
Lecture 8

Orthogonal polynomials

8.1 Orthogonal polynomials and some of their fea-
tures

Let w : R → [0,∞) be a postive function with finite moments∫ ∞

−∞
|x|kw(x)dx > ∞.

For simplicity we will assume that w(x) → 0 rapidly as x → ±∞.
The space of polynomials is a Hilbert supspace of L2(R), spanned by the

basis of monomials {1, x, x2, . . .}. By applying Gram-Schmidt to this basis
we obtain the orthogonal polynomials. We denote the monic orthogonal
polynomial of degree k by πk. Hence πk(x) = xk + . . . is the unique monice
polynomial such that∫ ∞

−∞
πk(x)x

jw(x)dx = 0, j = 0, . . . , k − 1.

We will sometimes also use pk(x) = κkπk(x) where κk = ∥πk∥−1
2 . Hence pk

are the orthonormal polynomials.
In the rest of the course we will be interested in the asymptotic behavior

of the polynomials πn as n → ∞ and also some of their features. In particu-
lar, we are interested in the behavior of the recurrence coefficients and of the
reproducing kernel. These objects are introduced in the next two lemma’s.

Lemma 8.1.1. There exists {a2k > 0, bk ∈ R}∞k=0 such that

xπk(x) = πk+1(x) + bkπk(x) + a2kπk−1(x), k = 0, 1, 2, . . .

(and a−1 = 0).
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The ak and bk are called recurrence coefficients.

The reproducing kernel Kn(x, y) is defined by

Kn(x, y) =

n−1∑
j=0

pj(x)pj(y).

The name of this kernel comes from the following result.

Lemma 8.1.2. For any polynomial q of degree ≤ n− 1 we have∫ ∞

−∞
Kn(x, y)p(y)w(y)dy = q(x).

Lemma 8.1.3. We have that

Kn(x, y) = κ2n−1

πn(x)πn−1(y)− πn(y)πn−1(x)

x− y

(Christoffel-Darboux formula).

8.2 Riemann-Hilbert problem for orthogonal poly-
nomials

RH problem 8.2.1. We seek for a function Y : C \ R → C2×2 such that

• Y is analytic in C \ R.

• Y+(x) = Y−(x)

(
1 w(x)
0 1

)
, for x ∈ R.

• Y (z) = (I + o(1))

(
zn 0
0 z−n

)
as z → ∞.

Proposition 8.2.2. The solution to the RHP ?? is unique and given by

Y (z) =

(
πn(z)

1
2πi

∫
R

πn(x)w(x)
x−z dx

−2πiκ2n−1πn−1(z) −κ2n−1

∫
R

πn−1(x)w(x)
x−z dx

)
. (8.2.1)

Proof. The idea of the proof is to consider the individual entries for Y .
We will prove the first row only and leave the second row (which is almost
identical) to the reader.
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The RHP give the following properties for the entry Y11){
Y11,+ = Y11,− on R
Y11(z) = zn(1 +O(1/z)), z → ∞.

Hence, Y11 is an entire function and, by Liouville’s Theorem, a monic poly-
nomial qn of degree n. We still need to show that qn = πn. This follows by
looking at the entry Y12. Here we find{

Y12,+ = Y12,− + qnw on R
Y12(z) = O(1/zn+1), z → ∞.

.

Given qn, this problem has a unique solution given by the Cauchy transform

Y12(z) =
1

2πi

∫ ∞

−∞

qn(y)w(y)

y − z
dy.

However, this only gives Y12(z) = O(1/z) and we need a stronger condition.
To this end, write

1

y − z
= −

n−1∑
j=0

yj

zj+1
+

1

z − y

yn

zn
,

and then

Y12(z) = − 1

2πi

n−1∑
j=0

1

zj+1

∫ ∞

−∞
qn(y)u

jw(y)dy+
1

2πi

∫ ∞

−∞

qn(y)w(y)

z − y

yn

zn
dy.

Hence to have Y12(z) = O(1/zn+1) as z → ∞, we need∫ ∞

−∞
qn(y)u

jw(y)dy

and hence qn = πn. This finishes the proof for the first row.

Also the reproducing kernel Kn and the recurrence coefficients can be
characterized in terms of the RH problem.

Lemma 8.2.3.

Kn(x, y) =

(
0 1

)
2πi(x− y)

Y+(y)
−1Y+(x)

(
1
0

)
(8.2.2)
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Proof. Firs observe that the inverse for any 2× 2 matrix can be found by(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

Hence, since detY = 1, we have

Y −1 =

(
∗ ∗

2πiπn−1 πn

)
By working out the right-hand side of (8.2.2) we retrieve the Christoffel-
Darboux formula for the kernel.

Lemma 8.2.4. Write

Y (z) =
(
I + Y (1)/z + Y (2)/z2 + . . .

)(zn 0
0 z−n

)
.

Then a2n = Y
(1)
12 Y

(1)
21

bn =
Y

(2)
12

Y
(1)
12

− Y
(1)
22

Proof. We start by noting that Y
(1)
21 = −2πiκ2n−1.

To indicate the dependence on n we write Y = Yn. Since the jump for
Yn does not depend on n, we have that Yn+1Y

−1
n has no jump on the real

line and hence it is entire. By inserting the asymptotic condition and using
Liouville’s Theorem we find

Yn+1Y
−1
n = (I +O(1/z))

(
z 0
0 1/z

)
(I +O(1/z)) =

(
z + ∗ ∗
∗ 0

)
where the ∗ denote constants that we will now determine. Let us first write

Yn+1 =

(
z + ∗ ∗
∗ 0

)
Yn

The 21-entry at both sides gives −2πiκ2nπn and this determines one constant.
Moreover the 11-entry at both sides is precisely the recurrence relation for
the orthgonal polynomials and hence

Yn+1 =

(
z − bn

a2n
2πiκ2

n−1

−2πiκ2n 0

)
Yn.
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Now multiply both sides with

(
z−n 0
0 zn

)
and compute the asymptotic be-

havior for z → ∞ to get

(I +O(1/z))

(
z 0
0 z−1

)
=

(
z − bn

a2n
2πiκ2

n−1

−2πiκ2n 0

)(
I +

Y (1)

z
+

Y (2)

z2
+ . . .

)
.

By computing the 12-entry of both sides we find

O(z−2) = Y
(1)
12 +

a2n
2πiκ2n−1

+
Y

(2)
12 − bnY

(1)
12 +

a2nY
(1)
22

2πiκ2
n−1

z
+O(z−2),

as z → ∞. Hence Y
(1)
12 = − a2n

2πiκ2
n−1

and by using Y
(1)
21 = −2πiκ2n−1 we obtain

the formula for a2n. Finally,

bn =
Y

(2)
12

Y
(1)
12

+
1

Y
(1)
12

a2nY
(1)
22

2πiκ2n−1

=
Y

(2)
12

Y
(1)
12

− Y
(1)
22 ,

and this is the formula for bn.

8.3 Varying weights and discrete Lax Pairs

A specially interesting class of orthogonal polynomials come from the weights

w(x) = e−NV (x),

where N ∈ N and V is a polynomial of even degree and positive leadin
coefficient (so that all monents exist). In that case, we have that the solution
Y to the RHP satisfies a differential equation and, even more, a discrete Lax
Pair.

Indeed, define the function Ψ by

Ψn(z) = Yn(z)

(
e−NV (z)/2 0

0 eNV (z)/2

)
.

Then Ψ is analytic in C \ R and has the properties
Ψn,+ = Ψn,−

(
1 1

0 1

)

Ψn(z) = (I +O(1/z))

(
zne−NV (z)/2 0

0 z−neNV (z)/2

)
.
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Since the jump for Ψ does not depend on z we have that the function

∂Ψn

∂z
Ψ−1

n = An(z)

is entire. By computing the asymptotic behavior we find that An is a poly-
nomial of degree degV −1. Moreover, by the proof of Lemma 8.2.4 we know
that

Ψn+1(z) =

(
z − bn 2πia2nκn−1

−2πiκ2n 0

)
Ψn(z) =: Bn(z)Ψn(z)

Hence we have the Lax Pair{
∂Ψn
∂z = An(z)Ψn(z)

Ψn+1(z) = Bn(z)Ψn(z)
.

The compatibility equation reads

An+1(z)Bn(z) = B′
n(z) +Bn(z)An(z).

This equation gives a difference equation for the recurrence coefficients.

Example 1. We end the lecture by claiming that for

V (x) = x4/4 + tx2/2

this compatability equation (after quite a bit of work) leads to the following
equation for a2n (note that the fact that V is even implies bn = 0 (exercise!))

a2n(t+ a2n+1 + a2n + a2n−1) =
n

N

This is known in the literature under various names: the Freud equation,
string equation and discrete Painlevé equation. The validity of this equation
can also be checked directly without the use of Lax pairs. Indeed,

n∥πn−1∥22 =
∫

π′
n(x)πn−1(x)e

−NV (x)dx

= −
∫

πn(x)π
′
n−1(x)e

−NV (x)dx+N

∫
πn(x)πn−1(x)V

′(x)e−NV (x)dx

= N

∫
V ′(x)πn(x)πn−1(x)e

−NV (x)dx.

and the last integral can be worked out using the recurrence relation leading
to the Freud equation.
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