
Lecture notes in numerical linear algebra
Numerical methods for Lyapunov equations

Methods for Lyapunov equations

This chapter is about numerical methods for a particular type of equa-
tion expressed as a matrix equality.

The Lyapunov equation is the most com-
mon problem in the class of problems
called matrix equations. Other examples
of matrix equations: Sylvester equation,
Stein equation, Riccati equation.

Definition 4.0.1. Consider two square matrices A, W ∈ Rn×n. The problem
to find a square matrix X ∈ Rn×n such that

AX +XAT
= W (4.1)

is called the Lyapunov equation.

Traditionally driven by certain prob-
lems in system and control, the Lya-
punov equation now appears in very
large number of fields. The develop-
ments and improvements of numerical
methods have (and continues to be) rec-
ognized as important in numerical linear
algebra.

Different algorithms are suitable for different situations, depending
on the properties of A and W, and we work out two algorithms. For
dense A, the Bartels-Stewart algorithm is one of the most efficient ap-
proaches. The Bartels-Stewart algorithm is derived in Section 4.2. For
sparse and large-scale A and if W is of low-rank, Krylov-type methods
may be more efficient (Section 4.3).

In the field of systems and control
the equation (4.1) is sometimes called
the continuous-time Lyapunov equation,
for disambiguation with a different
matrix equation called the discrete-time
Lyapunov equation. Many of the algo-
rithms we present here can be adapted
for discrete-time Lyapunov equations.

Some applications are given in Section 4.4 and in the exercises.

A naive approach

Equation (4.1) is a linear system of equations, expressed in a some-
what unusual form. We will now see that (4.1) can be reformulated
as a linear system of equations in standard form, by using techniques
called vectorization and Kronecker products. If B ∈ Rn×m with columns
(b1, . . . , bm) = B, the vectorization operation is defined as the stacking
of the columns into a vector,

vec(B) ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1

⋮

bm

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ Rnm.

For two matrices A ∈ Rn×m and B ∈ Rj×k, the Kronecker product (⊗) is
In matlab, the vec-operation can be
computed with b=B(:) and the in-
verse operation can be computed with
B=reshape(b,n,length(b)/n). The Kro-
necker product is implemented in
kron(A,B).

defined as

A⊗ B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11B ⋯ a1mB
⋮ ⋱ ⋮

an1B ⋯ anmB

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ Rnj×mk.
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With this notation we can derive a very useful identity. For matrices
A, B, X of matching size, we have

vec(AXB) = (BT
⊗ A)vec(X) (4.2)

By vectorizing the Lyapunov equation (4.1) we have

Apply (4.2) twice, once with A = I
and once with B = I.

vec(AX +XAT
) = vec(W)

(I ⊗ A + A⊗ I)vec(X) = vec(W) (4.3)

The equation (4.3) is a linear system of equations on the standard
matrix-times-vector form. The connection between (4.1) and (4.3) is
useful, mostly for theoretical purposes. For instance, we can easily
characterize the existance and uniqueness of a solution.

Theorem 4.1.1 (Existance and uniqueness of solution). Let λi, i = 1, . . . , n
be the eigenvalues of A.

(i) The equation (4.1) has a unique solution X ∈ Rn×n if and only if

λi ≠ −λj, for all i, j = 1, . . . , n.

(ii) In particular, if A is strictly stable (that is λi < 0, for all i = 1, . . . , n),
then (4.1) has a unique solution.

The eigenvalues of a strictly stable ma-
trix have negative real part.Proof. This is an exercise.

A naive computational approach based on (4.3)

It is tempting to approach the problem of solving the Lyapunov equa-
tion (4.1) by applying a generic method for linear systems of equations
Bz = w to (4.3),

vec(X) = (I ⊗ A + A⊗ I)−1 vec(W). (4.4)

Suppose for simplicity that we have a numerical method that can
solve a linear system of equations with N withO(N3) operations (such
as a primitive implementation of Gaussian elimination). Since (4.3) is
a linear system with N = n2, the computational complexity of such an
approach is

A generic method for linear systems ap-
plied to (4.3), will have high computa-
tional complexity.

tnaive(n) = O(n6
). (4.5)

Some gains in complexity are feasable by using more advanced ver-
sions of Gaussian elimination to solve (4.3), or exploiting sparsity in
I ⊗ A + A ⊗ I. These improved variants will not be computationally
competitive for large n in comparison to the algorithms in the follow-
ing sections.

Although this approach is not competitive for large n, it can be
useful for small n, and (as we shall see below) as a component in a
numerical method for large n.
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Bartels-Stewart algorithm

The Bartels-Stewart algorithm, initially
presented for slightly more general
problems in [1] and is one of the lead-
ing methods for dense Lyapunov equa-
tions. It is implemented in matlab in the
command lyap.

From previous lectures we know that there are efficient algorithms that
can compute the Schur decomposition of a matrix. It turns out that
this can be used as a precomputation such that we obtain a triangular
Lyapunov equation. The resulting equation can be efficiently solved
in direct way with a finite number of operations, by using a type of
substitution.

For efficiency reasons, we here work
with the real Schur form, where in con-
trast to the complex Schur form, the com-
plex triangular matrix is replaced by a
real block triangular matrix with blocks
of size one or two as in (4.6)

Recall that all real matrices have a real Schur decomposition: There
exists matrices Q and T such that

A = QTQT ,

where Q is an orthogonal matrix and T ∈ Rn×n a block-triangular ma-
trix, where

T =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

T11 ⋯ T1,r

⋱ ⋮

Tr,r

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.6)

and Tjj ∈ Rnj×nj , nj ∈ {1, 2}, j = 1, . . . , r and ∑r
j=1 nj = n.

We multiply the Lyapunov equation (4.1) from the right and left
with Q and QT respectively,

Use QQT = I.QTWQ = QT AXQ +QTXAQ = (4.7a)

= QT AQQTXQ +QTXQQT AQ = (4.7b)

= TY +YTT (4.7c)

where Y = QTXQ. We introduce matrices and corresponding blocks
such that

QTWQ = [
C11 C12

C21 C22
] , Y = [

Z11 Z12

Z21 Z22
] , T = [

R11 R12

0 R22
] , (4.8)

where the blocks are such that Z22, C22, Trr = R22 ∈ Rnr×nr (the size of
the last block of T). This triangularized problem can now be solved
with (what we call) backward substitution, similar to backward sub-
stitution in Gaussian elimination. By separating the four blocks in the
equation (4.7), we have four equations

General idea: Solve (4.9b)-(4.9d) explic-
itly. Insert the solution into (4.9a) and
repeat the process for the smaller equa-
tion which is a Lyapunov equation with
unknown Z11 ∈ R(n−nr)×(n−nr).

C11 = R11Z11 + R12Z21 + Z11RT
11 + Z12RT

12 (4.9a)

C12 = R11Z12 + R12Z22 + Z12RT
22 (4.9b)

C21 = R22Z21 + Z21RT
11 + Z22RT

12 (4.9c)

C22 = R22Z22 + Z22RT
22. (4.9d)

Due to the choice of block sizes, the last equation of size nr × nr, which
can be solved explicitly since nr ∈ {1, 2}:
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• If nr = 1, the equation (4.9d) is scalar and we obviously have

Z22 =
C22

2R22
. (4.10)

The eigenvalues of R22 are eigenvalues
of A. Therefore the small Lyapunov
equation (4.9d) has a unique solution if
(4.1) has a unique solution.

• If nr = 2 we can still solve (4.9d) cheaply since it is a 2× 2 Lyapunov
equation. For instance, we can use the naive approach (4.4), i.e.,

vec(Z22) = (I ⊗ R22 + R22 ⊗ I)−1 vec(C22). (4.11)

Insert the now known matrix Z22 into (4.9b) and transposed (4.9c),
yields

C̃12 ∶= C12 − R12Z22 = R11Z12 + Z12RT
22 (4.12a)

C̃21 ∶= CT
21 − R12ZT

22 = R11ZT
21 + ZT

21RT
22. (4.12b)

The equations (4.12) have a particular structure that can be used to
directly compute the solutions Z12 and Z21. An explicit procedure for
the construction of the solution (4.12) is given by the following result.

Lemma 4.2.1. Consider two matrices C, D partitioned in blocks of size n1 ×

np, n2 × np, . . ., np−1 × np according to

X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X1

⋮

Xp−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ RN×nr , D =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

D1

⋮

Dp−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ RN×np

where Cj, Dj ∈ Rnj×np and N = ∑
p−1
j=1 nj. Let U ∈ Rn×n be a block triangular

The block triangular matrix U is

U =
⎡⎢⎢⎢⎢⎢⎣

U11 ⋯ U1,p−1
⋱ ⋮

Up−1,p−1

⎤⎥⎥⎥⎥⎥⎦

where Ui,j ∈ R
ni×nj .

matrix partitioned as X and D. For any R22 ∈ Rnp×np , we that if X satisfies
the equation

D = UX +XRT
22, (4.13)

then Xj, p − 1, p − 2, . . . , 1 satisfy

UjjXj +XjR
T
22 = D̃j (4.14)

where D̃j ∶= Dj −∑
p−1
i=j+1 UjiXi.

Similar to the approach we used to compute Z22, Xj can expressed
and computed explicitly from a small linear system

vec(Xj) = (I ⊗ Tjj + R22 ⊗ I)−1 vec(W̃j) (4.15)

By solving (4.15) for j = p − 1, . . . , 1, for both equations (4.12)a and
(4.12)b we obtain solutions Z12 and Z21. Insertion of (the now known
solutions) Z12, Z21 and Z22 into (4.9a) gives a new Lyapunov equation
of size n − np and the process can be repeated for the smaller matrix.
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Compute the real Schur decompositon [Q,T]=schur(A) and
establish n1, . . . , nr, T11, T1r, . . . , Trr with partitioning according to
(4.6)

Set C = QTWQ.
Set m = n.
for k=r,. . . ,1 do

Set m = m − nk

Partition the matrix C with C11, C12, C21, C22 according to (4.8),
with C22 ∈ Rnk×nk .

Set R22 = Tkk, and

R11 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

T11 ⋯ T1,k−1

⋱ ⋮

Tk−1,k−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, R12 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

T1,k

⋮

Tk−1,k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Solve (4.9d) for Z22 ∈ Rnk×nk using (4.11) or (4.10).
Compute C̃12, C̃21 using (4.12)a and (4.12)b
Solve (4.12)a and (4.12)b for Z12 ∈ Rm×nk and Z21 ∈ Rnk×m

using equation (4.14) and (4.15) with p = k.
Store Y(1 ∶ m, m + (1 ∶ nk)) = Z12

Store Y(m + (1 ∶ nk), 1 ∶ m) = Z21

Store Y(m + (1 ∶ nk), m + (1 ∶ nk)) = Z22

Set C ∶= C11 − R12Z21 − Z12RT
12.

end
Return solution X = QYQT .

Algorithm 1: The Bartels-Stewart algorithm for the Lyapunov
equation

Complexity of Bartels-Stewart algorithm

Earlier in the course we learned that the QR-algorithm could be tuned
to perform well. In practice the total complexity is usually roughly
estimated by O(n3). Since the other parts of the algorithm (see ex-
ercise) has complexity O(n3), the total complexity of Bartels-Stewart
algorithm is

tBartels−Stewart(n) = O(n3
).

This is a tremendous improvement in comparison to the naive ap-
proach (4.5), estimated by O(n6).

Low-rank methods for large and sparse problems

Although the Bartels-Stewart is both efficient and robust for large
dense problems, there is very little room to use sparsity and other
structures. We now discuss a class of approaches which are suitable
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for certain Lyapunov equations, under the condition that W = wwT and
A is a stable matrix (and large and sparse). Under these conditions,
we now show that the solution can be accurately approximated with a
low-rank matrix.

Low-rank approximability has been ex-
tended to other conditions on the matri-
ces, e.g., when W has a small rank.Low-rank approximability of solution

In other parts of the course we have shown that if A is a stable matrix,
we can express the solution to the Lyapunov equation with an integral
of matrix exponentials

X = −∫

∞

0
exp(tA)W exp(tAT

), . (4.16)

The low-rank property of X is now illustrated by constructing an ex-
Recall now that a Gauss-quadrature
gives a way to approximate integrals by
a weighted sum. For appropriately se-
lected evaluation points t1, . . . , tm and
weights ω1, . . . , ωm we can approximate

∫
∞

0
f (t) dt ≈

m
∑
i=1

ωi f (ti)

plicit approximation of X by applying Gauss-quadrature to the indef-
inite integral of the matrix in (4.16). More precisely, we now construct
an approximation X̃ ≈ X by setting

X̃ = −
m
∑
i=1

ωi exp(ti A)W exp(ti A
T
), (4.17)

where (ω1, t1), . . . , (ωm, tm) are appropriately selected points and weights.
We have the following important observation if W = wwT : Every

term in (4.17) is a rank-one matrix. Hence, a quadrature formula with
m points results in an explicit way to construct an approximation X̃
which has

rank(X̃) ≤ m. (4.18)

The approximation X̃ is only accurate if the Gauss-quadrature ap-
proximation is accurate. We know from the theory of Gauss-quadrature
that weights and points can be selected to yield accurate approxima-
tions for scalar-valued Gauss-quadrature. The following result show
how the Gauss-quadrature error for the matrix function can be charac-
terized.

For simplicity assume A is symmetric such that A = VΛVT where
V is an orthogonal matrix and Λ = diag(λ1, . . . , λn). We now get an
explicit expression for the error

X − X̃

= V (∫

∞

0
exp(tΛ)w̃w̃T exp(tΛ) dt −

m
∑
i=1

ωi exp(tiΛ)w̃w̃T exp(tiΛ))VT

= VZmVT

where w̃ = VTw. Moreover, the individual elements in Zm can be
bounded by

∣(Zm)j,k∣ ≤ ∣∫

∞

0
et(λj+λk) −

m
∑
1

ωie
t(λj+λk)∣∣w̃jw̃k∣ (4.19)
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We immediately identify a condition which leads to a small approxi-
mation error. The approximation error for X̃ is small if we simultane-
ously approximate integrals

∫

∞

0
et(λj+λk) dt

for all j and k. We summarize this in a theorem.

Theorem 4.3.1. Suppose A is symmetric and stable and suppuse W is sym-
metric and has rank one. Let (t1, ω1), . . . , (tm, ωm) be a quadrature method
and define

εm ∶= max
j,k

∣∫

∞

0
et(λj+λk) dt −

m
∑
1

ωie
t(λj+λk)∣.

Then, there exists a matrix X̃ such that

rank(X̃) ≤ m

∥X − X̃∥max ≤ εm∥w∥
2

A specific choice of a quadrature formulas leads to specific expres-
sions for the error. One specific choice (used for instance by Grasedyck)
leads to an error estimate of the type

∥X − X̃∥ ≤ αe−
√

m.

Galerkin approach to the Lyapunov equation

We saw above that there exists a low-rank approximation of X under
certain conditions. Although we were able to derive explicit formulas
for X̃ in the previous section, these formulas are typically not used
in the computation. Rather than evaluating the formulas for the low-
rank approximation, we say that we directly try to compute a low-rank
solution by trying to determine U ∈ Rn×m and P ∈ Rm×m such that

X̃ = UPUT ,

where U is an orthogonal matrix.
Hence, we wish to have,

AX̃ + X̃AT
= AUPUT

+UPUT AT
≈ W.

The most common procedure to find (and compute) an approximation
directly is by the application of a Galerkin condition. More precisely,
given U we compute P by imposing the Galerkin condition and sim-
plifying

UT (AX̃ + X̃AT)U = UTWU

UT AX̃U +UX̃ATU = UTWU

UT AUPUTU +UTUPUT ATU = UTWU

UT AUP + PUT ATU = UTWU

ÃP + PÃT
= W̃
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where Ã = UT AU. This is a small dense Lyapunov equation which can
be solved directly, for instance with the Bartels-Stewart method.

The matrix U corresponds to a basis of a search subspace (or projec-
tion space). The success of the approach highly depends on the choice
of U and many different search subspaces have been proposed in the
literature.

In the paper by V. Simoncini [5] it is proposed to use a so called
extended Krylov subspace. It illustrates the exploitation of low-rank
in methods for matrix equations.

Applications

The research and developments on numerical methods for Lyapunov
equations was initially driven by applications in the field of systems
and control. There are now applications appearing in many com-
pletely different fields. Some specific applications are listed below.

The so-called infinite-time gramian of continuous time linear dy-
namical system is the solution to a Lyapunov equation. They can be
used

• to study stability, controllability and observability;

• to compute the H2-norm which is important in for instance con-
troller design;

• to solve PDEs on tensorized domains;

• to compute bounds and characterisations of transient effects of ODEs;

• to design an optimal control; and

• to compute a reduced order model with balanced truncation.

The Lyapunov equation also appears as a part in numerical methods
for stability radius, and in the study of robust stability of large sparse
time-delay systems.

A discretization of Helmholtz equation ∆u = f on a square do-
main with homogeneous boundary conditions using finite difference
with uniform grid, leads to a linear system of equations (Dxx ⊗ I + I ⊗
Dxx)u = b. This is a vectorized Lyapunov equation. It can consequently
be solved efficiently with, e.g., Bartels-Stewart method. A Lyapunov
equation approach can be useful for more advanced discretizations of
more complicated PDEs, by using a Lyapunov equation solver in the
preconditioning.

There are also applications in numerical methods for matrix func-
tions, tensor approximation problems (used for instance in computa-
tional methods for the electronic Schrödinger equation), . . .
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Lyapunov equations are used in various situations at KTH. They
appear in the courses SF2842 - Geometric Control Theory, FEL3500 - In-
troduction to Model Order Reduction (Dept. Automatic control) and EL2620
- Nonlinear Control. It is also used in research, e.g., the research of the
author of these lecture notes and researchers at KTH Mechanics de-
partment use Lyapunov equations to carry out approximations of flow
ftp://www2.mech.kth.se/pub/shervin/review.pdf.

Other matrix equations and other methods

There are a considerable number of matrix equations appearing in
various fields, which can often be considered extensions of the Ly-
puanov equation, e.g., the discrete-time Lyapunov equation, Sylvester
equation generalized Lyapunov equation [6], or Ricatti equation, delay
Lyapunov equations or time-dependent Lyapunov equations (e.g. by
KTH-researcher Henrik Sandberg [4]). There are many differende nu-
merical methods apart from those mentioned here, e.g., Hammerlings
method [3] (which attractive in combination with model order reduc-
tion and was later improved by Sorensen). There are methods which
consider the Lyapunov equation as optimization problem in a differ-
ential geometric setting, more precisely optimization over Riemannian
manifolds (in particular [7] which has been recognized with various
prizes and award).

For further reading see the survey paper

http://www.dm.unibo.it/~simoncin/matrixeq.pdf

and the wiki for model order reduction

http://morwiki.mpi-magdeburg.mpg.de
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Exercises

Skeleton code for the Bartels-Stewart
method: http://www.math.kth.se/

~eliasj/NLA/lyap0_skeleton.m

1. Implement the naive approach as well as the Bartels-Stewart method
based on the skeleton code on the course web page. Compare the
methods by using simulations for random matrices. Illustrate (with
figure) the dependence of the computation time on n. What is the
observed complexity?

2. Prove (4.2).

3. Show that

vec(uvT
) = v⊗ u.

for any u, v ∈ Rn.

4. Consider the problem

A = [
0 a
1 0

] , W = [
1 2
2 1

] .

For which values of a does the Lyapunov equation have a unique
solution?

Hint for a short proof: Let
{Ai},{Bj},{Ck},{D`} form bases
of the matrix spaces associated with
A, B, C, D. A function f (A, B, C, D)
which is linear in all parameters is
f (A, B, C, D) ≡ 0, if f (Ai , Bj, Ck , D`) = 0
for all combinations of basis vectors.

5. Prove the following identity: Any matrices A, B, C, D of compatible
size satisfy

(A⊗ B)(C⊗D) = (AC)⊗ (BD).

6. Prove Theorem 4.1.1.
Hint: Use previous exercise to first show that if vj, vi are two eigenvectors
of A, then vj ⊗ vi is an eigenvector of I ⊗ A + A⊗ I.

7. Prove Lemma 4.2.1.

8. Derive the computational complexity of computing X1, . . . , Xp−1

with Lemma 4.2.1. You may here assume that n1 = ⋯ = np = 2.

9. Show that if A and W are symmetric, then a solution X to (4.1) is
symmetric, if (4.1) has a unique solution.

10. Derive a more efficient algorithm for the case when A and W are
symmetric, by first showing that (4.12)a and (4.12)b have the same
solution. Illustrate that it works and that it is more efficient using
the code from exercise 1. (More difficult optional: Also use that T
in the Schur decomposition of A is a diagonal matrix.)

11. Consider the following dynamical system
In systems and control, this is called
a single-input single-output (SISO) dy-
namical system.ẋ(t) = Ax(t)+ bu(t)

y(t) = cTx(t),

where b, c ∈ Rn. Suppose A is stable, i.e., λ(A) ∈ C−.
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a) The observability gramian of this system is defined as

Pc(t) ∶= ∫
t

0
exp(ATt)ccT exp(At) dt

and the observability gramian

Po(t) ∶= ∫
t

0
exp(At)bbT exp(ATt) dt.

Show that the limits

Po(t) → Po,∞ ∈ Rn×n as t →∞

Pc(t) → Pc,∞ ∈ Rn×n as t →∞

exist and satisfy certain Lyapunov equations.

b) The so-called H2-norm of the dynamical system is defined as The H2-norm is a measure of sensitivity
of the system, and can be used in con-
troller synthesis when designing control
systems which should be insensitive to
additive (stochastic) white-noise.

∥Σ∥H2 ∶=

√
1

2π ∫
∞

−∞
∣cT(iωI − A)−1b∣2 ds.

Show that
∥Σ∥

2
H2

=
1

2π ∫
∞

0
y(t)2 dt

c) Show that the H2 norm can be computed from either controlla-
bility or observability gramian by showing In the matlab control toolbox, in partic-

ular in the function norm(sys,2), a Lya-
punov equation is solved with Bartels-
Stewart algorithm. The H2-norm is sub-
sequently computed directly from the
relation (4.20).

∥Σ∥
2
H2

= cT Po,∞c (4.20a)

= bT Pc,∞b (4.20b)

12. Consider the partial differential-equation

∆u + g(x, y)u = f (x, y) for (x, y) ∈ Ω

u(x, y) = 0 for (x, y) ∈ ∂Ω,

where Ω = [0, 1]× [0, 1].

(a) Derive the (second order) finite-difference discretization for the
grid xi = hi, i = 1, . . . , m, yj = hj, j = 1, . . . , m and h = 1/(m + 1).
Derive matrices Dxx, G, F ∈ Rn×n such that the discretization can
be expressed as Here ○ denotes the Hadamard product,

also known as the direct or element-wise
product, in matlab .*DxxU +UDxx +G ○U = F, (4.21)

for Ui,j ≈ u(xi, yj).

(b) Derive explicit expression for the eigenvalues of I ⊗Dxx +Dxx ⊗

I in the limit m → ∞, and show that I ⊗ Dxx + Dxx ⊗ I is nonsin-
gular in the limit.
(Optional: The eigenvalues have closed forms also for finite m.
Compute these and show that I ⊗ Dxx + Dxx ⊗ I is non-singular
for any m.)
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(c) Let g(x, y) = α
√

(x − 1
2)

2 + (y − 1
2)

2 and f (x, y) = ∣x − y∣. Solve the
problem in the following ways, and report computation time as
a function of system size: Use only sparse matrices and do not

store any matrices as full matrices. Use
spdiags and see help spdiags.

– For α = 0, solve the sparse linear system corresponding to the
vectorization of (4.21) with the matlab command \

– Compare with solving (4.21) with the matlab command lyap

also with α = 0.
– For α = 1, solve the sparse linear system corresponding to the

vectorization of (4.21) with the matlab command \.
– For α = 1, apply GMRES to solve the sparse linear system cor-

responding to the vectorization of (4.21) (use matlab command
gmres)

– For α = 1, apply GMRES to solve, by using lyap as a left pre-
conditioner.

– For α = 0.1, apply GMRES to solve, by using lyap as a left
preconditioner.

This exercise has many solutions.
(d) Explain the performance of the preconditioned GMRES in the

previous sub-problem using the theory developed earlier in the
course, preferably in terms explicit bounds involving the analytic
expressions for the eigenvalues (in the limit or for finite n).

Might be helpful: From theory of FrÃl’chet derivates of matrix func-
tions we know that for sufficiently small ∥E∥, we have

(A − E)
−1

= A−1
− A−1EA−1

+O(∥E∥
2
).

(e) Suppose all elements of G are zero except Gm/4,m/2 = 1/h and
assume m ∈ 4Z. Solve the equation efficiently using lyap (or This choice of G corresponds to the reg-

ularization of dirac impulse in the point
(x, y) = ( 1

4 , 1
2 ).

your implementation of Bartels-Stewart). This problem can and
should here be solved without using gmres or similar. Compare
with a naive approach.

Hint: Consider the problem as rank-one modification and read about the
Sherman-Morrison-Woodbury formula.

13. This exercise is about K-PIK described in [5]. You will not need to
read all the details of the paper to answer the questions.

(a) Suppose Vk ∈ Rn×k is an orthogonal matrix and that B ∈ span(V1)

where B ∈ Rn. Prove that the approximation Xk = VkYkVT
k gives a

residual Rk = AXk +Xk AT + BBT which satisfies

Rk = Vk+1HkYkVT
k +VkYk HT

k VT
k+1 +VkEETVk.

under the conditions used to derive [5, Equation (2.3)]. What is
Hk and E? What assumed about Vk?
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(b) Suppose Vk in (a) is known. Derive a formula for Yk, which
gives X = Xk if the solution to the Lyapunov equation can be
expressed as X = VkYkVT

k .

(c) The approximation Xk = VkYkVT
k where Vk ∈ Rn×k, k ≪ n corre-

sponds to assuming that the exact solution X can be well approx-
imated with a matrix with low rank. Fortunately, it turns out that Recall the low-rank approximation prop-

erty of singular values: For any matrix
C ∈ Rn×n,

min
Ck∈Rn×n

rank(Ck)=k

∥C −Ck∥2 = σk+1(C)

where σk is the kth singular value, or-
dered by decreasing magnitude. For
more information about the decay of sin-
gular values of the solution to Lyapunov
equation see references in [2].

the solution to the Lyapunov equation can be well approximated
with a low-rank matrix in many cases. This can be precisely de-
scribed theoretically by characterizing the singular values of X
in terms of s and the eigenvalues of A. For instance, postive
definite matrices and negative definite matrices result in a faster
singular value decay than indefinite matrices. We will in this ex-
ercise only verify the decay of the singular values of the solution
to Lyapunov numerically. Let A = A0 − tI be and B = b ∈ Rn be
generated as follows.

>> rand(’seed’,0); nx=5;

>> A0=-gallery(’wathen’,nx,nx);

>> n=length(A0); A=A0-t*speye(n,n);

>> b=eye(n,1);

Generate the following figure, where X is the solution to the Lya-
punov equation (computed with lyap or lyap0) and σk(X) can
be computed with svd(X).

0 20 40 60 80

10
−15

10
−10

10
−5

10
0

k

σ
k
(X

)

 

 

t=−10

t=−5

t=0

t=5

t=10

The matlab code for the K-PIK algorithm
is available on http://www.dm.unibo.

it/~simoncin/software.html The code
is for a more general case. You can set
E=LE=speye(n,n)

(d) Run K-PIK on the problem in (c) for the different values of t,
including the values of t in the figure. Interpret the observations
in (c) and relate to how well K-PIK works, i.e., if it computes
an accurate solution and how many iterations (length(er2)) are
required to reach a specified tolerance. Increase the size of the
problem by increasing nx. What is the largest problem you can
solve with lyap and kpik with five seconds of computation time
(and not running out of memory).
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14. This exercise concerns a primitive (non-optimized) variant of kpik.
Let the matrix A ∈ Rn×n be generated by

julia> function spectral_abscissa(A);

ev,xv=eigs(A,which=:LR);

I=indmax(real(ev));

return real(ev[I]);

end

julia> n=100; srand(0); # reset random seed

julia> A=sprandn(n,n,0.1);

julia> s=spectral_abscissa(A);

julia> alpha=1;

julia> A=A-speye(size(A,1))*(alpha+s);

julia> new_s=spectral_abscissa(A)

-1.0000000000000373

julia> b=randn(n);

A former student of SF2524 has made
kpik and several other matrix equation
methods available for julia: https:

//github.com/garrettthomaskth/

LargeMatrixEquations.jl

(a) Plot the singular value decay of the solution to the Lyapunov
equation with W = bbT for different α-values, and experimen-
tially determine a sufficient α such that there exists a rank 5 ap-
proximation of the Lyapunov equation which which is of order
of magnitude 10−10 from the exact solution. In other words, de-
termine α such that there exists X̃ with rank(X̃) ≤ 5 and

∥X − X̃∥ ≤ 10−10.

For this exercise you may use X=lyap(full(A),b*b’).

(b) kpik corresponds to a projection on the subspace

span(q1, . . . , qm) = Km+1(A, b) (4.22a)

span(g1, . . . , gm) = Km+1(A−1, b) (4.22b)

By computing the matrices Q = [q1, . . . , qm] and G = [g1, . . . , gm] Constructing two separate Krylov sub-
spaces and subsequently merging them
with an call to qr() as we do in this
exercise, is in general not efficient, but
sufficient to obtain understanding of the
method in this case.

separately (with code you have computed previously in the course)
we can compute an orthogonal basis of span(u1, . . . , u2m−1) with
the commands

julia> P,H=arnoldi...

julia> G,H=arnoldi..

julia> U,R=qr(hcat(P,G));

julia> U=U[:,find(abs(diag(R)) .> 100*eps())]; # remove duplicate b vector

Construct an approximate solution X̃ = UPUT by using the Galerkin
approach. Plot the approximation error ∥X̃ −X∥ as a function m
for α = 1, 2, ....

(c) Compare the CPU-time your approach in (b) with the lyap for
different values of n:
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julia> @time lyap(full(A),b*b’);

0.022112 seconds (57 allocations: 749.859 KB)

For which parameter values α is the low-rank approach more
efficient? Can you beat lyap? (In a fully optimized version of
kpik this is possible, but for this equivalent but primitive variant,
it depends on implementation details and your computer)

Project suggestions

Graduate level projects related to Lyapunov equations:

• Alternating Direction Implicit (ADI)

• Bartels-Stewart algorithm for the Sylvester equation

• Balancing and balanced trunctation: Use the Lyapunov equation for
model order reduction

• Efficient algorithm for the discrete-time Lyapunov equation

• Complex Bartels-Stewart algorithm, derive algorithm based on the
complex Schur decomposition..
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