
Lecture 7

More on Painlevé II

We continue by analyzing the RHP from the previous lecture, but now we
make the reduction 

ν = 0

s2 = s5 = 0

s1 = εs

s3 = −εs

s4 = −s

s6 = s

for some ε ∈ [0, 1] and hence consider the RHP:

RH problem 7.0.1. Let s ∈ C. And let Γψ and Jψ as in Figure 7.5. Search
for 2× 2 analytic function Ψ such that

• Ψ is analytic in C \ Γψ

• Ψ+(z) = Ψ−(z)Jψ

• Ψ(z) = (I +O(1/z))e−σ3θ(z,x), as z → ∞

• Ψ is bounded near the origin.

Here θ(z, x) = i(43z
3 + xz).

We have shown that there exists a countable set Xε
s (for which the inter-

section with any compact set in C is finite) such the solution to this RHP
exists for x ∈ C \Xε

s and depends analytically on x ∈ C \Xε
s . Moreover,

Ψ(z) =
(
I +Ψ1/z +O(1/z2)

)
e−σ3θ(z,x)

1
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Figure 7.1: The jump contour and matrices for Ψ
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Figure 7.2: The jump contour and matrices for Ψ. Since the orientation in
the left rays is reversed, the jump matrices are inverted.

as z → ∞, we have that u = 2(Ψ1)12 solves the equation

uxx = xu+ 2εu3.

Finally, we note that we can change the orientation of the rays at the left
half plane and replace the jumps with the inverses. We will assume that Jψ
is then as in Figure 7.

7.1 Continuity in ε

It is clear that when ε ↓ 0 , the equation turns into the the Airy equation.
But the question is, whehter the same is true for the solutions. The following
theorem shows that we have pointwise convergence for the solutions.
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Theorem 7.1.1. Let x ∈ ∩Xε∈[0,1]. For ε ∈ [0, 1] denote the solution to the
RHP by Ψε and uε = 2(Ψε

1)12. Then ε 7→ uε(x) is a continuous function on
[0, 1].

Proof. Fix ε ∈ [0, 1] and δ ∈ [0, 1] close to ε. Then we define

Φδ = ΨδΨ
−1
ε .

Then Φδ satisfies the RHP

1. Φδ is analytin in C \ ΓΦδ

2. Φδ,+ = Φδ,−JΦδ

3. Φδ(z) = I +O(1/z) as z → ∞.

where ΓΦδ
= ΓΨε and

JΦδ
= Φ−1

δ,−Φδ,+ = Ψε,−Φ
−1
δ,−Ψδ,+Φ

−1
ε,+Ψε,−JΨδ

J−1
Ψε

Φ−1
ε,+.

Now JΨδ
J−1
Ψε

= I for the jumps on the two rays in the lower half plane. In
the upper half plane we find

JΦδ
= Ψε,−

(
1 0

(δ − ε) 0

)
Φ−1
ε,+.

Hence (why?)
∥JΦδ

− I∥∞,2 = O(δ − ε), δ → ε.

Hence we see that Ψδ(z) → Ψε(z) uniformly for compact subsets of C \ ΓΦδ

by Proposition ??. Hence also Ψ−1
δ (z) → Ψ−1

ε (z) and ∂
∂zΨδ(z) → ∂

∂zΨε(z)
uniformly for compact subsets of C\ΓΦδ

. Hence Aδ → Aε and uδ(x) → uε(x)
as δ → ε.

7.2 Pole-free solutions

Now take ε = 1, so that we are studying the Painlevé II equation1

uxx = xu+ 2u3.

Solutions to this equation typically have poles and it is often important to
know where they are. The follwoing theorem states that for certain values
of s there are no poles on the real line.

1with α = 0
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Figure 7.3: The jump contour and matrices for Φ.

Theorem 7.2.1. Let u be the solution of the PII equation with Stokes pa-
rameters s2 = 0 and s6 = −s4 = s. Then for s ∈ i[−1, 1] the function u has
no poles in R.

Proof. It is sufficient to prove that the RHP 7.3.4 has a solution for every x ∈
R. We can turn this into an equivalent RHP by considering Φ = Ψeσ3θ(z,x).
Then we obtain the following RHP for Φ

• Φ is analytic in C \ Γψ

• Φ+(z) = Φ−(z)Jψ

• Φ(z) = (I +O(1/z)), as z → ∞

• Φ is bounded near the origin.

The jump structure is represented in Figure 7.2 We now use the Vanishing
lemma for Φ (see ??)
Vanishing Lemma: There exists a unique solution for Φh iff the homoge-
nous RHP

• Φh is analytic in C \ Γψ

• Φh+(z) = Φh−(z)Jψ

• Φh(z) = O(1/z), as z → ∞

• Φh is bounded near the origin.

Suppose now that Φh is a solution to the homogoneous RHP. THen it
remains to show that Φh = 0. We first define a new function Ξ as indicated
in Figure 7.2 Then we obtain the following RHP for Ξ (prove!)
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Figure 7.4: The definition of Ξ.

• Ξ is analytic in C \ R

• Ξ+(y) = Ξ−(y)

(
1 + s2 se−2θ

se−2θ 1

)
for y ∈ R.

• Ξ(z) = O(1/z), as z → ∞

Now define G(z) = Ξ(z)Ξ(z̄)∗. Then G is analytic in the upper half
plane. Morevover G(z) = O(1/z2) and hence∫

R
G+(y)dy = 0.

By taking the adjoint we also get∫
R
(G+(y) +G+(y)

∗)dy = 0. (7.2.1)

Now for y ∈ R we obtain

G(y) = Ξ+(y)Ξ−(y)
∗ = Ξ−(y)

(
1 + s2 se−2θ

se−2θ 1

)
Ξ−(y)

∗

Hence since x ∈ R, s̄ = −s and θ(y, x) = −θ(y, x) we have

G+(y) +G+(y)
∗ = 2Ξ−(y)

(
1− |s|2 0

0 1

)
Ξ−(y)

∗, (7.2.2)

which is positive definite.
First assume that s ̸= ±i. Then (7.2.1) and (7.2.2) together imply that

Ξ−(y) = 0 for every y. By also using the jump structure we see that also
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X+(y) = 0. Hence Ξ = 0 by analyticity. Therefore Φh = 0 and we have
proved the vanishing lemma and therewith the statement for s ̸= ±i.

Now suppose that s = ±i. Then (7.2.2) turns into

G+(y) +G+(y)
∗ = 2Ξ−(y)

(
0 0
0 1

)
Ξ−(y)

∗, (7.2.3)

By combining this with (7.2.1) we thus obtain the the elements in the second
column Ξ−2j = 0. Moreover by the jump condition

Ξ+ = Ξ−

(
0 e−2θ

se−2θ 1

)
(7.2.4)

we have that hte first column of X+ is zero. It remains to prove that the
first column of Ξ− and the second column of Ξ+ are zero. For this we use
Carlson’s Theorem [].

Define the function

h(z) =


Ξj2(z) Im z > 0

Ξj1(z)e
−2θ

se−2θ −1 < Im z < 0

Then by (7.2.4) we have that h extends to an analytic function on {Im z >
−1} and a continuous function on {Im z ≥ −1}. Moreover, it can checked
by the form of θ that h is uniformly bounded and that

h(z) = O(e−c(Re z)2)

as z → ∞ with Im z = −1, for some positive constant c. Carlson’s theorem
tells us that there is no other such funcion with these properties than the
trivial function. Hence h = 0 and this proves that also the first column of
X− and the second column of Ξ+ are zero. Hence Ξ = 0 and Φh = 0 and
this proves the anishing lemma and therewith the statement for s = ±i.

7.3 Asymptotic analysis of special Painlevé II so-
lutions

We recall the following RHP from last lecture.

RH problem 7.3.1. Let s ∈ C. And let Γψ and Jψ as in Figure 7.5. Search
for 2× 2 analytic function Ψ such that
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Figure 7.5: The jump contour and matrices for Ψ

• Ψ is analytic in C \ Γψ

• Ψ+(z) = Ψ−(z)Jψ

• Ψ(z) = (I +O(1/z))e−σ3θ(z,x), as z → ∞

• Ψ is bounded near the origin.

Here θ(z, x) = i(43z
3 + xz).

We have shown that there exists a countable set Xs (for which the inter-
section with any compact set in C is finite) such the solution to this RHP
exists for x ∈ C \Xs and depends analytically on x ∈ C \Xs. Moreover,

Ψ(z) =
(
I +Ψ1/z +O(1/z2)

)
e−σ3θ(z,x)

as z → ∞, we have that u = 2(Ψ1)12 solves the equation

uxx = xu+ 2u3.

In this lecture we will analyze the asymptotic behavior of u(x) as x → +∞.
As we will see, the solutions u with this choice of Stokes parameters tends to
zero rapidly as x → +∞. Therefore, the term u3 is negligible in the Painlevé
II equation. When we neglect this term, the Painlevé II equation turns into
the Airy equation. The latter equation has only one solution that converges
to zero as x → ∞ and this is Ai(x). As we will see, we indeed have the
following asymptotic behavior: u(x) = isAi(x)(1 + o(1)) as x → ∞.
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Overview of the analysis

We will find the asymptotic behavior for u(x) as x → ∞, by first finding
the asymptotic behavior of the solution Ψ(z) = Ψ(z;x) as x → ∞ and then
extracting the information for u(x). The procedure goes as follows. We will
define a sequence fo transforms

Y 7→ T 7→ S 7→ R.

Each transformation is easy and, in particular, invertible. After each trans-
formation, we obtain a new function that solves a new RH problem. In the
end, the goal of the sequence is to end up with a RH problem for R of the
form {

R+ = R−JR

R(z) = I +O(1/z), z → ∞,

with JR → I as x → +∞. Then we can use the theory of Lectures 2 and 3 to
deduce that R → I as x → ∞. Moreover, we obtain a Neuman series for the
solution R(z) = I +

∑∞
j=1R

(j)(z). We then trace back the transformations
and obtain the asymptotic behavior of Ψ and hence u.

First transformation Ψ 7→ T

We define the function

T = Ψeσ3θ

Then T is the unique solution to the following RHP.

RH problem 7.3.2. Let s ∈ C. And let ΓT and JT as in Figure 7.6. Search
for 2× 2 analytic function S such that

• T is analytic in C \ Γψ

• T+(z) = T−(z)JT (z)

• T (z) = (I +O(1/z)), as z → ∞

• T is bounded near the origin.
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Figure 7.6: The jump contour and matrices for T

The second transformation T 7→ S

Since we are interested in the behavior at x → +∞, we will assume x > 0
and define

S(z) = T (
√
xz).

Then S is the unique solution to the following RHP, where mention that we
define ϕ via the relation x3/2ϕ(z) = 2θ(x1/2z, x), hence

ϕ(z) = 2i(
4

3
z3 + z). (7.3.1)

RH problem 7.3.3. Let s ∈ C. And let ΓS and JS as in Figure 7.7. Search
for 2× 2 analytic function S such that

• S is analytic in C \ Γψ

• S+(z) = S−(z)JS(z)

• S(z) = (I +O(1/z)), as z → ∞

• S is bounded near the origin.

The transformation S 7→ R

In the next transformation we will deform the contours. We denote

γ± = {t± i
√
t2 + 1/4}.
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Figure 7.7: The jump contour and matrices for S

The relevance of the contours γ± is in the following. A straightforward
calculation shows that

d

dt
Reϕ(t+ i

√
t2 + 1/4) = −8(t+ 4t3)√

1 + 4t2
.

Hence the maximum of Reϕ on γ+ is at t = 0 which is at z = i/2. Similarly,

− d

dt
Reϕ(t− i

√
t2 + 1/4) = −8(t+ 4t3)√

1 + 4t2
.

Hence the maximum of −Reϕ on γ− is at t = 0 which is at z = −i/2.
Moreover,

ϕ(i/2) = −ϕ(−i/2) = −2/3.

Hence we have in particular that Reϕ < 0 on γ+ and −Reϕ < 0 on γ−.
Now we define R as follows. The rays ΓS and γ± partition the plane in

a number of regions. The region enclosed by γ+ and the two rays of Γs in
the upper half plane we denote by Ω+. The region enclosed by γ− and the
two rays of Γs in the lower half plane we denote by Ω+. See also Figure 7.8
We then define

R(z) =



S(z)

(
1 0

−ex
3/2ϕ(z) 0

)
, z ∈ Ω+

S(z)

(
1 e−x

3/2ϕ(z)

0 0

)
, z ∈ Ω−

S(z), otherwise.

Then R solves the following RHP (exercise!)
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Ω+

Ω−

Figure 7.8: Partitioning of the plane in the definition of R

RH problem 7.3.4. Let s ∈ C. And let ΓR and JR as in Figure 7.9.
Search for 2× 2 analytic function R such that

• R is analytic in C \ γ±

• R+(z) = R−(z)

(
1 0

ex
3/2ϕ(z) 0

)
for z ∈ γ+.

• R+(z) = R−(z)

(
1 e−x

3/2ϕ(z)

0 0

)
for z ∈ γ+.

• R(z) = (I +O(1/z)), as z → ∞

Note that since ϕ is analytic, also R is analytic away from the contours.
Also, because of the behavior of ϕ(z) as z → ∞ one can easily check (ex-
ercise) that R(z) = I + O(1/z) as z → ∞. Strictly speaking, R has still
jumps on the rays of ΓS . However, since R+ = R− on Γs we can extend R
analytically on ΓS .

Note that this transformation did nothing else then just deforming the
contour. In particular, we see that for RHP’s we can deform the contours in
the same way we can deform contours for contour integrals, as long as the
jump matrices involve analytic functions.

Since we have that ±Reϕ < 0 on γ±, we see that the jumps JR for R
converge exponentially fast to 0 as x → +∞ (in fact, the dominant part fot
he jump is near ±i/2. In particular, one can show easily that

∥JR − I∥2,∞ = O(exp(−Cx3/2), x → +∞,

for some constant C > 0.
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Figure 7.9: The jump contour and matrices for R

But then we know by the general theory for RHP in Lectures 2 and 3
that, for sufficiently large x, there is a solution to R that can be represented
using a Neumann series giving

R(z) = I +
∞∑
j=1

R(j)(z).

In principle, each term in the series can be computed using the principles
from Lectures 2 and 3. However, we will show here that there is a more
direct approach that gives the terms.

Solving R heuristically

Since we know that there is Neumann series solving the RHP for R, we
can justify the following heuristic procedure. Instead of a series let us try a
solution of the form

R(z) = I +∆R(z).

We know that ∆R(z) should be small as x → +∞.
By inserting this into the RHP for R and reorganizig terms we obtain

∆R+(z) = ∆R−(z) + (JR − I) + ∆R−(JR − I)

Since we know that ∆R and (JR − I) are small as x → +∞, we ignore this
term in the equation and solve ∆R from

∆R+(z) ≈ ∆R−(z) + (JR − I)
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which, together with ∆R(z) = O(1/z) as z → ∞ gives,

∆R(z) ≈

 0 s
2πi

∫
γ−

e−x3/2ϕ(y)

y−z dy

s
2πi

∫
γ+

ex
3/2ϕ(y)

y−z dy 0


Of course, this is only an approximate solution for ∆R.

By iterating this procedure one can correct ∆R in the same way and
so on. In this way, step by step, we will end up with the full series for
R = I +

∑∞
j=1R

(j). Indeed, by inserting the series in the RH problem for
R and collecting terms that are of the same size we obtain the system of
equations {

R
(j+1)
+ = R

(j+1)
− +R

(j)
− (I − JR)

R(j)(z) = O(1/z), z → ∞
(7.3.2)

which can be solved iteratively.

Asymptotics for u

Note that

u = 2(Ψ1)12 = limz→∞ 2z
(
Ψ(z)eσ3θ

)
12

= limz→∞ 2z (T (z))12
= limz→∞ 2z (S(z/

√
x))12

= limz→∞ 2z (R(z/
√
x))12 .

Hence

u ≈ −s
√
x

πi

∫
γ−

e−x
3/2ϕ(y)dy,

as x → ∞. Now note that by a simple change of variables and using the
integral expression for the Airy function from Lecture 1 we obtain (exercise!)

−
√
x

πi

∫
γ−

e−x
3/2ϕ(y)dy = isAi(x),

and hence u1 ≈ i Ai(x), for large x.
After rigorous justification (exercise!) of the heuristic argument one

obtains
u(x) = isAi(x)(1 + o(1)), x → ∞.

Clearly s = −i is special. In fact this solution to the Painlevé II equation has
a name in the literature and is referred to as the Hastings-McLeod solution.

Finally, we remark that a more detailed treatment of R will give an full
asymptotic series for u(x) as x → ∞.
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