Lecture 8

Orthogonal polynomials

8.1 Orthogonal polynomials and some of their fea-
tures

Let w: R — [0,00) be a postive function with finite moments

o
/ |z[Fw(x)dz > oo,
—0o0

For simplicity we will assume that w(z) — 0 rapidly as z — +oo.

The space of polynomials is a Hilbert supspace of La(R), spanned by the
basis of monomials {1, z,2%,...}. By applying Gram-Schmidt to this basis
we obtain the orthogonal polynomials. We denote the monic orthogonal
polynomial of degree k by 7. Hence 7y (z) = zF 4 ... is the unique monice
polynomial such that

oo
/ 7 (z) 2 w(x)da = 0, j=0,..., k-1
—0o0

We will sometimes also use py(z) = rpmy(x) where sy, = ||mg|5 " Hence py
are the orthonormal polynomials.

In the rest of the course we will be interested in the asymptotic behavior
of the polynomials 7, as n — oo and also some of their features. In particu-
lar, we are interested in the behavior of the recurrence coefficients and of the
reproducing kernel. These objects are introduced in the next two lemma’s.

Lemma 8.1.1. There exists {a; > 0,b; € R} such that
() = T (x) 4 b () + adme_1(2), k=0,1,2,...

(and a_1 = 0).
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The aj, and by, are called recurrence coefficients.
The reproducing kernel K, (xz,y) is defined by

n—1
Ko(z,y) =Y pj(2)p; (y)-
=0

The name of this kernel comes from the following result.

Lemma 8.1.2. For any polynomial q of degree < n — 1 we have

/ " Kz pp)wy)dy = o).

Lemma 8.1.3. We have that

T (2)Tn—1(y) = Tn (Y) ™01 (2)
r—=y

Kn(l',y) = Hi 1

(Christoffel-Darbouzx formula,).

8.2 Riemann-Hilbert problem for orthogonal poly-
nomials

RH problem 8.2.1. We seek for a function Y : C\ R — C?*2 such that
e Y is analytic in C\ R.

.« V.(z)=Y (2) <é “’@) forz €R.

Z?’L

e V()= (I +0(1)) <O 20n> as z = 0o,

Proposition 8.2.2. The solution to the RHP 77 is unique and given by

_ 1 m@w) g0
Y ={_, . ) P4 Je T (@) 3| (8.2.1)
— Fl/@n_lﬂn—l(z) _'%n—l f]R de

Proof. The idea of the proof is to consider the individual entries for Y.
We will prove the first row only and leave the second row (which is almost
identical) to the reader.
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The RHP give the following properties for the entry Y1)

Yiig =Y on R
Yia(z) = (14 0(1/2)), = - oc.

Hence, Y71 is an entire function and, by Liouville’s Theorem, a monic poly-
nomial g, of degree n. We still need to show that ¢, = m,. This follows by
looking at the entry Yjo. Here we find

Yio4+ =Yio_+qgmw onR
Yia(2) = O(1/2"1), 2 — 0.

Given ¢y, this problem has a unique solution given by the Cauchy transform

b = L [ B0,

27i Y—z

However, this only gives Yi2(z) = O(1/z) and we need a stronger condition.
To this end, write

and then

n

1 > I (y)w(y) y
Jaw
Yia(2 B ]E . puan) / an(y)'w )dy+ / o dy

0o 2=y

Hence to have Y12(z) = O(1/2"1) as z — oo, we need

/Oo an (y)w? w(y)dy

and hence ¢, = m,. This finishes the proof for the first row. O

Also the reproducing kernel K, and the recurrence coefficients can be
characterized in terms of the RH problem.

Lemma 8.2.3.

- Y0 () (822
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Proof. Firs observe that the inverse for any 2 x 2 matrix can be found by

a B\ 11 d —b
c d ad—bec\—c a )’

Hence, since det Y = 1, we have

1 * *
Y= (27Ti7'('n1 7Tn>

By working out the right-hand side of (B=Z2) we retrieve the Christoffel-
Darboux formula for the kernel. O

Lemma 8.2.4. Write

z

Y(z) = (I+Y(1)/z+Y(2)/z2 +) <; zon> .

Then

Proof. We start by noting that Y2(1l ) = —2mikZ .

To indicate the dependence on n we write Y = Y,,. Since the jump for
Y,, does not depend on n, we have that Y, 1Y, ~! has no jump on the real
line and hence it is entire. By inserting the asymptotic condition and using

Liouville’s Theorem we find
_ z 0 Z+* ok
Veuvi = roa/a) (5 ), ) avoum = (717 f)

where the * denote constants that we will now determine. Let us first write
z 4+ x %
YnJrl - ( % 0> Yn

The 21-entry at both sides gives —27is2 7, and this determines one constant.
Moreover the 11-entry at both sides is precisely the recurrence relation for
the orthgonal polynomials and hence

z—b ay
Yn+1 = ( n2 27‘-“6?1,—1) YTL

—2mikg,
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—n

Now multiply both sides with (z 0

0 :
z”) and compute the asymptotic be-

havior for z — oo to get

o (? 0 e=bn g\ (LYW Y@
o (5 )= T ) (e e )

By computing the 12-entry of both sides we find
2y(1)
9 Y1(22) o bnyl(Ql) 4 ;Tnmygz
G+ L4 0(),

-2
2miks z

R

a? . 1) .9 .
5— and by using Y,,’ = —27ik;,_; we obtain

1
as z — 0o. Hence Y1(2) =—5—5
271’1,‘6,"‘71

the formula for a2. Finally,

2 1 2
Y1(2) 1 a721Y2(2) _ Y1(2) _
}/'1(21) Y1(21) 271'1/{721_1 }/'1(21)

1
bn = }/2(2)’

and this is the formula for b,,.

8.3 Varying weights and discrete Lax Pairs

A specially interesting class of orthogonal polynomials come from the weights

w(x) — efNV(ar:)7

where N € N and V is a polynomial of even degree and positive leadin
coefficient (so that all monents exist). In that case, we have that the solution
Y to the RHP satisfies a differential equation and, even more, a discrete Lax
Pair.

Indeed, define the function ¥ by

e—NV(z)/Q 0
0@ =16 (T o)

Then ¥ is analytic in C \ R and has the properties

1 1
mn,+ - ln,f
ne—NV(z)/Q 0 )

Up(z) = (I+0(1/2)) (Z 0 LNV (2)/2
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Since the jump for ¥ does not depend on z we have that the function

ov, __

3; Ut = A,(2)
is entire. By computing the asymptotic behavior we find that A, is a poly-
nomial of degree degV’ — 1. Moreover, by the proof of Lemma B2 we know
that

z— by 27riainn_1
—2mik? 0

() = (

Hence we have the Lax Pair

{%“; = Ap(2) Ty (2
Upt1(2) = Bn(2)¥a(2)

> U, (2) =: Bh(2)¥,(2)

The compatibility equation reads
Ani1(2)Bn(2) = BL(2) + Bu(2)An(2).
This equation gives a difference equation for the recurrence coefficients.

Example 1. We end the lecture by claiming that for
V(z) =zt/4+ tz? /2
this compatability equation (after quite a bit of work) leads to the following

equation for a2 (note that the fact that V is even implies b, = 0 (exercise!))

n
an(t+ apey +ap +an) =

This is known in the literature under various names: the Freud equation,
string equation and discrete Painlevé equation. The validity of this equation
can also be checked directly without the use of Lax pairs. Indeed,

T3 = / o (@)1 ()e V@) dy
= - / ()1, (2)e NV P dz + N / T (@)1 (2) V' (2)e NV @ dz
=N / V! (2 ()1 (2)e~ NV @z,

and the last integral can be worked out using the recurrence relation leading
to the Freud equation.
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