

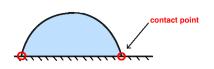
MODELING OF MOVING CONTACT LINE IN TWOPHASE FLOWS

Hanna Holmgren

Phd at the Division of Scientific Computing
Uppsala University

Modeling of Two Phase Flow

- Fluids: Navier Stokes equations/Stokes equations
- Interface: Level Set Method
- Discretization: Finite Element Method



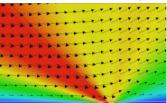
Modeling of Two Phase Flow

- Fluids: Navier Stokes equations/Stokes equations
- Interface: Level Set Method
- Discretization: Finite Element Method

Difficulty: Contact point/line treatment

 Necessary to introduce slip to avoid a singularity in the stresses. Not straight-forward.

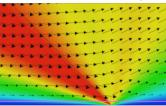
Contact Point/Line Treatment

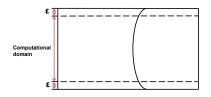

How to impose a slip condition - assuming the contact point velocity u_{cp} is known?

Contact Point/Line Treatment

How to impose a slip condition - assuming the contact point velocity u_{cp} is known?

- Hydrodynamic model for steady movement of a contact line, c. Huh, L. E. Scriven.
 - analytical expression for fluid velocity field close to a moving contact line
 - Depends on u_{cp}

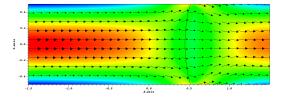




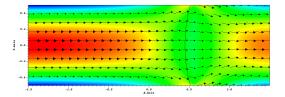
Contact Point/Line Treatment

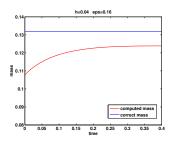
How to impose a slip condition - assuming the contact point velocity u_{cp} is known?

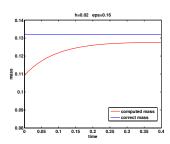
- Hydrodynamic model for steady movement of a contact line, c. Huh, L. E. Scriven.
 - analytical expression for fluid velocity field close to a moving contact line
 - Depends on u_{cp}



Impose hydrodynamic model as slip boundary condition




Preliminary Results



Preliminary Results

