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Abstract

We study the commutation relation for 2-radial SLE in the unit disc starting from
two boundary points. We follow the framework introduced by Dubédat [9]. Under
an additional requirement of the interchangeability of the two curves, we classify all
locally commuting 2-radial SLEκ for κ ∈ (0, 8): it is either a two-sided radial SLEκ

with spiral of constant spiraling rate or a chordal SLEκ weighted by a power of the
conformal radius of its complement. Namely, for fixed κ and starting points, we have
exactly two one-parameter continuous families of locally commuting 2-radial SLE.
Two-sided radial SLE with spiral is a generalization of two-sided radial SLE (with-
out spiral) analyzed in [13, 14, 20, 23] and satisfies the resampling property. We also
discuss the semiclassical limit of the commutation relation as κ → 0. In particular,
we show that the limit for the second family with an appropriately chosen power of
conformal radius is a chord that minimizes a modified chordal Loewner energy, which
is unique only when the endpoints are not antipodal.

Keywords: Schramm–Loewner evolution, commutation relation, resampling prop-
erty.
MSC: 60J67.

1 Introduction

1.1 Background on radial SLE

In 1999, O. Schramm [32] introduced the Schramm-Loewner evolution (SLE) as the non-
self-crossing random curve driven by a multiple of Brownian motion using Loewner’s
transform. This definition is motivated by a quest to describe mathematically the ran-
dom interfaces in two-dimensional critical lattice models, which satisfy the conformal
invariance and the domain Markov property. These properties impose that the chordal
Loewner driving function of such a random interface has to be a multiple of Brownian
motion, hence justifying the definition of chordal SLE. Indeed, SLEs are proved to be
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the scaling limit of interfaces in many conformally invariant statistical mechanics models,
e.g., [6, 7, 22,33,34,37], and play a central role in random conformal geometry.

However, to characterize the other natural variant — radial SLE — one needs an
additional condition on the reflection symmetry. As we are mainly concerned with radial
SLE in the present article, let us briefly describe its definition and characterization. We
will describe the radial Loewner chain in D = {z ∈ C | |z| < 1} targeting at 0. Radial
Loewner chain in other simply connected domain D ⊂ C targeting at an interior point
z0 ∈ D is defined via a conformal map from D onto D sending 0 to z0.

Conformal radius and capacity. For any compact subset K (not necessarily con-
nected) of D such that D \ K is simply connected and contains 0, we let gK be the
unique conformal map D \K → D such that gK(0) = 0 and g′

K(0) > 0 (called the radial
mapping-out function of K). The conformal radius of D \K is

CR(D \K) := (g′
K(0))−1.

The capacity of K is

cap(K) = log g′
K(0) = − log CR(D \K).

Radial Loewner chain. For θ ∈ [0, 2π), suppose η : [0, T ] → D is a continuous
non-self-crossing curve such that η0 = eiθ and η(0,T ) ⊂ D \ {0}. Let Dt be the connected
component of D \ η[0,t] containing the origin. Let gt : Dt → D be the unique conformal
map with gt(0) = 0 and g′

t(0) > 0. We say that the curve is parameterized by capacity if
g′

t(0) = exp(t). Then gt satisfies the radial Loewner equation

∂tgt(z) = gt(z)
eiξt + gt(z)
eiξt − gt(z)

, g0(z) = z, (1.1)

where t 7→ ξt ∈ R/2πZ is continuous and called the driving function of η. We note that
if z = eiV0 ∈ ∂D, then taking a continuous branch Vt := arg gt(eiθ), we have

∂tVt(z) = cot((Vt − ξt)/2). (1.2)

Characterization of radial SLE. Consider a family (Pθ)θ∈R/2πZ of probability dis-
tributions on curves η : [0,∞) → D with η0 = eiθ and parametrized by capacity satisfies
the following properties:

1. (Conformal invariance) For all a ∈ R/2πZ, let ρa(z) = eiaz be the rotation map
D → D. For all a, θ ∈ R/2πZ, the pullback measure ρ∗

a Pθ = Pθ−a. From this, we may
extend the definition of Pθ to any simply connected domain D with an interior marked
point z0 by pulling back using a uniformizing conformal map D → D sending z0 to 0.

2. (Domain Markov property) For any t > 0, θ ∈ R/2πZ, let η ∼ Pθ. Conditioning on
η|[0,t], gt(η[t,∞)) ∼ Pξt where ξ· is the driving function of η. See Figure 1.

3. (Reflection symmetry) Let ι : z 7→ z be the complex conjugation, then Pθ ∼ ι∗P−θ.
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Then there exists κ ≥ 0 such that for all θ, the driving function of η ∼ Pθ is t 7→ θ+
√
κBt

modulo 2πZ, where B· is the standard Brownian motion. This follows from the fact that
(
√
κB)κ≥0 are the only continuous Lévy processes W that have the same law under the

transformation W 7→ −W . In this case, as t → ∞, ηt → 0 almost surely. The distribution
Pθ is the law of the radial SLEκ in D starting from eiθ. We also call it radial SLEκ in
(D; eiθ; 0) for short.

eiθ
eiξt

gt

ηt

Figure 1: Domain Markov property of radial SLE.

The third assumption on the reflection symmetry is natural for conformally invariant
and achiral statistical mechanics models. However, one may also wonder what happens
without the reflection symmetry, this means that the law of the driving function is no
longer required to be invariant with respect to W 7→ −W . From the classification of
continuous Lévy processes, we obtain that there exists κ ≥ 0 and µ ∈ R such that for all
θ, the driving function of η ∼ Pθ is

t 7→ θ +
√
κBt + µt (mod) 2πZ.

The curve generated is called radial SLEκ with spiraling rate µ starting from eiθ and we
denote it as radial SLEµ

κ in (D; eiθ; 0). It was shown in [28] that almost surely, ηt → 0 as
t → ∞ for all κ > 0 and µ ∈ R.

1.2 Locally commuting 2-radial SLE

The random radial curve satisfying conformal invariance and domain Markov property are
easily characterized thanks to the fact all simply connected domains (excluding C) with
one marked interior point and one marked boundary point are conformally equivalent. If
we consider the radial Loewner chain of two curves growing from two distinct boundary
points eiθ1 , eiθ2 ∈ ∂D, then we have a one-dimensional moduli space of the boundary data.
The goal of this work is to characterize and identify the family of local laws P(θ1,θ2) of
the pair of continuous non-self-crossing curves (η(1), η(2)) in D starting from all possible
choices of eiθ1 , eiθ2 ∈ ∂D under the following axioms.

For this, we first parameterize η(1), η(2) by their intrinsic radial capacities and consider
the associated Loewner chains g(1)

· and g(2)
· respectively. For all t = (t1, t2) ∈ R2

>0, let gt

be the radial mapping-out function of ηt := η
(1)
[0,t1] ∪ η

(2)
[0,t2].
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(CI) Conformal invariance: For all a ∈ R/2πZ and θ1, θ2 ∈ R/2πZ, the pullback
measure ρ∗

a P(θ1,θ2) = P(θ1−a,θ2−a). From this, we may extend the definition of
Pθ1,θ2 to any simply connected domain D with an interior marked point z0 by
pulling back using a uniformizing conformal map D → D sending z0 to 0.

(DMP) Domain Markov property: Conditioning on ηt,(
gt(η(1) \ η(1)

[0,t1]), gt(η(2) \ η(2)
[0,t2])

)
∼ P(

θ
(1)
t ,θ

(2)
t

),
where (exp(iθ(1)

t ), exp(iθ(2)
t )) = (gt(η(1)

t1 ), gt(η(2)
t2 )).

(MARG) Marginal laws: There exists κ > 0 such that the marginal local law of η(j) is
“absolutely continuous” with respect to an SLEκ for j = 1, 2.

(INT) Interchangeability condition: Let τ be the map which swaps η(1) and η(2). We
have P(θ1,θ2) = τ∗P(θ2,θ1).

See Section 2.1 for a more precise statement of the axioms. We note that since gt is
parametrized by two times t1, t2, the condition (DMP) implies that gt may be real-
ized by first mapping out η(1)

[0,t1] using g
(1)
t1 , then mapping out g(1)

t1 (η(2)
[0,t2]), or vice versa.

The image has the same law regardless of the order in which we map out the curves.
This observation gives a commutation relation on the infinitesimal generators of the
two curves (Proposition 2.2). Therefore, we call the family of the laws (P(θ1,θ2)) as an
interchangeable and locally commuting 2-radial SLEκ.

These conditions and our analysis are very close to the commutation relation of SLE
studied by Dubédat in [9], which focuses on classifying all locally commuting chordal
SLEs. Dubédat also derived the commutation relation in the radial setting in terms of
the generators of radial SLE. Our main contribution is to find all solutions to the radial
commutation relation and identify all interchangeable and locally commuting 2-radial
SLEκ. It is also natural to use SLE/GFF couplings, particularly, [28], to find examples
of commuting 2-radial SLEs. See Remark 3.10. However, it is unclear to the authors a
priori that all commuting 2-radial SLEs can be coupled to GFF.

1.3 Main result: A classification

We classify all locally commuting 2-radial SLE with the interchangeability condition
(INT). Similar to the analysis in [9], we also show that the conditions (CI), (DMP),
and (MARG) imply that there exists Z : {(θ1, θ2) ∈ R2 | θ1 < θ2 < θ1 + 2π} → R>0,
called partition function which encodes the family of distributions P(θ1,θ2). See Section 2
for more details.

Theorem 1.1. Fix κ ∈ (0, 8). Suppose Z is the partition function for an interchangeable
and locally commuting 2-radial SLEκ. Then Z is one of the following two functions:

1. There exists µ ∈ R such that, up to a multiplicative constant, Z is the same as

Gµ(θ1, θ2) = (sin ((θ2 − θ1)/2))2/κ exp
(
µ

κ
(θ1 + θ2)

)
. (1.3)
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In this case, the law of the corresponding locally commuting 2-radial SLEκ is the same
as two-sided radial SLEκ with spiraling rate µ, see Section 3.2 and Figure 2.

2. There exists α < 1 − κ/8 such that, up to a multiplicative constant, Z is the same as

Zα(θ1, θ2) = (sin ((θ2 − θ1)/2))(κ−6)/κ ϕα

(
(sin ((θ2 − θ1)/4))2

)
, (1.4)

where ϕα is the unique solution to the following Euler’s hypergeometric differential
equation u(1 − u)ϕ′′(u) − 3κ−8

2κ (2u− 1)ϕ′(u) + 8α
κ ϕ(u) = 0, u ∈ (0, 1);

ϕ(1/2) = 1, ϕ′(1/2) = 0.
(1.5)

In this case, the law of the corresponding locally commuting 2-radial SLEκ is the same
as γ chordal SLEκ in D weighted by CR(D\γ)−α, where CR(D\γ) denotes the confor-
mal radius of the connected component of D \ γ containing the origin, see Section 3.4.

Both Gµ in (1.3) and Zα in (1.4) are solutions to “radial BPZ equations” (or “BPZ-
Cardy equations” in [18], see also [19]):

κ

2
∂11Z

Z
+ cot ((θ2 − θ1)/2) ∂2Z

Z
− (6 − κ)/(4κ)

(sin((θ2 − θ1)/2))2 = F,

κ

2
∂22Z

Z
− cot ((θ2 − θ1)/2) ∂1Z

Z
− (6 − κ)/(4κ)

(sin((θ2 − θ1)/2))2 = F,

where ∂i is the partial derivative with respect to θi and F is the constant:

F = µ2 − 3
2κ ≥ − 3

2κ, when Z = Gµ,

F = (6 − κ)(κ− 2)
8κ − α > − 3

2κ, when Z = Zα.

In general, partition function Zα in (1.4) involves hypergeometric function and is
not explicit; but in the following two special cases, such function has a simple explicit
expression:

• When κ = 4, Zα can be written as trigonometric functions and hyperbolic functions
in θ = θ2 − θ1, see Remark 2.6.

• When α = α1(κ) which is the one-arm exponent for the conformal loop ensemble,
Zα1(κ) can be written as trigonometric functions in θ = θ2 − θ1, see Remark 2.7. In
this case, the partition function Zα1(κ) with κ ∈ (4, 8) is the limit of the partition
function for interfaces in critical random-cluster model conditional on the one-arm
event.

The two-sided radial SLEκ with spiral is also closely related to the mixed multifractal
spectrum introduced by Binder [5]. More precisely, the points on an SLE curve are
classified in terms of the asymptotic behavior of the uniformizing conformal maps in the
complement of the curve, according to its Hölder exponent and its winding exponent.
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The Hausdorff dimension (i.e., mixed multifractal spectrum) of the set of points with a
given behavior is computed in [11]. It was shown in [23] that conditioning a chordal SLE
to pass through an interior point 0 gives the two-sided radial SLE (without spiral). Since
the points with zero winding exponent have the maximal spectrum, this conditioning is
equivalent to conditioning on the event where the 0 is a point on the SLE curve with
zero winding exponent. We speculate that “conditioning” on the rare event where 0 is a
point with winding rate µ, the curve obtained should satisfy the commutation relation
and hence has to be the two-sided radial SLE that with the spiraling rate µ. In the
terminology of the conformal field theory, this would correspond to inserting a curve-
generating operator at 0 with complex charges and conformal weights [4].

Figure 2: Simulation by Minjae Park. Two-sided radial SLE around the origin
with κ = 0.01 and µ = 5 in the left panel. Two-sided radial SLE around the
origin with κ = 2 and µ = 5 in the right panel.

The interchangeability condition (INT) is natural, given the reversibility of chordal
SLE. It also simplifies our classification and in particular, the notation, see Section 2.3
and, in particular, Lemma 2.5. In Remark 3.16, we give an example of locally commuting
radial 2-SLE without (INT). In Proposition 3.17, we show the classification without the
condition (INT), where the second one-parameter family of solution (1.4) becomes a
two-parameter family.

1.4 Resampling property

Let D ⊂ C be a simply connected domain and let x1, x2 be distinct prime ends of ∂D.
We denote by X(D;x1, x2) the set of continuous non-self-crossing curves in D from x1
to x2. We recall the definition of the chordal SLE in the upper half-plane (H; 0,∞) in
Appendix B. For other simply connected domain (D;x1, x2), chordal SLE in (D;x1, x2) is
a random curve in X(D;x1, x2) defined by mapping chordal SLE in (H; 0,∞) conformally
from H onto D sending 0 to x1 and ∞ to x2. Let D ⊂ D be a simply connected domain
containing 0 and let x1, x2 be distinct prime ends of ∂D. We denote by X(D;x1, x2; 0)
the set of pairs of continuous simple curves (η(1), η(2)) in D such that η(1) goes from x1
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to 0 and η(2) goes from x2 to 0 and η(1) ∩ η(2) = {0}. We say that a law on (η(1), η(2)) ∈
X(D;x1, x2; 0) satisfies resampling property if

• the conditional law of η(2) given η(1) is a chordal SLEκ in (D \ η(1);x2, 0),
• and the conditional law of η(1) given η(2) is a chordal SLEκ in (D \ η(2);x1, 0).

In Theorem 3.9 we show that for each µ ∈ R, two-sided radial SLEκ with spiraling
rate µ satisfies resampling property for κ ∈ (0, 4]. This result follows directly from the
expression of the partition function Gµ. Another proof can be found in [28] using the
coupling with GFF. Combining with Theorem 1.1, we find that commutation relation
implies resampling property.

Corollary 1.2. Fix κ ∈ (0, 4] and θ1 < θ2 < θ1 + 2π. An interchangeable and locally
commuting 2-radial SLEκ in X(D; eiθ1 , eiθ2 ; 0) is a two-sided radial SLEκ with spiral, hence,
satisfies the resampling property. The converse is not true as we may take a linear
combination of 2-radial SLEκ with different spiraling rate.

1.5 Semiclassical limits of partition functions

Figure 3: The curves generated by Uλ from Proposition 1.3. They correspond
to the energy minimizers from Proposition 4.8. On the left, θ2 − θ1 ≈ π, and
λ = 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, 500 (λ = 0.1 corresponds to
the innermost green curve and λ = 500 corresponds to the outermost orange
curve). On the right λ = 10 while θ2 − θ1 varies.

We also discuss the commutation relation when κ = 0, the corresponding deterministic
pair of curves, and the semiclassical limit κ → 0+ in Section 4. In particular, semiclassical
limits of partition functions in Theorem 1.1 have explicit formulas.

Proposition 1.3. Fix θ1 < θ2 < θ1 + 2π and denote θ = θ2 − θ1.

• For the partition function Gµ in (1.3), fix µ ∈ R, we have

lim
κ→0

κ log Gµ(θ1, θ2) = 2 log sin ((θ2 − θ1)/2) + µ(θ1 + θ2). (1.6)
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• For the partition function Zα in (1.4), if α ∼ −λ/κ for some λ ≥ 0, then the following
limit exists

Uλ(θ) = lim
κ→0

κ log Zα(θ1, θ2);

and for θ ∈ (0, π],

Uλ(θ) = Uλ(2π − θ) = −2 log sin(θ/2) +
∫ π

θ

√
2λ+ 4 cot2(u/2) du. (1.7)

We mention that a similar semiclassical limit of the partition functions for multichordal
SLE was considered in [3, 29] and that multiradial SLE0 was considered in [2, 40]. We
prove Proposition 1.3 in Section 4.

Proposition 1.4. We use the same notations as in Proposition 1.3. The function Uλ

can be expressed as

Uλ(θ) = −6 log sin(θ/2) − inf
γ

(
I(γ) − λ log CR(D \ γ)

)
+ C

where the infimum is attained and taken over all chords connecting eiθ1 and eiθ2, I(·) is
the chordal Loewner energy, and C is a normalizing constant only depending on λ such
that Uλ(π) = 0. Moreover, the minimizer is unique when θ ̸= π and there are exactly two
minimizers when θ = π.

See Lemma 4.7 for details and Figure 3 for a simulation of those energy minimizers. A
related relation between the semiclassical limit of the partition function for multichordal
SLE and the minimizers of the multichordal Loewner energy was proved in [29]. We point
out in particular that Uλ in (1.7) when λ > 0 is not differentiable at θ = π since the
minimizer of I(·) − λ log CR(D \ ·) is non-unique when θ = π. Such non-differentiable
functions do not appear in earlier literature about the semiclassical limits of SLE partition
functions [2, 3, 29,40].

2 Partition functions of locally commuting 2-radial SLE

In this section, we give the precise definition of locally commuting 2-radial SLE. We also
define and classify the partition functions.

2.1 Definition of locally commuting 2-radial SLE

Let D ⊂ D be a simply connected domain containing 0 and let x1, x2 be distinct prime
ends of D. Let U1, U2 be, respectively, closed neighborhoods of x1 and x2 in D that do
not contain 0 and such that U1 ∩U2 = ∅. We will consider probability measures P(U1,U2)

(D; x1,x2)
on pairs of unparametrized continuous curves in U1 and U2 starting from x1 and x2, and
exiting U1 and U2 almost surely. We call that such a family of measures indexed by
different choices of (U1, U2) compatible if for all U1 ⊂ U ′

1 and U2 ⊂ U ′
2, we have P(U1,U2)

(D; x1,x2)

8



is obtained from restricting the curves under P(U ′
1,U ′

2)
(D; x1,x2) to the part before first exiting the

subdomains U1 and U2.
The locally commuting 2-radial SLEκ is a compatible family of measures P(U1,U2)

(D; x1,x2)
on pairs of continuous non-self-crossing curves (η(1), η(2)) for all D, (x1, x2), and (U1, U2)
as above that satisfy additionally the (CI),(DMP),(MARG) conditions below. We
say that a locally commuting 2-radial SLEκ is interchangeable if it satisfies further the
condition (INT).

(CI) Conformal invariance: If φ : D → D′ is a conformal map fixing 0, then the pullback
measure

φ∗P(φ(U1),φ(U2))
(D′; φ(x1),φ(x2)) = P(U1,U2)

(D; x1,x2).

Therefore, it suffices to describe the measure when (D; x1, x2) = (D; eiθ1 , eiθ2).
(DMP) Domain Markov property: Let (η(1), η(2)) ∼ P(U1,U2)

(D; eiθ1 ,eiθ2 ) and we parametrize η(1)

and η(2) by their own capacity in D. Let t = (t1, t2), such that tj is a stopping time
for η(j) and η

(j)
[0,tj ] is contained in the interior of Uj . Let

Ũj = Uj \ η(j)
[0,tj ], η̃(j) = η(j) \ η(j)

[0,tj ], j = 1, 2; D̃ = D \ (η(1)
[0,t1] ∪ η

(2)
[0,t2]).

Then conditionally on η
(1)
[0,t1] ∪ η

(2)
[0,t2], we have

(η̃(1), η̃(2)) ∼ P(Ũ1,Ũ2)
(D̃; η

(1)
t1

,η
(2)
t2

)
.

See Figure 4.

gt

eiθ1 eiθ2

eiθ
(1)
t

U1
U2

0 0
gt(Ũ1)

gt(Ũ2)η
(1)
[0,t1]

η̃(1)
η̃(2)

η
(2)
[0,t2]

eiθ
(2)
t

Figure 4: (CI) and (DMP) imply that a locally commuting 2-radial SLE
satisfies (η̃(1), η̃(2)) ∼ P(Ũ1,Ũ2)

(D̃; η
(1)
t1

,η
(2)
t2

)
∼ g∗

t P
(gt(Ũ1),gt(Ũ2))

(D;eiθ
(1)
t ,eiθ

(2)
t )

.

(MARG) Marginal laws: Let (η(1), η(2)) ∼ P(U1,U2)
(D; eiθ1 ,eiθ2 ). We assume that there exist C2 func-

tions bj : S1 × S1 \ ∆ → R where S1 = R/2πZ, and ∆ is the diagonal {(θ, θ) | θ ∈ S1}
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such that the capacity parametrized Loewner driving function t 7→ ξ
(1)
t of η(1) satisfies

ξ
(1)
0 = θ1, V

(2)
0 = θ2,

dξ(1)
t =

√
κdB(1)

t + b1
(
ξ

(1)
t , V

(2)
t

)
dt,

dV (2)
t = cot

(
(V (2)

t − ξ
(1)
t )/2

)
dt,

(2.1)

where B(1) is one-dimensional standard Brownian motion. In other words, the radial
Loewner chain g

(1)
t associated with η(1) maps the tip η

(1)
t to exp(iξ(1)

t ) and eiθ2 to
exp(iV (2)

t ) by (1.2).
Similarly, the capacity parametrized Loewner driving function t 7→ θ

(2)
t of η(2) satisfies

V
(1)

0 = θ1, ξ
(2)
0 = θ2,

dξ(2)
t =

√
κdB(2)

t + b2(V (1)
t , ξ

(2)
t )dt,

dV (1)
t = cot

(
(V (1)

t − ξ
(2)
t )/2

)
dt.

(2.2)

In other words, the radial Loewner chain g(2)
t associated with η(2) maps the tip η(2)

t to
exp(iξ(2)

t ) and eiθ1 to exp(iV (1)
t ).

(INT) Interchangeability condition: The two curves are unordered. In other words, let
τ : (η(1), η(2)) 7→ (η(2), η(1)),

P(U1,U2)
(D; x1,x2) ∼ τ∗P(U2,U1)

(D; x2,x1).

Remark 2.1. Despite the heavy notation, the only purpose of introducing the neigh-
borhoods U1, U2 is to give a precise meaning of “local law” of the 2-radial SLE near
their starting points. In particular, if we have a random pair of curves in X(D;x1, x2; 0),
or a random simple curve in X(D;x1, x2), we obtain a compatible family of probability
measures P(U1,U2)

(D;x1,x2) by restricting the random curve (or the pair of random curve) to all
possible pairs of neighborhoods (U1, U2). Note that a priori, a compatible family of lo-
cal laws does not necessarily imply they can be coupled as the restriction of a random
curve or pair of curves in all (U1, U2), but this will be a consequence of our classification
Theorem 1.1.

To simplify notations, we also denote P(U1,U2)
(D; eiθ1 ,eiθ2 ) by P(θ1,θ2) as in Section 1.2.

These axioms allow us to characterize the local law of the 2-radial SLE by considering
the infinitesimal generators of the two-time driving function which is the subject of the
next sections.

2.2 Commutation relations

In this section, we assume that κ ∈ (0,∞) and do not assume (INT). We consider
a locally commuting 2-radial SLEκ, which is a compatible family of measures P(θ1,θ2)
satisfying the conditions (CI), (DMP), and (MARG). Let b1, b2 : S1 × S1 \ ∆ → R be
C2 functions as in the condition (MARG).
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We now derive the infinitesimal form of the radial commutation relation. Let

L1 = κ

2∂11 + b1(θ1, θ2) ∂1 + cot
(
θ2 − θ1

2

)
∂2

L2 = κ

2∂22 + b2(θ1, θ2) ∂2 + cot
(
θ1 − θ2

2

)
∂1

(2.3)

be the diffusion generators associated with (2.1) and (2.2).

Proposition 2.2. The diffusion generators (2.3) of a locally commuting 2-radial SLEκ

satisfies the infinitesimal commutation relation

[L1,L2] := L1L2 − L2L1 = L2 − L1

(sin ((θ2 − θ1)/2))2 . (2.4)

The proof follows exactly the same steps as in [9] for chordal SLEs. The radial
commutation relation was stated briefly in [9] but with an opposite sign. For the reader’s
convenience, we derive it here. We introduce the following notations. They will also be
used in Section 3.2.

Fix θ1 < θ2 < θ1 + 2π. We will describe the growth of a pair of continuous non-self-
crossing curves (η(1), η(2)) in D such that η(1)

0 = eiθ1 and η(2)
0 = eiθ2 . For t = (t1, t2) ∈ R2

+,
suppose η(1)

[0,t1] and η
(2)
[0,t2] are disjoint. We consider the following mapping-out functions:

• g
(j)
tj

: D \ η(j)
[0,tj ] → D is conformal with g

(j)
tj

(0) = 0 and
(
g

(j)
tj

)′
(0) = exp(tj) > 0, for

j = 1, 2.
• gt : D \

(
η

(1)
[0,t1] ∪ η

(2)
[0,t2]

)
→ D is conformal with gt(0) = 0 and g′

t(0) > 0.

• gt,1 : D \ g(1)
t1

(
η

(2)
[0,t2]

)
→ D is conformal with gt,1(0) = 0 and g′

t,1(0) > 0.

• gt,2 : D \ g(2)
t2

(
η

(1)
[0,t1]

)
→ D is conformal with gt,2(0) = 0 and g′

t,2(0) > 0.

Using such notations, we have gt = gt,j ◦g(j)
tj

for j = 1, 2. Let ϕ(j)
tj
, ϕt, ϕt,j be the covering

maps of g(j)
tj
, gt, gt,j respectively, i.e., the continuous function such that g·(eiθ) = eiϕ·(θ)

and ϕ0(θ) = θ. Denote by (ξ(j)
tj
, tj ≥ 0) the driving function of η(j) as a radial Loewner

chain for j = 1, 2. Let

θ
(1)
t = ϕt,1

(
ξ

(1)
t1

)
, θ

(2)
t = ϕt,2

(
ξ

(2)
t2

)
.

The pair t 7→ (θ(1)
t , θ

(2)
t ) may be viewed as the two-time driving function of the pair

(η(1), η(2)). See Figure 5.

Proof of Proposition 2.2. The strategy of the proof consists of mapping out
(
η

(1)
[0,ε], η

(2)
[0,ε]

)
in two ways, where both curves are parametrized by their intrinsic capacity seen in D.
We can either

• first map out η(1)
[0,ε] by the conformal map g

(1)
ε , then by g(ε,ε),1,

• or first map out η(2)
[0,ε] by the conformal map g

(2)
ε , then by g(ε,ε),2.

11



η
(1)
[0,t1]

η
(2)
[0,t2]

g
(1)
t1

exp(iξ
(1)
t1 )

exp(iθ1)

gt,1

exp(iθ2)

exp(iθ
(2)
t )

exp(iθ
(1)
t )

exp(iξ
(2)
t2 )

g
(2)
t2

gt,2

gt

It1
exp(iV

(2)
t1 )

exp(iV
(1)
t2 )

Figure 5: We have gt = gt,1 ◦ g(1)
t1 = gt,2 ◦ g(2)

t2 .

We then compare the expansions of (θ(1)
(ε,ε), θ

(2)
(ε,ε)) in ε which are expressed in terms of L1

and L2.
More precisely, we first follow the Loewner flow t 7→ g

(1)
t until t = ε. Under this flow,

the radial driving function is t 7→ ξ
(1)
t . And t 7→ V

(2)
t satisfies

∂tV
(2)

t = cot
(
(V (2)

t − ξ
(1)
t )/2

)
.

Hence, for any smooth test function F : (θ1, θ2) 7→ R, we have

E(θ1,θ2)
[
F (ξ(1)

ε , V (2)
ε )

]
=
(

1 + εL1 + ε2L2
1

2

)
F (θ1, θ2) + o(ε2).

Now we use g(ε,ε),1 to map out η̃(2)
[0,ε] := g

(1)
ε (η(2)

[0,ε]). We note that the capacity of η̃(2)
[0,ε]

is not ε. We compute its capacity, we note that

∂t

(
g

(1)
t

)′
(z)|t=0 = −z + eiθ1

z − eiθ1
+ z

2eiθ1

(z − eiθ1)2 = −z2 − e2iθ1 − 2zeiθ1

(z − eiθ1)2 .

Therefore, for small ε,(
g(1)

ε

)′
(eiθ2) = 1 − ε

2 (sin((θ2 − θ1)/2))2 + iε cot((θ2 − θ1)/2) +O(ε2).

So we have ∣∣∣∣(g(1)
ε

)′
(eiθ2)

∣∣∣∣ = 1 − ε

2 (sin((θ2 − θ1)/2))2 + o(ε).

12



It follows from (3.7) that the image under g(1)
ε of a set of capacity ε near eiθ2 has capacity

ε′ = ε

(∣∣∣∣(g(1)
ε

)′
(eiθ2)

∣∣∣∣2 + o(ε)
)

= ε

(
1 − ε

(sin((θ2 − θ1)/2))2

)
+ o(ε2).

In particular, η̃(2)
[0,ε] has capacity ε′. Therefore, using the conditions (CI) and (DMP),

we have

E(θ1,θ2)
[
F (θ(1)

(ε,ε), θ
(2)
(ε,ε))

]
(2.5)

=
(

1 + εL1 + ε2L2
1

2

)(
1 + ε′L2 + (ε′)2L2

2
2

)
F (θ1, θ2) + o(ε2)

=
(

1 + ε(L1 + L2) +
(

−εδL2 + ε2L2
1

2 + ε2L2
2

2 + ε2L1L2

))
F (θ1, θ2) + o(ε2)

where δ = ε (sin((θ2 − θ1)/2))−2 so that ε′ = ε(1 − δ).
If we first map out the second curve, then the first curve, and notice that the value

of δ is unchanged, we obtain that the above expectation also equals(
1 + ε(L1 + L2) +

(
−εδL1 + ε2L2

1
2 + ε2L2

2
2 + ε2L2L1

))
F (θ1, θ2) + o(ε2).

Comparing these two expansions, the coefficient of the ε2-order terms have to coincide,
we obtain the condition

[L1,L2] := L1L2 − L2L1 = δ

ε
(L2 − L1) = L2 − L1

(sin((θ2 − θ1)/2))2

as claimed.

We note that the condition (CI) implies

bj(θ1 + a, θ2 + a) = bj(θ1, θ2), ∀j = 1, 2 and a ∈ R. (2.6)

Proposition 2.3 (Radial BPZ equations). Let κ ∈ (0,∞). Let b1, b2 : S1 × S1 \ ∆ → R
be C2 functions as in the condition (MARG). Then (2.4) and (2.6) imply that there
exists Z : {(θ1, θ2) ∈ R2 | θ1 < θ2 < θ1 + 2π} → R>0, called partition function, and a
constant F ∈ R such that

bj = κ∂j log Z, j = 1, 2,

and

κ

2
∂11Z

Z
+ cot(θ21/2)∂2Z

Z
− h

2 (sin(θ21/2))2 =F, (2.7)

κ

2
∂22Z

Z
− cot(θ21/2)∂1Z

Z
− h

2 (sin(θ21/2))2 =F, (2.8)

where h = (6 − κ)/(2κ) and θ21 = θ2 − θ1 = −θ12.
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We note that Z does not always descend to a function on (R/2πZ)2.

Proof. We use the expression (2.3) and obtain

[L1,L2] =
[

− κ

2 (sin(θ12/2))2

]
∂11 +

[
κ∂1b2 − κ∂2b1

]
∂12 +

[
κ

2 (sin(θ12/2))2

]
∂22

+
[
κ− 2

4
cot(θ12/2)

(sin(θ12/2))2 − b1

2 (sin(θ12/2))2 −
(
κ

2∂22b1 + b2∂2b1 + cot(θ12/2)∂1b1

)]
∂1

+
[
κ− 2

4
cot(θ12/2)

(sin(θ12/2))2 + b2

2 (sin(θ12/2))2 +
(
κ

2∂11b2 + b1∂1b2 − cot(θ12/2)∂2b2

)]
∂2,

and

L2 − L1

(sin(θ12/2))2 = 1
(sin(θ12/2))2

[
κ

2 (∂22 − ∂11) + (cot(θ12/2) − b1)∂1 + (b2 + cot(θ12/2))∂2

]
.

Comparing the coefficients, then (2.4) shows

∂1b2 = ∂2b1, (2.9)
κ

2∂22b1 + b2∂2b1 + cot(θ12/2)∂1b1 − b1

2 (sin(θ12/2))2 +
(6 − κ

4

) cot(θ12/2)
(sin(θ12/2))2 = 0,

(2.10)
κ

2∂11b2 + b1∂1b2 + cot(θ21/2)∂2b2 − b2

2 (sin(θ21/2))2 +
(6 − κ

4

) cot(θ21/2)
(sin(θ21/2))2 = 0.

(2.11)

Eq. (2.9) shows that there exists a function Z : {(θ1, θ2) ∈ R2 | θ1 < θ2 < θ1 + 2π} →
R>0 such that

b1 = κ ∂1 log Z = κ
∂1Z
Z

, b2 = κ ∂2 log Z = κ
∂2Z
Z

.

Plugging it into (2.10) and (2.11), we have

κ∂1

(
κ

2
∂22Z

Z
− cot(θ21/2)∂1Z

Z
− h

2 (sin(θ21/2))2

)
= 0, (2.12)

κ∂2

(
κ

2
∂11Z

Z
+ cot(θ21/2)∂2Z

Z
− h

2 (sin(θ21/2))2

)
= 0, (2.13)

where h = (6 − κ)/(2κ).
Eq. (2.12) and (2.13) imply that, there exist functions F1 and F2:

κ

2
∂22Z

Z
− cot(θ21/2)∂1Z

Z
− h

2 (sin(θ21/2))2 =F2(θ2),

κ

2
∂11Z

Z
+ cot(θ21/2)∂2Z

Z
− h

2 (sin(θ21/2))2 =F1(θ1).
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Using the identity
∂22Z

Z
= ∂2

(
∂2Z
Z

)
+
(
∂2Z
Z

)2
,

Eq. (2.6) implies that F1 and F2 are constants and

κ

2
∂11Z

Z
+ cot(θ21/2)∂2Z

Z
− h

2 (sin(θ21/2))2 =F1, (2.14)

κ

2
∂22Z

Z
− cot(θ21/2)∂1Z

Z
− h

2 (sin(θ21/2))2 =F2. (2.15)

It remains to show F1 = F2. Taking the derivative of

a 7→ bj(θ1 + a, θ2 + a) = κ(∂jZ/Z)(θ1 + a, θ2 + a)

and evaluate at a = 0, we get from (CI) and (2.6) that

0 = ∂1

(
∂jZ
Z

)
+ ∂2

(
∂jZ
Z

)
, ∀j = 1, 2. (2.16)

From this, we have

∂11Z
Z

− ∂22Z
Z

=
(
∂1Z
Z

)2
−
(
∂2Z
Z

)2

∂1

(
∂2Z
Z

)
= ∂2

(
∂1Z
Z

)
∂1

(
∂1Z
Z

)
= ∂2

(
∂2Z
Z

)
.

If we take the difference (2.14) - (2.15), we get

κ

2

((
∂1Z
Z

)2
−
(
∂2Z
Z

)2)
+ cot(θ21/2)

(
∂2Z
Z

+ ∂1Z
Z

)
= F1 − F2. (2.17)

Note that (2.16) also implies

0 = ∂1

(
∂1Z
Z

)
+ ∂2

(
∂1Z
Z

)
= ∂1

(
∂1Z
Z

)
+ ∂1

(
∂2Z
Z

)
= ∂1

(
∂1Z
Z

+ ∂2Z
Z

)
and

0 = ∂2

(
∂1Z
Z

+ ∂2Z
Z

)
.

Hence there is µ ∈ R such that

2µ
κ

≡ ∂1Z
Z

+ ∂2Z
Z

. (2.18)

Plugging into (2.17) we get(
∂1Z
Z

− ∂2Z
Z

)
µ+ cot(θ21/2)2µ

κ
= F1 − F2. (2.19)

Combining (2.18) and (2.19), there are two cases.
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Case 1: We have either µ = 0, then F1 = F2 as desired.
Case 2: If µ ̸= 0, then 

∂1Z
Z

= − 1
κ cot(θ21/2) + µ

κ + F1−F2
2µ ,

∂2Z
Z

= 1
κ cot(θ21/2) + µ

κ − F1−F2
2µ .

(2.20)

We solve (2.20) and obtain that, for some constant C ∈ R,

Z(θ1, θ2) = C (sin(θ21/2))2/κ exp
(
µ1
κ
θ1 + µ2

κ
θ2

)
, (2.21)

where
µ1 = µ+ κ(F1 − F2)

2µ , µ2 = µ− κ(F1 − F2)
2µ .

Plugging into (2.14)-(2.15), we obtain µ1 = µ2 which implies F1 = F2 as desired. More-
over, in this case we have

F1 = F2 = −3 + µ2

2κ , Z ∝ Gµ, when µ ̸= 0.

This completes the proof.

2.3 Solutions to commutation relations with interchangeability

We now classify all possible partition functions Z with the additional condition (INT),
which is equivalent to

b1(θ1, θ2) = b2(θ2, θ1). (2.22)

Theorem 2.4. Let κ ∈ (0, 8) and Z be a partition function from Proposition 2.3 and
assume that (2.22) holds. Then, up to a multiplicative constant, Z is one of the following
functions:

1. Z = Gµ for some µ ∈ R, where Gµ is defined in (1.3).
2. Z = Zα for some α < 1 − κ/8, where Zα is defined in (1.4).

Throughout this section, we assume that Z is a partition function from Proposition 2.3
and assume that (2.22) holds.

Lemma 2.5. There exists λ > 0 such that for all θ1 < θ2 < θ1 + 2π,

λZ(θ1, θ2) = Z(θ2, θ1 + 2π). (2.23)

Proof. Assumption (2.22) implies that

κ∂1 log
(Z(θ2, θ1 + 2π)

Z(θ1, θ2)

)
= b2(θ2, θ1 + 2π) − b1(θ1, θ2) = b2(θ2, θ1) − b1(θ1, θ2) = 0

and similarly,
∂2 log

(Z(θ2, θ1 + 2π)
Z(θ1, θ2)

)
= 0.

Therefore, Z(θ2, θ1 + 2π)/Z(θ1, θ2) is a constant λ which also equals Z(θ1 + 2π, θ2 +
2π)/Z(θ2, θ1 + 2π).
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Proof of Theorem 2.4. From the proof of Proposition 2.3, combining (2.18) and (2.19),
we have two cases: we have either µ ̸= 0, then

Z ∝ Gµ

which satisfies the interchangeability condition (2.22).
Or we have µ = 0, then

∂1Z = −∂2Z. (2.24)

Eq. (2.24) implies that ∂aZ(θ1 +a, θ2 +a) = 0, in other words, Z(θ1, θ2) only depends
on the difference θ = θ2 − θ1. Thus we write with a slight abuse of notation

Z(θ1, θ2) = Z(θ), θ ∈ (0, 2π).

We want to solve the equations (2.7) and (2.8), they are simplified to the same equation:

κ

2
Z ′′

Z
+ cot(θ/2)Z ′

Z
− h

2 (sin(θ/2))2 = F. (2.25)

Noticing that
λ2 = Z(θ1 + 2π, θ2 + 2π)

Z(θ1, θ2) = 1,

we obtain λ = 1 and
Z(θ) = Z(2π − θ). (2.26)

To solve (2.25) under the assumption (2.26), we may write

θ ∈ (0, 2π), u = (sin(θ/4))2 ∈ (0, 1), Z(θ) = C(sin(θ/2))−2hϕ(u), (2.27)

satisfying for u ∈ (0, 1),u(1 − u)ϕ′′ + 3κ−8
2κ (1 − 2u)ϕ′ + 8

κ

(
(6−κ)(κ−2)

8κ − F
)
ϕ = 0,

ϕ(1/2) = 1, ϕ′(1/2) = 0,
(2.28)

where C is a positive constant. Eq. (2.28) has a unique solution ϕ in C2(0, 1) due to
Lemma A.1. More precisely:

• When
α := (6 − κ)(κ− 2)

8κ − F < 1 − κ

8 , i.e., F > − 3
2κ,

the unique solution ϕ(u) is positive for all u ∈ (0, 1).
• When α = 1 − κ/8,

ϕ(u) = (4u(1 − u))4/κ−1/2 = (sin(θ/2))8/κ−1

by (A.1). Hence,
Z(θ) = C (sin(θ/2))2/κ ∝ G0.
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• When α > 1 − κ/8, Lemma A.1 shows that the unique solution is not always positive.
Therefore it does not give any partition function in Proposition 2.3. See Figure 6 for
the case when κ = 4.

This completes the proof.

Remark 2.6. When κ = 4, the partition function Zα in (1.4) has an explicit expression.
We denote θ = θ2 − θ1.

• If α ∈ [0, 1/2), we have

Zα(θ1, θ2) = (sin(θ/2))−1/2 cos
(√

α

2 (θ − π)
)
.

• If α < 0, we have

Zα(θ1, θ2) = (sin(θ/2))−1/2 cosh

√ |α|
2 (θ − π)

 .
See Figure 6.

α  -1 /2

α  0

α  1 /2

α  9 /2

α  2

π 2π

-4

-2

2

4

Figure 6: Plot of θ 7→ Zα(θ) with κ = 4 and θ = θ2 − θ1 for different α’s.
When α > 1/2, it is not always positive.

Remark 2.7. When κ ∈ (0, 8) and α = α1(κ) which is the one-arm exponent for confor-
mal loop ensemble [35]:

α1(κ) = (3κ− 8)(8 − κ)
32κ ,

the partition function Zα1(κ) has an explicit expression: we denote θ = θ2 − θ1,

Zα1(κ)(θ1, θ2) = 24/κ−3/2(sin(θ/2))1−6/κ
(
(sin(θ/4))8/κ−1 + (cos(θ/4))8/κ−1

)
. (2.29)
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For κ ∈ (4, 8), this is the conjectured partition function for the scaling limit of interfaces
in critical random-cluster models with Dobrushin boundary condition conditional on the
one-arm event, see [12]. This conjecture holds for percolation (with κ = 6) and FK-Ising
model (with κ = 16/3).

Remark 2.8. Let us give a comment on the C2 requirement on b1, b2 in the assumption
(MARG). We assume such C2 requirement as part of the axioms at the beginning.
But in fact, this is not necessary. Suppose we relax the requirement and only assume
b1, b2 in (MARG) are continuous, we are still able to derive (2.14) and (2.15) as weak
solutions. The operators in the left-hand side of radial BPZ equations (2.14) and (2.15) are
hypoelliptic, due to a general characterization by Hörmander [15], see also [10, Lemma 5]
and [30, Sect. 2.3.3]. Therefore, the weak solutions are strong solutions which are in fact
C∞, and consequently b1, b2 are C∞. Note that such analysis does not work for κ = 0
since the corresponding BPZ equation (4.1) is nonlinear.

3 Identification of locally commuting 2-radial SLEs

The goal of this section is to identify all locally commuting 2-radial SLEs, namely, those
whose partition functions are classified in Theorem 2.4: We discuss the 2-sided radial SLE
with spiral in Section 3.2 and chordal SLE weighted by conformal radius in Section 3.4.

3.1 Radial SLE

For θ ∈ [0, 2π), suppose η : [0, T ] → D is a continuous non-self-crossing curve such that
η0 = eiθ and η(0,T ) ⊂ D\{0}. We parameterize the curve by the capacity and denote by gt

the corresponding radial Loewner chain as in (1.1). Denote by ϕt the covering conformal
map of gt, i.e. gt(exp(iw)) = exp(iϕt(w)) with ϕ0(w) = w for w ∈ H. Then the radial
Loewner equation (1.1) is equivalent to

∂tϕt(w) = cot ((ϕt(w) − ξt)/2) , ϕ0(w) = w.

Radial SLEκ is the radial Loewner chain with ξt =
√
κBt where B is one-dimensional

Brownian motion. We also call it radial SLEκ in (D; eiθ; 0). In the following lemma, we
will describe the boundary perturbation property of radial SLE. We fix the parameters:

κ > 0, h = 6 − κ

2κ , h̃ = (6 − κ)(κ− 2)
8κ , c = (6 − κ)(3κ− 8)

2κ . (3.1)

Lemma 3.1 (See [16, Prop. 5] or [14, Prop. 2.2]). Fix κ ∈ (0, 8) and θ ∈ [0, 2π). Suppose
K is a compact subset of D such that D\K is simply connected and contains the origin and
that K has a positive distance from eiθ. Suppose η is radial SLEκ in (D; eiθ; 0) and define
τ = inf{t : ηt ∈ K}. For t < τ , denote by gt,K the unique conformal map D \ gt(K) → D
such that gt,K(0) = 0 and g′

t,K(0) > 0. We denote by ϕt,K the covering map of gt,K . Then
the following process is a local martingale:

Mt = 1{t < τ}ϕ′
t,K(ξt)hg′

t,K(0)h̃ exp
(
c

2mt

)
,
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where mt is defined through

dmt = −1
3Sϕt,K(ξt)dt+ 1

6
(
1 − ϕ′

t,K(ξt)2
)

dt,

and Sϕ = ϕ′′′

ϕ′ − 3
2

(
ϕ′′

ϕ′

)2
denotes the Schwarzian derivative of ϕ.

Moreover, when κ ≤ 4, the process Mt is a uniformly integrable martingale. The law
of radial SLEκ in (D \K; eiθ; 0) is the same as radial SLEκ in (D; eiθ; 0) weighted by Mt.

Remark 3.2. It is explained in the proof of [16, Prop. 5] that the term mt = mD(η[0,t],K)
is the same as the Brownian loop measure of loops that intersect both η[0,t] and K when
η[0,t] ∩K = ∅.

Fix θ1, θ2 such that θ1 < θ2 < θ1 + 2π. Let κ ∈ [0,∞), ρ ∈ R and µ ∈ R. A radial
SLEµ

κ(ρ) in D starting from eiθ1 with force point eiθ2 and spiraling rate µ is the radial
Loewner chain with driving function ξt that solves the following SDE:

ξ0 = θ1, V0 = θ2,

dξt =
√
κdBt + ρ

2 cot ((ξt − Vt)/2) dt+ µdt,
dVt = cot ((Vt − ξt)/2) dt.

(3.2)

The solution to SDE (3.2) exists for all time when κ ∈ (0, 8) and ρ > −2 and it is
generated by a continuous curve from eiθ1 to the origin.

Lemma 3.3. For κ ∈ (0, 8), ρ > −2, µ ∈ R, radial SLEµ
κ(ρ) in D is almost surely

generated by a continuous curve η and limt→∞ ηt = 0.

Proof. This is proved in [28, Prop. 3.30] and [28, Sect. 4]. See also [20].

Remark 3.4. The expression of Gµ in (1.3) is such that the Loewner driving function of
radial SLEµ

κ(2) can be rewritten as
ξ0 = θ1, V0 = θ2,

dξt =
√
κdBt + κ ∂1 log Gµ(ξt, Vt)dt,

dVt = cot ((Vt − ξt)/2) dt.

3.2 Two-sided radial SLE with spiral

In this section, we introduce two-sided radial SLEκ with spiral when κ ∈ (0, 8) by
reweighting two independent radial SLEκ. The two-sided radial SLE analyzed in [13,
14,20,23] is a special case where the spiraling rate µ = 0.

We use the same notations as in Figure 5.

Lemma 3.5. Fix κ ∈ (0, 8) and θ1 < θ2 < θ1 + 2π. We fix the parameters h, h̃, c as
in (3.1). For µ ∈ R, we define Gµ as in (1.3). Let P denote the probability measure
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under which (η(1), η(2)) are two independent radial SLEκ in D starting from eiθ1 and eiθ2

respectively. We define

Mt(Gµ) =1
{
η

(1)
[0,t1] ∩ η

(2)
[0,t2] = ∅

}
g′

t(0)
3−µ2

2κ
−h̃ ×

2∏
j=1

ϕ′
t,j

(
ξ

(j)
tj

)h
g′

t,j(0)h̃

× Gµ

(
θ

(1)
t , θ

(2)
t

)
exp

(
c

2mt

)
, (3.3)

where mt is defined through

dmt =
2∑

j=1

(
−1

3Sϕt,j

(
ξ

(j)
tj

)
+ 1

6

(
1 − ϕ′

t,j

(
ξ

(j)
tj

)2
))

dtj . (3.4)

Then Mt(Gµ) is a two-time-parameter local martingale with respect to P.

Lemma 3.1 and Remark 3.2 show that mt = mD
(
η

(1)
[0,t1], η

(2)
[0,t2]

)
is the Brownian loop

measure of loops in D intersecting both η
(1)
[0,t1] and η

(2)
[0,t2] when η

(1)
[0,t1] ∩ η

(2)
[0,t2] = ∅.

We note that Gµ satisfies the “radial BPZ equations”

κ

2
∂11Gµ

Gµ
+ cot(θ21/2)∂2Gµ

Gµ
− h

2 (sin(θ21/2))2 =µ2 − 3
2κ ; (3.5)

κ

2
∂22Gµ

Gµ
− cot(θ21/2)∂1Gµ

Gµ
− h

2 (sin(θ21/2))2 =µ2 − 3
2κ . (3.6)

Relations (3.4), (3.5) and (3.6) play an essential role in the proof of Lemma 3.5.

Proof of Lemma 3.5. Let us first compute the variations of terms appearing in (3.3).
From standard calculations (see e.g. [14, Lem. 3.2]), we have the following variational
formula of the capacity parameterizations:

dg′
t,1(0)

g′
t,1(0) =

(
ϕ′

t,1

(
ξ

(1)
t1

)2
− 1

)
dt1 + ϕ′

t,2

(
ξ

(2)
t2

)2
dt2;

dg′
t,2(0)

g′
t,2(0) =ϕ′

t,1

(
ξ

(1)
t1

)2
dt1 +

(
ϕ′

t,2

(
ξ

(2)
t2

)2
− 1

)
dt2;

dg′
t(0)

g′
t(0) =

2∑
j=1

ϕ′
t,j

(
ξ

(j)
tj

)2
dtj .

(3.7)

From the assumption that η(1) and η(2) are two independent radial SLEκ under P,
we have that ξ(1) =

√
κB(1) + θ1 and ξ(2) =

√
κB(2) + θ2 where B(1) and B(2) are two

independent Brownian motions. From this, Itô’s calculus gives:

dθ(1)
t = dϕt,1

(
ξ

(1)
t1

)
=ϕ′

t,1

(
ξ

(1)
t1

)
dξ(1)

t1 − κhϕ′′
t,1

(
ξ

(1)
t1

)
dt1

+ cot
(
(θ(1)

t − θ
(2)
t )/2

)
ϕ′

t,2

(
ξ

(2)
t2

)2
dt2, (3.8)
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where we used the expansions

∂t1ϕt,1(w) =
(
ϕ

(1)
t,1

)′ (
ξ

(1)
t1

)2
cot

(
(ϕ(1)

t,1(w) − θ
(1)
t )/2

)
−
(
ϕ

(1)
t,1

)′
(w) cot

(
(w − ξ

(1)
t1 )/2

)
= −3

(
ϕ

(1)
t,1

)′′ (
ξ

(1)
t1

)
+O(w − ξ

(1)
t1 ), as w → ξ

(1)
t1 , (3.9)

∂t2ϕt,1(w) = cot
(
(ϕ(1)

t,1(w) − θ
(2)
t )/2

)
ϕ′

t,2

(
ξ

(2)
t2

)2
. (3.10)

Similarly, we have

dθ(2)
t = dϕt,2

(
ξ

(2)
t2

)
=ϕ′

t,2

(
ξ

(2)
t2

)
dξ(2)

t2 − κhϕ′′
t,2

(
ξ

(2)
t2

)
dt2

+ cot
(
(θ(2)

t − θ
(1)
t )/2

)
ϕ′

t,1

(
ξ

(1)
t1

)2
dt1. (3.11)

Taking derivatives with respect to w in (3.9) and (3.10) and let w → ξ
(1)
t1 we obtain

(∂t1ϕ
′
t,1)

(
ξ

(1)
t1

)
ϕ′

t,1

(
ξ

(1)
t1

) =1
2
ϕ′′

t,1

(
ξ

(1)
t1

)2

ϕ′
t,1

(
ξ

(1)
t1

)2 − 4
3
ϕ′′′

t,1

(
ξ

(1)
t1

)
ϕ′

t,1

(
ξ

(1)
t1

) − 1
6

(
ϕ′

t,1

(
ξ

(1)
t1

)2
− 1

)
,

(∂t2ϕ
′
t,1)

(
ξ

(1)
t1

)
ϕ′

t,1

(
ξ

(1)
t1

) = − 1
2 csc2

(
(θ(1)

t − θ
(2)
t )/2

)
ϕ′

t,2

(
ξ

(2)
t2

)2
.

Itô’s formula gives

dϕ′
t,1

(
ξ

(1)
t1

)
ϕ′

t,1

(
ξ

(1)
t1

) =
ϕ′′

t,1

(
ξ

(1)
t1

)
ϕ′

t,1

(
ξ

(1)
t1

)dξ(1)
t1 − 1

2 csc2
(
(θ(1)

t − θ
(2)
t )/2

)
ϕ′

t,2

(
ξ

(2)
t2

)2
dt2

+

κ2 ϕ
′′′
t,1

(
ξ

(1)
t1

)
ϕ′

t,1

(
ξ

(1)
t1

) + 1
2
ϕ′′

t,1

(
ξ

(1)
t1

)2

ϕ′
t,1

(
ξ

(1)
t1

)2 − 4
3
ϕ′′′

t,1

(
ξ

(1)
t1

)
ϕ′

t,1

(
ξ

(1)
t1

) − 1
6

(
ϕ′

t,1

(
ξ

(1)
t1

)2
− 1

) dt1,

dϕ′
t,2

(
ξ

(2)
t2

)
ϕ′

t,2

(
ξ

(2)
t2

) =
ϕ′′

t,2

(
ξ

(2)
t2

)
ϕ′

t,2

(
ξ

(2)
t2

)dξ(2)
t2 − 1

2 csc2
(
(θ(2)

t − θ
(1)
t )/2

)
ϕ′

t,1

(
ξ

(1)
t1

)2
dt1

+

κ2 ϕ
′′′
t,2

(
ξ

(2)
t2

)
ϕ′

t,2

(
ξ

(2)
t2

) + 1
2
ϕ′′

t,2

(
ξ

(2)
t2

)2

ϕ′
t,2

(
ξ

(2)
t2

)2 − 4
3
ϕ′′′

t,2

(
ξ

(2)
t2

)
ϕ′

t,2

(
ξ

(2)
t2

) − 1
6

(
ϕ′

t,2

(
ξ

(2)
t2

)2
− 1

) dt2.

Now we are ready to prove that Mt(Gµ) is a two-time-parameter local martingale.
Combining with (3.4), (3.5) and (3.6), we have

dMt(Gµ)
Mt(Gµ) =

(
3 − µ2

2κ − h̃

)
dg′

t(0)
g′

t(0) + h̃
2∑

j=1

dg′
t,j(0)

g′
t,j(0) + c

2dmt

+
2∑

j=1

(
∂jGµ

Gµ
dθ(j)

t + κ

2
∂jjGµ

Gµ
ϕ′

t,j

(
ξ

(j)
tj

)2
dtj
)

+
2∑

j=1

hdϕ′
t,j

(
ξ

(j)
tj

)
ϕ′

t,j

(
ξ

(j)
tj

) + κh(h− 1)
2

ϕ′′
t,j

(
ξ

(j)
tj

)2

ϕ′
t,j

(
ξ

(j)
tj

)2 dtj


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+ κh
2∑

j=1

∂jGµ

Gµ
ϕ′′

t,j

(
ξ

(j)
tj

)
dtj

=
2∑

j=1

∂jGµ

Gµ
ϕ′

t,j

(
ξ

(j)
tj

)
+ h

ϕ′′
t,j

(
ξ

(j)
tj

)
ϕ′

t,j

(
ξ

(j)
tj

)
dξ(j)

tj
. (3.12)

In particular, Mt(Gµ) is a two-time-parameter local martingale under P.

Definition 3.6. Fix κ ∈ (0, 8) and θ1 < θ2 < θ1 + 2π. For µ ∈ R, we define Gµ as
in (1.3). Let P denote the probability measure under which (η(1), η(2)) are two independent
radial SLEκ in D starting from eiθ1 and eiθ2 respectively. We define Mt(Gµ) as (3.3) in
Lemma 3.5 and denote by P(Gµ) the probability measure obtained by tilting P by Mt(Gµ)
and call it two-sided radial SLEκ with spiraling rate µ in (D; eiθ1 , eiθ2 ; 0).

When κ ≤ 4, two-sided radial SLEκ with spiral is well-defined for all time and the two
curves do not touch each other before they reach the origin. When κ ∈ (4, 8), the above
definition for two-sided radial SLEκ with spiral is only defined up to the times the two
curves touch each other. When the spiraling rate is 0, we obtain the standard two-sided
radial SLE analyzed in [13,14,20,23].

Corollary 3.7. Under P(Gµ), for every t = (t1, t2),

• gt(η(1)) is a radial SLEµ
κ(2) in D starting from exp(iθ(1)

t ) with force point at exp(iθ(2)
t ),

• gt(η(2)) is a radial SLEµ
κ(2) in D starting from exp(iθ(2)

t ) with force point at exp(iθ(1)
t ).

In particular, P(Gµ) on pairs (η(1), η(2)) satisfies (CI), (DMP), (MARG) and (INT)
with

bj = κ∂j log Gµ, j = 1, 2. (3.13)

Proof. Combining (3.12) with (1.3), we have

dMt(Gµ)
Mt(Gµ) =

1
κ

cot
(
(θ(1)

t − θ
(2)
t )/2

)
ϕ′

t,1

(
ξ

(1)
t1

)
+ µ

κ
ϕ′

t,1

(
ξ

(1)
t1

)
+ h

ϕ′′
t,1

(
ξ

(1)
t1

)
ϕ′

t,1

(
ξ

(1)
t1

)
dξ(1)

t1

+

1
κ

cot
(
(θ(2)

t − θ
(1)
t )/2

)
ϕ′

t,2

(
ξ

(2)
t2

)
+ µ

κ
ϕ′

t,2

(
ξ

(2)
t2

)
+ h

ϕ′′
t,2

(
ξ

(2)
t2

)
ϕ′

t,2

(
ξ

(2)
t2

)
 dξ(2)

t2 .

From Girsanov’s theorem and (3.8) and (3.11), under P(Gµ), we have

dθ(1)
t =

√
κϕ′

t,1

(
ξ

(1)
t1

)
dB̃(1)

t1 + µϕ′
t,1

(
ξ

(1)
t1

)2
dt1

+ cot
(
(θ(1)

t − θ
(2)
t )/2

)(
ϕ′

t,1

(
ξ

(1)
t1

)2
dt1 + ϕ′

t,2

(
ξ

(2)
t2

)2
dt2
)
, (3.14)

dθ(2)
t =

√
κϕ′

t,2

(
ξ

(2)
t2

)
dB̃(2)

t2 + µϕ′
t,2

(
ξ

(2)
t2

)2
dt2

+ cot
(
(θ(2)

t − θ
(1)
t )/2

)(
ϕ′

t,1

(
ξ

(1)
t1

)2
dt1 + ϕ′

t,2

(
ξ

(2)
t2

)2
dt2
)
, (3.15)
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where B̃(1) and B̃(2) are two independent Brownian motions under P(Gµ).
Therefore, taking into account the variation of the capacity parametrization (3.7),

(3.14) and (3.15) show that under P(Gµ), for every t = (t1, t2), gt(η(1)) is a radial SLEµ
κ(2)

in D starting from exp(iθ(1)
t ) with force point at exp(iθ(2)

t ). Similarly, gt(η(2)) is a radial
SLEµ

κ(2) in D starting from exp(iθ(2)
t ) with force point at exp(iθ(1)

t ). These imply (CI),
(DMP), (MARG) and (INT). Eq. (3.13) follows from Remark 3.4.

Remark 3.8. Two-sided radial SLEκ with spiral can be generalized to the multiple-sided
case: N -sided radial SLEκ with spiraling rate µ for N ≥ 2 can be defined a similar way
as in Definition 3.6 where the partition function Gµ shall be replaced by

Gµ(θ1, . . . , θN ) =
∏

1≤i<j≤N

(sin((θj − θi)/2))2/κ × exp

µ
κ

N∑
j=1

θj

 ,
for θ1 < · · · < θN < θ1 + 2π. When µ = 0, it is the same as the partition function for
N -sided radial SLEκ in [14].

3.3 Resampling property of two-sided radial SLE with spiral

In this section, we will prove the resampling property of two-sided radial SLE with spiral
as we described in Section 1.4 and in Corollary 1.2. We fix κ ∈ (0, 4] in the following
Theorem 3.9, because we will use the boundary perturbation property in Lemma 3.1 with
κ ∈ (0, 4] in the proof.

Theorem 3.9 (Resampling property). Fix κ ∈ (0, 4], µ ∈ R and θ1 < θ2 < θ1 +
2π. Suppose (η(1), η(2)) ∼ P(Gµ) is two-sided radial SLEκ with spiraling rate µ as in
Definition 3.6, we have the followings.

• The marginal law of η(1) is radial SLEµ
κ(2) in D starting from eiθ1 with force point eiθ2

and spiraling rate µ.
• Given η(1), the conditional law of η(2) is chordal SLEκ in D \ η(1) from eiθ2 to 0.

The same is true when we interchange η(1) and η(2).

Remark 3.10. Radial SLE with spiral appears as a flow line in the setup of imaginary
geometry [28]. Furthermore, two-sided radial SLEκ with spiraling rate µ can be viewed
as a pair of flow lines of

Γ + (8 − κ)
2
√
κ

arg(·) + µ√
κ

log | · |,

where Γ is a GFF in D with properly chosen boundary data, and the angles of the two flow
lines are also chosen properly. See Figure 2. Using such coupling, one is able to derive
the resampling property in Theorem 3.9, see [28, Prop. 3.28]. However, our proof of the
resampling property in Section 3.2 does not use the coupling with imaginary geometry.
We derive it directly using a refined analysis of the Radon–Nikodym derivative Mt(Gµ)
in Definition 3.6.
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Proof of Theorem 3.9. Since Gµ(θ1, θ2) = λGµ(θ2, θ1 + 2π) for some constant λ which
does not depend on θ1 and θ2, η(1) and η(2) are interchangeable. Therefore, it suffices
to show the bullet points in the statement. The marginal law of η(1) is a consequence of
Corollary 3.7, and it remains to show the conditional law of η(2) given η(1).

The law of η(1)
[0,t1] is the same as radial SLEκ weighted by the following local martingale:

M(t1,0)(Gµ) =
(
g

(1)
t1

)′
(0)

3−µ2
2κ

−h̃ × Gµ

(
ξ

(1)
t1 , ϕ

(1)
t1 (θ2)

)
×
(
ϕ

(1)
t1

)′
(θ2)h

(
g

(1)
t1

)′
(0)h̃.

The law of (η(1), η(2)) is the same as two independent radial SLEκ weighted by the local
martingale Mt(Gµ). Therefore, the conditional law of η(2)

[0,t2] given η
(1)
[0,t1] is the same as a

radial SLEκ weighted by

M(t1,t2)(Gµ)
M(t1,0)(Gµ) =

ϕ′
t,2

(
ξ

(2)
t2

)h
g′

t,2(0)h̃ exp
(

c
2mt

)
(
ϕ

(1)
t1

)′
(θ2)h

(
g

(1)
t1

)′
(0)h̃︸ ︷︷ ︸

=:Pt

× g′
t,1(0)

3−µ2
2κ

Gµ

(
θ

(1)
t , θ

(2)
t

)
Gµ

(
ξ

(1)
t1 , ϕ

(1)
t1 (θ2)

)ϕ′
t,1

(
ξ

(1)
t1

)h

︸ ︷︷ ︸
=:Rt

.

From the boundary perturbation property Lemma 3.1, a radial SLEκ in (D; eiθ2 ; 0) weighted
by Pt has the same law as radial SLEκ in (D \ η(1)

[0,t1]; eiθ2 ; 0). Thus, the conditional law of
η

(2)
[0,t2] given η

(1)
[0,t1] is the same as a radial SLEκ in (D \ η(1)

[0,t1]; eiθ2 ; 0) weighted by

Rt = g′
t,1(0)

3−µ2
2κ

Gµ

(
θ

(1)
t , θ

(2)
t

)
Gµ

(
ξ

(1)
t1 , ϕ

(1)
t1 (θ2)

)ϕ′
t,1

(
ξ

(1)
t1

)h
. (3.16)

Combining Lemma 3.3 and Lemma 3.11, we see that radial SLEκ in (D \ η(1)
[0,t1]; eiθ2 ; 0)

converges to chordal SLEκ in (D\η(1); eiθ2 , 0) as t1 → ∞; and we will show in Lemma 3.12
that Rt → 1 almost surely as t1 → ∞. Combining these two parts, the conditional law
of η(2)

[0,t2] given η(1) is the same as chordal SLEκ as desired.

Lemma 3.11. Fix κ ∈ (0, 4] and θ1 < θ2 < θ1 + 2π. We assume η(1) ∈ X(D; eiθ1 ; 0),
namely a simple curve in D from eiθ1 to 0.

• For t1 ∈ (0,∞), we denote by Qt1 the law of a radial SLEκ in (D \ η(1)
[0,t1]; eiθ2 ; 0).

• We denote by Q∞ the law of a chordal SLEκ in (D \ η(1); eiθ2 , 0).

Then for any t1, t2 ∈ (0,∞), the law of the curve η(2) restricted to [0, t2] (under intrinsic
capacity parametrization) under Qt1 and Q∞ are absolutely continuous. We have

lim
t1→∞

dQt1

dQ∞

(
η

(2)
[0,t2]

)
= 1, Q∞ − a.s.

Proof. It is proved in [17, Lem. 3.2] and [21]. To be self-contained, we include its short
proof adapted to our setting in Appendix B.
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Lemma 3.12. Assume the same notations as in the proof of Theorem 3.9 and recall that
Rt is defined in (3.16). We have

lim
t1→∞

Rt = 1, a.s.

Proof. We first argue that, almost surely, the difference

∆t1 := ϕ
(1)
t1 (θ2) − ξ

(1)
t1

is bounded away from 0 and 2π. As the marginal law of η(1) is radial SLEµ
κ(2), we have

d∆t1 = −
√
κdB(1)

t1 + 2 cot(∆t1/2)dt1 − µdt1,

where B(1) is one-dimensional Brownian motion. Roughly speaking, when ∆t1 is close to
zero, it is absolutely continuous with respect to the Bessel process of dimension 8/κ+1 ≥
3; this explains that it is bounded away from zero. We will give more precise details
below. Define

f(θ) =
∫ 2π−θ

θ
exp(2µu/κ) (sin(u/2))−8/κ du, for θ ∈ (0, 2π),

then f(∆t) is a local martingale. Suppose ∆0 ∈ (0, 2π). For n ≥ 1, define Tn = inf{t :
∆t = 2−n or ∆t = 2π−2−n}. For n large enough, we have ∆0 ∈ (2−n, 2π−2−n). Optional
stopping theorem gives E[f(∆Tn)] = f(∆0). Thus

P[Tn < ∞] ∼ 2−n(8/κ−1), for large n.

In particular, we have ∑n P[Tn < ∞] < ∞, and Borel-Cantelli lemma tells that almost
surely, there exists n0 such that Tn0 = ∞. In other words, almost surely, there exists n0
such that ∆t ∈ (2−n0 , 2π − 2−n0) for all t.

Next, we show that Rt → 1 as t1 → ∞. We write It1 for the arc in ∂D that is the
image of both sides of η(1)

[0,t1] under the conformal map g
(1)
t1 extended to the boundary,

see Figure 5. It is easy to see the harmonic measure of ∂D seen from 0 of the domain
D \ η(1)

[0,t1] is decreasing to 0 as t1 → ∞. Therefore,

|Ic
t1 | = |∂D \ It1 | t1→∞−−−−→ 0

where Ic
t1 = ∂D \ It1 .

Lemma 3.3 shows that η(2)
[0,t2] is at positive distance from η

(1)
[0,∞). Hence, there exists

λ ∈ (0, 1) such that the neighborhood

U =
{
z ∈ D |Pz

(
β hits η(1)

[0,∞) before exiting D
)

≥ λ
}

satisfies η(2)
[0,t2] ∩ U = ∅, where Pz is the law of a two-dimensional Brownian motion β

starting from z. Let

Ut1 =
{
z ∈ D |Pz

(
β hits η(1)

[0,t1) before exiting D
)

≥ λ
}

⊂ U.
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η
(1)
[0,t1]

η
(2)
[0,t2]

g
(1)
t1

exp(iξ
(1)
t1 )

exp(iθ1) exp(iθ2)

It1

Ut1

Ũt1

Ict1

η̃
(2)
[0,t2]

ρt1
αt1

Figure 7: Illustration of the domains Ut1 and Ũt1 := g
(1)
t1 (Ut1) and the rotation

map ρt1 .

The image Ũt1 := g
(1)
t1 (Ut1) is bounded by It1 and a circular arc αt1 meeting the endpoints

of It1 with angle λ/π. Since |Ic
t1 | → 0, the diameter of the domain D\ Ũt1 , which contains

η̃
(2)
[0,t2] = g

(1)
t1

(
η

(2)
[0,t2]

)
, converges to 0.

Recall that the map gt,1 maps out the curve η̃(2)
[0,t2] = g

(1)
t1

(
η

(2)
[0,t2]

)
. If we conjugate gt,1

by the rotation ρt1 : D → D such that the image of the mid-point of αt1 under ρt1 lies in
(0, 1) (so that R(αt1) is symmetric with respect to the real line and ρt1(αt1) shrinks to
the point 1 ∈ ∂D), the map g̃t,1 := ρt1 ◦ gt,1 ◦ ρ−1

t1 converges in Carathéodory topology
(namely, uniformly on compact subsets) to the identity map in D as t1 → ∞. If we
Schwarz-reflect gt,1 along ∂D \ g(1)

t1 (exp(iθ2)), we see that the convergence also extends
to the boundary, more precisely, we obtain that g̃t,1 converges uniformly on all compact
subsets of D \ {1} (and the map is well-defined on every such compact subset for large
enough t1), so do the derivatives of g̃t,1 with respect to z.

Finally, since ∆t1 is bounded away from 0 and 2π almost surely, as we proved above,
we obtain that Rt → 1 almost surely, which completes the proof.

3.4 Chordal SLE weighted by conformal radius

In this section, we show that the partition functions Zα correspond to the chordal SLE
weighted by the conformal radius to the power −α.

For this, we first calculate the Laplace transform of the conformal radius of the com-
plement of chordal SLE. Usually, chordal SLE is defined in the upper-half plane as in
Appendix B. It is more convenient here to describe it in the unit disc D via a change
of coordinate. Fix κ ∈ (0, 8) and θ1 < θ2 < θ1 + 2π. Suppose γ is chordal SLEκ in
(D; eiθ1 , eiθ2). We parameterize it by the capacity and define gt, ξt accordingly as in Sec-
tion 3.1. Denote by T the first time γ disconnects eiθ2 from the origin. A chordal SLEκ

in (D; eiθ1 , eiθ2), up to T , has the same law as radial SLEκ(κ− 6) starting from eiθ1 with
force point eiθ2 , up to the same time, see [36]. In other words, its driving function ξt
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solves the following SDE:
ξ0 = θ1, V0 = θ2,

dξt =
√
κdBt + κ− 6

2 cot ((ξt − Vt)/2) dt,

dVt = cot ((Vt − ξt)/2) dt.

(3.17)

Note that the conformal radius CR(D \ γ) is the same as e−T ; thus its Laplace transform
can be derived from the SDE (3.17).

Lemma 3.13. Fix κ ∈ (0, 8) and θ1 < θ2 < θ1 + 2π. We denote θ = θ2 − θ1 ∈ (0, 2π).
Suppose γ is chordal SLEκ in (D; eiθ1 , eiθ2) and denote by Eθ the expectation with respect
to γ. Denote by CR(D\γ) the conformal radius of D\γ seen from the origin. For α ∈ R,
we define

Φ(κ, α;u) := Eθ

[
CR(D \ γ)−α] , where u = (sin(θ/4))2 ∈ (0, 1). (3.18)

Then Φ(κ, α;u) is finite for u ∈ (0, 1) if only and if α < 1 − κ/8. Moreover, when
α < 1 − κ/8, Φ(u) = Φ(κ, α;u) satisfies the following ODE

u(1 − u)Φ′′ + 3κ− 8
2κ (1 − 2u)Φ′ + 8α

κ
Φ = 0, (3.19)

and the symmetry
Φ(u) = Φ(1 − u), u ∈ (0, 1). (3.20)

Proof. We first show that Φ(κ, α;u) is finite as long as α < 1 − κ/8. This is done
in [31, Proof of Prop. 3.5]. For the reader’s convenience, we summarize its proof here.

When α ≤ 0, since CR(D \ γ) ≤ 1 by Schwarz lemma, we obtain immediately that
Φ(κ, α;u) < ∞.

When α ∈ (0, 1 −κ/8), we will derive Φ in terms of hypergeometric functions. We set

A = 1 − 4
κ

+
√(

1 − 4
κ

)2
+ 8α

κ
, B = 1 − 4

κ
−

√(
1 − 4

κ

)2
+ 8α

κ
, C = 3

2 − 4
κ
.

Assume C ̸∈ Z and define

f1(u) := 2F1(A,B,C;u), f2(u) := u1−C
2F1(1 +A− C, 1 +B − C, 2 − C, u),

where 2F1 is the hypergeometric function (see e.g. [1, Eq.(15.1.1)]). Note that f1, f2 are
two linearly independent solutions to ODE (3.19). Let us check the values of f1, f2 at the
endpoints u = 0 or u = 1. Since κ ∈ (0, 8) and α ∈ (0, 1 − κ/8) and C ̸∈ Z, we have

A < 1, B ∈ (1 − 8/κ, 1 − 4/κ], C ∈ (−∞, 1) \ Z, C > A+B.

From [1, Eq.(15.1.20)], we have

f1(0) =1, f1(1) = Γ(C)Γ(C −A−B)
Γ(C −A)Γ(C −B) =

cos
(
π

√(
1 − 4

κ

)2
+ 8α

κ

)
cos

(
π
(
1 − 4

κ

)) ;
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f2(0) =0, f2(1) = Γ(2 − C)Γ(1 − C)
Γ(1 −A)Γ(1 −B) ∈ (0,∞).

We parameterize γ by the capacity, then its driving function ξt solves SDE (3.17). We
denote θt = Vt − ξt. The process θt satisfies the SDE:

dθt =
√
κdBt + κ− 4

2 cot(θt/2)dt. (3.21)

The disconnection time T is the first time that θt hits 0 or 2π. Suppose f is an analytic
function defined on (0, 1). Then eαtf

(
(sin(θt/4))2

)
is a local martingale if and only if f

satisfies (3.19). Since f1, f2 are solutions to this ODE, the processes

eαtf1
(
(sin(θt/4))2

)
and eαtf2

(
(sin(θt/4))2

)
are local martingales. These martingales are also considered in [35]. Since f1, f2 are finite
at u = 0 and u = 1, and the lifetime T has finite expectation, we may conclude that these
two local martingales are martingales up to T . Then the optional stopping theorem givesEθ

[
eαT 1{θT =0}

]
+ f1(1)Eθ

[
eαT 1{θT =2π}

]
= f1

(
(sin(θ/4))2

)
;

f2(1)Eθ

[
eαT 1{θT =2π}

]
= f2

(
(sin(θ/4))2

)
.

As CR(D \ γ) = e−T , the above relation gives

Eθ

[
CR(D \ γ)−α] = f1

(
(sin(θ/4))2

)
+ 1 − f1(1)

f2(1) f2
(
(sin(θ/4))2

)
. (3.22)

In particular, this implies that Φ(κ, α;u) is finite for u ∈ (0, 1) when

κ ∈ (0, 8), C = 3
2 − 4

κ
̸∈ Z, α ∈ (0, 1 − κ/8).

As Φ(κ, α;u) is continuous in κ ∈ (0, 8) and is increasing in α, we conclude that Φ(κ, α;u)
is finite for u ∈ (0, 1) when

κ ∈ (0, 8), α < 1 − κ/8.

Moreover, when α ∈ (0, 1 − κ/8) and C = 3/2 − 4/κ ̸∈ Z,

Φ(u) = Φ(κ, α;u) = Eθ[CR(D \ γ)−α] = f1(u) + 1 − f1(1)
f2(1) f2(u)

satisfies (3.19). In fact, Φ satisfies (3.19) for all κ ∈ (0, 8) and α < 1 − κ/8. Note that

eαtΦ
(
(sin(θt/4))2

)
= Eθ

[
CR(D \ γ)−α | γ[0,t]

]
(3.23)

is a martingale and θt satisfies (3.21). Thus, Φ is a weak solution for (3.19) and

(sin((θ2 − θ1)/2))−2h Φ
(
(sin((θ2 − θ1)/4))2

)
is a weak solution to the radial BPZ equations. As the operators in the radial BPZ
equations are hypoelliptic, see Remark 2.8, weak solutions are strong solutions. Thus Φ
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is a C2 solution to (3.19) for all κ ∈ (0, 8) and α < 1 − κ/8. The symmetry in (3.20) is
clear from the definition.

Finally, let us consider the case when α ≥ 1 − κ/8. Fix κ ∈ (0, 8) with C ̸∈ Z. As
α ↑ (1 − κ/8), we have

A → 1, B → (1 − 8/κ),
f1(u) → 2F1(1, 1 − 8/κ, 3/2 − 4/κ;u) ∈ (−∞,∞), f1(1) → −1,
f2(u) → u1−C

2F1(1 + 4/κ, 1/2 − 4/κ, 1/2 + 4/κ;u) ̸= 0, f2(1) → 0.

Plugging into (3.22), we see that

Φ(κ, α;u) ↑ ∞, as α ↑ (1 − κ/8).

Note that Φ(κ, α;u) is increasing in α. This completes the proof.

Corollary 3.14. Fix κ ∈ (0, 8) and θ1 < θ2 < θ1 + 2π. We denote θ = θ2 − θ1 ∈ (0, 2π).
Suppose γ is chordal SLEκ in (D; eiθ1 , eiθ2) and denote by Eθ the expectation with respect
to γ. Recall that Zα is defined in (1.4) for α < 1 − κ/8 and Gµ is defined in (1.3) for
µ ∈ R. Recall that h = 6−κ

2κ from (3.1). Then we have

Zα(θ1, θ2) = (sin(θ/2))−2h Eθ[CR(D \ γ)−α]
Eπ[CR(D \ γ)−α] , for α < 1 − κ/8. (3.24)

Moreover, we have

Eθ[CR(D \ γ)−α]
Eπ[CR(D \ γ)−α] = (sin(θ/2))2h Zα(θ1, θ2) → (sin(θ/2))2h G0(θ1, θ2) (3.25)

as α ↑ (1 − κ/8).

Proof. We denote u = (sin(θ/4))2. Recall from (1.4) that ϕα is the unique solution
to (1.5). Comparing with (3.19) and (3.20), it is clear that

ϕα(·) = Φ(κ, α; ·)
Φ(κ, α; 1/2) .

Thus
Zα(θ1, θ2) := (sin(θ/2))−2h ϕα(u) = (sin(θ/2))−2h Eθ[CR(D \ γ)−α]

Eπ[CR(D \ γ)−α] ,

as desired in (3.24). Moreover, we have

Eθ[CR(D \ γ)−α]
Eπ[CR(D \ γ)−α] = (sin(θ/2))2h Zα(θ1, θ2) = ϕα(u)

which converges to ϕα0(u) = (sin(θ/2))2h G0(θ1, θ2) as α → α0 = 1 − κ/8 by Lemma A.1.
This gives (3.25).

30



Corollary 3.15. Fix κ ∈ (0, 8) and α < 1 −κ/8. Denote by P the law of γ chordal SLEκ

in (D; eiθ1 , eiθ2) with θ1 < θ2 < θ1 + 2π. Let η(1) be γ and let η(2) be the time-reversal
of γ and still denote by P the induced law on (η(1), η(2)). We define Zα as in (1.4).
Denote by P(Zα) the probability measure obtained by weighting P by CR(D \ γ)−α. Then,
under P(Zα), the family of local laws obtained by restricting the pair (η(1), η(2)) in disjoint
neighborhoods satisfies (CI), (DMP), (MARG) and (INT) with

bj = κ∂j log Zα, j = 1, 2.

More precisely, the driving function of η(1) solves the following SDE, up to the first time
eiθ2 is disconnected from the origin:

ξ
(1)
0 = θ1, V

(2)
0 = θ2,

dξ(1)
t =

√
κdB̃(1)

t + κ∂1(log Zα)(ξ(1)
t , V

(2)
t )dt,

dV (2)
t = cot

(
(V (2)

t − ξ
(1)
t )/2

)
dt,

(3.26)

where B̃(1) is Brownian motion under P(Zα). Similarly, the driving function of η(2) solves
the following SDE, up to the first time eiθ1 is disconnected from the origin:

V
(1)

0 = θ1, ξ
(2)
0 = θ2,

dξ(2)
t =

√
κdB̃(2)

t + κ∂2(log Zα)(V (1)
t , ξ

(2)
t )dt,

dV (1)
t = cot

(
(V (1)

t − ξ
(2)
t )/2

)
dt,

(3.27)

where B̃(2) is Brownian motion under P(Zα).

Proof. The fact that the local laws obtained by restricting the pair (η(1), η(2)) ∼ P(Zα) in
disjoint neighborhoods satisfies (CI), (DMP), (MARG) and (INT) follows from the
reversibility of SLE (proved in [26, 27, 39]): suppose γ is chordal SLEκ in D from eiθ1 to
eiθ2 with κ ∈ (0, 8), the time-reversal of γ has the same law as chordal SLEκ in D from eiθ2

to eiθ1 . It remains to check (3.26) and (3.27). As the pair (η(1), η(2)) is interchangeable,
it suffices to check (3.26).

Denote Φ(·) = Φ(κ, α; ·) as in (3.18). Using the same notations as in the proof of
Lemma 3.13, we denote the martingale in (3.23) by

Mt(α) := eαtΦ
(
(sin(θt/4))2

)
.

Then P(Zα) is the same as P tilting by Mt(α). Recall from (3.21), under P, we have

dθt =
√
κdBt + κ− 4

2 cot(θt/2)dt.

Thus, under P, we have
dMt(α)
Mt(α) =

√
κ

4
Φ′

Φ sin(θt/2)dBt.

Girsanov’s theorem tells that

B̃t = Bt −
√
κ

4
Φ′

Φ sin(θt/2)dt

is Brownian motion under P(Zα). Combining with (3.24), we obtain (3.26).
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Now, we are ready to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. The conclusion follows from Theorem 2.4, Corollary 3.7 and Corol-
lary 3.15.

3.5 Commuting SLEs without interchangeability

We may also classify the commuting SLEs without interchangeability. Let us first give
an example.

Remark 3.16. Using the same notations as in Lemma 3.13, for κ ∈ (0, 8) and α < 1−κ/8,
we consider

ΦL(κ, α;u) :=Eθ

[
CR(D \ γ)−α1{0 is to the left of γ}

]
;

ΦR(κ, α;u) :=Eθ

[
CR(D \ γ)−α1{0 is to the right of γ}

]
.

Then ΦL(·) = ΦL(κ, α; ·) and ΦR(·) = ΦR(κ, α; ·) also satisfy the ODE (3.19), but they
do not enjoy the symmetry (3.20) anymore. This gives an example of locally commuting
2-radial SLE without interchangeability.

Moreover, we denote θ = θ2 − θ1 and set

ZL(θ1, θ2) = (sin(θ/2))−2h ΦL(κ, α; (sin(θ/4))2);
ZR(θ1, θ2) = (sin(θ/2))−2h ΦR(κ, α; (sin(θ/4))2).

Then both ZL and ZR satisfy (2.14) and (2.15) with

F = (6 − κ)(κ− 2)
8κ − α.

Proposition 3.17. If one removes the interchangeability condition in Theorem 2.4, one
obtains partition functions, Z, of the form:

1. Z = Gµ for some µ ∈ R, where Gµ is defined as in (1.3).
2. Z = Zα,β, for α < 1 − κ/8 and β ∈ [0, 1], where

Zα,β(θ1, θ2) = (sin(θ21/2))−2h(βΦL((sin(θ21/4))2) + (1 − β)ΦR((sin(θ21/4))2)).

The locally commuting 2-radial SLEκ corresponding to the second case above is ob-
tained analogously to Corollary 3.15. That is, one weights the law of a chordal SLEκ in
(D; eiθ1 , eiθ2), denoted by γ, by

CR(D \ γ)−α(β1{0 is to the left of γ} + (1 − β)1{0 is to the right of γ}),

then lets η(1) be γ and η(2) be the time-reversal of γ, and finally restricts the law of
(η(1), η(2)) to disjoint neighborhoods. One sees that the obtained family of local laws
satisfies (CI), (DMP), and (MARG) by using the reversibility of SLE: this makes η(2)

a chordal SLE in (D; eiθ2 , eiθ1) weighted by

CR(D \ η(2))−α(β1{0 is to the right of η(2)} + (1 − β)1{0 is to the left of η(2)}).
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Proof of Proposition 3.17. If we in the proof of Theorem 2.4 assume that µ = 0 without
assuming interchangeability, then Z is a positive solution of (2.25). By changing variables
by (2.27), we find that Z corresponds to a positive solution ϕ of (3.19). Lemma A.2,
shows that (up to a multiplicative constant)

ϕ = βΦL + (1 − β)ΦR, β ∈ [0, 1], (3.28)

if α < 1 − κ/8, that there are no positive solutions if α > 1 − κ/8, and that there is only
one positive solution, corresponding to Z = G0, if α = 1 − κ/8.

4 Semiclassical limits of commutation relation

4.1 Commutation relation when κ = 0

We now consider the commutation relation when κ = 0. In the multichordal SLE case, a
similar semiclassical limit of partition functions was considered in [29] and [3].

It is not hard to see that the infinitesimal commutation relation (Proposition 2.2)
also holds when κ = 0. However, we need to derive the BPZ equation and classify the
partition functions differently, which we summarize in the following proposition.

Proposition 4.1. We consider an interchangeable and locally commuting 2-radial SLE0.
Let b1, b2 : S1 × S1 \ ∆ → R be C2 functions as in the condition (MARG). Then (2.4)
and (2.6) imply that there exists U : {(θ1, θ2) ∈ R2 | θ1 < θ2 < θ1 + 2π} → R and a
constant C such that

bj = ∂jU , j = 1, 2

and

(∂2U)2 + 2 cot(θ12/2)∂1U − 3
(sin(θ12/2))2 = C,

(∂1U)2 + 2 cot(θ21/2)∂2U − 3
(sin(θ21/2))2 = C,

(4.1)

where θ21 = θ2 − θ1 = −θ12. The only solutions are

U(θ1, θ2) = Uµ(θ1, θ2) := 2 log sin(θ21/2) + µ(θ1 + θ2) (4.2)

for some µ ∈ R or
U(θ1, θ2) = −6 log sin(θ21/2) (4.3)

up to an additive constant.

Proof. The proof of Proposition 2.3 up to (2.11) holds verbatim when κ = 0.
From (2.9) we know that there is a function U : {(θ1, θ2) | θ1 < θ2 < θ1 + 2π} → R

such that we can write b1 = ∂1U and b2 = ∂2U . Equations (2.10) and (2.11) give:

∂1

(
(∂2U)2 + 2 cot(θ12/2)∂1U − 3

(sin(θ12/2))2

)
= 0 (4.4)
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∂2

(
(∂1U)2 + 2 cot(θ21/2)∂2U − 3

(sin(θ21/2))2

)
= 0. (4.5)

Hence, there exist functions C1(θ1) and C2(θ2) such that

(∂2U)2 + 2 cot(θ12/2)∂1U − 3
(sin(θ12/2))2 = C2(θ2)

(∂1U)2 + 2 cot(θ21/2)∂2U − 3
(sin(θ21/2))2 = C1(θ1).

(4.6)

Since bj is invariant under the rotation (θ1, θ2) 7→ (θ1 +a, θ2 +a), so are the left-hand sides
of (4.6). Thus, C1(θ1) = C1 and C2(θ2) = C2 are constant. The rotational invariance of
bj also gives

0 = ∂1(∂1U + ∂2U) = ∂2(∂1U + ∂2U).

We let µ ∈ R such that
2µ ≡ ∂1U + ∂2U .

Taking the difference of the equations in (4.6), we obtain

(∂1U − ∂2U + 2 cot(θ21/2)) 2µ = C1 − C2 (4.7)

Case 1: If µ ̸= 0, then ∂1U = C1−C2
4µ + µ− cot(θ21/2),

∂2U = C2−C1
4µ + µ+ cot(θ21/2).

Plugging this back into (4.6) shows that C1 = C2 =: C and C = µ2 − 3. Therefore, up to
an additive constant, we have

U(θ1, θ2) = 2 log sin(θ21/2) + µ(θ1 + θ2).

Case 2: If µ = ∂1U +∂2U = 0, then it follows directly that C1 = C2 =: C. Moreover, U
only depends on θ := θ2 −θ1 and writing U(θ) = U(θ1, θ2) with a slight abuse of notation,
we have from the interchangeability condition that

U(θ) = U(2π − θ). (4.8)

Thus, (4.1) becomes

(U ′(θ) + cot(θ/2))2 = C + 3 + (cos(θ/2))2

(sin(θ/2))2 . (4.9)

Eq. (4.9) gives the solutions

U ′(θ) = ±

√√√√C + 3 + (cos(θ/2))2

(sin(θ/2))2 − cot(θ/2). (4.10)
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Since U ′(π) = 0 from (4.8), this implies that C = −3 and

U ′(θ) = cot(θ/2) or − 3 cot(θ/2).

Namely,
U(θ) = 2 log sin(θ/2) or − 6 log sin(θ/2)

up to an additive constant.

We have defined the two-sided radial SLEκ with spiraling rate µ for κ ∈ (0, 8) in
Definition 3.6, we now extend the definition to the case κ = 0.

Definition 4.2. We use the same notations as in Figure 5, we say that a deterministic
pair of continuous simple curves (η(1), η(2)) is the two-sided radial SLE0 with spiraling
rate µ in (D; eiθ1 , eiθ2 ; 0) if we have for all t = (t1, t2),
θ

(1)
(0,0) = θ1, θ

(2)
(0,0) = θ2,

dθ(1)
t = µϕ′

t,1

(
ξ

(1)
t1

)2
dt1 + cot

(
(θ(1)

t − θ
(2)
t )/2

)(
ϕ′

t,1

(
ξ

(1)
t1

)2
dt1 + ϕ′

t,2

(
ξ

(2)
t2

)2
dt2
)
,

dθ(2)
t = µϕ′

t,2

(
ξ

(2)
t2

)2
dt2 + cot

(
(θ(2)

t − θ
(1)
t )/2

)(
ϕ′

t,1

(
ξ

(1)
t1

)2
dt1 + ϕ′

t,2

(
ξ

(2)
t2

)2
dt2
)
.

To justify such a pair exists, we note that when t2 ≡ 0, we write θ
(1)
t = ξ

(1)
t1 and

θ
(2)
t = V

(2)
t1 , then
ξ

(1)
0 = θ1, V

(2)
0 = θ2,

dξ(1)
t1 = µdt1 + cot

(
(ξ(1)

t1 − V
(2)

t1 )/2
)

dt1 = ∂1Uµ(ξ(1)
t1 , V

(2)
t1 )dt1,

dV (2)
t1 = cot

(
(V (2)

t1 − ξ
(1)
t1 )/2

)
dt1,

(4.11)

which shows η(1) is the radial SLEµ
0 (2) with force point eiθ2 . Similarly, η(2) is the radial

SLEµ
0 (2) with force point eiθ1 . As in Corollary 3.7, the system of equations in Definition 4.2

is simply the two-time version of (4.11) starting from t after capacity-reparametrization.
Since Uµ satisfies the commutation relation as we showed in Proposition 4.1, we know

that (η(1), η(2)) gives a pair in Definition 4.2 if we show that θ(2)
t /∈ {θ(1)

t , θ
(1)
t + 2π} for all

t. Indeed, the map t2 7→ θ
(2)
(0,t2) − θ

(1)
(0,t2) is repulsive away from {0, 2π}, so is well-defined

and for all t2 ≥ 0. Similarly, for fixed t2, the function t1 7→ θ
(2)
(t1,t2) − θ

(1)
(t1,t2) is repulsive

away from {0, 2π}, so θ(2)
t /∈ {θ(1)

t , θ
(1)
t + 2π} for all t1, t2 ≥ 0.

Corollary 4.3. The only interchangeable and locally commuting 2-radial SLE0 are the
two-sided radial SLE0 with spiraling rate µ ∈ R and the chordal SLE0.

Proof. When U = Uµ, the corresponding commuting SLE0 is the two-sided radial SLE0
(with spiraling rate µ).

When U(θ1, θ2) = −6 log sin(θ21/2), the corresponding commuting SLE0 is the chordal
SLE0 in (D; eiθ1 , eiθ2) and its time-reversal.
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Remark 4.4. We note that when U(θ1, θ2) = U0(θ1, θ2) = 2 log sin(θ21/2), the corre-
sponding commuting SLE0 is the two-sided radial SLE0 (with zero spiraling rate). This
is also the geodesic pair in X(D; eiθ1 , eiθ2 ; 0) studied in [24, 25, 38], or in other words, the
concatenation of η(1) and η(2) is the chord minimizing the chordal Loewner energy among
all chords in (D; eiθ1 , eiθ2) passing through 0, hence can be viewed as the chordal SLE0
“conditioned” to pass through 0.

We remark that, unlike the κ > 0 case, we do not have the second one-parameter
family given by weighting by conformal radius as described in Section 3.4.

4.2 Semiclassical limits of partition functions

To understand the reason why the second one-parameter family given by Zα disappears
when κ = 0, we now take a closer look at the semiclassical limit (κ → 0) of Gµ and Zα.

For µ ∈ R, recall that Gµ is defined in (1.3):

Gµ(θ1, θ2) = (sin ((θ2 − θ1)/2))2/κ exp
(
µ

κ
(θ1 + θ2)

)
.

Lemma 4.5. Fix µ ∈ R and 0 < θ1 < θ2 < θ1 + 2π, we have (1.6):

lim
κ→0

κ log Gµ(θ1, θ2) = 2 log sin ((θ2 − θ1)/2) + µ(θ1 + θ2)

which is the solution (4.2) in Proposition 4.1.

Proof. This is immediate from the expression of Gµ.

Lemma 4.5 gives the first part of Proposition 1.3. We will prove its second part below.
For α < 1 − κ/8, recall that Zα is defined in (1.4):

Zα(θ1, θ2) = (sin ((θ2 − θ1)/2))(κ−6)/κ ϕα

(
(sin ((θ2 − θ1)/4))2

)
,

where ϕα is the unique solution to (1.5). Before we derive semiclassical limit of Zα, let
us first address chordal Loewner energy [29]. Recall that X(D; eiθ1 , eiθ2) is the space of all
continuous curves in D connecting eiθ1 and eiθ2 .

Lemma 4.6. Fix θ1 < θ2 < θ1 + 2π. Suppose γ ∈ X(D; eiθ1 , eiθ2). We parameterize it by
the capacity and define gt, ξt accordingly as in Section 3.1 and set T = − log CR(D \ γ).
Suppose t 7→ ξt is absolutely continuous and denote its derivative by ξ̇t. We denote by
t 7→ Vt the solution to

V̇t = cot ((Vt − ξt)/2) , V0 = θ2. (4.12)

Then the chordal Loewner energy I(γ) can be written as

I(γ) = 1
2

∫ T

0

(
ξ̇s − 3 cot ((Vs − ξs)/2)

)2
ds. (4.13)

Furthermore, the infimum of I(γ) in X(D; eiθ1 , eiθ2) is zero and is attained by the hyperbolic
geodesic.
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Proof. Eq. (4.13) is a standard calculation by changing coordinates.

Lemma 4.7. If we choose α = α(κ) such that α = o(1/κ), then

lim
κ→0

κ log Zα(θ1, θ2) = −6 log sin(θ21/2) (4.14)

which is the solution (4.3) in Proposition 4.1.
If α ∼ −λ/κ for some λ > 0, then the limit limκ→0 κ log Zα(θ1, θ2) exists and equals

Uλ(θ1, θ2) := −6 log sin(θ21/2) − inf
γ∈X(D;eiθ1 ,eiθ2 )

(I(γ) − λ log CR(D \ γ))

+ inf
γ∈X(D;−1,1)

(I(γ) − λ log CR(D \ γ)) ,
(4.15)

where I(γ) is the chordal Loewner energy of γ in X(D; eiθ1 , eiθ2) and the infimums are
attained.

We note that the constraint α < 1 − κ/8 implies that we can only choose λ ≥ 0 and
the last term in (4.15) is a constant such that Uλ(θ1, θ1 + π) = 0 as we have normalized
Zα such that Zα(θ1, θ1 + π) = 1.

Proof. For α < 1 − κ/8, recall from Lemma 3.13 and (3.24) that Zα is defined as

Zα(θ1, θ2) = (sin(θ/2))(κ−6)/κ Eθ[CR(D \ γ)−α]
Eπ[CR(D \ γ)−α] ,

where Eθ is the expectation with respect to the law of γ which is a chordal SLEκ in
(D; eiθ1 , eiθ2) and θ = θ2 − θ1.

Then the result follows from the large deviation principle for chordal SLE as κ → 0+

[29]. In fact, the Loewner energy is the large deviation rate function of chordal SLE0+ for
the Hausdorff metric and γ 7→ − log CR(D \ γ) is a continuous function X(D; eiθ1 , eiθ2) →
[0,∞]. Varadhan’s lemma [8, Lem. 4.3.4 and 4.3.6] shows if α ∼ −λ/κ, then

lim
κ→0

κ logEθ[CR(D \ γ)−α] = − inf
γ∈X(D;eiθ1 ,eiθ2 )

(I(γ) − λ log CR(D \ γ))

which proves the limit (4.15). Since the large deviation rate function I of chordal SLE0+
is good, the infimum in (4.15) is attained.

Similarly, an easy bound and Varadhan’s lemma also show the limit (4.14).

Proposition 4.8. For θ1 < θ2 ≤ θ1 + π, we denote θ = θ2 − θ1 and we have

inf
γ∈X(D;eiθ1 ,eiθ2 )

(I(γ) − λ log CR(D \ γ)) =
∫ θ

0

(√
2λ+ 4 cot2(u/2)−2 cot(u/2)

)
du. (4.16)

• If θ1 < θ2 < θ1 + π, the infimum in (4.16) is attained for a unique curve γ∗ ∈
X(D; eiθ1 , eiθ2) whose radial driving function ξ∗

· , defined on [0, T ], satisfies
ξ∗

0 = θ1, V
∗

0 = θ2,

ξ̇∗
t = cot((V ∗

t − ξ∗
t )/2) +

√
2λ+ 4 cot2((V ∗

t − ξ∗
t )/2),

V̇ ∗
t = cot((V ∗

t − ξ∗
t )/2),

(4.17)

and limt→T −(V ∗
t − ξ∗

t ) = 0.
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• If instead θ2 = θ1 + π, then the infimum in (4.16) is attained for two curves, γ∗

and γ∗∗. One of the corresponding driving functions, say ξ∗
· , satisfies (4.17) so that

limt→T −(V ∗
t − ξ∗

t ) = 0, while the other ξ∗∗
· , satisfies ξ̇∗∗

t = −ξ̇∗
t for all t ∈ [0, T ), so

that limt→T −(V ∗∗
t − ξ∗∗

t ) = 2π.

Proof. We denote the right-hand side of (4.16) by

Hλ(θ) =
∫ θ

0

(√
2λ+ 4 cot2(u/2) − 2 cot(u/2)

)
du, (4.18)

for θ ∈ [0, π], and Hλ(θ) = Hλ(2π − θ) for θ ∈ (π, 2π]. Let γ[0,t] : [0, t] → D \ {0} be a
simple curve, parametrized by capacity, with an absolutely continuous driving function
t 7→ ξt and set Vt as in (4.12). Define

Jλ
(θ1,θ2)

(
γ[0,t]

)
:= 1

2

∫ t

0

(
ξ̇s − 3 cot((Vs − ξs)/2) −H ′

λ(Vs − ξs)
)2

ds. (4.19)

Since Hλ is not differentiable at θ = π (the left and right derivatives differ by a sign),
the integrand on the right-hand side of Eq. (4.19) is not necessarily well-defined for s
such that Vs − ξs = π. However, this is not an issue: Let E = {s ∈ [0, t] : Vs − ξs = π}.
In the interior of E, we have ξ̇s = 0 and V̇s = 0. Hence, the integrand is well-defined
and takes the value 2λ for s ∈ E◦. Since ∂E has measure zero the integrand need not be
well-defined there.

Let us connect Jλ
(θ1,θ2) to the chordal Loewner energy I in Lemma 4.6. We have the

following two observations.

• Denote by γ̂t the union of γ[0,t] and the hyperbolic geodesic from γt to eiθ2 in D \ γ[0,t].
Then Lemma 4.6 gives the energy of γ̂t:

I(γ̂t) = 1
2

∫ t

0

(
ξ̇s − 3 cot((Vs − ξs)/2)

)2
ds.

• For Hλ, we have

Hλ(Vt − ξt) −Hλ(θ2 − θ1) =
∫ t

0
H ′

λ(Vs − ξs)
(

cot((Vs − ξs)/2) − ξ̇s

)
ds.

Plugging these two observations into (4.19), we have

Jλ
(θ1,θ2)

(
γ[0,t]

)
= I(γ̂t) − λ log CR(D \ γt) +Hλ(Vt − ξt) −Hλ(θ2 − θ1). (4.20)

Suppose γ : (0, T ) → D \ {0}, with γ(0+) = eiθ1 and γ(T−) = eiθ2 , has finite chordal
Loewner energy. Then the associated radial driving function, in the capacity parametriza-
tion, ξ·, is absolutely continuous on [0, t] for all t ∈ [0, T ). Furthermore, a harmonic
measure argument shows that

Vt − ξt → 0 or Vt − ξt → 2π, as t → T−
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(depending on, on which side of the origin γ passes). Hence, Eq. (4.20) implies

I(γ) − λ log CR(D \ γ) = Hλ(θ2 − θ1) + lim
t→T −

Jλ
(θ1,θ2)(γt) ≥ Hλ(θ2 − θ1). (4.21)

Now let θ1 < θ2 ≤ θ1 + π, and let (ξ∗
t , V

∗
t ) be the solution to (4.17). Then,

∂t(V ∗
t − ξ∗

t ) = −
√

2λ+ 4 cot2((V ∗
t − ξ∗

t )/2),

so that there does, indeed, exist T ∈ (0,∞) so that limt→T −(V ∗
t − ξ∗

t ) = 0. It follows
from (4.21) that ξ∗

· is the driving function of a simple curve γ∗, with γ∗(0+) = eiθ1 and
γ∗(T−) = eiθ2 , and that

I(γ∗) − λ log CR(D \ γ∗) = Hλ(θ2 − θ1).

Thus, the infimum of I(γ) − λ log CR(D \ γ) equals Hλ(θ2 − θ1) and is attained by γ∗.
Furthermore, any γ̃ ∈ X(D; eiθ1 , eiθ2) which minimizes I(γ) −λ log CR(D \ γ) must satisfy
Jλ

(θ1,θ2)

(
γ̃[0,t]

)
= 0 for all t, or equivalently, its driving function must satisfy

ξ̇t = 3 cot((Vt − ξt)/2)) +H ′
λ(Vt − ξt), a.e. (4.22)

If θ2 < θ1 + π the unique continuous solution of (4.22) is ξ∗
· . If θ2 = θ1 + π, then (4.22)

has two continuous solutions, ξ∗
· and ξ∗∗

· , where ξ̇∗∗
t = −ξ̇∗

t .

Since Zα is a function of θ := θ2 − θ1, so we may write Uλ(θ) = Uλ(θ1, θ2). The next
corollary explains why we do not find this solution in Proposition 4.1.

Corollary 4.9. We let θ = θ2 − θ1 and write Uλ(θ) = Uλ(θ1, θ2). Then we have (1.7):
for θ ∈ (0, π),

Uλ(θ) = Uλ(2π − θ) = −2 log sin(θ/2) +
∫ π

θ

√
2λ+ 4 cot2(u/2) du.

In particular, it satisfies

(U ′(θ))2 + 2 cot(θ/2)U ′(θ) − 3
(sin(θ/2))2 = −3 + 2λ (4.23)

and has the left derivative −
√

2λ and right derivative
√

2λ at θ = π.

In other words, Uλ is not differentiable at π. That is why we do not see it in Propo-
sition 4.1. Moreover, the driving function ξ∗ in (4.17) satisfies ξ̇∗

t = ∂1Uλ(ξ∗
t , V

∗
t ) which

is analogous to (4.11).

Proof. The expression (1.7) follows directly from (4.15) and Proposition 4.8. It is straight-
forward to check that it satisfies (4.23).

Proof of Proposition 1.3 and Proposition 1.4. This is a collection of Lemma 4.5, Lemma 4.7,
Proposition 4.8 and Corollary 4.9.
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Remark 4.10. When λ = 2, Corollary 4.9 is consistent with Remark 2.7: when α =
α1(κ) as in (2.29), we have α1(κ) ∼ −2/κ and thus

Uλ=2(θ) = lim
κ→0+

κ log Zα1(κ)(θ1, θ2)

=

4 log 2 − 6 log sin(θ/2) + 8 log cos(θ/4), if θ ∈ (0, π];
4 log 2 − 6 log sin(θ/2) + 8 log sin(θ/4), if θ ∈ [π, 2π).

Then

∂θUλ=2(θ) =

−3 cot(θ/2) − 2 tan(θ/4), if θ ∈ (0, π);
−3 cot(θ/2) + 2 cot(θ/4), if θ ∈ (π, 2π).

Note that, when θ ∈ (0, π), the derivative of the right-hand side of (1.7) is

− cot(θ/2) − 2
sin(θ/2) = −3 cot(θ/2) − 2 tan(θ/4).

Remark 4.11. If one removes the assumption of interchangeability from Proposition 4.1,
then one obtains, in addition to the solutions (4.2) and (4.3), the solutions

Uλ,±(θ1, θ2) := −2 log sin(θ21/2)±
∫ π

θ21

√
2λ+ 4 cot2(u/2)du, θ1 < θ2 < θ1+2π, λ > 0.

(These solutions correspond to Eq. (4.10) with C > −3 and λ = (3 + C)/2.) Note
that Uλ,+(θ1, θ2) = Uλ(θ1, θ2) for θ1 < θ2 ≤ θ1 + π and Uλ,−(θ1, θ2) = Uλ(θ1, θ2) for
θ1 +π ≤ θ2 ≤ θ1 +2π. As in the case with interchangeability, we do not have a one-to-one
correspondence with the solutions from the κ > 0 case. Following Lemma 4.7, one can
take the semiclassical limit of Zα,β from Proposition 3.17. If λ > 0 and α ∼ −λ/κ as
κ → 0, then one has

lim
κ→0

κ log Zα,β(θ1, θ2)
Zα,β(0, π) =


Uλ,+(θ1, θ2), if β = 1;
Uλ(θ1, θ2), if β ∈ (0, 1);
Uλ,−(θ1, θ2), if β = 0.

The case β = 1 follows from

inf
γ∈X(D;eiθ1 ,eiθ2 )

0 is to the left of γ

(I(γ) − λ log CR(D \ γ)) =
∫ θ21

0

(√
2λ+ 4 cot2(u/2) − 2 cot(u/2)

)
du,

which can be seen by examining the proof of Proposition 4.8. The case β = 0 is analogous.

A Euler’s hypergeometric differential equations

Lemma A.1. Fix κ ∈ (0, 8) and α ∈ R, we consider Euler’s hypergeometric differential
equation (1.5):u(1 − u)ϕ′′(u) − 3κ− 8

2κ (2u− 1)ϕ′(u) + 8α
κ
ϕ(u) = 0, u ∈ (0, 1);

ϕ(1/2) = 1, ϕ′(1/2) = 0.
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There is a unique solution ϕα to (1.5) in C2(0, 1) and the solution ϕα is continuous in α.
Furthermore,

• when α = α0 := 1 − κ/8, we have

ϕα0(u) = (4u(1 − u))4/κ−1/2 ; (A.1)

• when α < 1 − κ/8, we have ϕα(u) > 0 for all u ∈ (0, 1);
• when α > 1 − κ/8, there exists u ∈ (0, 1) such that ϕα(u) ≤ 0.

Proof. By direct calculation, we see that (A.1) satisfies (1.5) when α = α0. We write

α0 = 1 − κ/8, ϕα0(u) = (4u(1 − u))4/κ−1/2 , ϕ(u) = ϕα0(u)f(u).

Then Eq. (1.5) becomesu(1 − u)f ′′(u) − κ+ 8
2κ (2u− 1)f ′(u) + 8

κ
(α− α0)f(u) = 0, u ∈ (0, 1);

f(1/2) = 1, f ′(1/2) = 0.
(A.2)

We write y1 = f and y2 = f ′, then Eq. (A.2) becomes
y′

1 = F1(u, y1, y2) := y2;

y′
2 = F2(u, y1, y2) := 8

κ

α0 − α

u(1 − u)y1 + κ+ 8
2κ

(2u− 1)
u(1 − u)y2;

y1(1/2) = 1, y2(1/2) = 0.

(A.3)

The functional (F1,F2) is continuous in Λ = (0, 1) ×R×R and satisfies a local Lipschitz
condition with respect to (y1, y2) in Λ. Thus, the initial value problem (A.3) has exactly
one solution, and the solution can be extended up to the boundary of Λ. This gives the
unique solution ϕα to (1.5) and the solution ϕα is continuous in α.

Next, let us check the positivity of the solution. There are two cases.
Case 1: α ≤ α0. In this case, F1 is increasing in y2 and F2 is increasing in y1. Thus we
have a comparison principle for the unique solution to (A.3). In particular, the solution
f to (A.2) is decreasing in α as long as α ≤ α0. Consequently, the unique solution ϕα

to (1.5) is decreasing in α as long as α ≤ α0 and ϕα(u) ≥ ϕα0(u) > 0 for all u ∈ (0, 1)
when α ≤ α0.
Case 2: α > α0. We prove by contradiction and assume f(u) ≥ 0 for all u ∈ (1/2, 1).
As f ′(1/2) = 0 and f ′′(1/2) = 32(α0 − α)/κ < 0, there exists ε > 0 small such that

−δ := f ′(1/2 + ε) < 0.

The ODE in (A.2) implies that

f ′′(u) ≤
(
κ+ 8

2κ

) 2u− 1
u(1 − u)f

′(u), u ∈ (1/2, 1).
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Using Grönwall’s inequality, we obtain, for u ∈ (1/2 + ε, 1),

f ′(u) ≤ f ′(1/2 + ε) exp
(∫ u

1/2+ε

(
κ+ 8

2κ

) 2s− 1
s(1 − s)ds

)
= −δ

(
u(1 − u)
1/4 − ε2

)− κ+8
2κ

.

Since κ ∈ (0, 8), we have κ+8
2κ > 1. The derivative f ′ is not integrable as u → 1. This

implies that f(u) → −∞ as u → 1, which contradicts our assumption and completes the
proof.

Lemma A.2. Fix κ ∈ (0, 8) and α ∈ R. Consider Euler’s hypergeometric differential
equation:

u(1 − u)ϕ′′(u) − 3κ− 8
2κ (2u− 1)ϕ′(u) + 8α

κ
ϕ′(u) = 0, u ∈ (0, 1). (A.4)

We have the following:

• When α > 1 − κ/8, there exists, for each solution ϕ to (A.4), u ∈ (0, 1) such that
ϕ(u) ≤ 0.

• When α = 1−κ/8, the only positive solution (up to a multiplicative constant) of (A.4)
is

ϕα0(u) = (4u(1 − u))4/κ−1/2.

• When α < 1−κ/8, the positive solutions of (A.4), are (up to a multiplicative constant)
all of the form

ϕ(u) = βΦL(u) + (1 − β)ΦR(u), β ∈ [0, 1],

with ΦL and ΦR as in Remark 3.16.

Proof. We first consider α ≥ 1 − κ/8. Let ϕα be as in Lemma A.1, and let ψα be the
solution of (A.4) satisfying ψα(1/2) = 0 and ψ′

α(1/2) = 1. It is easily verified that

ψα(u) = −ψα(1 − u), u ∈ (0, 1). (A.5)

Since ϕα and ψα are linearly independent, any solution of (A.4) can be expressed as a
linear combination of them. When α > 1−κ/8, it follows from Lemma A.1 and Eq. (A.5)
that there is no positive solution of (A.4). Similarly, when α = α0 = 1 − κ/8, it follows
from Lemma A.1 and Eq. (A.5) that the only positive solutions of (A.4) are Cϕα0 , with
C > 0.

Now consider α < 1 − κ/8. As stated in Remark 3.16, ΦL and ΦR are C2-solutions
to (A.4) (ΦL,ΦR ∈ C2((0, 1)) follows from the same argument as for Φ in Lemma 3.13
using Remark 2.8). Moreover, 0 < ΦL(u),ΦR(u) ≤ Φ(u), for u ∈ (0, 1), and

ΦL(0) = 1, ΦL(1) = 0, and ΦR(0) = 0, ΦR(1) = 1.

Since ΦL and ΦR are linearly independent, any solution ϕ of (A.4) can be decomposed
as ϕ = CLΦR +CRΦR, for some real constants CL and CR. If CL < 0, then ϕ(u) < 0 for
u > 0 small. So, for a positive solution ϕ we must have CL ≥ 0. Similarly, we deduce
that CR ≥ 0, and clearly we may not have CL = CR = 0. This finishes the proof.
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B Convergence of radial SLE to chordal SLE

Suppose γ : [0,∞) → H is a continuous non-self-crossing curve in H such that γ0 = 0. Let
Ht be the unbounded connected component of H \ γ[0,t]. Let gt : Ht → H be the unique
conformal map with limz→∞ |gt(z) − z| = 0. We say that the curve is parameterized by
half-plane capacity if

gt(z) = z + 2t
z

+ o

( 1
|z|

)
, as z → ∞.

Then gt satisfies the chordal Loewner equation

∂tgt(z) = 2
gt(z) −Wt

, g0(z) = z.

We call Wt the driving function. Chordal SLEκ in H from 0 to ∞ is the chordal Loewner
chain with driving function Wt =

√
κBt where B is one-dimensional Brownian motion.

For a general simply connected domain D with two distinct prime ends x1, x2 ∈ ∂D, we
define chordal SLEκ in D from x1 to x2 to be the image of chordal SLEκ in H from 0 to
∞ under the conformal map φ : H → D sending 0 to x1 and ∞ to x2.

Proof of Lemma 3.11. Recall that Qt1 denotes the law of radial SLEκ in (D\η(1)
[0,t1]; eiθ2 ; 0),

and denote by Q∞ the law of chordal SLEκ in (D \ η(1); eiθ2 , 0). We fix a sequence of
conformal maps ft1 : D \ η(1)

[0,t1] → H and a conformal map f∞ : D \ η(1) → H such that

ft1

(
η

(1)
t1

)
= −1, ft1(eiθ2) = 0; f∞(0) = −1, f∞(eiθ2) = 0;

and that ft1 converges to f∞ locally uniformly. Note that (ft1)∗(Qt1) is the same as radial
SLEκ in (H; 0;w = ft1(0)), and (f∞)∗(Q∞) is the same as chordal SLEκ in (H; 0,−1).

Suppose γ is chordal SLEκ in H from 0 to ∞ and denote by Wt its driving function
and by gt the corresponding conformal maps. From [36], the law of chordal SLEκ in H
from 0 to −1 is the same as γ weighted by the local martingale

|g′
t(−1)|h(Wt − gt(−1))−2h, (B.1)

where h = (6 − κ)/(2κ) as in (3.1). The law of radial SLEκ in H from 0 to w = ft1(0) is
the same as γ weighted by the local martingale

|g′
t(w)|h̃ ×

( Im(gt(w))
Im(w)

)(κ−6)2/(8κ)
×
∣∣∣∣Wt − Re(gt(w))

Re(w)

∣∣∣∣−2h

, (B.2)

where h̃ = (κ− 2)(6 − κ)/(8κ) as in (3.1).
Combining (B.1) and (B.2), (ft1)∗(Qt1) (radial SLEκ in H from 0 to w = ft1(0)) is

the same as (f∞)∗(Q∞) (chordal SLEκ in H from 0 to −1) weighted by

Mt = |g′
t(w)|h̃

|g′
t(−1)|h ×

( Im(gt(w))
Im(w)

)(κ−6)2/(8κ)
×
∣∣∣∣ Wt − Re(gt(w))
(Wt − gt(−1)) Re(w)

∣∣∣∣−2h

.

As t1 → ∞, we have w = ft1(0) → −1 and Mt → 1 almost surely, and ft1 converges to
f∞ locally uniformly. These give the desired conclusion.
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