
Maurice Duits — January 15, 2026 — Paris

An analytic journey through random tilings 

The Aztec diamond



About the course



Content
This is a 20h course with the following dates: 

• Lecture 1:  January 15, Thursday,  

• Lecture 2:  January 22, Thursday, 

• Lecture 3:  January 27, Tuesday 

• Lecture 4:  February 3, Tuesday 

• Lecture 4:  Tuesday, 

• Lecture 6:  Tuesday, 

• Lecture 7:  Tuesday 

Each lecture will be self-contained 

Lectures will be mostly on the blackboard 
(except for an introduction today) 

Course has a homepage: 
 
https://www.math.kth.se/~duits/#Aztec 
 
Contains updated schedule, lecture notes 
and extra material. 
  
Disclaimer: lecture notes are drafts and 
may be incomplete or contain errors. 

https://www.math.kth.se/~duits/#Aztec


Tilings of planar domains



• A tiling of a planar domain is a complete covering of a domain such with a given set of 
shapes, such that no two shapes overlap.  

• In this course, we will see mainly two different types of tilings.  

• Domino tilings 

• Lozenge tilings 

Tilings



Domino tilings
• Examples of domino tilings:



Domino tilings
• Examples of domino tilings:



Lozenge tilings
• Examples of lozenge



Lozenge tilings
• Examples of lozenge tilings



Domino tilings — checkerboard

• Draw a checkerboard on the domain: 

• Each domino covers a black and white 
square. 

• There need to be as many white squares  
as there  are black squares.   
(Necessary but not sufficient. ) 



Domino tilings — checkerboard

• Replace the square by black and white dots.



Domino tilings — checkerboard

• Replace the square by black and white dots. 

• Then each domino provides a bond between 
a white and a black dot. 



Domino tilings — checkerboard

• Replace the square by black and white dots. 

• Then each domino provides a bond between a 
white and a black dot.  

• A domino tiling of a planar domain, is equivalent 
to a perfect matching for a bipartite graph 
where the graph is  subset of the square lattice.  

• This is called a dimer configuration.  

• Lozenge tilings correspond to hexagonal lattice. 

• Kasteleyn’s theory will not be part of the course



Domino tilings — checkerboard

• This also shows we have in fact 
four different type of dominos, 
depending on the position of the 
white and black squares 

• It will be convenient, and visually 
appealing, to give these four 
domino different colors. 



Domino tilings — Colors



The Aztec Diamond 
(The running example in the course)



Aztec diamond
• Although the methods in this course apply to 

broader classes of tiling models, the course 
will be centered around the Aztec diamond.  

• The Aztec diamond of size  is the following 
domain on the right  

• The sides of the domain have the shape of 
staircases of Maya temples, hence the name 
Aztec diamond (dont blame the lecturer….) 

• This boundary may look strange at first, but 
will be very important. 
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Aztec diamond (rotated)

• We will often rotate the diamond by 45 
degrees.  

• This is not just to save space, but will also 
be natural. 



Random tilings



The Aztec diamond
• There are many ways of tiling the Aztec diamond.  

• In fact, one can prove that there are  ways of tiling the Aztec diamond.  

• Let’s take on uniformly at random and see how a typical tiling looks like. 
 
Start with 

2n(n+1)/2

n = 3



The Aztec diamond
• Then four sample for n = 5



The Aztec diamond
• Then four samples with n = 10



The Aztec diamond
• And …….n = 100



The Aztec diamond
• And …….n = 500



The Aztec diamond
One main goal of this course is to understand  
this picture 

• We will prove that the disordered region is a disk 

• We will analyze the fluctuations at the interface 
between frozen and disordered region 

• We will compute the microscopic processes in the 
bulk. 

• We will show that there is a limit shape, and  
study its fluctuations. 

• Along the way, we will see that this model has 
beautiful connections to different types of 
mathematics, which make the Aztec diamond a very 
rich model. 



The Aztec diamond

Why?  Why is this happening and why should we care?



Universality



Classical probability

• The phenomena that large random systems concentrate around a deterministic limit and 
have universal fluctuations, goes back to de Moivre-Laplace.  

• If you flip a coin  times the number of times you get head follows a binomial distribution.  
 

              

• What happens when  is large? 
 
 
       

n

ℙ (k head after n tosses) = (n
k) pk(1 − p)n−k

n



Classical probability
• De Moivre- Laplace: When  grows large the distribution will look like a Gaussiann
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Classical probability
• Let  be independent and identical distributed random variables with mean  and variance 

. Then: 

• Law of large numbers: 
 

               ,      almost surely as  

• Central Limit Theorem: 
 

           ,     in distribution  as  

• Independent of the precise distribution, and dont need identical distributions…..

X1, …, Xn μ
σ2

1
n

n

∑
j=1

Xj → μ n → ∞

∑n
j=1 Xj − nμ

n
→ X ∼ N(0,σ2) n → ∞



Classical probability
• The principle that large systems concentrate around a deterministic limit and have fluctuations 

that give rise to universal probabilistic laws is typical. 

• In strongly correlated systems new type of universal behaviors appear.  

Finding these behaviors, studying their properties and proving their universal  
nature is one of the key goals in modern probability and mathematical physics.  

• Roughly, there are three questions: 

• Study a particular model that is sufficiently rich and generic, but also tractable. 

• Prove that the probabilistic objects that emerged, are universal. 

• Study the properties of these universal objects.



Random matrix theory
• Let  and consider a random  Hermitian matrix  defined by  

•  for    

•  

•    for  

• Since  is Hermitian it has  eigenvalues,  

• These eigenvalues will not be independent, but strongly correlated. 

n ∈ ℕ n × n M

Mij ∼ Nℂ(0,1/n) 1 ≤ i < j ≤ n

Mjj ∼ Nℝ(0,1/n)

Mji = Mij 1 ≤ i < j ≤ n

M n λ1, …, λn



Random matrix theory
• We draw a histogram that counts the number of eigenvalues in intervals. 
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Random matrix theory
• We draw a histogram that counts the number of eigenvalues in intervals. 
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Random matrix theory
• We draw a histogram that counts the number of eigenvalues in intervals. 
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Random matrix theory
• We draw a histogram that counts the number of eigenvalues in intervals. 

n = 5000
-1 0 1 2

λ0.00

0.05

0.10

0.15

0.20

0.25

0.30

ρ(λ)

-1 0 1 2
λ0.00

0.05

0.10

0.15

0.20

0.25

0.30

ρ(λ)

-1 0 1 2
λ0.00

0.05

0.10

0.15

0.20

0.25

0.30

ρ(λ)

-1 0 1 2
λ0.00

0.05

0.10

0.15

0.20

0.25

0.30

ρ(λ)



Random matrix theory
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• Law of large numbers: 
 
Wigners semi-circle law: 
 
For a subset  the fraction of points in  
is, in the limit,  given by the semi-circle law: 
  
        

        

 
almost surely as  

E ⊂ ℝ E

#{λj ∈ E}
n

→
1

2π ∫E
4 − x2dx

n → ∞



Random matrix theory
• One can explain the semi-circle law as follows: 

• First one proves that the eigenvalues have the 
jpdf  
 
      

• The semi-circle law is the equilbrium between 
these terms. 

∼ ∏
1≤i<j≤n

(λi − λj)2e− n
2 ∑n

j=1 λ2
j dλ1⋯dλn

Repulsion Confinement
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2−2

• One can explain the semi-circle law as follows: 

• First one proves that the eigenvalues have the 
jpdf  
 
      

• The semi-circle law is the equilbrium between 
these terms. 

∼ ∏
1≤i<j≤n

(λi − λj)2e− n
2 ∑n

j=1 λ2
j dλ1⋯dλn

Random matrix theory
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• Scaling at a bulk point x* ∈ (−2,2)

Energy levels of heavy nuclei

∼ 1/n

x* 2−2

∼ 1



Zeros Riemann-Zeta-function

x* 2−2

En = x* +
2πn

4 − x2
*

E

ℙ (no eigenvalues in En) → 1 +
∞

∑
k=1

(−1)k 1
k! ∫E

⋯∫E
det (Ksine(xi, xj))

k

i,j=1
dx1⋯dxn

Ksine(x, y) =
sin π(x − y)

π(x − y)

E

En

• For  define the rescaled interval: 
 
 
 

• Then we have the asymptotic behavior of 
gap probabilities: 
 
 
 
 
 
with

E ⊂ ℝ



• The space give rise to a new law: 
 
 
 
 
 

• This law is also observed in  

• Energy levels of heavy nuclei 

• Zeros of the Riemann-Zeta function 

• Miscalleneous: Parking of cars……

Gaudin-Mehta distribution 

F(s) = 1 +
∞

∑
k=1

(−1)k 1
k! ∫

s

0
⋯∫

s

0
det (Ksine(xi, xj))

k

i,j=1
dx1⋯dxn

Ksine(x, y) =
sin π(x − y)

π(x − y)



Tracy-Widom distribution

x* 2−2

ℙ (λmax < 2 +
s

n2/3 ) → F2(s)

• Another very important distribution is the 
Tracy-Widom distribution for the largest 
eigenvalues.  

• Let  be the maximal eigenvalue.  Then 
it it stick to the interval and fluctuates 
around the endpoint at order : 
 
 
 
 
where 

λmax

n−2/3

F2(s) = . . . .



• The Tracy-Widom distribution is another universal law that  
 
 
 
 
 
where  
 
 
 
and  is the Airy function, ie the unique solution toAi(x)

Tracy-Widom distribution

F2(s) = 1 +
∞

∑
k=1

(−1)k 1
k! ∫

∞

s
⋯∫

∞

s
det (KAiry(xi, xj))

k

i,j=1
dx1⋯dxn

KAiry(x, y) =
Ai(x)Ai′￼(y) − Ai′￼(x)Ai(y)

x − y

{Ai′￼′￼(x) = xAi(x)
Ai(x) → 0 x → ∞



Back to tilings….



Large Aztec diamond



Lets zoom in so that 
tiles are of order ∼ 1

Bulk limits



Bulk limits

Lets zoom in so that 
tiles are of order 1

This will give a random domino tilings of the full  
plane. Can we describe it?



Limit near arctic circle
Lets zoom in at the top

n1/3

n2/3



The fluctuations of the top part 
intersected at vertical line, will be the 
Tracy-Widom  distribution,  same 
distribution as the largest eigenvalue of a 
large GUE matrix

Limit near arctic circle



What is the law of the top path,  
or top  paths?  
—> Airy line-ensemble

k

Limit near arctic circle



Limit near turning point.



Limit near turning point

k = 1
k = 2
k = 3

k = N

• Draw dots on the yellow and red dominoes 

• For each horizontal -section there are precisely  black dots. 

• Let  be the position of the -th dot counted from left to right in the -th row, counted from 
bottom to top. 
 
then                                for  

• Interlacing particle system.

k k

xk
j j k

xk+1
j < xk

j ≤ xk+1
j+1 j = 1,…, k



Let  be an  Hermitian matrix with random entries 
such that 
 
                      for     

                       for   

Then  for  let let   be the eigenvalues of the 

 upper left sub matrix of  (delete the final  rows 
and columns).  

Linear algebra tells us that         

Mij N × N

Mij ∼ Nℂ(0,1) 1 ≤ i < j ≤ N
Mii ∼ Nℝ(0,1) 1 ≤ i ≤ N

j = 1,…, k λk
j

k × k M n − k

λk+1
j < λk

j < λk+1
j+1

GUE corner process

M =

N × N



Limit to GUE corner process
Theorem  
Let  be the positions of the dots in the bottom  horizontal section  of the Aztec diamond of 

size , chosen uniformly over all matchings. And  the eigenvalues of the submatrices of a 

GUE matrix. Then, as , 
 

                                         

 
Random matrices are limits of random tilings!

xk
j N
n λk

j

n → ∞

(
xk

j

n )
k,N

j,k=1

d→ (λk
j )

k,N

j,k=1



Limit Shape and global fluctuations
• First draw dots on red and yellow 

dominos, and then define the height 
function 
 
 

• The height function jumps at the 
position of the dots. The graph of the 
height function is a stepped surface. 

• NB: This is not the standard way of 
defining the height function.

5 4 3 2 2 1

4 3 2 2 1 1

3 2 2 1 1 1

2 2 1 1 0 0

1 1 1 0 0 0

h(x, k) = #{j ∣ xk
j ≥ x}



Limit Shape and global fluctuations
• The height function has a limit 

 

            

• Pointwise in the disordered region,  the fluctuations of the 
height  function diverge logarithmically. 
 
         

• But two point correlations remain finite! 
 
        

• As  the height field, or random surface, is rough and 
converges to the Gaussian Free Field  with Dirichlet 
boundary conditions. 

1
n

𝔼 [h(P)] → H(P)

Var h(P) ∼ log n

Cov[h(P1), h(P2)] ∼ 1

n → ∞

P1

P2

P



Content
• What will we cover in these lectures 

• Determinantal point processes, Schur process and 
extensions, biorthogonal ensembles, non-intersecting paths.  

• Asymptotic analysis: Arctic Circle Theorem, Limit shapes 
and fluctuations, Tracy-Widom fluctuations, Airy process, 
Bulk limits and measures on the plane. Random matrix 
limits.  

• Shuffling algorithm and dynamics. 

• Height fluctuations and Gaussian Free Field.  Operator 
approach.  

• Orthogonal polynomial approaches.  

• The perspective in this course leans heavily on analytic 
methods. 



Content
• What will we not cover in these lectures 

• Kasteleyn’s theory 

• Pfaffian processes, or other process outside the determinant class 

• Representation theory 

• …..



Plan for the lectures (preliminary)
• Lecture 1:  Determinantal point process 

• Lecture 2:  Schur processes, LGV, Eynard-Mehta, Toeplitz matrices 

• Lecture 3:  Asymptotic study of the Aztec diamond with uniform distribution 

• Lecture 4:  Shuffling algorithm and dynamics in 2 dimensions 

• Lecture 5:  Doubly periodic weights 

• Lecture 6:  Height fluctuations and the Gaussian free field 

• Lecture 7:  Orthogonal polynomials, Painlevé transcendents in lozenge tilings of the hexagon.  

I am to have each lecture self-contained 


