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Option Pricing

I The standard Black-Scholes-Merton model

dB(t) = rB(t)dt, (1)

dS(t) = µS(t)dt+ �S(t)dW (t), (2)

where B is the bond value, S is the stock value, r is the interest

rate, µ is the drift constant, � is the volatility and W is a Wiener

process.

I How to price a contingent claim issued on a stock S,
maturing at time T , with a payo↵ function g(S(T ))?

I Itō calculus and Feynman-Kac theory

u(S(t), t) = e�r(T�t)EQ
S(t),t[g(S(T ))]. (3)

I Under Q measure the underlying dynamics is the following

dS(t) = rS(t)dt+ �S(t)d ˜W (t). (4)
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Option Pricing

I The Black-Scholes-Merton equation
8
<

:
ut + rsus +

1

2

s2�2uss � ru = 0,

u(s, T ) = g(s).
(5)

I Analytical solution exists for certain contracts.

I Options
A European call/put option is a financial contract which gives the

right to its owner, but not the obligation, to buy/sell a particular

financial instrument (i.e. a stock S) at a certain expiration time T

for a certain strike price K.

I Payo↵ function for European call

g(s) = max(s�K, 0) = (s�K)

+. (6)

I Boundary conditions?
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Option Pricing
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Figure 1 : The solution of the Black-Scholes-Merton equation for a call
option with r = 0.05, � = 0.3 and T = 5.
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Option Pricing

I In higher dimensions
8
>>>>>>><

>>>>>>>:

dB(t) = rB(t)dt,

dS1(t) = µ1S1(t)dt+ �1S1(t)dW1(t),

dS2(t) = µ2S2(t)dt+ �2S2(t)dW2(t),

...

dSD(t) = µDSD(t)dt+ �DSD(t)dWD(t).

(7)

I The Black-Scholes-Merton equation

8
>><

>>:

ut + r
DX

i

siusi +
1

2

DX

i,j

[⌃ · ⌃T
]i,jsisjusisj � ru = 0,

u(s1, s2, ..., sD, T ) = g(s1, s2, ..., sD).

(8)
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Test Problem

Figure 2 : The terminal condition.
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Test Problem

Figure 3 : The computed solution with T = 1, K = 1, r = 0.05,
⌃ = [0.3, 0.05; 0.05, 0.3].
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Option Pricing

I Solutions
I Lower-dimensional problems are solved either analytically or

using finite di↵erence methods (FD).
I Higher-dimensional problems are solved using Monte-Carlo

methods (MC).

I Problems
I MC converges slowly.
I FD becomes harder to implement in higher dimensions and

su↵ers from the curse of dimensionality.

I Goals
I Price options using mesh-free methods whose complexity does

not increase severely with the dimensionality of the problem.

Radial basis functions methods (RBF)?
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Radial Basis Functions Method

I Discretize space using N nodes.

I Approximate solution

u(s, t) ⇡
NX

k=1

�k(t)�("ks� skk), k = 1, 2, . . . , N, (9)

where � is a radial basis function and " is a shape parameter.

I The linear combination constants �k are found by enforcing
the interpolation condition.

I This global approximation leads to a dense linear system of
equations which tends to be ill-conditioned when " is small.

A localized RBF method might be better!
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Radial Basis Functions
generated Finite Di↵erences

I Try to exploit the best properties from both FD and RBF with
the minimal loss.

I For each point si in space, define its neighborhood of M � 1

points.

I Approximate the di↵erential operator at every point

[Lu(s)]i ⇡
MX

k=1

w(i)
k u(i)k . (10)

I Compute the weights and put them in the matrix W

2

64
�(ks(i)1 � s(i)1 k) . . . �(ks(i)1 � s(i)M k)

...
. . .

...

�(ks(i)M � s(i)1 k) . . . �(ks(i)M � s(i)M k)

3

75

2

64
w1
...

wM

3

75 =

2

64
[L�(ks� s(i)1 k)]s=si

...

[L�(ks� s(i)M k)]s=si

3

75 .
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Implementation

I Discretize the Black-Scholes-Merton equation operator in
space using RBF-FD

ut = �

2

4r
DX

i

siusi +
1

2

DX

i,j

⇥
⌃ · ⌃T

⇤
i,j

sisjusisj � ru

3

5 ⇡ Wu.

I Integrate in time using the standard implicit schemes
I BDF-1,
I BDF-2.

I How to choose a stencil, boundary conditions, an RBF kernel
and a shape parameter "?
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Results
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Figure 4 : The absolute error computed using 41 point in each dimension
and a 5-point stencil.
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Summary

I The method shows to be reliable with an expected error
distribution.

I Performance of the method is high due to the very sparse
linear system.

I The method promises competitiveness with the standard
methods in the field.

13 / 14



Thank you for your attention!
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