hand sides of (4.6), we wish to find the minimum of

f(x) =
1

2
r(x)T r(x). (4.7)

By denoting the Jacobian of r by J : Rp → Rq×p, the GN iteration can be seen as an
iteration of the following steps.

• For the kth iterate x(k), compute the update ∆x(k) as the least squares solu-
tion to the overdetermined system

r(x(k)) + J(x(k))∆x(k) = 0. (4.8)
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• Update the iterate x(k+1) = x(k) + ∆x(k).

See, e.g., [25, Section 10.2] for further details about GN including termination criteria.

We will use a relation with Newton’s method in order to illustrate and predict the
convergence of the method. The important property we will use is that (4.6) has an
exact solution, and the minimum of f(x) is also a zero of r(x). In this situation (called
the zero-residual case) GN has some nice convergence properties. In particular, the
convergence is very similar to the convergence of Newton’s method.

Theorem 4.1. Let ∆x̃(k) be one step of the (standard) Newton method for the
minimization of the function (4.7). Suppose f(x∗) = 0 and that r is sufficiently
smooth. Then,

(
J(x(k))TJ(x(k)) +Rk

)
∆x̃(k) = −J(x(k))T r(x(k)), (4.9)

where

Rk = O(x(k) − x∗).

Proof. The Newton iteration to minimize f(x) can be written as

Hk∆x̃(k) = −J(x(k))T r(x(k)), (4.10)

where Hk is the Hessian of f in x(k). A straightforward computation (see also [25,
Equation (10.5)]) yields

Hk = J(x(k))TJ(x(k)) +Rk, (4.11)

where the element in position (i, j) of Rk is given by

(Rk)i,j =

q∑

l=1

rl(x
(k))

∂2rl(x
(k))

∂xixj
, i, j = 1, . . . , p.

In the zero-residual case, the matrix Rk vanishes in the solution x∗ and from the
smoothness of r we can write Rk = O(x(k) − x∗).

Now note that the correction ∆x(k) in a GN step fulfills the normal equations,
i.e., the least-squares solution to (4.8) satisfies

J(x(k))TJ(x(k))∆x(k) = −J(x(k))T r(x(k)). (4.12)

By comparing (4.12) and (4.9) we see that one step of GN is equal to one step
of Newton’s method in an asymptotic sense. Due to this result, we expect that the
convergence of the Gauss-Newton method is similar to that of Newton’s method.
This is consistent with the following results which are partially formalized in [25,
Section 10.2].

• If J(x∗)
TJ(x∗) is nonsingular, i.e., J(x∗) has full column rank. Then, the

Gauss-Newton method applied to r exhibits quadratic convergence to x = x∗.
• If J(x∗)

TJ(x∗) is singular, i.e., J(x∗) is rank-deficient. Then, the Gauss-
Newton method applied to r is expected to generically exhibit linear conver-
gence to x = x∗.
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We now turn to our specific case, i.e., the application of GN to solve the over-
determined system (4.6). The rank of the Jacobian at the solution for this set of
equations is discussed in Appendix B, where we find that the generic situation for non-
semisimple eigenvalues is that the Jacobian has full rank. For semisimple eigenvalues
the Jacobian is rank-deficient and we observe linear convergence in examples.

It remains to propose choices of initial values (for the vectors v1 and v2) and
constant vectors a1 and a2. The characterization (4.6) is based on the assumption
that a1 and a2 are given and fulfill the generic conditions (4.4) and (4.5). It is,
in fact, possible to construct an appropriate choice for a1 and a2 from a sufficiently
good approximate solution. Consider an approximation generated by MFRD, (λ̃, µ̃) ∈
D(A,B, ε), for a small value of ε. Then an approximate basis (ṽ1, ṽ2) for the two-
dimensional nullspace of (A+Bµ− λI)2, with the property

ṽ∗1 ṽ1 = 1, ṽ∗2 ṽ2 = 1, ṽ∗1 ṽ2 = 0,

can be generated from the singular value decomposition of (A + Bµ̃ − λ̃I)2. In the
light of this, an appropriate choice for a1 and a2 in (4.6) is given by

a1 = ṽ1 + ṽ2, a2 = ṽ1 − ṽ2. (4.13)

In conclusion, a local correction can be performed by solving equations (4.6), with,
e.g., the choice (4.13) for the normalization constraints and with the starting values
(λ̃, µ̃, ṽ1, ṽ2).

Remark 4.2 (Semi-simple). In the case where the double eigenvalue is semi-
simple, the Jacobian is rank-deficient. As mentioned above, a loss of quadratic con-
vergence of GN is observed in the examples. As outlined also in Appendix B, this
inconvenience can be overcome by instead applying GN to the equations

(A+Bµ− λI)v1 = 0 (4.14a)

(A+Bµ− λI)v2 = 0 (4.14b)

a∗1v1 = 1 (4.14c)

a∗2v1 = 1 (4.14d)

a∗1v2 = 1 (4.14e)

v∗1v2 = 0 (4.14f)

which directly characterize the presence of a two-dimensional eigenspace of the matrix
A+Bµ.

Remark 4.3 (Relation with Newton’s method). In this paper we propose to use
an iterative correction method based on solving an over-determined system of equa-
tions. It is possible to characterize a double eigenvalue with a fully determined system
of equations. Consider the equations (4.6a), (4.6c) and (4.6d). With these conditions
we require that the vector v1 satisfies two normalization constraints simultaneously.
A situation where this occurs is when v1 belongs to a two-dimensional subspace, here,
the null-space of (A + µB − λI)2. Since the (4.6a), (4.6c), (4.6d) do not involve v2,
we have n+ 2 equations and n+ 2 unknowns. It is a fully determined system and one
could apply Newton’s method to this set of equations. In this paper we do not suggest
to use such an approach, but instead propose to use the overdetermined system (4.6)
since GN applied to (4.6) appears to have several favorable numerical properties. The
system (4.6) is a characterization of a two-dimensional null-space using two vectors
which are orthogonal, whereas the fully determined system (4.6a), (4.6c), (4.6d) is a
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characterization using only one vector. These intuitive arguments and our numerical
experiments serve as motivation for us to propose to solve the overdetermined system
instead of the fully determined system.

Remark 4.4. In the case where λ∗ is a non-semisimple eigenvalue of A+ µ∗B,
an alternative method consists of applying the algorithm of [18]. The latter is based
on an application of Newton’s method to solve a system of equations that characterizes
the presence of a Jordan block of at least two-by-two in the canonical representation.
In our experiments it yields a performance comparable to solving (4.6) with Gauss-
Newton.
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Figure 5.1. Logarithmic plot of the accuracy in the MFRD approach as a function of ε for the
example in Section 5.1. The figures show the error in µ∗ (left) and λ∗ (right), respectively. The
lines with markers are the errors for the semisimple point (µ0, λ0), while the other lines are the
non-semisimple points.

5. Examples.

5.1. A 3× 3 test problem. Suppose

A =



−1 2 1
0 2 −i
i 1 −i


 , B = (C −A)/µ0, C =




1 0 0
0 2 0
0 0 2


 , (5.1)

where µ0 = 1 + i. This problem is constructed such that for µ = µ0, λ = 2 is
a semisimple eigenvalue of A + µB. It can be solved explicitly with software for
symbolic manipulations by simultaneously solving fλ(λ, µ) = 0 and f(λ, µ) = 0 as in
Remark 2.2. The solution is B(A,B) ≈ {(1 + i, 2), (0.60 + 0.40i, 0.50− 0.39i), (0.98 +
1.4i, 1.6+0.32), (1.1+1.3i, 2.1+0.21i), (1.5+1.2i, 1.9−0.2i)}. We will use this solution
(with sufficiently high precision) for reference.

This example will now be used to illustrate how the accuracy of the solution com-
puted with MFRD depends on the regularization parameter ε. We will also illustrate
the predicted behavior of the local iterative method of Section 4. The error of MFRD
for the solutions is given in Figure 5.1. We observe V-shaped error curves (as pre-
dicted in Section 3.4) for the non-semisimple eigenvalues, corresponding essentially to
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the maximum of the rounding error (dominating for small ε) and regularization error
(dominating for larger ε).

Note also that there is no optimal choice of ε in the sense that the errors of
the individual approximations will never be simultaneously minimized. This holds
in particular for the semisimple eigenvalue for which the regularization error is of
order |µ− µ(ε)| = O(ε) (unlike the other error curves, for which |µ− µ(ε)| = O(ε2)).
Hence, there is no choice of ε such that MFRD returns full precision solutions. This
problem is not present when we combine MFRD with the individual treatment of the
approximations with the iterative method of Section 4.

The convergence of the iterative method is illustrated in Figure 5.2. For illus-
trative purposes we used ε = 0.01 instead of the estimate of a good choice given in
Section 3.4. We clearly see that the convergence is superlinear for the non-semisimple
eigenvalues and linear for the semisimple. Note that we can achieve essentially full
precision for all eigenvalues, although it requires more iterations for the semisimple
eigenvalue. We also observe (in Figure 5.2b), that the quadratic convergence for the
semisimple eigenvalue can, as predicted, be restored by instead solving the equation
(4.14).
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(a) Quadratic convergence is observed for
the non-semisimple case and linear conver-
gence for the semisimple case.
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(b) By considering the system (4.14) the
quadratic convergence for the semisimple
eigenvalue can be recovered

Figure 5.2. Illustration of local iterative methods applied to the example in Section 5.1.

5.2. Application to quantum mechanical perturbation theory. An im-
portant problem in computational quantum mechanics is to characterize the small-
est eigenvalues, assuming these exist, of a self-adjoint partial differential operator
H = A+µphysB (with µphys ∈ R) over some infinite dimensional Hilbert space. Stan-
dard discretization techniques produce a (Hermitean) matrix approximation H =
A + µphysB to this operator. The matrix dimensions may be very large, and direct
computation of the eigenvalues may be infeasible. For the simplest case, where the
smallest eigenvalue λ1(µ) is to be determined, one considers the pencil A + µB and
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forms a Taylor series expansion

λ1(µ) =

∞∑

k=0

ckµ
k, (5.2)

which is to be evaluated at µ = µphys. Clearly, c0 = λ1(0), which is the smallest
eigenvalue of A (assumed to be simple), and c1 = u∗Bu, with u being a normalized
eigenvector of A corresponding to λ1(0) [16, Chapter II, Remark 2.2]. The expressions
for ck, k > 1, become increasingly complicated, and they are typically evaluated using
diagrammatic rules.

The eigenvalue functions λj(µ) are algebraic functions having only branch point
type singularities, which is generic for non-semisimple eigenvalues, at complex values
of µ. These may occur only when λj(µ∗) = λk(µ∗) = λ∗ for j 6= k [27]. It can be
shown that the (in general unknown) radius of convergence of (5.2) is given by

R = min {|µ∗| : λ1(µ∗) = λk(µ∗), k > 1} . (5.3)

We note that R ≥ min{|µ∗|}, i.e., the bifurcation point µ∗ that actually limits R is
not necessarily the smallest. However, it is usually among the few smallest points.

For the more complicated problem of determining several of the smallest eigen-
values λj(µ) via so-called partitioning techniques [27] the limiting singularity is also
among the branch points, but usually of much larger magnitude.

We visualize the set B(A,B) in Figure 5.3 for a simple example of dimension
n = 15. The branch point limiting the radius of convergence is highlighted. (In this
case R = min{|µ∗|}, and λ∗ = λ1 = λ2.) The example is that of two electrons in a
harmonic oscillator trap with the discretization described in [29]. The matrix A is
diagonal with equally spaced eigenvalues 1, 3, 5, · · · , while B is dense with elements
that decay algebraically, i.e., Bij = O[(ij)−β ], β > 0. The matrices thus have a high
degree of structure clearly reflected in Figure 5.3.
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Figure 5.3. The set B(A,B) for a discretized partial differential operator from quantum me-
chanics. The left plot shows µ∗ with the inset figure showing a magnification of the points closest
to 0, while the right plot shows λ∗. The radius of convergence of the perturbation series is limited
by the magnitude of the marked point in the µ∗ plot, for which λ1(µ∗) = λ2(µ∗) = λ∗, the marked
point in the λ∗ plot.
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6. Conclusions and outlook. An important and unusual property of the method
in this paper is the global convergence to all solutions, which can be combined with
an iterative method to get full accuracy. The global convergence property comes from
the observation that the fixed relative distance problem is a two-parameter eigenvalue
problem.

The method can be adapted in many ways. Note that the elements of B(A,B) are
characterized by a GEP in Section 3. There are many methods to solve GEPs and the
right choice of method depends on the application. If only small number of solutions
are of interest in the application, e.g., those solutions where |µ∗| is small, we can use
an eigenvalue solver which focuses on these solutions. As an alternative promising
approach, one can solve the two-parameter eigenvalue problem directly with methods
which allow focusing on a target, e.g., [11].

We conclude this paper with some straightforward extensions following from the
connection with the two-parameter eigenvalue problem. The method of fixed relative
distance can be adapted to generalized eigenvalue problems. That is, the problem
of finding (λ, µ) such that λCx = (A + µB)x, x ∈ Cn\{0}, where λ is a double
eigenvalue, can also be solved by considering the fixed relative distance and solving a
two-parameter eigenvalue problem.

The multiparameter eigenvalue problem is a generalization of the two-parameter
eigenvalue problem. Consider the problem of finding λ, µ1, µ2, . . . , µk such that λ is
an eigenvalue of multiplicity k+ 1 of the eigenvalue matrix of A+B1µ1 + · · ·+Bkµk.
This problem can also be solved with an approach based on fixed relative distance.
By considering a relative disturbance of each of the parameters µ1, . . . , µk we have
a system of equations which can be interpreted as a (k + 1)-parameter eigenvalue
problem.

7. Acknowledgments. We thank Michiel E. Hochstenbach of T.U. Eindhoven,
for pointing us to reference [8].

This work has been supported by the Programme of Interuniversity Attraction
Poles of the Belgian Federal Science Policy Office (IAP P6- DYSCO), by OPTEC, the
Optimization in Engineering Center of the K.U.Leuven, by the project STRT1- 09/33
of the K.U.Leuven Research Council and the project G.0712.11N of the Research
Foudation - Flanders (FWO).

Appendix A. A technical lemma.
Lemma A.1. For all U, V ∈ Cn×n, where either U or V is invertible, we have

adj (U ⊗ V − V ⊗ U) = 0. (A.1)

Proof. Because the role of U and V can be interchanged we assume, without
loosing generality, that V is nonsingular. We further assume that n ≥ 2, since the
result is trivial for n = 1.

First, we characterize the null space of

U ⊗ V − V ⊗ U. (A.2)

From the invertibility of V we have

(U ⊗ V − V ⊗ U)X = 0, X ∈ Cn
2×1,

if and only if

((V −1U)⊗ I − I ⊗ (V −1U))X = 0,
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i.e.,

((V −1U)⊕ (−V −1U))X = 0. (A.3)

If V −1U has (at least) two linearly independent eigenvectors, E1 and E2, then it
follows by inspection that X = E1⊗E1 and X = E2⊗E2 are linearly independent so-
lutions of (A.3). In the other case, there always exists an eigenvalue λ, an eigenvector
E and a generalized eigenvector H satisfying

(V −1U)E = λE, (V −1U)H = λH + E,

and it can be verified that X = E ⊗ E and

X = E ⊗H +H ⊗ E

are linearly independent solutions of (A.3). Hence, in both cases we conclude that
the null space of (A.2) has at least dimension two. This implies that there exists a

matrix T ∈ Cn2×n2

such that

T (U ⊗ V − V ⊗ U)T−1 =

[
R11 R12

0 R22

]
,

where R22 is the two-by-two null matrix. We get

adj(T−1) adj(U ⊗ V − V ⊗ U) adj(T ) = adj

([
R11 R12

0 R22

])
= 0.

The statement of the lemma follows.

Appendix B. The column rank of the Jacobian of (4.6) and (4.14). The
Jacobian matrix of (4.6) in the solution, given by

J :=




M2 0 (MB +BM)v1 −2Mv1
0 M2 (MB +BM)v2 −2Mv2
a∗1 0 0 0
a∗2 0 0 0
0 a∗1 0 0
vT2 v∗1 0 0



, (B.1)

where M = λI − A − µB. The column rank of the Jacobian will be studied for two
important cases.

Case 1: λ is a double, non-semisimple eigenvalue of A+Bµ.

Since a double non-semisimple eigenvalue corresponds to a Jordan block of dimension
two, we know that there exists a matrix T such that

M̃ := T−1MT =




0 1
0 0

R


 ,

whereR ∈ C(n−2)×(n−2) is invertible. By pre-multiplying J with diag(T−1, T−1, 1, 1, 1, 1)
and post-multiplying with diag(T, T, 1, 1) we obtain

J̃ :=




M̃2 0 (M̃B̃ + B̃M̃)ṽ1 −2M̃ ṽ1
0 M̃2 (M̃B̃ + B̃M̃)ṽ2 0
ã∗1 0 0 0
ã∗2 0 0 0
0 ã∗1 0 0
wT2 w∗1 0 0



,
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where

B̃ = T−1BT, ṽ1 = T−1v1, ã
∗
1 = a∗1T, ã

∗
2 = a∗2T, w

∗
1 = v∗1T, w

T
2 = v∗2T.

Note that

M̃2 =




0 0
0 0

R2


 . (B.2)

It is easy to see that with a random choice of vectors a1 and a2 in the normalization
constraints in (4.6), the matrix obtained by taking the first two block columns of J̃
has full column rank with probability one, and, in addition, M̃ṽ1 6= 0. Therefore,
taking into account the structure of (B.2), the matrix J̃ (and thus J) has full column
rank if the 2-by-2 matrix obtained by considering the first two rows of

[(M̃B̃ + B̃M̃)ṽ1 − 2M̃ ṽ1]

is invertible. This is the case (with probability one for a random choice of a1 and a2)
if and only if the element at position (2,1) is nonzero, that is,

eT2 (M̃B̃ + B̃M̃)ṽ1 6= 0, (B.3)

where e2 = [0 1 0 · · · 0]T is a unity vector in Cn. Considering that eT2 M̃ = 0 the
condition (B.3) becomes, in terms of the original matrices,

U∗0BV0 6= 0, (B.4)

where U0 := T−∗e2 is the left null vector of M and V0 := Mv1 the right null vector
of M .

The condition (B.4) can be rephrased as

∂

∂µ
det(λI −A− µB) 6= 0,

which is a necessary and sufficient condition for the complete regular splitting property
of the eigenvalue λ of A+ µB, see [14].

Recapitulating the above results, we arrive at the following proposition.
Proposition B.1. Let (λ, µ) ∈ B(A,B) be such that λ is a double, non-

semisimple eigenvalue of A + µB satisfying the completely regular splitting property.
Then the Jacobian matrix of (4.6) corresponding to (λ, µ) generically has full column
rank.

We should note here that the value of the condition number of the Jacobian
depends on the choice of the vectors a1 and a2 in the normalization.
Case 2: λ is a double semisimple eigenvalue of A+µB.

The Jacobian (B.1) cannot be of full column rank in the solution of (4.6) because
Mv1 = 0. However, using the same arguments as used in the case above, it can be
shown that the Jacobian of (4.14) in the corresponding solution generically has full
column rank.
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