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An analytic journey through random tilings

Maurice Duits — January 15, 2026 — Paris



About the course



content

This is a 20h course with the following dates:

. Lecture 1: January 15, Thursday,
- Lecture 2: January 22, Thursday,
- Lecture 3: January 27, Tuesday
. Lecture 4: February 3, Tuesday
- Lecture 4: Tuesday,

. Lecture 6: Tuesday,

. Lecture 7: Tuesday

Fach lecture will be self-contained

Lectures will be mostly on the blackboard
(except for an introduction today)

Course has a homepage:

https://www.math kth.se/~duits/#Aztec

Ccontal

ns updated schedule, lecture notes

and extra material.

Disclaimer: lecture notes are drafts and
may be incomplete or contain errors.


https://www.math.kth.se/~duits/#Aztec

T1lings of planar domains



T1lings

. A tiling of a planar domain is a complete covering of a domain such with a given set of
shapes, such that no two shapes overlap.

- In this course, we will see mainly two different types of tilings.

- Domino tilings

. Lozenge tilings
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Domino tilings

- Examples of domino tilings:



Domino tilings

- Examples of domino tilings:




Lozenge ti
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- Examples of lozenge



LLozenge tilings

- Examples of lozenge tilings
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Domino tilings — checkerpoard

- Draw a checkerboard on the domain:

« FEach domino covers a black and white
square.

- There need to be as many white squares
as there are black squares.
(Necessary but not sufficient. )
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- Replace the square by black and white dots.

chec

cerpboarad




Domino ti

INgS

- Replace the square by black and white dots.

- Then each domino provides a bond between

a white and a black dot.

chec

cerpboarad




Domino tilings

. Replace the square by black and white dots.

- Then each do

MiNo provides a bond between a

white and a b

ack dot.

- A domino tiling of a planar domain, is equivalent

to a perfect matching for a bipartite graph

where the gra

oh is subset of the square lattice.

. This is called a dimer configuration.

- Lozenge tilings correspond to hexagonal lattice.

. Kasteleyn's theory will not be part of the course
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Domino tilings — checkerpoard

. This also shows we have in fact
four different type of dominos,
depending on the position of the
white and black squares

. |t will be convenient, and visually
appealing, to give these four
domino different colors.




Domino ti

INgS

Col

OI'S




'ne Aztec Diamond

(The running example in the course)



Aztec diamond

. A
b

will be centered around the Aztec diamond.

though

‘he methods in t

roader ¢

asses of tiling

Nis course apply to

odels, the course

- The Aztec diamond of size n is the following

domain on the right

- The sides of the domain have the shape of
staircases of Maya temples, hence the name
Aztec d 10 mOﬂd (dont blame the lecturer....)

. This boundary may look strange at first, but
will be very important.

(=n,1)

(_na o 1)

(_ l,l’l)

(1,n)

(n,1)

(n, — 1)



Aztec diamond

. A
b
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Aztec diamond (rotated)

- We will often rotate the diamond by 45
degrees.

- This is not just to save space, but will also
be natural.




Random tilings



‘ne Aztec diamond

- There are many ways of tiling the Aztec diomond.

2n(n+1)/2

. In fact, one can prove that there are ways of tiling the Aztec diamond.

. Let’s take on uniformly at random and see how a typical tiling looks like.

Start withn = 3




‘ne Aztec diamond

. Then four sampleforn =5




T'he Aztec diamond

= 10

« Then four samples with n




T'he Aztec diamond

- Andn = 100......
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'ne Aztec dlamon

. Andn = 500.......

W I8y

2 TORN

\J
28 s‘\\s\Q\\“\
TITO AN
WRS S LS
DMNE 5,

\
LN

by

3
SA N\ N

§ N3s
3

#
\m Wss\sssss Vs &
b (S b
0ols > AN

VR
Y

VN,

SUIRR
INVK )
YRS

P Gogee 7, ’,
AP AR L
oy P WIS G0 &Ko A A

(5 s\\\\\\ “\ i \\\ 2%

v
PP v

\
") «“s&s

ss\\\s

N\tsv s
) o d
. i,
» A p Lo WY
t““‘ 55“\5 \\‘ ’ “ \‘\‘\ ‘, v,
e 0.0 s‘s:\‘ 7, o s‘wsss ss\s
w. L4 \\ \ 4, \5 < ‘
M0 L0 N, e \s\‘\\\
A RN IR P %
18 sl Lasiatiglo b anty,




d

lamon

IS to understanad

The Aztec d

| of this course

One main goa
ture
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beautiful connections to different types of
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T'he Aztec diamond
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Why? Why is this happening and why should we care?



Universality



Classica
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fluctuations, goes

propapility

M Systems concen

‘rate around a deterministic limit and

nack to de Moivre-

_aplace.

. If you flip a coin n times the number of times you get head follows a binomial distribution.

P (k head after n tosses)

- What happens when n is large?

(}) Pt =pr
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lassica

propapility

De Moivre- Laplace: \When n grows large the distribution will look like a Gaussian
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Classical propapility

. Let Xy, ..., X, be independent and identical distributed random variables with mean p and variance
o*. Then:

- Law of large numbers:

1 n
—ZX] — i, almostsurely asn — oo
n

J=1

« Central Limit Theorem:
n
2 X;— ny

Jn

- Independent of the precise distribution, and dont need identical distributions.....

— X ~ N(0,6%), indistribution asn — oo



Classical propapility

- The principle that large systems concentrate around a deterministic limit and have fluctuations
that give rise to universal probabilistic laws is typical.

In strongly correlated systems new type of universal behaviors appear.

Finding these behaviors, studying their properties and proving their universal
nature is one of the key goals in modern probability and mathematical physics.

Roughly, there are three questions:
. Study a particular model that is sufficiently rich and generic, but also tractable.
- Prove that the probabilistic objects that emerged, are universal.

. Study the properties of these universal objects.



Random matrix theory

. Letn € N and consider a random n X n Hermitian matrix M defined by

« M;; ~ Ne(0,1/n)for 1 i <j<n

. M;; ~ Ng(0,1/n)

. M;=M, for1 <i<j<n

. Since M is Hermitian it has n eigenvalues, /11, ...,/ln

- These eigenvalues will not be independent, but strongly correlated.



Random matrix theory

- We draw a histogram that counts the number of eigenvalues in intervals.

P(A)

p(A)

0.30 -

0.25 -

0.15 -

0.05 -

0.00 -

0.20 -

0.10 -

P(A)

n =40



Random matrix theory

- We draw a histogram that counts the number of eigenvalues in intervals.

p(A) P(A)

n= 100




Random matrix theory

- We draw a histogram that counts the number of eigenvalues in intervals.

p(A) P(A)
0.30 %

0.25 -

0.15 -
0.10 -

0.05

n = 500

0.00 ;
P(A) P(A)

030
025
020
0.15

0.10 -

0.05 -

0.00 -




Random matrix theory

- We draw a histogram that counts the number of eigenvalues in intervals.

PA) p(A)

O'3Of 0.30 -

o.25§ 025!
0-20; 0.205
0-15; 0.155
010

0.05 - 0.05 -

0.00 - A 0.00 -

p(j\) p(:A) 1 = 5000

0.30 0.30 -

0.25 0.25 -

0.20 - 0.20 -
0.15 - 0.15 -
0.10 - 0.10

0.05 - 0.05 -

0.00 - A 0.00 -



Random matrix theory

- Law of large numbers:

Wigners semi-circle law:

~or a subset £ C R the fraction of pointsin £
S, in the limit, given by the semi-circle law:

0.30 -
0.25 -

0.20 -

{ﬂ/ E E} 1 0.15

] _)_J \/4—x2dx 0.10
E

0.05 -

0.00 -

almost surely asn — o0




Random matrix theory .

- One can explain the semi-circle law as follows: 025 il s
. First one proves that the eigenvalues have the otof [} 0
def 0.05( 1
_n g 12 | 1 0 1 2
~ T -4 % ap i,
1Si<j§n/ \
Repulsion Confinement

- The semi-circle law is the equilbrium between

these terms. -



Random matrix theory

- One can explain the semi-circle law as follows:

- First one proves that the eigenvalues have the
jpdf

N H (/11-—/lj)ze_%z;lzlﬂjzd/h'"d/ln

1<i<j<n

p(A)
0.30
0.25
0.20
0.15

0.10 -

005(
0.00"




Energy |

avels O

heavy nucl

. Scaling at a bulk point xx € (—=2.2)
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/eros Riemann-Zeta-function

. For E C R define the rescaled interval:

E =

2rn
L= X" E
\/4—)@%

- Then we have the asymptotic behavior of

gap probabilities:

P (no eigenvalues in En) - 1 + Z (—1)"—J I det (Ksme(xl-,xj)) dx,---dx,
i) )

k' l,]=1

k=1

sin (x — y)

n(x —y)

with K (x,y) =



Gaudin-Menta distripution

- The space give rise to a new law:

o0 1 \) \) k

F(s) =1+ E (—l)k—J J det (KS- (x-,x-)) dx---dx

! ine\>p> v | - n
k=1 0 70 o

sin (x — )

n(x —y)

- This law is also observed in
- Energy levels of heavy nucle
. Zeros of the Riemann-Zeta function

- Miscalleneous: Parking of cars......

Gaudin-Mehta nearest-neighbour spacing distribution (GUE)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
s (spacing, unfolded)




Tracy-Widom distripution

- Another very important distribution is the
Tracy-Widom distribution for the largest
elgenvalues.

. Let A, be the maximal eigenvalue. Then

- TTmax
it it stick to the interval and fluctuates
around the endpoint at order n=%3.

\)
P (/lmax <2+ n2/3) — F5(s)

where FH(s) = .. ..




Tracy-Widom distripution

- The Tracy-Widom distribution is another universal law that

Fr(s) =1+ Z (—1) F,[ J' det (KAi,,y(xl-,xj)) - dxyeeedx,
k=1 t s s h=l
where Tracy-Widom distribution (B = 2) - density
Ai(x)Ai'(y) — Ai'(x)Ai(y) 04
Kyiry(X,y) = yx . -

f_{Tw, B=2}(s)
o
N

and Ai(x) is the Airy function, ie the unique solution to

o
[

o
o

{Ai”(x)=xAi(x) 3

Ai(x) = 0 X — 00



Back to tilings...



_arge Aztec diamond
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| ets zoom in so that
tiles are of order ~ 1
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This will give a random domino tilings of the full
|

olane. Can we describe




Il Near arctic clcle
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Lets zoom in at the top
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Il Near arctic clcle
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distribution as the largest eigenvalue of a

large GUE matrix




Il Near arctic clcle
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What is the law of the top path,

or top k paths?
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1Mmit near turning point.
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« Draw dots on the yellow and red dominoes

« For each horizontal k-section there are precisely k black dots.

. Let xjk be the position of the j-th dot counted from left to right in the k-th row, counted from

pottom to top.

k+1 k k+1 .
then X <X ij+1 forj=1,...,k

e Interlacing particle system.



GUE corner process

Let M;; be an NV X N Hermitian matrix with random entries

such that /
Mij ~ NC(Oal) for 1 <i<j<N M =
M;; ~ Ng(0,1) forl1 <i<N \

Then forj=1,..., kletlet /Ij.k be the eigenvalues of the

k X k upper left sub matrix of M (delete the final n — k rows
and columns).

Linear algebra tells us that /1jk+1 < /ljk < /Ijk+l1

N XN



_Imit to GUE corner process

Theorem

| et xjk be the positions of the dots in the bottom N horizontal section of the Aztec diamond of

size n, chosen uniformly over all matchings. And /ljk the eigenvalues of the submatrices of a

GUE matrix. Then, asn — o0,

I k,N
xj J k.N
= (%)

\/; k=1 JA=]

Random matrices are limits of random tilings!




N

Limit Shape and glopal fluctuations

o First draw dots on red and yellow ”’
dominos, and then define the height
function ' '

h(x, k) = #{j | x* > x}

e The height function jumps at the
position of the dots. The graph of the
height function is a stepped surface. 5 4 3 2 92 1

e NB: This is not the standard way of
defining the height function. 3 o o 1 1 1




)

mit Shape and gl fluctuations

e The height function has a limit

—E [h(P)| - H(P)

o Pointwise in the disordered region, the fluctuations of the
neight function diverge logarithmically.

Var h(P) ~ logn
o But two point correlations remain finite!
Cov[h(P,), h(P,)] ~ 1
e Asn — 00 the height field, or random surface, is rough and

converges to the Gaussian Free Field with Dirichlet
boundary conditions.
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il we cover in these lectures
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- Shuffling algorithm and dynamics.
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- Height fluctuations and Gaussian Free Field. Operator
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- Orthogonal polynomial approaches.

- The perspective in this course leans heavily on analytic

methods.



content

- What will we not cover in these lectures
. Kasteleyn's theory
. Pfaffion processes, or other process outside the determinant class

- Representation theory



Plan for the lectures (preliminary)

- Lecture 1: Determinantal point process

. Lecture 2: Schur processes, LGV, Eynard-Mehta, Toeplitz matrices

- Lecture 3: Asymptotic study of the Aztec diamond with uniform distribution

. Lecture 4: Shuffling algorithm and dynamics in 2 dimensions

. Lecture b: Doubly periodic weights
. Lecture 6: Height fluctuations and the Gaussian free field

. Lecture 7: Orthogonal polynomials, Painleve transcendents in lozenge tilings of the hexagon.

| am to have each lecture self-contained



