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Abstract

Although it is customary to assume that data are homogeneous, in fact, they often contain outliers
or subgroups. Methods for identifying multiple outliers and subgroups must deal with the challenge
of establishing a metric that is not itself contaminated by inhomogeneities by which to measure how
extraordinary a data point is. For samples of a su�cient size to support sophisticated methods, the
computation cost often makes outlier detection unattractive. All multiple outlier detection methods
have su�ered in the past from a computational cost that escalated rapidly with the sample size. We
propose a new general approach, based on the methods of Hadi (1992a,1994) and Hadi and Simono�
(1993) that can be computed quickly — often requiring less than �ve evaluations of the model being
�t to the data, regardless of the sample size. Two cases of this approach are presented in this paper
(algorithms for the detection of outliers in multivariate and regression data). The algorithms, however,
can be applied more broadly than to these two cases. We show that the proposed methods match the
performance of more computationally expensive methods on standard test problems and demonstrate
their superior performance on large simulated challenges. c© 2000 Elsevier Science B.V. All rights
reserved.
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Whoever knows the ways of Nature will more easily notice her deviations; and,
on the other hand, whoever knows her deviations will more accurately describe
her ways. Francis Bacon (1620), Novum Organum II 29.
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1. Introduction

Data often contain outliers. Most statistics methods assume homogeneous data
in which all data points satisfy the same model. However, as the aphorism above
illustrates, scientists and philosophers have recognized for at least 380 years that real
data are not homogeneous and that the identi�cation of outliers is an important step
in the progress of scienti�c understanding.
Robust methods relax the homogeneity assumption, but they have not been widely

adopted, partly because they hide the identi�cation of outliers within the black box of
the estimation method, but mainly because they are often computationally infeasible
for moderate to large size data. Several books have been devoted either entirely or in
large part to robust methods; see, for example, Huber (1981), Hampel et al. (1986),
Rousseeuw and Leroy (1987), and Staudte and Sheather (1990).
Outlier detection methods provide the analyst with a set of proposed outliers. These

can then be corrected (if identi�able errors are the cause) or separated from the
body of the data for separate analysis. The remaining data then more nearly satisfy
homogeneity assumptions and can be safely analyzed with standard methods. There is
a large literature on outlier detection; see, for example, the books by Hawkins (1980),
Belsley et al. (1980), Cook and Weisberg (1982), Atkinson (1985), Chatterjee and
Hadi (1988), and Barnett and Lewis (1994), and the articles by Gray and Ling
(1984), Gray (1986), Kianifard and Swallow (1989), Rousseeuw and van Zomeren
(1990), Paul and Fung (1991), Simono� (1991), Hadi (1992b), Hadi and Simono�
(1993,1994), Atkinson (1994), Woodru� and Rocke (1994), Rocke and Woodru�
(1996), Barrett and Gray (1997), and Mayo and Gray (1997).
A good outlier detection method de�nes a robust method that works simply by

omitting identi�ed outliers and computing a standard nonrobust measure on the
remaining points. Conversely, each robust method de�nes an outlier detection method
by looking at the deviation from the robust �t (robust residuals or robust distances).
Often outlier detection and robust estimation are discussed together, as we do here.
Although the detection of a single outlier is now relatively standard, the more

realistic situation in which there may be multiple outliers poses greater challenges.
Indeed, a number of leading researchers have opined that outlier detection is inher-
ently computationally expensive.
Outlier detection requires a metric with which to measure the “outlyingness” of a

data point. Typically, the metric arises from some model for the data (for example,
a center or a �tted equation) and some measure of discrepancy from that model.
Multiple outliers threaten the possibility that the metric itself may be contaminated
by an unidenti�ed outlier. The breakdown point of an estimator is commonly de�ned
as the smallest fraction of the data whose arbitrary modi�cation can carry estimator
beyond all bounds (Donoho and Huber, 1983). Contamination of the outlier metric
breaks down an outlier detector and, of course, any robust estimator based on that
outlier detector. Attempts in the literature to solve this problem are summarized in
Section 2.
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2. Optimality, breakdown, equivariance, and cost of outlier detection

Suppose that the data set at hand consists of n observations on p variables and
contains k ¡n=2 outliers. In practice, the number k and the outliers themselves
are usually unknown. One method for the detection of these outliers is the brute
force search. This method checks all possible subsets of size k = 1; : : : ; n=2 and
for each subset determines whether the subset is outlying relative to the remaining
observations in the data. The number of all possible subsets,

∑n=2
k=1

( n
k

)
, is so huge

that brute force is clearly not a computationally feasible approach for even modest
amounts of data. Nevertheless, it is guaranteed to �nd subsets of the data that are
compact and that exclude multiple outlying points.
Alternative outlier detection methods try to form a clean subset of the data that

can safely be presumed to be free of outliers, and test the outlyingness of the remain-
ing points relative to the clean subset. For example, for regression data, Rousseeuw
(1984) and Rousseeuw and Leroy (1987) propose to minimize the median of the
squared (or absolute) residuals, yielding the least median of squares (LMS) method.
For multivariate data, Rousseeuw and van Zomeren (1990) propose �nding the sub-
set of h= [(n+ p+ 1)=2] observations within a minimum volume ellipsoid (MVE).
More recently, Rousseeuw and van Driessen (1999) propose �nding the subsets of
h observations with the minimum covariance determinant (MCD). The observations
obtained by the MVE or MCD can then be used to de�ne a metric for nominating
outliers. Finding the MVE or MCD requires computing the volumes of

( n
h

)
ellipsoids

and choosing the subset which gives the minimum volume or minimum determinant.
Although

( n
h

)
is much smaller than

∑n=2
k=1

( n
k

)
, MVE and MCD are still computa-

tionally infeasible. For this reason several researchers have proposed algorithms to
approximate MVE and LMS. Rousseeuw and Leroy (1987, p. 259), discussing MVE,
propose drawing random elemental subsets of p di�erent observations, where p is
the dimension of the data. They suggest a minimum number of samples based on
a probabilistic argument on the likelihood of drawing a subset with truly minimum
volume. They propose a similar sampling rule for estimating the LMS solution.
Cook and Hawkins (1990) question these rules, o�ering their own computations on

the 20-point “Wood Gravity” example used by Rousseeuw and Leroy (1987). They
found that 57,000 samples were required before the outliers generally recognized by
researchers for these data were identi�ed. Hawkins and Simono� (1993) concur, rec-
ommending that all subsets of size p be examined if possible (which still would not
guarantee the exact solution), or that at least 10,000 subsets be sampled if complete
enumeration is not feasible. Ruppert and Simpson (1990) and Portnoy (1987) reach
similar conclusions. The same criticism can be applied to the MCD method.
In one special case, Souvaine and Steele (1987) give an algorithm for LMS regres-

sion on a single dependent variable that is O(n2 log n). Stromberg (1993) describes
an algorithm for exact LMS for any number of predictors, which involves looking
at all subsets of size p + 1. Hawkins et al. (1994) give details, including Fortran
implementations of both serial and distributed versions of the algorithm. This is still
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computationally intensive, of course, although the calculations are highly amenable
to a parallel or distributed implementation.
Many estimators proposed for outlier detection and robust regression (such as the

MVE, MCD, and LMS) satisfy an optimality condition. Optimality conditions have
advantages for understanding the properties of the estimators, but they impose some
costs as well. For example, Steele and Steiger (1986) show that the LMS objective
function has on the order of n2 local minima, making the true minimum hard to �nd
by any systematic search.
An estimator, T , is a�ne equivariant if and only if

T (XA+ b) = T (X)A+ b (1)

for any vector b and nonsingular matrix A. For example, the brute force method is
a�ne equivariant because both the multivariate mean and the covariance matrix are
themselves a�ne equivariant. Clearly, a�ne equivariance is a desirable property both
for the model and for discrepancy measures; one would not want a robust regression
or the nomination of outliers to depend on the location, scale, or orientation of the
data.
It is di�cult to �nd a�ne equivariant methods with high-breakdown points. Rou-

sseeuw and Leroy (1987, p. 253) report that Donoho (1982) studied many a�ne
equivariant methods and found that they had breakdown points of at most 1=(p+1).
Siegel’s (1982) repeated median estimators have 50% breakdown point, but are not
a�ne equivariant, and are quite computationally expensive. The LMS, MVE, and
MCD have high-breakdown points and are a�ne equivariant methods. However,
they are also too computationally expensive to be practical for large data sets.
Rousseeuw and Leroy (1987, p. 145) note that many a�ne equivariant high-break-

down regression methods are related to Projection Pursuit (see, e.g. Friedman and
Stuetzle, 1981) because their breakdown properties are determined by behavior in
certain special projections. In principle, a full solution is equivalent to checking all
possible projections, so Rousseeuw and Leroy (1987) consign them to “the highly
computer-intensive part of statistics”. Ruppert and Simpson (1990, p. 646) agree,
saying that “High-breakdown point regression appears to be unavoidably computer-
intensive...”
If a�ne equivariant high-breakdown estimation is inherently computationally in-

tensive, robust estimation and outlier detection must either approximate the solution
or sacri�ce a�ne equivariance.
Hadi (1992a,1994) and Hadi and Simono� (1993) propose outlier detection meth-

ods that are location and scale invariant but are not a�ne equivariant. These methods
identify a clean subset of the data that can be presumed to be free of outliers, and
then perform a “forward search”. They test the remaining points relative to the clean
subset and allow the subset to grow one observation at a time as long as the new
subset remains clean of outliers. They thus require ordering of the observations at
each step of a process that can have n−p steps. Although n−p represents signi�cant
reduction in computing expense when compared to earlier methods, these methods
too can be prohibitively expensive to compute for large data sets.
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This article presents computationally e�cient, high-performance multiple outlier
detection methods (and corresponding robust methods) for any situation in which the
data analyst can specify a model for the data capable of generating predicted values
for all observations from a subset of observations. We then apply the general method
to two special cases: (a) multivariate data and (b) regression data. Two versions
of the methods are proposed. One version is nearly a�ne equivariant, has high
breakdown points (upwards of 40%), and nevertheless is computationally e�cient
even for very large data sets. The other version is a�ne equivariant at the expense
of a somewhat lower breakdown point (about 20%), but with the advantage of even
lower computational cost.
Our methods require very few steps regardless of the sample size. The simulation

results of Section 7 and the examples of Section 8 show outlier detection capabilities
comparable to previously published high-breakdown outlier detection methods, but
obtained in 4 or 5 iterations for data sets of sizes from 100 to 10,000 and dimensions
from 5 to 20.
Section 3 presents the algorithm in a general form not given in previous work.

Sections 4 and 5 give the details of the general algorithm as applied to multivariate
and regression data and specify modi�cations to improve computing e�ciency. Sec-
tion 6 discusses the assumptions and the role of the data analyst in outlier detection.
Section 7 reports on a simulation experiment that shows the computational savings
and demonstrates that there is no loss of performance relative to previous methods.
Section 8 gives illustrative examples. Section 9 discusses a potential application in
very large data sets such as those encountered in data mining. Section 10 summarizes
and o�ers concluding remarks and recommendations.

3. The general BACON algorithm

To obtain computationally e�cient robust point estimators and multiple outlier
detection methods, we propose to abandon optimality conditions and work with it-
erative estimates. Experiments and experience have shown that the results of the
iteration are relatively insensitive to the starting point. Nevertheless, a robust start-
ing point o�ers greater assurance of high breakdown and, in simulation trials, a
breakdown point in excess of 40%. However, the robust starting point is not a�ne
equivariant, and thus we cannot claim a�ne equivariance for iterations that start
from it. We o�er an a�ne equivariant start that is not, however, robust. Our sim-
ulations show that it has a lower breakdown point near 20%, but that when fewer
than 20% of the points are outliers, it performs as well as the robust start. It is also
computationally less expensive than the robust start.
The methods we o�er are so computationally e�cient that they can easily be

applied to data sets of hundreds of thousands of points or more — something not
imaginable for previous methods. Moreover, these methods match the performance
of MVE, MCD, and LMS on all published test problems, and match the performance
of Hadi’s (1994) method in extensive simulation studies.
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We base our proposal on the methods of Hadi (1992a,1994). He �nds a small
subset of the data that can safely be presumed free of outliers, then allows this
clean subset to grow gradually until it includes all the data values not nominated as
outliers. Because the basic subset of “clean” values increases by one at each step,
Hadi’s method requires at most n–p covariance matrix computations and inversions.
Hadi and Simono� (1993) give related methods for linear regression. These methods
have been shown to perform well in many real-life and simulated data sets and have
been implemented in statistics packages such as Data Desk (Velleman, 1998) and
Stata (Gould and Hadi, 1993). Atkinson (1994) bases a graphical outlier detection
method on Hadi’s (1992) method, and Sullivan and Barrett (1997) improve further
on his approach.
The principal improvements proposed here over these forward selection methods

derive from allowing the subset of outlier-free points to grow rapidly, testing against
a criterion and incorporating blocks of observations at each step. This saves compu-
tations both by reducing the number of covariance matrices computed and inverted,
and by eliminating the need to sort potentially long arrays of discrepancies. We call
this class of algorithms blocked adaptive computationally e�cient outlier nominators
or by its acronym, BACON, after the author of the aphorism (given at the beginning
of the article) that the approach embodies.
The General BACON Algorithm consists of the following steps:

Algorithm 1: the general BACON algorithm
Step 1: Identify an initial basic subset of m¿p observations that can safely be

assumed free of outliers, where p is the dimension of the data and m is an integer
chosen by the data analyst.
Step 2: Fit an appropriate model to the basic subset, and from that model compute

discrepancies for each of the observations.
Step 3: Find a larger basic subset consisting of observations known (by their

discrepancies) to be homogeneous with the basic subset. Generally, these are the
observations with smallest discrepancies. This new basic subset may omit some of
the previous basic subset observations, but it must be as large as the previous basic
subset.
Step 4: Iterate Steps 2 and 3 to re�ne the basic subset, using a stopping rule that

determines when the basic subset can no longer grow safely.
Step 5: Nominate the observations excluded by the �nal basic subset as outliers.

The discrepancies can be displayed to check for gaps and to identify points that
just barely were nominated as outliers or just barely failed to be so nominated.
Hadi (1992; 1994) and Hadi and Simono� (1993,1997) give methods for identify-

ing initial basic subsets for multivariate and regression situations, respectively. We
use these methods here for Step 1 (after some modi�cations that make them even
more computationally e�cient), in part because extensive experience has shown that
they work well.
The iterations in Steps 2 to 4 increase the basic subset size, but restrict member-

ship to observations consistent with the current basic subset, and thus reliably not
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outliers. The larger subset size yields more reliable estimates of the model and the
corresponding discrepancies, re�ning the de�nition of the basic subset as it grows.
The details of Steps 2–4 as applied to multivariate and regression data are given in
Sections 4 and 5, respectively.

4. BACON algorithm for multivariate data

Given a matrix X of n rows (observations) and of p columns (variables), Step 1
of Algorithm 1 requires �nding an initial basic subset of size m¿p. This subset
can either be speci�ed by the data analyst or obtained by an algorithm. The analyst
may have reasons to believe that a certain subset of observations is “clean”. In this
case, the number m and=or the observations themselves can be chosen by the analyst.
There is some tension between the assurance that a small initial basic subset will be
outlier-free and the need for a su�ciently large basic subset to make stable estimates
of the model. If the desired basic subset size is m= cp, where c is a small integer
chosen by the data analyst, then the estimation of parameters is based on at least c
observations per parameter. The simulation results of Section 7 shows that c=4 or 5
perform quite well.
The initial basic subset can also be found algorithmically in one of two ways as

given in Algorithm 2 below.

Algorithm 2: initial basic subset in multivariate data
Input: An n× p matrix X of multivariate data and a number, m, of observations

to include in the initial basic subset.
Output: An initial basic subset of at least m observations.
Version 1 (V1): Initial subset selected based on Mahalanobis distances
For i = 1; : : : ; n, compute the Mahalanobis distances

di( �x;S) =
√
(xi − �x)TS−1(xi − �x); i = 1; : : : ; n; (2)

where �x and S are the mean and covariance matrix of the n observations. Identify
the m = cp observations with the smallest values of di( �x;S). Nominate these as a
potential basic subset.
This start is not robust, but it is a�ne equivariant. The simulations of Section 7

show that the subsequent iterations tend to make up for the non-robustness of the
start as long as the fraction of outliers is relatively small (20% in �ve dimensions,
10% in 20 dimensions). The advantages of this start are its a�ne equivariance (and
thus the a�ne equivariance of the entire method) and its low computational cost.
Version 2 (V2): Initial subset selected based on distances from the medians
For i = 1; : : : ; n, compute ||xi − m||, where m is a vector containing the coordi-

natewise median, xi is the ith row of X , and || · || is the vector norm. Identify the
m observations with the smallest values of ||xi −m||. Nominate these as a potential
basic subset.
This start is robust, but it is not a�ne equivariant because the coordinatewise

median is not a�ne equivariant. Because the subsequent iterations are robust, the



286 N. Billor et al. / Computational Statistics & Data Analysis 34 (2000) 279–298

entire procedure is robust, with a high breakdown points (about 40%). Because the
subsequent iterations are a�ne equivariant, the overall algorithm tends to be nearly
a�ne equivariant. This start requires more computations than Version 1 because of
the computational cost of �nding medians in all dimensions.
In both versions, let �xb and Sb be the mean and covariance matrix of the potential

basic subset. If Sb is not of full rank, then increase the basic subset by adding
observations with smallest distances until it has full rank, and increase m by the
number of observations added to make the subset full-rank.

Algorithm 3: the BACON algorithm for identifying outliers in multivariate data
Input: An n× p matrix X of multivariate data.
Output: A set of observations nominated as outliers and the discrepancies for all

observations based on (3) relative to the �nal basic subset.
Step 1: Select an initial basic subset of size m using either V1 or V2 of

Algorithm 2.
Step 2: Compute the discrepancies

di( �xb;Sb) =
√
(xi − �xb)TS−1

b (xi − �xb); i = 1; : : : ; n; (3)

where �xb and Sb are the mean and covariance matrix of the observations in the basic
subset.
Step 3: Set the new basic subset to all points with discrepancy less than cnpr�p;�=n,

where �2p;� is the 1 − � percentile of the chi square distribution with p degrees of
freedom, cnpr=cnp+chr is a correction factor, chr=max{0; (h− r)=(h+ r)}; h=[(n+
p+ 1)=2]; r is the size of the current basic subset, and

cnp = 1 +
p+ 1
n− p +

1
n− h− p = 1 +

p+ 1
n− p +

2
n− 1− 3p: (4)

(When the size of the basic subset r is much smaller than h, the elements of the
covariance matrix tend to be smaller than they should be. Thus, one can think of
chr as a variance ination factor that is used to inate the variance when r is much
smaller than h. Note also that when r = h, cnpr reduces to cnp.)
Step 4: The stopping rule: Iterate Steps 2 and 3 until the size of the basic subset

no longer changes.
Step 5: Nominate the observations excluded by the �nal basic subset as outliers.

Hadi’s (1994) method starts from a basic subset of size p + 1, then increases
the basic subset one observation at a time until it reaches m = (n + p + 1)=2. The
observation with the smallest distance di( �xb;Sb) in (3) is then tested. If it is an
outlier, the method stops declaring all observations in the nonbasic subset as outliers.
Otherwise this observation is added to the current basic subset to form a new basic
subset and the testing step is repeated. If there are k outliers in the data, Hadi’s
(1994) method requires about n− k −p− 1 iterations. In each of these iterations an
ordering of the distances is required. This can be computationally burdensome for
large n.
Previously published forward selection methods such as this one increased the basic

subset by a single observation at each step. But in early steps of the algorithm, most
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of the non-outlying observations can easily be seen to be consistent with the basic
subset. BACON treats these “easy” observations in a block, adding all observations
that are clearly consistent at once, and concentrating e�ort on the cases near the
boundaries.
Algorithm 3 o�ers substantial computional e�ciencies by blocking the addition

of observations to the basic subset, substantially reducing the number of iterations.
Each of these iterations requires computing and inverting a covariance matrix, but
the number of iterations does not grow with the sample size n. In addition, the
BACON algorithm does not require the ordering of the n discrepancies, but rather
just compares them to a standard value, resulting in further savings.
BACON uses the Mahalanobis distances (V1) or the distances from the coordinate-

wise medians (V2) only to nominate a small subset of observations. These are then
used to �nd a mean and covariance matrix which, in turn, nominate a new set of
central observations. If the �rst subset of observations is not near enough to the
center of the (non-outlying) data, the successive provisional basic subsets identi�ed
by the algorithm tend to drift toward the center. As the basic subset grows in size,
its mean and covariance matrix become more stable.

5. BACON algorithm for regression data

Consider the standard linear model y=X�+�, where y is an n-vector of responses,
X is an n × p matrix representing p explanatory variables with rank p¡n; � is a
p-vector of unknown parameters, and � is an n-vector of random disturbances (errors)
whose conditional mean and variance are given by E(� |X )=0 and Var(� |X )=�2In,
where �2 is an unknown parameter and In is the identity matrix of order n.
The least-squares estimates of � and �2 are given by �̂ = (XTX)−1XTy and the

residual mean square, �̂2=SSE=(n−p), respectively, where e=(In−P)y is the vector
of ordinary residuals, SSE=eTe is the residual sum of squares, and P=X(XTX)−1XT.
Let b be the set of indices of the observations in the basic subset and yb and Xb
be the subsets of observations indexed by b. Let �̂b be the estimated regression
coe�cients computed from �tting the model to the subset b and let SSEb be the
corresponding residual sum of squares and �̂2b be the corresponding residual mean
square.
The method of Hadi and Simono� (1993,1997) �ts within the general BACON

algorithm. For the initial basic subset Hadi and Simono� (1993,1997) propose several
alternatives. We suggest the following algorithm to �nd an initial subset of size
m= cp:

Algorithm 4: initial basic subset in regression data
Input: An n × 1 vector holding the response variable y, an n × p matrix X of

covariate data, and a number, m, of observations to include in the initial basic subset.
Output: An initial basic subset of at least m observations that is free of outliers.
Step 0: Apply Algorithm 3 to the X data (after removing the constant column, if

any). Let ym and Xm be the set of m observations with the smallest values of the
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distances di( �xb;Sb) computed in the �nal iteration of Algorithm 3. If Xm is not of
full rank, then increase the basic subset by adding observations with smallest values
of di( �xb;Sb), until it has full rank. For i = 1; : : : ; n, compute

ti(ym;Xm) =




yi−xTi �̂m
�̂m
√
1−xTi (XTmXm)−1xi

if xi ∈ Xm;
yi−xTi �̂m

�̂m
√
1+xTi (X

T
mXm)−1xi

ifxi 6∈ Xm;
(5)

where �̂m and �̂
2
m are the least-squares estimates of � and �

2 based on the observations
in the subset ym and Xm. Identify the p + 1 observations with smallest |ti(ym;Xm)|,
and declare them to be the initial basic subset yb and Xb.
Step 1. If this new Xb is not of full rank, increase the subset by as many

observations as needed for it to become full rank, adding observations with smallest
|ti(yb;Xb)| �rst, and increase m by the number of observations added to make the
subset full-rank. For i = 1; : : : ; n, compute

ti(yb;Xb) =




yi−xTi �̂b
�̂b
√
1−xTi (XTb Xb)−1xi

if xi ∈Xb;
yi−xTi �̂b

�̂b
√
1+xTi (X

T
b Xb)

−1xi
if xi 6∈ Xb;

(6)

where �̂b and �̂
2
b are the least-squares estimates of � and �

2 based on the observations
in the basic subset yb and Xb.
Step 2. Let r be the size of the current basic subset. Identify the r+1 observations

with smallest |ti(yb;Xb)|, and declare them to be the new basic subset. (Note that
these observations need not include all of the previous basic subset observations.)
Step 3. Repeat Steps 1 and 2 until the basic subset contains m observations.
Note that Step 1 of Algorithm 4 applies Algorithm 3 to the X matrix because

multivariate outliers in the X space are points with high leverage. Thus the distance
computed in the last iteration of Algorithm 3 can be used as a measure of the leverage
of the ith observation. This measure is not as a�ected by the masking problem as the
traditional measure of leverage, pii, the diagonal elements of the projection matrix
P = X(XTX)−1XT.
Note also that when xi ∈ Xb; ti(yb;Xb) in (6) is simply the scaled ordinary least

squares residual obtained from the regression of yb on Xb; whereas when xi 6∈
Xb; ti(yb;Xb) is the scaled prediction error.
Hadi and Simono�’s (1993) method starts from the basic subset of Algorithm 4

with m=(n+p+1)=2, uses the distances, ti(Xb; yb) from (6) to de�ne discrepancies.
The method starts with an initial subset of size p+1 and increases the basic subset
by one observation at each iteration until it reaches (n+p+1)=2 observations. The
method continues increasing the subset size beyond (n+p+1)=2 but it stops when
the (r + 1) smallest absolute discrepancy exceeds t(�=2(r+1); r−p), where t(�; r−p) is the
1− � percentile of the t-distribution with r − p degrees of freedom, where r is the
size of the current basic subset at each step.
This method �ts within the general Algorithm 1, but the repeated �tting of the

regression model, and the computing and sorting of discrepancies at each step is
computationally expensive. We propose to grow the basic subset in blocks, retaining
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its ability to adapt to the data, but avoiding unneeded intermediate calculations. Thus
the BACON Algorithm for robust regression is as follows.

Algorithm 5: the BACON algorithm for robust regression.
Input: An n × 1 vector holding the response variable y, and an n × p matrix X

of covariate data.
Output: A regression model �t to non-outlying observations, the set of observations

identi�ed as outliers, and the distances found by (6) based on the �nal basic subset.
Step 1: Use Algorithm 4 to select an initial basic subset of size m = cp. The

value of c is either selected by the data analyst or set by default to a small number
(usually 4 or 5).
Step 2: Find discrepancies, ti(Xb; yb) as in (6).
Step 3: The new basic subset consists of all points with distances less than

t(�=2(r+1); r−p), where r is the size of the current basic subset.
Step 4: The stopping rule: Iterate Steps 2 and 3 until the size of the basic subset

no longer changes.
Step 5: Nominate the observations excluded by the �nal basic subset as outliers.
The computational e�ciency of Algorithm 5 arises from the rapid expansion of

the basic subset, resulting in far fewer regression calculations and evaluations of
discrepancies, and from the fact that there is no longer any need to order the dis-
crepancies, but rather only a need to check them against a constant, which requires
only n operations.
As a byproduct of Algorithms 4 and 5, a useful diagnostic plot can be obtained

by plotting the predicted errors ti(yb;Xb) obtained at the �nal iteration of Algorithm
5 versus the distances di( �xb;Sb) obtained in Step 1 of Algorithm 4. For further dis-
cussion of this plot, see Rousseeuw and van Zomeren (1990) and Hadi and Simono�
(1997).

6. Assumptions and the role of the data analyst

All outlier nomination and robust methods must assume some simple structure for
the non-outlying points — otherwise one cannot know what it means for an observa-
tion to be discrepant. The BACON algorithms assume that the model used to de�ne
the basic subsets is a good description of the non-outlying data. In the regression
version, there must in fact be an underlying linear model for the non-outlying data.
In the multivariate outlier nominator, the non-outlying data should be roughly ellip-
tically symmetric. Although the algorithms will often do something reasonable even
when these assumptions are violated, it is hard to say what the results mean.
It is possible to construct data where the BACON algorithms may not seem to

work. For example, in the multivariate case, consider a hollow sphere with observa-
tions uniformly distributed over its surface, along with a small cluster of at least m
but fewer than n=2 observations at its center. The data satisfy the elliptical symmetry
assumption. The coordinatewise median will be in the central cluster. If that clus-
ter is large enough to hold the initial basic subset, then BACON will nominate the
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central cluster as the basic subset and the observations on the surface of the sphere
as outliers. Of course, this is a reasonable response to these data because it helps to
diagnose the structure of the data. Indeed, it is more useful than the MVE solution,
which would not nominate any point as an outlier.
As an example of regression data, consider a data set where nearly all of the points

are generated by the equation yi = �x2i + �i with �i normally distributed and the xi’s
symmetric around 0. One or a few outlying points relative to this model are planted
at xi = 0 and yi = �y, where �y is the mean of the yi’s. If we erroneously assume a
linear model of the form yi=�0+�1xi+�i and apply the BACON Algorithms 4 and 5,
the planted outliers would not be detected because a linear model is inappropriate
for the non-outlying cases (the line that “�ts” the parabola is forced to pass through
(0; �y)). However, using the correct linear model yi= �0 + �1wi + �, where wi= x2i ,
allows the BACON algorithm to �nd the outliers easily.
Although such anomalous data sets help us to understand the limitations of these

algorithms, they do not represent realistic challenges to the methods. They do, how-
ever, alert us to the need for intelligent participation in all data analyses.
We believe that data analysis is not a process to be performed by computers alone.

No algorithm should make decisions about data without oversight by a responsible
analyst. One of the advantages of the BACON algorithms is that they provide the data
analyst with discrepancy measures. We strongly recommend that these be displayed
and that other evidence of the structure of the data be examined to try to ascertain
whether the assumptions made about the non-outlying data are reasonable. Our choice
of the term “outlier nomination” reects our conviction that an algorithm should not
go beyond nominating observations as potential outliers. It is left to the data analyst
to ultimately label outlying points as such.

7. Simulations

Hadi (1994) showed that his method matched or surpasses the performance of
other published methods. Therefore, we performed simulation experiments to (a)
compare the BACON method with the Hadi’s (1994) method (H94) with regard
to both performance and computational expense and (b) assess the performance of
the BACON method for large data. The experiment considers outlier detection in
multivariate data.
The H94 method is computationally expensive for large data sets. Therefore for

comparison purposes we set p = 5, the contamination level � = 0:05, and selected
three sample sizes, n (100, 500, and 1000). For assessing the performance of the
BACON method the number of variables p was set to 5 (low dimension) or 20
(high dimension), and we took n= 500, 5000, and 10,000 observations.
For each value of n and p, we generated N=100 data sets each of size n×p. The

�rst k=�n of the observations were generated as outliers. The outliers were generated
from a mean slippage model with a multivariate mean of moved 4 standard deviations
from the mean of the remaining data. Thus, for each data set, n− k observations are
generated from the multivariate normal distribution, N(0; Ip), where Ip is the p× p
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Table 1
The simulation results for Hadi’s (1994) method (H94) and the two versions of BACON (V1) and
(V2), for the case p= 5 and �= 0:05 contamination level. The performance criteria A, B, and C are
de�ned in (7)

A B C

n m H94 V1 V2 H94 V1 V2 H94 V1 V2

100 20 1.0060 1.0040 1.0060 1.00 0.998 1.00 89 3 4
25 1.0060 1.0040 1.0060 1.00 0.998 1.00 89 3 4

500 20 1.0032 1.0032 1.0032 1.00 1.000 1.00 467 4 5
25 1.0032 1.0032 1.0032 1.00 1.000 1.00 467 4 5

1000 20 1.0014 1.0014 1.0014 1.00 1.000 1.00 944 4 5
25 1.0014 1.0014 1.0014 1.00 1.000 1.00 944 4 5

identity matrix. The k planted outliers are generated from N(41; Ip), where 1 is a
vector of p ones.
For the contamination parameter �, we selected four values: 0.1, 0.2, 0.3, and 0.4,

representing 10%, 20%, 30%, and 40% contamination. The simulation experiment
thus consisted of 24 con�gurations: 2 dimensions (p), 3 sample sizes (n), and 4
contamination levels (�). For each of these con�gurations, we tested two values for
the size of the initial basic subset, m= cp, with c set to 4 or 5.
Finally, we set the signi�cance level �= 0:05 for our outlier tests and considered

the following measures of performance:

A=
∑N

i=1Outi
Nk

;

B=
∑N

i=1 TrueOuti
Nk

;

C =Average number of iterations; (7)

where Outi is the number of observations declared as outliers in the ith simulation
run and TrueOuti is the number of observations correctly identi�ed as outliers in the
ith simulation run. Thus, perfect performance occurs to when A= B = 1, indicating
that all of the planted outliers have been found, and no non-outlying observations
have been declared to be outliers.
Table 1 gives the simulation results for p = 5 and � = 0:05. All three methods

identi�ed all of the planted outliers reliably in virtually all trials and occasionally
identi�ed a non-planted observation as an outlier, but in all cases, only very rarely.
The substantial computational savings are clear. The number of iterations, C, for
Hadi’s (1994) method is expected to be C= n−p−�n. Thus for n=100, 500, and
1000, the average number of iterations should be approximately 90, 470, and 945,
respectively. As Table 1 shows, the observed average numbers of iterations C were
89, 467, and 944, as expected.
By contrast, the BACON method required only four or �ve iterations for all sample

sizes. This is extraordinary because the number of iterations does not grow with the
sample size.
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Table 2
The simulation results for version 1 (V1) and version 2 (V2) of the BACON algorithm for
the null case. The performance criteria A is the average percentage of observations declared as
outliers and C is the average number of iterations

A C

p n m V1 V2 V1 V2

5 500 20 0.068 0.068 3 4
25 0.068 0.068 3 4

5000 20 0.054 0.054 4 5
25 0.054 0.054 4 5

10000 20 0.056 0.056 4 5
25 0.056 0.056 4 5

20 500 80 0.010 0.014 2 3
100 0.012 0.016 2 3

5000 80 0.018 0.028 2 3
100 0.006 0.022 2 3

10,000 80 0.042 0.050 2 4
100 0.024 0.046 2 3

To assess the performance of V1 and V2, we �rst investigate their performance un-
der the null case, where there are no planted outliers in the data (� = 0).
Table 2 holds the simulation results. In most of the tested cases, the average number
of values identi�ed (incorrectly) as outliers is close to the nominal 5% that should
be expected. That value is, of course, under the user’s control and can be set to a
lower number to reduce the number of false positives, at the usual corresponding
risk of increasing the number of marginal outliers not identi�ed. In the 20 dimension
trials, the rate of false positives is lower than 5% rising to the nominal value only
for larger sample sizes.
In all trials the number of iterations remains small, showing no tendency to increase

with increasing sample size. There seems to be some tendency toward fewer iterations
for higher dimensional data. Overall, the computing e�ciency of the algorithm is
clear. Even for 10,000 cases in 20 dimensions, the method required on average only
four evaluations and inversions of a covariance matrix.
Now we assess the performance of V1 and V2 in the presence of outliers. Tables

3 and 4 give the simulation results for p = 5 and 20, respectively. The simulation
results show that V2 is very reliable even when the contamination is as large as
40%. V1 breaks down at about 30% contamination for both p=5 and p=20. Both
V1 and V2 require at most six iterations, as compared to n−p−�n=4745 expected
iteration for the H94 method for n=5000, p=5, and �=0:05, for example. This is
a substantial saving in computation especially in view of the fact that the BACON
algorithm does not require sorting the data at each iteration.
For a mean shift of 4 used in our simulation, some of the planted outliers can be

ambiguously interspersed with “real” non-outlying data, posing a greater challenge to
the methods. We have also repeated the simulation for a mean shift of 10, following



N. Billor et al. / Computational Statistics & Data Analysis 34 (2000) 279–298 293

Table 3
The simulation results for versions 1 (V1) and 2 (V2) of the BACON algorithm for p = 5. The
performance criteria A; B, and C are de�ned in (7) and � is the contamination level

A B C

n m � V1 V2 V1 V2 V1 V2

500 20 0.1 1.0008 1.0010 0.9998 0.9998 4 5
0.2 0.7888 1.0004 0.7885 0.9999 4 5
0.3 0.5801 1.0002 0.5799 0.9999 4 5
0.4 0.0302 1.0000 0.0301 0.9999 3 5

25 0.1 1.0008 1.0010 0.9998 0.9998 4 5
0.2 0.7880 1.0004 0.7877 0.9999 4 5
0.3 0.5499 1.0002 0.5497 0.9999 4 5
0.4 0.0302 1.0000 0.0301 0.9999 3 5

5000 20 0.1 1.0001 1.0001 0.9999 0.9999 5 6
0.2 0.9900 1.0000 0.9899 0.9999 5 6
0.3 0.7099 0.9999 0.7099 0.9999 5 5
0.4 0.2900 0.9999 0.2900 0.9999 4 5

25 0.1 1.0001 1.0001 0.9999 0.9999 5 6
0.2 0.9400 1.0000 0.9399 0.9999 5 6
0.3 0.7100 0.9999 0.7099 0.9999 5 5
0.4 0.2100 0.9999 0.2100 0.9999 4 5

10, 000 20 0.1 0.9998 0.9998 0.9997 0.9997 5 6
0.2 0.9398 0.9998 0.9398 0.9998 5 6
0.3 0.6698 0.9998 0.6698 0.9998 5 6
0.4 0.3997 0.9998 0.3997 0.9998 4 5

25 0.1 0.9998 0.9998 0.9997 0.9997 5 6
0.2 0.9198 0.9998 0.9198 0.9998 5 6
0.3 0.6299 0.9998 0.6299 0.9998 5 6
0.4 0.3199 0.9998 0.3199 0.9998 4 5

Rousseeuw and van Driessen (1999). The results do not require a table; the BACON
method has a perfect performance, that is A= B= 1:0 in all cases.

8. Examples

We illustrate the computational e�ciency of the proposed methods using two data
sets: The Wood Gravity data and the Philips data. Rousseeuw and Leroy (1987) use
the wood gravity data (originally given by Draper and Smith, 1966) to illustrate the
performance of LMS. The data consist of 20 observations on six variables. Observa-
tions 4, 6, and 19 are known to be outliers. Cook and Hawkins (1990) apply MVE
with sampling to these data and they report that they needed over 57,000 samples to
�nd the correct solution. The BACON method �nds the outliers in these data in one
step beyond the initial basic subset of size 2p=12. However, the wood gravity data
are not a particularly good test problem for outlier detection because of its small
sample size.
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Table 4
The simulation results for versions 1 (V1) and 2 (V2) of the BACON algorithm for p = 20. The
performance criteria A; B, and C are de�ned in (7) and � is the contamination level

A B C

n m � V1 V2 V1 V2 V1 V2

500 80 0.1 0.9804 1.0008 0.9800 1.0000 3 4
0.2 0.0101 1.0002 0.0101 1.0000 2 4
0.3 0.0000 1.0001 0.0000 1.0000 2 4
0.4 0.0000 1.0001 0.0000 1.0000 2 4

100 0.1 0.9702 1.0006 0.9700 1.0000 3 4
0.2 0.0001 1.0003 0.0001 1.0000 2 4
0.3 0.0000 1.0001 0.0000 1.0000 2 4
0.4 0.0000 1.0001 0.0000 1.0000 2 4

5000 80 0.1 1.0000 1.0000 1.0000 1.0000 3 4
0.2 0.5400 1.0000 0.5400 1.0000 3 4
0.3 0.0000 1.0000 0.0000 1.0000 2 4
0.4 0.0000 1.0000 0.0000 1.0000 2 4

100 0.1 1.0000 1.0000 1.0000 1.0000 3 4
0.2 0.3400 1.0000 0.3400 1.0000 2 4
0.3 0.0000 1.0000 0.0000 1.0000 2 4
0.4 0.0000 1.0000 0.0000 1.0000 2 4

10, 000 80 0.1 1.0000 1.0000 1.0000 1.0000 3 5
0.2 0.7600 1.0000 0.7600 1.0000 3 4
0.3 0.0000 1.0000 0.0000 1.0000 2 4
0.4 0.0000 1.0000 0.0000 1.0000 2 4

100 0.1 1.0000 1.0000 1.0000 1.0000 3 4
0.2 0.6500 1.0000 0.6500 1.0000 3 4
0.3 0.0000 1.0000 0.0000 1.0000 2 4
0.4 0.0000 1.0000 0.0000 1.0000 2 4

The Philips data consist of 677 observations on nine variables (diaphragm parts
for TV sets which are thin metal plates, molded by press). Because of masking,
the classical Mahalanobis distance classi�es only a few points as outliers, but both
versions of the BACON methods V1 and V2 identi�ed the same 92 observations (see
Fig. 1) as outliers. Of these, 75 observations are contiguous (observations number
491–565). Rousseeuw and van Driessen (1999), who kindly sent us the data, used
it to test their MCD method, which has nearly a 50% breakdown point, but requires
substantially more computational time because it depends on resampling.

9. Large data sets

Remarkably, the computing cost of the BACON algorithms for multivariate outliers
and for regression is low. The major costs are the computing of a covariance matrix
and the computing of the distances themselves. Because the number of iterations is
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Fig. 1. The Philips Data: The index plot of robust distances di( �xb;Sb).

small, none of these costs grows out of bounds. In practical terms, current desktop
computers can �nd Mahalanobis distances for a million cases in about ten seconds.
It is thus practical to apply BACON algorithms to data sets of millions of cases on
desktop computers and to expect virtually instant results for data sets of only 10,000
cases.
The extraordinarily small computing e�ort required by BACON algorithms, and in

particular the fact that this e�ort grows slowly with increasing sample size, makes
these methods particularly well suited for large data sets.
Several steps help extend the application of BACON algorithms to very large data

sets. The initial basic subset can be constructed from a representative sample of the
data, so that medians need not be computed for very large samples. If there is doubt
about generating a representative sample, the algorithm can be computed several
times from di�erent starts. In particularly large data sets, it may be necessary to
eliminate the calculation of the model for the �nal basic subset simply because that
subset may be too large for practical computing. However, a model that is already
based on millions of cases (practical for today’s desktop computers) is unlikely to
change very much when computed on hundreds of millions of cases.
One potential application of BACON algorithms is in data mining. Data mining

(see, for example, Glymour et al., 1997) ordinarily deals with large, multivariate
data sets, but has thus far employed methods that are not resistant to outliers. The
ability to apply general multivariate outlier detection to such large data sets before
�tting data mining models can signi�cantly improve the performance and predictive
ability of those methods.

10. Summary and recommendations

Outlier detection methods have su�ered in the past from a lack of generality
and a computational cost that escalated rapidly with the sample size. Small samples
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provide too small a base for reliable detection of multiple outliers, so suitable graph-
ics are often the detection method of choice. Samples of a size su�cient to support
sophisticated methods rapidly grow too large for previously published outlier de-
tection methods to be practical. The BACON algorithms given here reliably detect
multiple outliers at a cost that can be as low as four repetitions of the underlying
�tting method. They are thus practical for data sets of even millions of cases.
The BACON algorithms balance between a�ne equivariance and robustness. Ver-

sions that start from an a�ne equivariant subset of the data are themselves a�ne
equivariant, but are generally less robust, although the robustness of the subsequent
steps often adjusts for any bias in the initial basic subset due to outliers. Versions of
the algorithm that start from a more robust start are not a�ne equivariant, although
the a�ne equivariance of the subsequent steps often adjusts for any sensitivity to
rotation in the initial basic subset. Future research may identify a computationally
e�cient way to identify an outlier-free robust starting subset of the data with an
a�ne equivariant algorithm.
We de�ne BACON algorithms for two models in this paper. However, the algo-

rithms can be applied more broadly. To apply the BACON approach, one must be
able to identify an initial basic subset clean of outliers. One must then be able to �t
a model for data that generates discrepancy measures for all data values in a data set
from a model �t to a subset of the data, and a suitable cuto� value for those discrep-
ancies. The model can be arbitrarily complex and the �tting method may be iterative.
For example, BACON algorithms can be applied to non-linear models provided the
analyst is willing to assume an error distribution to use as a basis for determining a
cuto� value for discrepancies. Researchers trying to establish general methods should
take care in de�ning algorithms for automatically determining the initial basic sub-
set. Data analysts may be more comfortable identifying an initial basic subset from
additional knowledge they may have, or simply by examining displays of the data.
BACON methods are easy to implement in statistics packages that have program-

ming or macro languages. Templates for Data Desk 6.0 (Velleman, 1998) are cur-
rently in preparation.
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