Lecture notes in numerical linear algebra
Numerical methods for Lyapunov equations

Methods for Lyapunov equations

This chapter is about numerical methods for a particular type of equa-
tion expressed as a matrix equality.

Definition g4.0.1. Consider two square matrices A, W € R™". The problem
to find a square matrix X € R™" such that

AX+XAT =W (4.1)
is called the Lyapunov equation.

Different algorithms are suitable for different situations, depending
on the properties of A and W, and we work out two algorithms. For
dense A, the Bartels-Stewart algorithm is one of the most efficient ap-
proaches. The Bartels-Stewart algorithm is derived in Section 4.2. For
sparse and large-scale A and if W is of low-rank, Krylov-type methods
may be more efficient (Section 4.3).

Some applications are given in Section 4.4 and in the exercises.

A naive approach

Equation (4.1) is a linear system of equations, expressed in a some-
what unusual form. We will now see that (4.1) can be reformulated
as a linear system of equations in standard form, by using techniques
called vectorization and Kronecker products. If B € R with columns
(b1,...,bwm) = B, the vectorization operation is defined as the stacking
of the columns into a vector,

by

vec(B) :=
b

e R™,

For two matrices A € R™" and B ¢ R/*¥, the Kronecker product (®) is
defined as
ﬂnB almB
A®B= e R,
anl B o ant

The Lyapunov equation is the most com-
mon problem in the class of problems
called matrix equations. Other examples
of matrix equations: Sylvester equation,
Stein equation, Riccati equation.

Traditionally driven by certain prob-
lems in system and control, the Lya-
punov equation now appears in very
large number of fields. The develop-
ments and improvements of numerical
methods have (and continues to be) rec-
ognized as important in numerical linear
algebra.

In the field of systems and control
the equation (4.1) is sometimes called
the continuous-time Lyapunov equation,
for disambiguation with a different
matrix equation called the discrete-time
Lyapunov equation. Many of the algo-
rithms we present here can be adapted
for discrete-time Lyapunov equations.

In matlab, the vec-operation can be
computed with b=B(:) and the in-
verse operation can be computed with
B=reshape(b,n,length(b)/n). The Kro-
necker product is implemented in
kron(A,B).
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With this notation we can derive a very useful identity. For matrices
A, B, X of matching size, we have

vec(AXB) = (BT ® A) vec(X) (4.2)
By vectorizing the Lyapunov equation (4.1) we have

vec(AX+XAT) = vec(W) ) .
Apply (4.2) twice, once with A = [
(IoA+AeI)vec(X) = vec(W) (4-3) and once with B = L.

The equation (4.3) is a linear system of equations on the standard
matrix-times-vector form. The connection between (4.1) and (4.3) is
useful, mostly for theoretical purposes. For instance, we can easily
characterize the existance and uniqueness of a solution.

Theorem 4.1.1 (Existance and uniqueness of solution). Let A;,i=1,...,n
be the eigenvalues of A.

(i) The equation (4.1) has a unique solution X e R™" if and only if

A # —/\j,forall ij=1,...,n

(ii) In particular, if A is strictly stable (that is A; <0, forall i =1,...,n),

then (4.1) has a unique solution.
The eigenvalues of a strictly stable ma-

Proof. This is an exercise. O trix have negative real part.

A naive computational approach based on (4.3)

It is tempting to approach the problem of solving the Lyapunov equa-
tion (4.1) by applying a generic method for linear systems of equations
Bz =w to (4.3),

vec(X) = (I® A+ A®I) tvec(W). (4-4)

Suppose for simplicity that we have a numerical method that can
solve a linear system of equations with N with O(N?) operations (such
as a primitive implementation of Gaussian elimination). Since (4.3) is
a linear system with N = 1%, the computational complexity of such an

approach is
A generic method for linear systems ap-

tnaive(”l) = O(n6)' (4-5) plied to (4.3), will have high computa-
Some gains in complexity are feasable by using more advanced ver- tional complexity.
sions of Gaussian elimination to solve (4.3), or exploiting sparsity in
I® A+ A®l. These improved variants will not be computationally
competitive for large n in comparison to the algorithms in the follow-
ing sections.
Although this approach is not competitive for large n, it can be
useful for small n, and (as we shall see below) as a component in a

numerical method for large n.
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Bartels-Stewart algorithm

From previous lectures we know that there are efficient algorithms that
can compute the Schur decomposition of a matrix. It turns out that
this can be used as a precomputation such that we obtain a triangular
Lyapunov equation. The resulting equation can be efficiently solved
in direct way with a finite number of operations, by using a type of
substitution.

Recall that all real matrices have a real Schur decomposition: There
exists matrices Q and T such that

A=QrQ",

where Q is an orthogonal matrix and T € R"*" a block-triangular ma-
trix, where

Ty - Ty

T= o (4.6)

Ty

and Tj; e R"™", nj e {1,2},j=1,...,r and Z;zl nj=n.
We multiply the Lyapunov equation (4.1) from the right and left
with Q and QT respectively,

Q'wQ QTAXQ+Q"XAQ= (4.72)
= QTAQQ"XQ+Q"xQQ"AQ-= (4.7b)
= TY+YTT (4.7¢)

where Y = QTXQ. We introduce matrices and corresponding blocks
such that

Cn Ci2 1 Zi Ri1 Rpp
QTWQ:[ ]IY:[ ], T:[ ], '8
Cy Cxp Zor Zyp 0 Roxp (48)

where the blocks are such that Zy, Cyy, Ty = Ryp € R (the size of
the last block of T). This triangularized problem can now be solved
with (what we call) backward substitution, similar to backward sub-
stitution in Gaussian elimination. By separating the four blocks in the
equation (4.7), we have four equations

Cii = Ri1Zii+RiZot + Z1R{) + Z1pRY, (4.9a)
Cio = RiuZip+RipZyn+ZipRy, (4.9b)
Cai = RopZoi+ZoiR{y +ZnR{, (4.9¢)
Con = RopZom+ZyRy,. (4.9d)

Due to the choice of block sizes, the last equation of size 1, x n,, which
can be solved explicitly since 1, € {1,2}:

The Bartels-Stewart algorithm, initially
presented for slightly more general
problems in [1] and is one of the lead-
ing methods for dense Lyapunov equa-
tions. It is implemented in matlab in the
command lyap.

For efficiency reasons, we here work
with the real Schur form, where in con-
trast to the complex Schur form, the com-
plex triangular matrix is replaced by a
real block triangular matrix with blocks
of size one or two as in (4.6)

Use QQT =1

General idea: Solve (4.9b)-(4.9d) explic-
itly. Insert the solution into (4.9a) and
repeat the process for the smaller equa-
tion which is a Lyapunov equation with
unknown Zp; € R(t=nr)x(n=nr)
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e If n, =1, the equation (4.9d) is scalar and we obviously have

C
Zzz‘i

= Rey’ (4.10)

The eigenvalues of Ry, are eigenvalues
e If n, =2 we can still solve (4.9d) cheaply since it is a 2 x 2 Lyapunov of A. Therefore the small Lyapunov
equation (4.9d) has a unique solution if

equation. For instance, we can use the naive approach (4.4), i.e., (4.1) has a unique solution

vec(Zx) = (I® Ryp + Ryp ® I) "L vec(Cyo). (4.11)

Insert the now known matrix Zy, into (4.9b) and transposed (4.9c),
yields

Cip:=Ci2- R1nZy
Cp:=Ch -Rppzh, = Ryzl +ZLRI, (4.12b)

Ry1Z13 + Z1RY, (4.12a)

The equations (4.12) have a particular structure that can be used to
directly compute the solutions Z, and Z,;. An explicit procedure for
the construction of the solution (4.12) is given by the following result.

Lemma 4.2.1. Consider two matrices C, D partitioned in blocks of size ny x
Ny, Ny X Np, ..y Ny 1 XN according to

X1 Dy
X=| : |eRN*, D=| : |[eRV"
Xpo1 Dy

where C;, D € R"*" and N = Z]’:ll nj. Let U € R™" be a block triangular
matrix partitioned as X and D. For any Ryp € R"7*", we that if X satisfies
the equation

The block triangular matrix U is

Uy - Uppa
u-= :

D= UX + XRE, (4.13) Up1ps

then X;, p-1,p-2,...,1 satisfy where U;; € R"™".

LI]]X] + X]'Rgz = D] (4.14)

~ -1
where D] = D] - ZZP:j-i-l U],Xl

Similar to the approach we used to compute Z;, X; can expressed
and computed explicitly from a small linear system

vec(Xj) = (I®Tjj+Rpn® nt Vec(VVj) (4.15)

By solving (4.15) for j = p—1,...,1, for both equations (4.12)a and
(4.12)b we obtain solutions Z1, and Zj;. Insertion of (the now known
solutions) Z13, Z1 and Zy; into (4.9a) gives a new Lyapunov equation
of size n —n, and the process can be repeated for the smaller matrix.

Lecture notes - Elias Jarlebring - 2017 Version:2017-03-06, Elias Jarlebring - copyright 2015-2017
4



Lecture notes in numerical linear algebra

Numerical methods for Lyapunov equations

Compute the real Schur decompositon [Q, T]=schur(A) and
establish ny,...,n,, T11, Thy, . . ., Tr with partitioning according to

(4.6)
Set C= QTWQ.
Set m =n.

for k=r,...,1 do

Set m =m —ny

Partition the matrix C with Cy1, Cqp, Cp1, Cop according to (4.8),
with C22 € R™* Mk

Set Ryy = Ty, and

Ty - Ty Ty x
Ry = : , Rz =
Tr-1k-1 Ti-1,

Solve (4.9d) for Zy; € R™*" using (4.11) or (4.10).
Compute Cpy, Cy1 using (4.12)a and (4.12)b
Solve (4.12)a and (4.12)b for Z15 €e R™*"* and Zy; € R™*™
using equation (4.14) and (4.15) with p = k.
Store Y(1:m,m+ (1:ny)) = Z1p
Store Y(m+ (1:ny),1:m) =Zy
Store Y(m+ (1:ny),m+ (1:nk)) =Zpn
Set C := C11 - RiaZy - Z12RD,.
end
Return solution X = QYQT.
Algorithm 1: The Bartels-Stewart algorithm for the Lyapunov

equation

Complexity of Bartels-Stewart algorithm

Earlier in the course we learned that the QR-algorithm could be tuned
to perform well. In practice the total complexity is usually roughly
estimated by O(n®). Since the other parts of the algorithm (see ex-
ercise) has complexity O(n%), the total complexity of Bartels-Stewart
algorithm is

tBartels—Stewart (1) = O(HS)'

This is a tremendous improvement in comparison to the naive ap-
proach (4.5), estimated by O(n®).

Low-rank methods for large and sparse problems

Although the Bartels-Stewart is both efficient and robust for large
dense problems, there is very little room to use sparsity and other
structures. We now discuss a class of approaches which are suitable
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for certain Lyapunov equations, under the condition that W = ww! and
A is a stable matrix (and large and sparse). Under these conditions,
we now show that the solution can be accurately approximated with a

low-rank matrix.
Low-rank approximability has been ex-

tended to other conditions on the matri-

Low-rank approximability of solution ces, e.g., when W has a small rank.

In other parts of the course we have shown that if A is a stable matrix,
we can express the solution to the Lyapunov equation with an integral
of matrix exponentials

X = —foooexp(tA)Wexp(tAT),. (4.16)

The low-rank property of X is now illustrated by constructing an ex-
Recall now that a Gauss-quadrature

gives a way to approximate integrals by
inite integral of the matrix in (4.16). More precisely, we now construct a weighted sum. For appropriately se-
lected evaluation points tq,...,t; and
weights wy, ..., wn, we can approximate

X ==Y wiexp(t;A)Wexp(tAT), (4.17) fow Fdt S wif (1)
i i=1

plicit approximation of X by applying Gauss-quadrature to the indef-

an approximation X~X by setting

where (w1, t1),..., (wn, tn) are appropriately selected points and weights.
We have the following important observation if W = ww!: Every
term in (4.17) is a rank-one matrix. Hence, a quadrature formula with
m points results in an explicit way to construct an approximation X
which has
rank(X) < m. (4.18)

The approximation X is only accurate if the Gauss-quadrature ap-
proximation is accurate. We know from the theory of Gauss-quadrature
that weights and points can be selected to yield accurate approxima-
tions for scalar-valued Gauss-quadrature. The following result show
how the Gauss-quadrature error for the matrix function can be charac-
terized.

For simplicity assume A is symmetric such that A = VAVT where
V is an orthogonal matrix and A = diag(Aq,...,A,). We now get an
explicit expression for the error

X-X
o m
=V (fo exp(tA)zDzDT exp(tA)dt - Zwi eXP(tiA)ZT)ZT)T eXp(ti/\)) vT
i=1
=VZu VT

where @ = VTw. Moreover, the individual elements in Z, can be
bounded by

|(Zm)j,k

oo m
<| [T SN we W may  (419)
1
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We immediately identify a condition which leads to a small approxi-
mation error. The approximation error for X is small if we simultane-
ously approximate integrals

\/‘ooet()\j+)\k) dt
0

for all j and k. We summarize this in a theorem.

Theorem 4.3.1. Suppose A is symmetric and stable and suppuse W is sym-
metric and has rank one. Let (t1,w1), ..., (tm, wm) be a quadrature method
and define

oo m
€ = max| [ N G - 3 et At .
ik Jo T

Then, there exists a matrix X such that
rank(X)
| X = X[l max

IN

m

IA

2
em|w]

A specific choice of a quadrature formulas leads to specific expres-
sions for the error. One specific choice (used for instance by Grasedyck)
leads to an error estimate of the type

IX - X < ae™V™.

Galerkin approach to the Lyapunov equation

We saw above that there exists a low-rank approximation of X under
certain conditions. Although we were able to derive explicit formulas
for X in the previous section, these formulas are typically not used
in the computation. Rather than evaluating the formulas for the low-
rank approximation, we say that we directly try to compute a low-rank
solution by trying to determine U € R and P ¢ R™*"" such that

X=uru’,
where U is an orthogonal matrix.
Hence, we wish to have,
AX+XAT = AuPu” + UPUTAT ~ W.
The most common procedure to find (and compute) an approximation

directly is by the application of a Galerkin condition. More precisely,
given U we compute P by imposing the Galerkin condition and sim-

plifying
u' (Ax+xAhu = u'wu
uTAXu+uXA™u = u'wu
utaupuu+uturu™aA™u = u'wu
utaur+pru™A™u = u'wu
AP+PAT = W
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where A = UT AU. This is a small dense Lyapunov equation which can
be solved directly, for instance with the Bartels-Stewart method.

The matrix U corresponds to a basis of a search subspace (or projec-
tion space). The success of the approach highly depends on the choice
of U and many different search subspaces have been proposed in the
literature.

In the paper by V. Simoncini [5] it is proposed to use a so called
extended Krylov subspace. It illustrates the exploitation of low-rank
in methods for matrix equations.

Applications

The research and developments on numerical methods for Lyapunov
equations was initially driven by applications in the field of systems
and control. There are now applications appearing in many com-
pletely different fields. Some specific applications are listed below.

The so-called infinite-time gramian of continuous time linear dy-
namical system is the solution to a Lyapunov equation. They can be
used

* to study stability, controllability and observability;

* to compute the Hy-norm which is important in for instance con-
troller design;

¢ to solve PDEs on tensorized domains;

* to compute bounds and characterisations of transient effects of ODEs;
® to design an optimal control; and

* to compute a reduced order model with balanced truncation.

The Lyapunov equation also appears as a part in numerical methods
for stability radius, and in the study of robust stability of large sparse
time-delay systems.

A discretization of Helmholtz equation Au = f on a square do-
main with homogeneous boundary conditions using finite difference
with uniform grid, leads to a linear system of equations (Dyy ® [ + I ®
Dyy)u = b. This is a vectorized Lyapunov equation. It can consequently
be solved efficiently with, e.g., Bartels-Stewart method. A Lyapunov
equation approach can be useful for more advanced discretizations of
more complicated PDEs, by using a Lyapunov equation solver in the
preconditioning.

There are also applications in numerical methods for matrix func-
tions, tensor approximation problems (used for instance in computa-
tional methods for the electronic Schrédinger equation), ...
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Lyapunov equations are used in various situations at KTH. They
appear in the courses SF2842 - Geometric Control Theory, FEL3500 - In-
troduction to Model Order Reduction (Dept. Automatic control) and EL2620
- Nonlinear Control. It is also used in research, e.g., the research of the
author of these lecture notes and researchers at KTH Mechanics de-
partment use Lyapunov equations to carry out approximations of flow
ftp://www2.mech.kth.se/pub/shervin/review.pdf.

Other matrix equations and other methods

There are a considerable number of matrix equations appearing in
various fields, which can often be considered extensions of the Ly-
puanov equation, e.g., the discrete-time Lyapunov equation, Sylvester
equation generalized Lyapunov equation [6], or Ricatti equation, delay
Lyapunov equations or time-dependent Lyapunov equations (e.g. by
KTH-researcher Henrik Sandberg [4]). There are many differende nu-
merical methods apart from those mentioned here, e.g., Hammerlings
method [3] (which attractive in combination with model order reduc-
tion and was later improved by Sorensen). There are methods which
consider the Lyapunov equation as optimization problem in a differ-
ential geometric setting, more precisely optimization over Riemannian
manifolds (in particular [7] which has been recognized with various
prizes and award).
For further reading see the survey paper

http://www.dm.unibo.it/~simoncin/matrixeq.pdf
and the wiki for model order reduction

http://morwiki.mpi-magdeburg.mpg.de
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Exercises

1. Implement the naive approach as well as the Bartels-Stewart method
based on the skeleton code on the course web page. Compare the
methods by using simulations for random matrices. Illustrate (with
figure) the dependence of the computation time on n. What is the
observed complexity?

2. Prove (4.2).
3. Show that
vec(uvl) =ve®u.
for any u,v € R".

4. Consider the problem

S A

For which values of a does the Lyapunov equation have a unique
solution?

5. Prove the following identity: Any matrices A, B, C, D of compatible
size satisfy

(A®B)(C®D) = (AC) ® (BD).

6. Prove Theorem 4.1.1.
Hint: Use previous exercise to first show that if v;,v; are two eigenvectors
of A, then v; ® v; is an eigenvector of [® A+ A® I.

7. Prove Lemma 4.2.1.

8. Derive the computational complexity of computing Xj,..., X, 1
with Lemma 4.2.1. You may here assume that ny =---=n, =2.

9. Show that if A and W are symmetric, then a solution X to (4.1) is
symmetric, if (4.1) has a unique solution.

10. Derive a more efficient algorithm for the case when A and W are
symmetric, by first showing that (4.12)a and (4.12)b have the same
solution. Illustrate that it works and that it is more efficient using
the code from exercise 1. (More difficult optional: Also use that T
in the Schur decomposition of A is a diagonal matrix.)

11. Consider the following dynamical system

x(t) = Ax(t)+bu(t)
y(t) = cTx(b),

where b, c € R". Suppose A is stable, i.e., A(A) e C_.

Skeleton code for the Bartels-Stewart
method: http://www.math.kth.se/
~eliasj/NLA/lyap0_skeleton.m

Hint for a short proof: Let
{Ai}, {B;j},{Cx},{D¢}  form  bases
of the matrix spaces associated with
A, B, C, D. A function f(A,B,C,D)
which is linear in all parameters is
f(A,B,C,D) =0, if f(A;,B;,Ci, D) = 0
for all combinations of basis vectors.

In systems and control, this is called
a single-input single-output (SISO) dy-
namical system.
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a) The observability gramian of this system is defined as

t
Pe(t) = fo exp(ATHecT exp(At) dt
and the observability gramian
t
B, (t) := /0 exp(At)bbT exp(ATt) dt.
Show that the limits

Py(t)
Pe(t)

- Pyo e R""ast—> oo

- PooweR™ast— oo

exist and satisfy certain Lyapunov equations.

b) The so-called Hy-norm of the dynamical system is defined as

1 oo )
S = o [ w1 - A) s,

1 oo
=, =5 [, vty dr

c) Show that the #; norm can be computed from either controlla-

Show that

bility or observability gramian by showing

1=, =
= bTP.ob

(4.20a)
(4.20Db)

cTPO,ooc

12. Consider the partial differential-equation

f(x,y) for (x,y) € Q)
0 for (x,y) € 0Q),

Au+g(x,y)u
u(x,y)

where ) =[0,1] x [0, 1].

(a) Derive the (second order) finite-difference discretization for the
grid x; = hi, i =1,...,m, yj = hj,j=1,...,mand h = 1/(m+1).
Derive matrices Dy, G, F € R™" such that the discretization can
be expressed as

DyyU+UDyy+GolU=F, (4.21)

for U; j ~ u(x;, y;).

(b) Derive explicit expression for the eigenvalues of [ ® Dyy + Dyy ®
I in the limit m — oo, and show that I ® D,y + Dy, ® I is nonsin-
gular in the limit.

(Optional: The eigenvalues have closed forms also for finite m.
Compute these and show that I ® Dyy + Dyy ® I is non-singular
for any m.)

The H;-norm is a measure of sensitivity
of the system, and can be used in con-
troller synthesis when designing control
systems which should be insensitive to
additive (stochastic) white-noise.

In the matlab control toolbox, in partic-
ular in the function norm(sys,2), a Lya-
punov equation is solved with Bartels-
Stewart algorithm. The #Hj-norm is sub-
sequently computed directly from the
relation (4.20).

Here o denotes the Hadamard product,
also known as the direct or element-wise
product, in matlab . *
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(c) Letg(x,y) = tx\/(x -2+ (y-1)2and f(x,y) = [x - y|- Solve the
problem in the following ways, and report computation time as
a function of system size: Use only sparse matrices and do not
- For a = 0, solve the sparse linear system corresponding to the store any matrices as full matrices. Use
. . . spdiags and see help spdiags.
vectorization of (4.21) with the matlab command \
- Compare with solving (4.21) with the matlab command lyap
also with & = 0.
— For a = 1, solve the sparse linear system corresponding to the
vectorization of (4.21) with the matlab command \.
- For « = 1, apply GMRES to solve the sparse linear system cor-
responding to the vectorization of (4.21) (use matlab command
gmres)
- For a =1, apply GMRES to solve, by using lyap as a left pre-
conditioner.
— For « = 0.1, apply GMRES to solve, by using lyap as a left
preconditioner.

(d) Explain the performance of the preconditioned GMRES in the
previous sub-problem using the theory developed earlier in the This exercise has many solutions.
course, preferably in terms explicit bounds involving the analytic
expressions for the eigenvalues (in the limit or for finite n).

Might be helpful: From theory of FrAlchet derivates of matrix func-
tions we know that for sufficiently small |E||, we have

(A-E)1=A1-ATTEA L O(|EP).

(e) Suppose all elements of G are zero except Gy,/4m2 = 1/h and
assume m € 4Z. Solve the equation efficiently using lyap (or This choice of G corresponds to the reg-
your implementation of Bartels-Stewart). This problem can and ularization of dirac impulse in the point
_(11
should here be solved without using gmres or similar. Compare (y) = 7).

with a naive approach.

Hint: Consider the problem as rank-one modification and read about the
Sherman-Morrison-Woodbury formula.

13. This exercise is about K-PIK described in [5]. You will not need to
read all the details of the paper to answer the questions.
(a) Suppose Vi € R™ is an orthogonal matrix and that B € span(V;)
where B € R". Prove that the approximation X = V; Y, V! gives a
residual Ry = AX; + X; AT + BBT which satisfies

Ry = Vil H Y V! + Vi H VL, + ViEET W

under the conditions used to derive [5, Equation (2.3)]. What is
H,; and E? What assumed about V;?
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(b) Suppose Vi in (a) is known. Derive a formula for Yy, which

gives X = Xj if the solution to the Lyapunov equation can be
expressed as X = VkYkaT.

(c) The approximation Xj = VkYkaT where V; e R™¥, k « n corre-
sponds to assuming that the exact solution X can be well approx-
imated with a matrix with low rank. Fortunately, it turns out that
the solution to the Lyapunov equation can be well approximated
with a low-rank matrix in many cases. This can be precisely de-
scribed theoretically by characterizing the singular values of X
in terms of s and the eigenvalues of A. For instance, postive
definite matrices and negative definite matrices result in a faster
singular value decay than indefinite matrices. We will in this ex-
ercise only verify the decay of the singular values of the solution
to Lyapunov numerically. Let A = Ag—tI be and B = b € R" be
generated as follows.

>> rand('seed’,0); nx=5;

>> AO=-gallery(’'wathen’, nx,nx);

>> n=length(A0); A=AO0-txspeye(n,n);

>> b=eye(n,1l);

Generate the following figure, where X is the solution to the Lya-

punov equation (computed with lyap or lyap®) and oy (X) can
be computed with svd(X).

10° | - — t=—10]
- - —t=5
1=0
~e-15
—0- =10

0 20 40 60 80
k

(d) Run K-PIK on the problem in (c) for the different values of t,

including the values of ¢ in the figure. Interpret the observations
in (c) and relate to how well K-PIK works, i.e., if it computes
an accurate solution and how many iterations (length(er2)) are
required to reach a specified tolerance. Increase the size of the
problem by increasing nx. What is the largest problem you can
solve with lyap and kpik with five seconds of computation time
(and not running out of memory).

Recall the low-rank approximation prop-
erty of singular values: For any matrix
C e R™",
i C—-Cxl2 = oxs1(C
cmin, I k2 = 051 (C)
rank(Cy )=k

where 0y is the kth singular value, or-
dered by decreasing magnitude. For
more information about the decay of sin-
gular values of the solution to Lyapunov
equation see references in [2].

The matlab code for the K-PIK algorithm
is available on http://www.dm.unibo.
it/~simoncin/software.html The code
is for a more general case. You can set
E=LE=speye(n,n)
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14. This exercise concerns a primitive (non-optimized) variant of kpik.
Let the matrix A € R"" be generated by

julia> function spectral_abscissa(A);
ev,xv=eigs(A,which=:LR);
I=indmax(real(ev));
return real(ev[I]);
end
julia> n=100; srand(0); # reset random seed
julia> A=sprandn(n,n,0.1);
julia> s=spectral_abscissa(A);
julia> alpha=1;
julia> A=A-speye(size(A,1))=*(alpha+s);
julia> new_s=spectral_abscissa(A)
-1.0000000000000373
julia> b=randn(n);

(a) Plot the singular value decay of the solution to the Lyapunov
equation with W = bb" for different a-values, and experimen-
tially determine a sufficient a such that there exists a rank 5 ap-
proximation of the Lyapunov equation which which is of order
of magnitude 10719 from the exact solution. In other words, de-
termine & such that there exists X with rank(X) <5 and

|X-X| <1071,

For this exercise you may use X=lyap (full(A),bxb’).

(b) kpik corresponds to a projection on the subspace

span(q1,...,qm) = Kms1(A,Db) (4.22a)
span(gy, ..., gm) = Kua(A7LD) (4.22b)

By computing the matrices Q = [q1,...,qm] and G = [g1,...,8m]
separately (with code you have computed previously in the course)
we can compute an orthogonal basis of span(uy, ..., u,-1) with
the commands

julia> P,H=arnoldi...
julia> G,H=arnoldi..
julia> U,R=qr(hcat(P,G));

A former student of SF2524 has made
kpik and several other matrix equation
methods available for julia: https:
//github.com/garrettthomaskth/
LargeMatrixEquations.jl

Constructing two separate Krylov sub-
spaces and subsequently merging them
with an call to gr() as we do in this
exercise, is in general not efficient, but
sufficient to obtain understanding of the
method in this case.

julia> U=U[:,find(abs(diag(R)) .> 100xeps())]; # remove duplicate b vector

Construct an approximate solution X = UPUT by using the Galerkin
approach. Plot the approximation error |X - X| as a function m
fora=1,2,...

(c) Compare the CPU-time your approach in (b) with the lyap for
different values of n:
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julia> @time lyap(full(A),bxb’);
0.022112 seconds (57 allocations: 749.859 KB)

For which parameter values « is the low-rank approach more
efficient? Can you beat lyap? (In a fully optimized version of
kpik this is possible, but for this equivalent but primitive variant,
it depends on implementation details and your computer)

Project suggestions
Graduate level projects related to Lyapunov equations:
¢ Alternating Direction Implicit (ADI)

¢ Bartels-Stewart algorithm for the Sylvester equation

* Balancing and balanced trunctation: Use the Lyapunov equation for
model order reduction

e Efficient algorithm for the discrete-time Lyapunov equation

¢ Complex Bartels-Stewart algorithm, derive algorithm based on the
complex Schur decomposition..
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