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The Chordal Loewner Energy



Chordal Loewner Evolution

H

gt

0 Wt

H \ gt

g(t)

• Chord γ in (H; 0;∞). Denote γt := γ([0; t]).
• Mapping-out functions gt : H \ γt → H satisfying,

gt(z) = z + a(t)
z

+ o( 1
z
) as z → ∞. Parametrize γ s.t. a(t) = 2t:

• The driving function, Wt := gt(γ(t)), encodes γ via the chordal

Loewner differential equation:

@tgt(z) =
2

gt(z)−Wt
; g0(z) = z; (1)

• Solving (1) for an arbitrary continuous function t 7→ Wt gives family of

locally growing compact sets (Kt)t≥0:
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Schramm-Loewner Evolution

• Chordal Schramm-Loewner evolution, SLEκ, in (H; 0;∞) is the

random curve driven by Wt =
√
κBt , κ ≥ 0, where Bt standard

Brownian motion [Schramm ’00]. A.s. simple when κ ≤ 4.

• Chordal SLE in (D; a; b) is defined by conformal mapping

(D; a; b) → (H; 0;∞).

• SLEκ is the scaling limit of interfaces in planar critical lattice models

for several values of κ > 0:

• SLE0 is the hyperbolic geodesic in (D; a; b). (W ≡ 0  γ = iR+.)

3



Schramm-Loewner Evolution

Chordal SLEκ satisfies the large deviation principle as κ→ 0+

“P[SLEκ stays close to γ] ≈ exp
“
− I(D;a;b)(γ)

κ

”
; as κ→ 0 + ”

where I(D;a;b) is the chordal Loewner energy.

D

a

b

g

[Wang ’19, Peltola-Wang ’23, Guskov ’23, Abuzaid-Peltola ’24]
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Chordal Loewner Energy

The chordal Loewner energy of a chord γ in (H; 0;∞) is defined by

I(H;0;∞)(γ) =
1

2

Z ∞

0

(Ẇt)
2dt;

if W is absolutely continuous, and I(H;0;∞)(γ) = ∞ otherwise [Wang ’19].

• The unique minimizer of I(H;0;∞) is SLE0, that is iR+.

• I(D;a;b) is defined on chords in (D; a; b) by conformal mapping

(D; a; b) → (H; 0;∞):

• Other description(s)?
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Dirichlet Energy Formula

Let Σ = C \ R+ and consider a chord γ in (Σ; 0;∞):

Theorem (Wang ’19)

The chordal Loewner energy can be expressed as,

I(Σ;0;∞)(γ) =
1

π

Z
Σ\γ

|∇ log |h′||2dz2;

where h : Σ \ γ→ Σ \ R− is conformal and h(∞) = ∞.

h
⌃ \ g ⌃ \ R�
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Loop Loewner Energy

The loop Loewner energy of a Jordan curve γ rooted at ∞ on Ĉ is

IL(γ) =
1

π

Z
Ĉ\γ

|∇ log |h′||2dz2:

hC \ g C \ R

• IL is invariant of the root [Rohde-Wang ’21].

• Link to Teichmüller theory: IL coincides (up to a multiplicative

constant) with the universal Liouville action [Wang ’19].

• The class of finite Loewner energy loops = The class of

Weil-Petersson quasicircles [Wang ’19].

• Loewner energy also shows up in n → ∞ limit of partition functions of

Coulomb gas on a Jordan curve/domain

[Johansson ’22, Johansson-Viklund ’23].
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SLEκ(ρ)



SLEκ(ρ)

• Chordal SLEκ(ρ), ρ ∈ R, in (H; 0;∞), with force point z0 ∈ H \ {0},
is the random curve whose driving function satisfies the SDE:

dWt = Re
ρ

Wt − zt
dt +

√
κdBt ; dzt =

2

zt −Wt
dt;

where zt = gt(z0): Defined up to τ = limε→0 inf{t : |Wt − zt | ≤ ε}:
• κ = 0:

2r = �16 �8 �6 �5 �4 �3�3:5 �2:5 �2 �1 0 10
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Radial Loewner Evolution

1

Wt = eiwt

D \ gt D

g(t)
gt

• Slit γ in (D; 1; 0), parametrized by conformal radius.

• Mapping-out functions gt : D \ γt → D, gt(0) = 0, g ′
t(0) = et :

• Radial Loewner differential equation,

@tgt(z) = gt(z)
Wt + gt(z)

Wt − gt(z)
; g0(z) = z;

where Wt = e iwt = gt(γ(t)):

• wt =
√
κBt  radial SLEκ in (D; 1; 0).

9



SLEκ(ρ)

• Radial SLEκ(ρ), in (D; 1; 0), with force point z0 = e iv0 , v0 ∈ (0; 2π) is

the random curve whose driving function Wt = e iwt satisfies the SDE:

dwt =
ρ

2
cot
“wt − vt

2

”
dt +

√
κdBt ; dvt = cot

“vt − wt

2

”
dt;

where e ivt = gt(e
iv0):

• First appearance: SLE8=3(ρ), ρ > −2, is the outer boundary of sets

satisfying a conformal restriction property

[Lawler-Schramm-Werner ’03].

• Main player in imaginary geometry: generalized flow-line of GFF

[Miller-Sheffield ’16, ’17].

• Coordinate change property: An SLEκ(ρ) in (D; a; b) with force point

c , is an SLEκ(κ− 6− ρ) in (D; a; c) with force point b

[Schramm-Wilson ’05].
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The ρ-Loewner Energy



Chordal ρ-Loewner Energy

• Fix ρ ∈ R and z0 ∈ H \ {0}. The chordal ρ-Loewner energy of a

simple curve γ starting at 0 in H \ {z0} is defined as

I(H;0;∞)
ρ;z0 (γ) =

1

2

Z T

0

“
Ẇt − Re

ρ

Wt − zt

”2
dt;

if Wt is absolutely continuous, and I
(H;0;∞)
ρ;z0 (γ) = ∞ otherwise.

• Consistent with Freidlin–Wentzell theory

(dWt = Re ρ

Wt−zt
dt +

√
κdBt).

• If z0 ∈ H and T < τ (i.e. inft≤T |Wt − zt | > 0)

I(H;0;∞)
ρ;z0 (γ) = I(H;0;∞)(γ) + ρ log

sin θT
sin θ0

− ρ(8 + ρ)
8

log
|g ′

T (z0)|yT
y0

;

where yT = Im(zT ) and θT = arg(zT ):
• If T < τ, then I

(H;0;∞)
ρ;z0 (γ) < ∞ iff I(H;0;∞)(γ) < ∞.

• Similar formula when z0 ∈ R \ {0}.

0

z0

0

z0

0

z0

0

z0
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Radial ρ-Loewner energy

• Fix ρ ∈ R and v0 ∈ (0; 2π). The radial ρ-Loewner energy of a simple

curve starting at 1 in D \ {0} is defined as

I
(D;1;0)
ρ;e iv0

(γ) =
1

2

Z T

0

“
ẇt −

ρ

2
cot
“wt − vt

2

””2
dt;

if wt is absolutely continuous, and I
(D;1;0)
ρ;e iv0

(γ) = ∞ otherwise.

• I
(D;a;b)
ρ;c is defined via conformal map to H or D.

• Coordinate change property:

I(D;a;b)
ρ;c (γ) = I

(D;a;c)
−6−ρ;b(γ):

• If T < τ, then I
(D;1;0)
ρ;e iv0

(γ) < ∞ iff I(D;1;e
iv0 )(γ) < ∞.
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Minimizers

The unique minimizer of the ρ-Loewner energy is the SLE0(ρ) curve.

2r = �16 �8 �6 �5 �4 �3�3:5 �2:5 �2 �1 0 10

Three phases:

• When ρ ∈ (−∞;−4] : SLE0(ρ) hits the force point.
• When ρ ∈ (−4;−2): SLE0(ρ) separates the reference point and force

point.
• When ρ ∈ [−2;∞) : SLE0(ρ) approaches the reference point.
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Large Deviation Principle

Fix ρ > −2, a ∈ @D, b ∈ D \ {a}; and c ∈ @D \ {a; b}:
Theorem (K ’24)

The SLEκ(ρ) in (D; a; b) with force point c satisfies a large deviation

principle as κ→ 0+, with respect to the Hausdorff topology on the

space of simple curves γ in (D; a; b), with good rate function I
(D;a;b)
ρ;c .

ab

c

ab

c

• Proof follows the same outline as in [Peltola-Wang ’23]: LDP on

driving process on [0; T ]  LDP on finite time curves  LDP on

infinite time curves.
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Dirichlet Energy Formulas



Radial Case

g

z0

h

h

h(z0) = 0

h(1) = 1
h0(1) = 1

0

Lemma (K ’24)

If I(Σ;0;∞)(γ) := I(Σ;0;∞)(γ ∪ η) < ∞, then

|h′(z0)|η := lim
ε→0+

|h(η(ε))− h(z0)|
|η(ε)− z0|

exists and is positive.
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Radial Case

Theorem (K ’24)

Fix ρ > −2. Let γ0 denote the SLE0(ρ) in (Σ; 0; z0) with force point at

∞, and let h0 be the corresponding conformal map. A simple curve γ in

(Σ; 0; z0) has finite ρ-Loewner energy w.r.t. ∞ if and only if

D(log |h′|) < ∞, in which case,

I(Σ;0;z0)
ρ;∞ (γ) = D(log |h′|)−D(log |(h0)′|)− (ρ+ 6)(ρ− 2)

8
log |H′(z0)|η

where H = (h0)−1 ◦ h, and D(f ) = 1
π

R
|∇f |2dz2:

g

z0
h 0

g0
z0

h0

Proof uses coordinate change property, integrated formula, and the

Dirichlet energy formula for the chordal Loewner energy.

16



Radial Case

Theorem (K ’24)

Fix ρ > −2. Let γ0 denote the SLE0(ρ) in (Σ; 0; z0) with force point at

∞, and let h0 be the corresponding conformal map. A simple curve γ in

(Σ; 0; z0) has finite ρ-Loewner energy w.r.t. ∞ if and only if

D(log |h′|) < ∞, in which case,

I(Σ;0;z0)
ρ;∞ (γ) = D(log |h′|)−D(log |(h0)′|)− (ρ+ 6)(ρ− 2)

8
log |H′(z0)|η

where H = (h0)−1 ◦ h, and D(f ) = 1
π

R
|∇f |2dz2:

Proof uses coordinate change property, integrated formula, and the

Dirichlet energy formula for the chordal Loewner energy.

16



Chordal Case

• SLE0(ρ), ρ > −2, with force point x0 > 0, is a “mapped out ray” of

angle απ; where α = α(ρ) = ρ+2
ρ+4 ∈ (0; 1):

0

aı

0 x0

SLE0(r)

• Curves of finite ρ-Loewner energy, ρ > −2, approach ∞ within cones

around angle απ

0 x0
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Chordal Case

For a chord γ in (Σ; 0;∞), let h : Σ \ γ→ Σ \ R− be conformal with

h(∞) = ∞: We define, whenever the limit exists,

Dβ(log |h′|) = lim
R→∞

„
1

π

Z
B(0;R)

|∇ log |h′||2dz2−cβ logR

«
; cβ =

(1− 2β)2

2β(1− β) :

Theorem (K ’24)

Fix ρ > −2 and x0 > 0. If γ is a chord in (Σ; 0;∞), such that there

exists T for which γ([T;∞)) is the ρ-Loewner energy optimal extension

of γT , then

I
(Σ;0;∞)

ρ;x+
0

(γ) = Dα(log |h′|)−Dα(log |(h0)′|)−
ρ(ρ+ 4)

4
log |H′(x0)|;

where H is the conformal map from the upper component of Σ \ γ to

the upper component of Σ \ γ0 fixing ∞ and x0 and satisfying

H′(∞) = 1.
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Determinants of Laplacians



Determinants of Laplacians

On smooth compact Riemannian surfaces with boundary, (M; g), we may

define the ζ-regularized determinant of the Dirichlet Laplace-Beltrami

operator, detζΔ(M;g) [Ray-Singer ’71]:

• If @M ̸= ?, then 0 < λ1 ≤ λ2 ≤ :::; limn→∞ λn → ∞:

• Define ζ(s) =
P∞

n=1 λ
s
n; for Res > 1. Analytic cont. to nbhd of 0.

• We define detζΔ(M;g) := e−ζ
′(0) justified by

ζ
′(s) = −

∞X
n=1

log λnλ
−s
n ; Res > 1  “ζ′(0) = − log(

∞Y
n=1

λn)”:

• detζΔ(M;g) can be defined in the same way for curvilinear polygonal

domains (boundary is p.w. smooth with corner angles in (0;∞))

[Aldana-Kirsten-Rowlett ’20, K ’24].
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Determinants of Laplacians

Let K be a compact subset of M and set (whenever the RHS is defined)

H(M;g)(K) := log detζΔ(M;g) −
X
Ci

log detζΔ(Ci ;g)

where the sum runs over connected components of M \K.

Theorem (Wang ’19)

Let γ be a C∞ Jordan curve on S2, and let g be a metric conformally

equivalent to the spherical metric g0, that is, g = e2σg0, σ ∈ C∞(S2).

Then,

IL(γ) = 12(H(S2;g)(γ)−H(S2;g)(S
1)):
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Determinants of Laplacians

In [Peltola-Wang ’23] it is proved that the multichordal Loewner

energy can be expressed as

IαD;x1;:::;x2n(γ) = 12(H(D;g)(γ)−H(D;g)(γ
0));

for a smooth and finite energy multichord γ with link-pattern α and

g = e2σdz2, σ ∈ C∞(D), where γ0 is the geodesic multichord with the

same link-pattern.

g0
g

x1

x2

x3
x4

x5

x6

x7

x8

x1

x2

x3
x4

x5

x6

x7

x8

21



Determinants of Laplacians

Fix ρ > −2, a; c ∈ @D and b ∈ D. Let γ be a curve in (D; a; b) and let

η = η(γ) denote the hyperbolic geodesic from b to c in D \ γ. The
ρ-Loewner potential of γ with respect to a metric g = e2σdz2, is

defined as

H(D;a;b)
ρ;c (γ; g) := βH(D;g)(γ) + (1− β)H(D;g)(γ ∪ η);

where β = (2−ρ)(ρ+6)
12 ; whenever the RHS is well-defined.

a
b

c

ab

c

g

h

g

h

• If ρ = 0, then β = 1.

• If ρ = 2, then β = 0. (ρ = 2 corresponds to one arm of a 2-radial or

2-chordal, and η is the “optimal second arm”.)
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Determinants of Laplacians

Proposition (K ’24)

For all g ∈ G(a) and γ1; γ2 ∈ X (g; a; b; c; ρ) we have that

I(D;a;b)
ρ;c (γ1)− I(D;a;b)

ρ;c (γ2) = 12(H(D;a;b)
ρ;c (γ1; g)−H(D;a;b)

ρ;c (γ2; g)):

• G(a) consists of metrics g = e2σdz2, σ ∈ C∞(D \ {a}) for which there

is a coordinate φ : U → D \ Γ in a nbhd of a, for which

φ
∗g = e2σ̃(w)dw2 and σ̃ extends smoothly to both sides of the slit Γ:

• X (g; a; b; c; ρ) consists of C∞-smooth curves γ in (D; a; b) which are

smoothly attached at a, and
• if b ∈ D, then γ ∪ η is C∞-smooth.
• if b ∈ @D, then there exists T s.t. γ([T;∞)) is the ρ-optimal

extension of γT .
• If b ∈ @D or b = 0 and a and c are antipodal, then there exists

g ∈ G(a) so that the minimizer γ0 belongs to X (g; a; b; c; ρ):

f

�

U
a
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f

�

U
a
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Thank you for your attention!
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