The p-**Loewner Energy**

Large deviations, minimizers, and alternative descriptions

Ellen Krusell, KTH Royal Institute of Technology Supervisor: Fredrik Viklund 29 November, 2024. Helsinki-Stockholm Probability and Mathematical Physics Days

The Chordal Loewner Energy

Chordal Loewner Evolution

- Chord γ in $(\mathbb{H}; 0, \infty)$. Denote $\gamma_t := \gamma([0, t])$.
- Mapping-out functions $g_t : \mathbb{H} \setminus \gamma_t \to \mathbb{H}$ satisfying, $g_t(z) = z + \frac{a(t)}{z} + o(\frac{1}{z})$ as $z \to \infty$. Parametrize γ s.t. a(t) = 2t.
- The driving function, W_t := g_t(γ(t)), encodes γ via the chordal Loewner differential equation:

$$\partial_t g_t(z) = \frac{2}{g_t(z) - W_t}, \quad g_0(z) = z, \tag{1}$$

Chordal Loewner Evolution

- Chord γ in $(\mathbb{H}; 0, \infty)$. Denote $\gamma_t := \gamma([0, t])$.
- Mapping-out functions $g_t : \mathbb{H} \setminus \gamma_t \to \mathbb{H}$ satisfying, $g_t(z) = z + \frac{a(t)}{z} + o(\frac{1}{z})$ as $z \to \infty$. Parametrize γ s.t. a(t) = 2t.
- The driving function, W_t := g_t(γ(t)), encodes γ via the chordal Loewner differential equation:

$$\partial_t g_t(z) = \frac{2}{g_t(z) - W_t}, \quad g_0(z) = z, \tag{1}$$

 Solving (1) for an arbitrary continuous function t → W_t gives family of locally growing compact sets (K_t)_{t≥0}.

- Chordal Schramm-Loewner evolution, SLE_κ, in (⊞; 0, ∞) is the random curve driven by W_t = √κB_t, κ ≥ 0, where B_t standard Brownian motion [Schramm '00]. A.s. simple when κ ≤ 4.
- Chordal SLE in (D; a, b) is defined by conformal mapping (D; a, b) → (𝔄; 0, ∞).
- SLE_{κ} is the scaling limit of interfaces in planar critical lattice models for several values of $\kappa>0.$
- SLE₀ is the hyperbolic geodesic in (*D*; *a*, *b*). ($W \equiv 0 \rightsquigarrow \gamma = i\mathbb{R}^+$.)

Schramm-Loewner Evolution

Chordal SLE_κ satisfies the large deviation principle as $\kappa\to 0+$

$$``\mathbb{P}[\mathsf{SLE}_{\kappa} \text{ stays close to } \gamma] \approx \exp\Big(-\frac{I^{(D;a,b)}(\gamma)}{\kappa}\Big), \text{ as } \kappa \to 0 + "$$

where $I^{(D;a,b)}$ is the chordal Loewner energy.

[Wang '19, Peltola-Wang '23, Guskov '23, Abuzaid-Peltola '24]

The chordal Loewner energy of a chord γ in $(\mathbb{H};0,\infty)$ is defined by

$$I^{(\mathbb{H};0,\infty)}(\gamma)=\frac{1}{2}\int_0^\infty (\dot{W}_t)^2 dt,$$

if W is absolutely continuous, and $I^{(\mathbb{H};0,\infty)}(\gamma) = \infty$ otherwise [Wang '19].

- The unique minimizer of $I^{(\mathbb{H};0,\infty)}$ is SLE₀, that is $i\mathbb{R}^+$.
- *I*^(D;a,b) is defined on chords in (*D*; *a*, *b*) by conformal mapping (*D*; *a*, *b*) → (𝔅; 0, ∞).
- Other description(s)?

Dirichlet Energy Formula

Let $\Sigma = \mathbb{C} \setminus \mathbb{R}^+$ and consider a chord γ in $(\Sigma; 0, \infty)$.

Theorem (Wang '19)

The chordal Loewner energy can be expressed as,

$$I^{(\Sigma;0,\infty)}(\gamma) = rac{1}{\pi} \int_{\Sigma\setminus\gamma} |\nabla \log |h'||^2 dz^2,$$

where $h: \Sigma \setminus \gamma \to \Sigma \setminus \mathbb{R}^-$ is conformal and $h(\infty) = \infty$.

Loop Loewner Energy

The loop Loewner energy of a Jordan curve γ rooted at ∞ on $\hat{\mathbb{C}}$ is

$$I^{L}(\gamma) = rac{1}{\pi} \int_{\hat{\mathbb{C}}\setminus\gamma} |
abla \log |h'||^2 dz^2.$$

Loop Loewner Energy

The loop Loewner energy of a Jordan curve γ rooted at ∞ on $\hat{\mathbb{C}}$ is

$$I^{L}(\mathbf{\gamma}) = rac{1}{\pi} \int_{\hat{\mathbb{C}} \setminus \mathbf{\gamma}} |
abla \log |h'| |^2 dz^2.$$

- I^L is invariant of the root [Rohde-Wang '21].
- Link to **Teichmüller theory**: I^L coincides (up to a multiplicative constant) with the **universal Liouville action** [Wang '19].
- The class of finite Loewner energy loops = The class of Weil-Petersson quasicircles [Wang '19].
- Loewner energy also shows up in $n \to \infty$ limit of partition functions of **Coulomb gas** on a Jordan curve/domain [Johansson '22, Johansson-Viklund '23].

$\textbf{SLE}_{\kappa}(\rho)$

$\textbf{SLE}_{\kappa}(\rho)$

• Chordal $SLE_{\kappa}(\rho)$, $\rho \in \mathbb{R}$, in $(\mathbb{H}; 0, \infty)$, with force point $z_0 \in \overline{\mathbb{H}} \setminus \{0\}$, is the random curve whose driving function satisfies the SDE:

$$dW_t = \operatorname{Re} rac{
ho}{W_t - z_t} dt + \sqrt{\kappa} dB_t, \quad dz_t = rac{2}{z_t - W_t} dt,$$

where $z_t = g_t(z_0)$. Defined up to $\tau = \lim_{\epsilon \to 0} \inf\{t : |W_t - z_t| \le \epsilon\}$. • $\kappa = 0$:

Radial Loewner Evolution

- Slit γ in (D; 1, 0), parametrized by conformal radius.
- Mapping-out functions $g_t : \mathbb{D} \setminus \gamma_t \to \mathbb{D}$, $g_t(0) = 0$, $g'_t(0) = e^t$.
- Radial Loewner differential equation,

$$\partial_t g_t(z) = g_t(z) rac{W_t + g_t(z)}{W_t - g_t(z)}, \quad g_0(z) = z,$$

where $W_t = e^{iw_t} = g_t(\gamma(t))$.

• $w_t = \sqrt{\kappa}B_t \rightsquigarrow \text{radial SLE}_{\kappa} \text{ in } (\mathbb{D}; 1, 0).$

$\textbf{SLE}_{\kappa}(\rho)$

 Radial SLE_κ(ρ), in (D; 1, 0), with force point z₀ = e^{iv₀}, v₀ ∈ (0, 2π) is the random curve whose driving function W_t = e^{iw_t} satisfies the SDE:

$$dw_t = \frac{\rho}{2}\cot\left(\frac{w_t - v_t}{2}\right)dt + \sqrt{\kappa}dB_t, \quad dv_t = \cot\left(\frac{v_t - w_t}{2}\right)dt,$$

where $e^{iv_t} = g_t(e^{iv_0})$.

- First appearance: SLE_{8/3}(ρ), $\rho > -2$, is the outer boundary of sets satisfying a conformal restriction property [Lawler-Schramm-Werner '03].
- Main player in imaginary geometry: generalized flow-line of GFF [Miller-Sheffield '16, '17].
- Coordinate change property: An $SLE_{\kappa}(\rho)$ in (D; a, b) with force point c, is an $SLE_{\kappa}(\kappa 6 \rho)$ in (D; a, c) with force point b [Schramm-Wilson '05].

The $\rho\text{-Loewner}$ Energy

Chordal p-Loewner Energy

Fix ρ ∈ ℝ and z₀ ∈ H
 \ {0}. The chordal ρ-Loewner energy of a simple curve γ starting at 0 in H \ {z₀} is defined as

$$I_{\rho,z_0}^{(\mathbb{H};0,\infty)}(\gamma) = \frac{1}{2} \int_0^T \left(\dot{W}_t - \operatorname{Re} \frac{\rho}{W_t - z_t} \right)^2 dt,$$

if W_t is absolutely continuous, and $I_{\rho,z_0}^{(\mathbb{H};0,\infty)}(\gamma) = \infty$ otherwise.

Chordal p-Loewner Energy

Fix ρ ∈ ℝ and z₀ ∈ H \ {0}. The chordal ρ-Loewner energy of a simple curve γ starting at 0 in H \ {z₀} is defined as

$$I_{\rho,z_0}^{(\mathbb{H};0,\infty)}(\gamma) = \frac{1}{2} \int_0^T \left(\dot{W}_t - \operatorname{Re} \frac{\rho}{W_t - z_t} \right)^2 dt,$$

if W_t is absolutely continuous, and $I_{\rho,z_0}^{(\mathbb{H};0,\infty)}(\gamma) = \infty$ otherwise.

- Consistent with Freidlin–Wentzell theory $(dW_t = \operatorname{Re} \frac{\rho}{W_t - z_t} dt + \sqrt{\kappa} dB_t).$
- If $z_0 \in \mathbb{H}$ and $T < \tau$ (i.e. $\inf_{t \leq T} |W_t z_t| > 0$)

$$I_{\rho,z_0}^{(\mathbb{H};0,\infty)}(\gamma)=I^{(\mathbb{H};0,\infty)}(\gamma)+\rho\log\frac{\sin\theta_{\mathcal{T}}}{\sin\theta_0}-\frac{\rho(8+\rho)}{8}\log\frac{|g_{\mathcal{T}}'(z_0)|y_{\mathcal{T}}}{y_0},$$

where $y_T = \text{Im}(z_T)$ and $\theta_T = \arg(z_T)$.

- If $T < \tau$, then $I^{(\mathbb{H};0,\infty)}_{\rho,z_0}(\gamma) < \infty$ iff $I^{(\mathbb{H};0,\infty)}(\gamma) < \infty$.
- Similar formula when $z_0 \in \mathbb{R} \setminus \{0\}$.

Radial p-Loewner energy

Fix ρ ∈ ℝ and ν₀ ∈ (0, 2π). The radial ρ-Loewner energy of a simple curve starting at 1 in D \ {0} is defined as

$$I_{\rho,e^{i\nu_0}}^{(\mathbb{D};1,0)}(\gamma) = \frac{1}{2} \int_0^T \left(\dot{w}_t - \frac{\rho}{2} \cot\left(\frac{w_t - v_t}{2}\right) \right)^2 dt,$$

if w_t is absolutely continuous, and $I_{\rho,e^{i\nu_0}}^{(\mathbb{D};1,0)}(\gamma) = \infty$ otherwise.

- $I^{(D;a,b)}_{\rho,c}$ is defined via conformal map to \mathbb{H} or \mathbb{D} .
- Coordinate change property:

$$I^{(D;a,b)}_{
ho,c}(\gamma) = I^{(D;a,c)}_{-6-
ho,b}(\gamma).$$

• If $T < \tau$, then $I^{(\mathbb{D};1,0)}_{\rho,e^{i\nu_0}}(\gamma) < \infty$ iff $I^{(\mathbb{D};1,e^{i\nu_0})}(\gamma) < \infty$.

Three phases:

• When $\rho\in(-\infty,-4]:\mathsf{SLE}_0(\rho)$ hits the force point.

Three phases:

- When $\rho\in(-\infty,-4]:\mathsf{SLE}_0(\rho)$ hits the force point.
- When $\rho \in (-4,-2) :$ $\mathsf{SLE}_0(\rho)$ separates the reference point and force point.

Three phases:

- When $\rho\in(-\infty,-4]:\mathsf{SLE}_0(\rho)$ hits the force point.
- When $\rho \in (-4,-2) :$ $\mathsf{SLE}_0(\rho)$ separates the reference point and force point.
- When $\rho \in [-2,\infty)$: $\mathsf{SLE}_0(\rho)$ approaches the reference point.

Large Deviation Principle

Fix $\rho > -2$, $a \in \partial \mathbb{D}$, $b \in \overline{\mathbb{D}} \setminus \{a\}$, and $c \in \partial \mathbb{D} \setminus \{a, b\}$.

Theorem (K '24)

The $SLE_{\kappa}(\rho)$ in $(\mathbb{D}; a, b)$ with force point c satisfies a large deviation principle as $\kappa \to 0+$, with respect to the Hausdorff topology on the space of simple curves γ in $(\mathbb{D}; a, b)$, with good rate function $I_{\rho,c}^{(\mathbb{D}; a, b)}$.

 Proof follows the same outline as in [Peltola-Wang '23]: LDP on driving process on [0, T] → LDP on finite time curves → LDP on infinite time curves.

Dirichlet Energy Formulas

Radial Case

 z_{0} γ $h(z_{0}) = 0$ $h(\infty) = \infty$ $h'(\infty) = 1$

Lemma (K '24) If $I^{(\Sigma;0,\infty)}(\gamma) := I^{(\Sigma;0,\infty)}(\gamma \cup \eta) < \infty$, then $|h'(z_0)|_{\eta} := \lim_{\epsilon \to 0+} \frac{|h(\eta(\epsilon)) - h(z_0)|}{|\eta(\epsilon) - z_0|}$

exists and is positive.

Radial Case

Theorem (K '24)

Fix $\rho > -2$. Let γ^0 denote the SLE₀(ρ) in (Σ ; 0, z_0) with force point at ∞ , and let h^0 be the corresponding conformal map. A simple curve γ in (Σ ; 0, z_0) has finite ρ -Loewner energy w.r.t. ∞ if and only if $\mathcal{D}(\log |h'|) < \infty$, in which case,

$$I_{\rho,\infty}^{(\Sigma;0,z_0)}(\gamma) = \mathcal{D}(\log|h'|) - \mathcal{D}(\log|(h^0)'|) - \frac{(\rho+6)(\rho-2)}{8}\log|H'(z_0)|_{\eta}$$

where $H = (h^0)^{-1} \circ h$, and $\mathcal{D}(f) = \frac{1}{\pi} \int |\nabla f|^2 dz^2$.

Radial Case

Theorem (K '24)

Fix $\rho > -2$. Let γ^0 denote the SLE₀(ρ) in (Σ ; 0, z_0) with force point at ∞ , and let h^0 be the corresponding conformal map. A simple curve γ in (Σ ; 0, z_0) has finite ρ -Loewner energy w.r.t. ∞ if and only if $\mathcal{D}(\log |h'|) < \infty$, in which case,

$$\begin{split} I^{(\Sigma;0,z_0)}_{\rho,\infty}(\gamma) &= \mathcal{D}(\log |h'|) - \mathcal{D}(\log |(h^0)'|) - \frac{(\rho+6)(\rho-2)}{8} \log |H'(z_0)|_{\eta} \\ \text{where } H &= (h^0)^{-1} \circ h, \text{ and } \mathcal{D}(f) = \frac{1}{\pi} \int |\nabla f|^2 dz^2. \end{split}$$

Proof uses coordinate change property, integrated formula, and the Dirichlet energy formula for the chordal Loewner energy.

Chordal Case

• SLE₀(ρ), $\rho > -2$, with force point $x_0 > 0$, is a "mapped out ray" of angle $\alpha \pi$, where $\alpha = \alpha(\rho) = \frac{\rho+2}{\rho+4} \in (0, 1)$.

- Curves of finite $\rho\text{-Loewner energy},\,\rho>-2,$ approach ∞ within cones around angle $\alpha\pi$

Chordal Case

For a chord γ in $(\Sigma; 0, \infty)$, let $h: \Sigma \setminus \gamma \to \Sigma \setminus \mathbb{R}^-$ be conformal with $h(\infty) = \infty$. We define, whenever the limit exists,

$$\mathcal{D}_{\beta}(\log |h'|) = \lim_{R \to \infty} \left(\frac{1}{\pi} \int_{B(0,R)} |\nabla \log |h'||^2 dz^2 - c_{\beta} \log R \right), \quad c_{\beta} = \frac{(1-2\beta)^2}{2\beta(1-\beta)}$$

Theorem (K '24)

Fix $\rho > -2$ and $x_0 > 0$. If γ is a chord in $(\Sigma; 0, \infty)$, such that there exists T for which $\gamma([T, \infty))$ is the ρ -Loewner energy optimal extension of γ_T , then

$$I_{\rho,x_0^+}^{(\Sigma;0,\infty)}(\gamma) = \mathcal{D}_{\boldsymbol{\alpha}}(\log |h'|) - \mathcal{D}_{\boldsymbol{\alpha}}(\log |(h^0)'|) - \frac{\rho(\rho+4)}{4}\log |H'(x_0)|,$$

where H is the conformal map from the upper component of $\Sigma \setminus \gamma$ to the upper component of $\Sigma \setminus \gamma^0$ fixing ∞ and x_0 and satisfying $H'(\infty) = 1$.

Determinants of Laplacians

On smooth compact Riemannian surfaces with boundary, (M, g), we may define the ζ -regularized determinant of the Dirichlet Laplace-Beltrami operator, det_{ζ} $\Delta_{(M,g)}$ [Ray-Singer '71]:

- If $\partial M \neq \varnothing$, then $0 < \lambda_1 \leq \lambda_2 \leq ..., \lim_{n \to \infty} \lambda_n \to \infty$.
- Define $\zeta(s) = \sum_{n=1}^{\infty} \lambda_n^s$, for Res > 1. Analytic cont. to nbhd of 0.
- We define ${\rm det}_\zeta \Delta_{(M,g)}:=e^{-\zeta'(0)}$ justified by

$$\zeta'(s) = -\sum_{n=1}^{\infty} \log \lambda_n \lambda_n^{-s}, \quad \operatorname{Res} > 1 \quad \rightsquigarrow \quad ``\zeta'(0) = -\log(\prod_{n=1}^{\infty} \lambda_n)''.$$

det_ζ Δ_(M,g) can be defined in the same way for curvilinear polygonal domains (boundary is p.w. smooth with corner angles in (0,∞))
 [Aldana-Kirsten-Rowlett '20, K '24].

Let K be a compact subset of M and set (whenever the RHS is defined)

$$\mathcal{H}_{(M,g)}(K) := \log \operatorname{det}_{\zeta} \Delta_{(M,g)} - \sum_{C_i} \log \operatorname{det}_{\zeta} \Delta_{(C_i,g)}$$

where the sum runs over connected components of $M \setminus K$.

Theorem (Wang '19)

Let γ be a C^{∞} Jordan curve on S^2 , and let g be a metric conformally equivalent to the spherical metric g_0 , that is, $g = e^{2\sigma}g_0$, $\sigma \in C^{\infty}(S^2)$. Then,

$$I^L(\gamma) = 12(\mathcal{H}_{(S^2,g)}(\gamma) - \mathcal{H}_{(S^2,g)}(S^1)).$$

Determinants of Laplacians

In [Peltola-Wang '23] it is proved that the **multichordal Loewner** energy can be expressed as

$$I^{oldsymbol{lpha}}_{\mathbb{D}; imes_1,..., imes_{2n}}(\overline{f \gamma})=12(\mathcal{H}_{(\mathbb{D},g)}(\overline{f \gamma})-\mathcal{H}_{(\mathbb{D},g)}(\overline{f \gamma}^0)),$$

for a smooth and finite energy multichord $\overline{\gamma}$ with link-pattern α and $g = e^{2\sigma} dz^2$, $\sigma \in C^{\infty}(\overline{\mathbb{D}})$, where $\overline{\gamma}^0$ is the geodesic multichord with the same link-pattern.

Fix $\rho > -2$, $a, c \in \partial \mathbb{D}$ and $b \in \overline{\mathbb{D}}$. Let γ be a curve in $(\mathbb{D}; a, b)$ and let $\eta = \eta(\gamma)$ denote the hyperbolic geodesic from b to c in $\mathbb{D} \setminus \gamma$. The ρ -Loewner potential of γ with respect to a metric $g = e^{2\sigma} dz^2$, is defined as

$$\mathcal{H}^{(\mathbb{D};a,b)}_{
ho,c}(\gamma;g):=eta\mathcal{H}_{(\mathbb{D},g)}(\gamma)+(1-eta)\mathcal{H}_{(\mathbb{D},g)}(\gamma\cup\eta),$$

where $\beta = \frac{(2-\rho)(\rho+6)}{12}$, whenever the RHS is well-defined.

Fix $\rho > -2$, $a, c \in \partial \mathbb{D}$ and $b \in \overline{\mathbb{D}}$. Let γ be a curve in $(\mathbb{D}; a, b)$ and let $\eta = \eta(\gamma)$ denote the hyperbolic geodesic from b to c in $\mathbb{D} \setminus \gamma$. The ρ -Loewner potential of γ with respect to a metric $g = e^{2\sigma} dz^2$, is defined as

$$\mathcal{H}^{(\mathbb{D};a,b)}_{
ho,c}(\gamma;g) := eta \mathcal{H}_{(\mathbb{D},g)}(\gamma) + (1-eta) \mathcal{H}_{(\mathbb{D},g)}(\gamma\cup\eta),$$

where $\beta = \frac{(2-\rho)(\rho+6)}{12}$, whenever the RHS is well-defined.

- If $\rho=0,$ then $\beta=1.$
- If $\rho = 2$, then $\beta = 0$. ($\rho = 2$ corresponds to one arm of a 2-radial or 2-chordal, and η is the "optimal second arm".)

Determinants of Laplacians

Proposition (K '24) For all $g \in \mathcal{G}(a)$ and $\gamma_1, \gamma_2 \in \mathcal{X}(g, a, b, c, \rho)$ we have that $I_{\rho,c}^{(\mathbb{D};a,b)}(\gamma_1) - I_{\rho,c}^{(\mathbb{D};a,b)}(\gamma_2) = 12(\mathcal{H}_{\rho,c}^{(\mathbb{D};a,b)}(\gamma_1;g) - \mathcal{H}_{\rho,c}^{(\mathbb{D};a,b)}(\gamma_2;g)).$

G(a) consists of metrics g = e^{2σ}dz², σ ∈ C[∞](D \ {a}) for which there is a coordinate φ : U → D \ Γ in a nbhd of a, for which φ^{*}g = e^{2õ(w)}dw² and õ extends smoothly to both sides of the slit Γ.

Determinants of Laplacians

Proposition (K '24)

For all $g\in \mathcal{G}(a)$ and $\gamma_1,\gamma_2\in \mathcal{X}(g,a,b,c,\rho)$ we have that

 $I_{\rho,c}^{(\mathbb{D};a,b)}(\gamma_1) - I_{\rho,c}^{(\mathbb{D};a,b)}(\gamma_2) = 12(\mathcal{H}_{\rho,c}^{(\mathbb{D};a,b)}(\gamma_1;g) - \mathcal{H}_{\rho,c}^{(\mathbb{D};a,b)}(\gamma_2;g)).$

- G(a) consists of metrics g = e^{2σ}dz², σ ∈ C[∞](D \ {a}) for which there is a coordinate φ : U → D \ Γ in a nbhd of a, for which φ^{*}g = e^{2õ(w)}dw² and õ extends smoothly to both sides of the slit Γ.
- X(g, a, b, c, ρ) consists of C[∞]-smooth curves γ in (D; a, b) which are smoothly attached at a, and
 - if $b \in \mathbb{D}$, then $\gamma \cup \eta$ is C^{∞} -smooth.
 - if $b \in \partial \mathbb{D}$, then there exists T s.t. $\gamma([T, \infty))$ is the p-optimal extension of γ_T .
- If b ∈ ∂D or b = 0 and a and c are antipodal, then there exists g ∈ G(a) so that the minimizer γ⁰ belongs to X(g, a, b, c, ρ).

Thank you for your attention!

References i

- [AOHP24] ABUZAID, O., OLSIEWSKI HEALEY, V., AND PELTOLA, E. Large deviations of Dyson Brownian motion on the circle and multiradial SLE0+. arXiv preprint arXiv:2407.13762 (2024).
- [AP24] ABUZAID, O., AND PELTOLA, E. Large Deviations of Radial SLE0+. In preparation.
- [AKR20] ALDANA, C. L., KIRSTEN, K., AND ROWLETT, J. Polyakov formulas for conical singularities in two dimensions. arXiv preprint arXiv:2010.02776 (2020).
- [G23] GUSKOV, V. A large deviation principle for the Schramm–Loewner evolution in the uniform topology. Annales Fennici Mathematici 48, 1 (2023), 389–410.
- [JV23] JOHANSSON, K., AND VIKLUND, F. Coulomb gas and the Grunsky operator on a Jordan domain with corners. *arXiv preprint arXiv:2309.00308* (2023).
- [J22] JOHANSSON, K. Strong Szego theorem on a Jordan curve. *Toeplitz Operators* and Random Matrices: In Memory of Harold Widom (2022), 427-461.
- [K24] KRUSELL, E. The ρ-Loewner Energy: Large Deviations, Minimizers, and Alternative Descriptions. *arXiv preprint arXiv:2410.08969* (2024)

References ii

- [K24] KRUSELL, E. Polyakov-Alvarez formula for curvilinear polygonal domains with slits. *Preprint* (2024). https://people.kth.se/~ekrusell/PolyakovAlvarezSlits.pdf.
- [LSW03] LAWLER, G., SCHRAMM, O., AND WERNER, W. Conformal restriction: the chordal case. Journal of the American Mathematical Society 16, 4 (2003), 917–955.
- [MS16] MILLER, J., AND SHEFFIELD, S. Imaginary geometry I: interacting SLEs. Probability Theory and Related Fields 164 (2016), 553–705.
- [MS17] MILLER, J., AND SHEFFIELD, S. Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees. Probability Theory and Related Fields 169 (2017), 729–869.
- [PW23] PELTOLA, E., AND WANG, Y. Large deviations of multichordal SLE0+, real rational functions, and zeta-regularized determinants of Laplacians. *Journal of the European Mathematical Society 26*, 2 (2023), 469–535.
- [RS71] RAY, D. B., AND SINGER, I. M. R-torsion and the Laplacian on Riemannian manifolds. Advances in Mathematics 7, 2 (1971) 145–210.

References iii

- [RW21] ROHDE, S., AND WANG, Y. The Loewner energy of loops and regularity of driving functions. International mathematics research notices 2021, 10 (2021), 7433–7469.
- [S00] SCHRAMM, O. Scaling limits of loop-erased random walks and uniform spanning trees. Israel journal of mathematics 118, 1 (2000), 221–288.
- [SW05] SCHRAMM, O., AND WILSON, D. B. SLE coordinate changes. The New York Journal of Mathematics [electronic only] 11 (2005), 659–669.
- [W19a] WANG, Y. The energy of a deterministic Loewner chain: Reversibility and interpretation via SLE0+. Journal of the European Mathematical Society 21, 7 (2019), 1915–1941.
- [W19b] WANG, Y. Equivalent descriptions of the Loewner energy. Inventiones mathematicae 218, 2 (2019), 573–621.