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The Chordal Loewner Energy



Chordal Loewner Evolution

v(t) L

IHI\Yt H
0 W,

Chord v in (H; 0, 00). Denote yv; := y([0, t]).
Mapping-out functions g; : H \ y; — H satisfying,

gi(z)=z+ @ + 0(1) as z — co. Parametrize y s.t. a(t) = 2t.

The driving function, W; := g:(y(t)), encodes v via the chordal
Loewner differential equation:
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Chordal Loewner Evolution
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+ Chord v in (H; 0, 00). Denote v; := ([0, t]).
* Mapping-out functions g; : H \ v, — H satisfying,
gi(z)=z+ @ + 0(1) as z — co. Parametrize y s.t. a(t) = 2t.
* The driving function, W; := g:(y(t)), encodes y via the chordal
Loewner differential equation:
dele) = s @)=z (1
* Solving (1) for an arbitrary continuous function t — W; gives family of
locally growing compact sets (K¢)¢>o-



Schramm-Loewner Evolution

¢ Chordal Schramm-Loewner evolution, SLE,, in (H; 0, o) is the
random curve driven by W, = /kB;, k > 0, where B, standard
Brownian motion [Schramm '00]. A.s. simple when k < 4.

* Chordal SLE in (D; a, b) is defined by conformal mapping
(D; a, b) — (H; 0, ).

* SLE is the scaling limit of interfaces in planar critical lattice models

for several values of k > 0.

* SLEy is the hyperbolic geodesic in (D; a, b). (W =0 ~» y=IiR".)



Schramm-Loewner Evolution

Chordal SLE, satisfies the large deviation principle as k — 0+

I(D;a,b)(Y)>

“P[SLE, stays close to y] ~ exp < - ,ask = 0+"

where I(Pia:b) is the chordal Loewner energy.

D

[Wang '19, Peltola-Wang '23, Guskov '23, Abuzaid-Peltola '24]



Chordal Loewner Energy

The chordal Loewner energy of a chord y in (H; 0, c0) is defined by

(H;0,00) 1o 2

JEO0) () — = W,)2dt,
2
0

(H;O,oo)(

if W is absolutely continuous, and I Y) = oo otherwise [Wang '19].

+ The unique minimizer of I(M:0%) is S| E; that is /R

« I(P:2b) is defined on chords in (D; a, b) by conformal mapping
(D; a, b) — (H; 0, ).
¢ Other description(s)?



Dirichlet Energy Formula

Let ¥ = C\ R" and consider a chord v in (X;0, ).
Theorem (Wang '19)

The chordal Loewner energy can be expressed as,
: 1
10 (y) = 1 [ [Vlog||2d2
TJs\y

where h: X\ vy — X \ R~ is conformal and h(c0) = co.

Z\Y/h\ Z\R_




Loop Loewner Energy

The loop Loewner energy of a Jordan curve y rooted at co on Cis

1
IL(Y) = E/@\ |Vlog|/-,/||2d22.
Y




Loop Loewner Energy

The loop Loewner energy of a Jordan curve y rooted at co on Cis
L 1 2 4.2
I'y)= = | [Viog|H|Pdz.
T Je\y

« I is invariant of the root [Rohde-Wang '21].

* Link to Teichmiiller theory: I" coincides (up to a multiplicative
constant) with the universal Liouville action [Wang '19].

* The class of finite Loewner energy loops = The class of
Weil-Petersson quasicircles [Wang '19].

* Loewner energy also shows up in n — oo limit of partition functions of
Coulomb gas on a Jordan curve/domain
[Johansson '22, Johansson-Viklund '23].



SLE,(p)




SLE,(p)

* Chordal SLE,(p), p € R, in (H;0, c0), with force point z, € H \ {0},
is the random curve whose driving function satisfies the SDE:

p 2

th:ReW dt“y‘\/Ech dZt:

t — Zt z: — W,

dt,

where z; = g¢(20). Defined up to T = lim._,ginf{t : W, — z| < ¢}.

ek =0:

— 216 =8 -6 =5 =4 =815 =3 =215 =2 = 0 2 10



Radial Loewner Evolution

Wt = eiwt
8t

D\Yr D

« Slit v in (D; 1,0), parametrized by conformal radius.
* Mapping-out functions g; : D\ y; = D, g:(0) =0, g;(0) = e".
* Radial Loewner differential equation,

W + g:(2)

Orgi(z) = gt(z)m, g(z) =z,

where W, = e/t = g,(y(t)).
* w; = 4/kB; ~ radial SLE, in (D;1,0).



SLE,(p)

Radial SLE, (p), in (ID; 1,0), with force point zy = e/, vy € (0, 2m) is
the random curve whose driving function W, = et satisfies the SDE:

We — Vi

dw; = & cot ( )dt+idBe,  dv; = cot (X ) d,
where eVt = g;(e'").

First appearance: SLEg/3(p), p > —2, is the outer boundary of sets
satisfying a conformal restriction property
[Lawler-Schramm-Werner '03].

Main player in imaginary geometry: generalized flow-line of GFF
[Miller-Sheffield '16, '17].

Coordinate change property: An SLE,(p) in (D; a, b) with force point
¢, is an SLE.(k — 6 — p) in (D; a, ¢) with force point b
[Schramm-Wilson '05].
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The p-Loewner Energy




Chordal p-Loewner Energy

* Fixp € R and z € H \ {0}. The chordal p-Loewner energy of a

simple curve vy starting at 0 in H \ {z} is defined as

_ 1 /7 /. p 2
(H;0,00) P _
L0 (y) = 2 /0 (W — RepP—) at,

t — Zt

(H;0,00)

if W, is absolutely continuous, and Iz '~ ’(¥) = oo otherwise.

20
0
?f ZO
0

20
0
QPZO
0
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Chordal p-Loewner Energy

* Fixp € R and z € H \ {0}. The chordal p-Loewner energy of a
simple curve vy starting at 0 in H \ {z} is defined as

_ 1 /7 /. p 2
I(0) (y) = = / W, — R dt,
pa (=35 |, (w W, —zt)

if W, is absolutely continuous, and I{=>°)(y) = 0o otherwise.
* Consistent with Freidlin—Wentzell theory

(dW; = RegP—dt + KdB,).
clfzpeHand T <7 (i.e. infecr [We — 2| > 0)

sinbr _ p(8+p), ler(zo)lyr
- - og ,
sin By 8 Yo

I(H;O,oo)(,y) — I(H;O,oo)(Y) + plog

P, 20

where yr = Im(zr) and 87 = arg(zr).
« If T <, then Iﬂf’w)(y) < oo iff IH0)(y) < oo.
¢ Similar formula when z5 € R\ {0}.



Radial p-Loewner energy

* Fix p € R and v € (0, 21t). The radial p-Loewner energy of a simple
curve starting at 1 in D\ {0} is defined as

T 2
(D;IYO) - 1 ( Ve = E (Wt > Vt))
Ip'e,-VO (v)= 5 /0 Wy 5 cot 5 dt,

if w; is absolutely continuous, and Iémz,.lvgo)(y) = 00 otherwise.

Ié,Dc;a'b) is defined via conformal map to H or ID.

» Coordinate change property:

. D;
1220 (y) = 1929 (v).

“ If T < 7, then 1% (v) < oo iff I (y) < co.

eivo
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Minimizers

The unique minimizer of the p-Loewner energy is the SLEy(p) curve.

p—= 16 28 =6 =5 1Y HS¥5 =3 =215 =2 =1 0 2 10
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Minimizers

The unique minimizer of the p-Loewner energy is the SLEy(p) curve.
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Minimizers

The unique minimizer of the p-Loewner energy is the SLEq(p) curve.

)

o= 216 =8 =6 =5 =4

Three phases:
* When p € (—o00, —4] : SLEq(p) hits the force point.
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Minimizers

The unique minimizer of the p-Loewner energy is the SLEq(p) curve.

o

Three phases:

* When p € (—o00, —4] : SLEq(p) hits the force point.
* When p € (—4, —2): SLEy(p) separates the reference point and force
point.
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Minimizers

The unique minimizer of the p-Loewner energy is the SLEq(p) curve.

p= E2E=i0210

Three phases:

* When p € (—o00, —4] : SLEq(p) hits the force point.

* When p € (—4, —2): SLEy(p) separates the reference point and force
point.

* When p € [-2,0) : SLEy(p) approaches the reference point.
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Large Deviation Principle

Fix p> —2,a€ 0D, be D)\ {a}, and c € dD \ {a, b}.

Theorem (K '24)

The SLE((p) in (ID; a, b) with force point c satisfies a large deviation
principle as k — 0+, with respect to the Hausdorff topology on the

space of simple curves v in (D; a, b), with good rate function IS,DE""").

Cc Cc

* Proof follows the same outline as in [Peltola-Wang '23]: LDP on
driving process on [0, T] ~» LDP on finite time curves ~» LDP on

infinite time curves.
14



Dirichlet Energy Formulas




Radial Case

h
Zy h(z) =0
h(o0) = 0
T] Y H(o0) =1

Lemma (K '24)

If IE02) () := I09)(y Um) < oo, then

o JHE) — hz)
|7 (20)ln = sL0+ In(e) — zo|

exists and is positive.
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Radial Case

Theorem (K ’24)

Fixp > —2. Let ¥° denote the SLEy(p) in (X;0, z9) with force point at
00, and let h° be the corresponding conformal map. A simple curve y in
(X;0, z0) has finite p-Loewner energy w.r.t. oo if and only if
D(log |H'|) < o0, in which case,

. —2
IEE07)(x) = Dllog ) — Dog (1)) — PN =2 iog ()

p,00 n

where H = (h°)"* o h, and D(f) = L [ |Vf[?dZ>.

h 0 ho

Zo/\j‘— - = 2(3/"7
Y0

Y
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Radial Case

Theorem (K ’24)

Fixp > —2. Let ¥° denote the SLEy(p) in (X;0, z9) with force point at
00, and let h° be the corresponding conformal map. A simple curve y in
(X;0, z0) has finite p-Loewner energy w.r.t. oo if and only if
D(log |H'|) < o0, in which case,

. —2
IEE07)(x) = Dllog ) — Dog (1)) — PN =2 iog ()

p,00 n

where H = (h°)"* o h, and D(f) = L [ |Vf[?dZ>.

Proof uses coordinate change property, integrated formula, and the
Dirichlet energy formula for the chordal Loewner energy.
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Chordal Case

* SLEq(p), p > —2, with force point xo > 0, is a “mapped out ray” of

angle art, where o = ap) = % (0,1).

SLEo(p)

V\O(. s

0 0 X0

* Curves of finite p-Loewner energy, p > —2, approach oo within cones

around angle am

17



Chordal Case

For a chord v in (X;0,00), let h: X\ vy — X\ R~ be conformal with
h(o0) = co. We define, whenever the limit exists,

1 1—2 2
DB(IOg |hl|) = R||_>moo (1‘[ /B(O R) \V|Og ‘h’||2dz2_cB |Og R) , CB — ﬂ

- 2B(1-B)

Theorem (K '24)

Fixp > —2 and xo > 0. If y is a chord in (¥;0, o), such that there
exists T for which v([T, 00)) is the p-Loewner energy optimal extension
of YT, then

(%;0,00)
&

(1) = Dallog ) — Da(log (1Y) ~ P 10g |1 (),

where H is the conformal map from the upper component of ¥ \ y to
the upper component of ¥\ y° fixing co and xo and satisfying
H'(c0) = 1.

18



Determinants of Laplacians




Determinants of Laplacians

On smooth compact Riemannian surfaces with boundary, (M, g), we may
define the {-regularized determinant of the Dirichlet Laplace-Beltrami
operator, dety Ay g) [Ray-Singer '71]:

e If OM #£ &, then 0 <A < Ay < .., limy00 Ay — 00.

* Define {(s) = 3 52| A3, for Res > 1. Analytic cont. to nbhd of 0.

* We define detz Ay ,g) := e~%() justified by

U(s)=—> loghA,°, Res>1 ~ “T(0)=—log(][)"
n=1 n=1

¢ dety A(m,) can be defined in the same way for curvilinear polygonal
domains (boundary is p.w. smooth with corner angles in (0, c0))
[Aldana-Kirsten-Rowlett '20, K '24].
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Determinants of Laplacians

Let K be a compact subset of M and set (whenever the RHS is defined)
Himg)(K) := log detz Am,g) ZlogdetgA(c £)
Ci
where the sum runs over connected components of M\ K.
Theorem (Wang '19)

Let y be a C*® Jordan curve on S?, and let g be a metric conformally

equivalent to the spherical metric gy, that is, g = e*°gy, o € C®(S?).
Then,

IM(y) = 12(H(s2,6) (¥) — H(s2.6)(Sh)).

20



Determinants of Laplacians

In [Peltola-Wang '23] it is proved that the multichordal Loewner
energy can be expressed as

I en (V) = 122(Hm.0) (V) = Hio,g) (7)),

for a smooth and finite energy multichord ¥ with link-pattern o and
g = e*°dz? o € C®(D), where 70 is the geodesic multichord with the
same link-pattern.

X3 X3

p oy
X2 X2

X5 X5

X1 ' X1
Xp X8 X6 ‘ X8

X7 X7
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Determinants of Laplacians

Fix p > —2, a,c € 8D and b € D. Let y be a curve in (D; a, b) and let
1 = n(y) denote the hyperbolic geodesic from b to ¢ in D\ y. The
p-Loewner potential of y with respect to a metric g = €>°dz?, is
defined as

Hé@éa’b)(Y; g) =BHme(v) + (1 =B)Hmg(yUn),

where B = w, whenever the RHS is well-defined.

Cc C
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Determinants of Laplacians

Fix p > —2, a,c € 8D and b € D. Let y be a curve in (D; a, b) and let
1 = n(y) denote the hyperbolic geodesic from b to ¢ in D\ y. The
p-Loewner potential of y with respect to a metric g = e2°dz?, is
defined as

Hé@éa’b)(\(; g) =BHme(v) + (1 =B)Hmg(yUn),
where B = w, whenever the RHS is well-defined.

* Ifp=0, thenp =1.
* If p=2, then B=10. (p = 2 corresponds to one arm of a 2-radial or
2-chordal, and n is the “optimal second arm”.)
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Determinants of Laplacians

Proposition (K '24)
For all g € G(a) and v1,v2 € X(g, a, b, ¢, p) we have that

12 1) = I (x2) = 12(HE (i ) = H P (v2:8)).

P p,C P.c

* G(a) consists of metrics g = e*°dz?, o € C®(D \ {a}) for which there
is a coordinate ¢ : U — D\ I in a nbhd of a, for which
9*g = e dw? and & extends smoothly to both sides of the slit T

/“P\
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Determinants of Laplacians

Proposition (K '24)
For all g € G(a) and v1,v2 € X(g, a, b, ¢, p) we have that

120 (yp) — IE2P) (y,) = 12(HP20) (v1; g) — HE2P) (v2: g).

P p.C

* G(a) consists of metrics g = e*°dz?, o € C®(D \ {a}) for which there
is a coordinate ¢ : U — D\ I in a nbhd of a, for which
9*g = e dw? and & extends smoothly to both sides of the slit T

« X(g,a, b, c,p) consists of C*®-smooth curves y in (ID; a, b) which are
smoothly attached at a, and
* if be D, then y Un is C*-smooth.
¢ if b € OD, then there exists T s.t. y([T, 00)) is the p-optimal

extension of yr.

* If be 0D or b =0 and a and c are antipodal, then there exists

g € G(a) so that the minimizer Y° belongs to X(g, a, b, c, p).

23



Thank you for your attention!
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