Lecture 3

Fredholm Operators

In this Lecture we continue the discussion form Lecture and work in the same setting (in particular, Assumption ?? apply).

We start by recalling some results about Fredholm operators.

Definition 3.0.1. A bounded operator A on a (separable) Hilbert space \mathcal{H} is called *Fredholm* if there exists a bounded operator B such that AB - I and BA - I are compact.

Proposition 3.0.2. An operator A is Fredholm if and only if dim Ker $A < \infty$ and dim Ran $A^{\perp} < \infty$.

Definition 3.0.3. For a Fredholm operator A the *index* $Ind(A) \in \mathbb{Z}$ is defined as

 $\operatorname{Ind}(A) = \dim \operatorname{Ker} A - \dim \operatorname{Ran} A^{\perp}.$

Proposition 3.0.4. Let A be a Fredholm operator. There exists a $\rho > 0$ such that for any X with $||X - A|| < \rho$ we have that X is also a Fredholm and Ind(A) = X.

Lemma 3.0.5. Let A be a Fredholm operator with index zero. Then A is invertible if and only if A is injective.

Back to the Riemann-Hilbert problem. In addition to w_{\pm} we also define

$$\tilde{w}_{\pm} = \pm (J_{\pm}^{-1} - I).$$

Then, by assumption on J the functions \tilde{w}_{\pm} are well defined, bounded, smooth and converge rapidly to zero as $z \to \infty$. Moreover, we have the identities

$$w_{-}\tilde{w}_{-} = w_{-} + \tilde{w}_{-}$$
 and $w_{+}\tilde{w}_{+} = -w_{+} - \tilde{w}_{+}$.

Lemma 3.0.6. Then the operator on $\mathbb{L}_2(\Gamma)$ defined by

$$\mathcal{T}_w \phi = \mathcal{C}_+ \left((\mathcal{C}_- (\phi w)) \tilde{w}_- \right) + \mathcal{C}_- \left((\mathcal{C}_+ (\phi w)) \tilde{w}_+ \right)$$

is compact as an operator on \mathbb{L}_2 .

Proof. First, suppose that \tilde{w}_{\pm} are rational functions with poles outside Γ . Then we claim that \mathcal{T}_w is of finite rank. To this end, note that for any $z' \in \Omega_+$, we have by analyticity

$$\mathcal{C}\left(\left(\mathcal{C}_{-}\left(\phi w\right)\right)\tilde{w}_{-}\right)\left(z'\right) = \frac{1}{2\pi \mathrm{i}} \int_{\Gamma} \frac{\left(\mathcal{C}_{-}\left(\phi w\right)\right)(s)\tilde{w}_{-}(s)}{s-z'} \mathrm{d}s$$
$$= \frac{1}{2\pi \mathrm{i}} \int_{\Gamma_{-}} \frac{\left(\mathcal{C}\left(\phi w\right)\right)(s)\tilde{w}_{-}(s)}{s-z'} \mathrm{d}s,$$

where Γ_{-} is a slight deformation of Γ that is now a finite collection of simple and closed contours in Ω_{-} . Since $C\phi w$ is analytic in Ω_{-} and \tilde{w}_{-} is rational, we can compute the integral by a residue calculus of each of the poles $\{a_t\}$ of \tilde{w}_{-} in Ω_{-} . Hence

$$\mathcal{C}\left(\left(\mathcal{C}_{-}\left(\phi w\right)\right)\tilde{w}_{-}\right)\left(z'\right) = \sum_{a_{t}} \frac{A_{t}}{a_{t}-z'},$$

where A_t are the residues at $s = a_t$. Therefore, by taking the boundary value at the +-side,

$$\mathcal{C}_{+}\left(\left(\mathcal{C}_{-}\left(\phi w\right)\right)\tilde{w}_{-}\right)\left(z'\right) = \sum_{a_{t}} \frac{A_{t}}{a_{t}-z},$$

for $z \in \Gamma$. Since the number of poles is finite, we indeed see that $\psi \mapsto C_+(C_-(\phi w)\tilde{w}_-)$ is of finite rank. Of course, a similar statements holds for $\psi \mapsto C_-(C_+(\phi w)\tilde{w}_+)$ and hence \mathcal{T}_w is of finite rank.

For general \tilde{w} we remark that by smoothness and decay at infinity, we can always approximate \tilde{w}_{\pm} by rational functions in a uniform way (apply a suitable version of Mergelyan's Theorem). Hence \mathcal{T}_w is a limit of finite rank operators and hence compact.

Theorem 3.0.7. The operator $I - C_w$ is Fredholm.

Proof. We show that we have

$$I + \mathcal{T}_w = (I - \mathcal{C}_{\tilde{w}})(I - \mathcal{C}_w). \tag{3.0.1}$$

To this end, observe that

$$\begin{aligned} \mathcal{C}_{\tilde{w}}\mathcal{C}_{w}\phi &= \mathcal{C}_{+}((\mathcal{C}_{w}\phi)\tilde{w}_{-}) + \mathcal{C}_{-}((\mathcal{C}_{w}\phi)\tilde{w}_{+}) \\ &= \mathcal{C}_{+}((\mathcal{C}_{+}\phi w_{-})\tilde{w}_{-}) + \mathcal{C}_{+}((\mathcal{C}_{-}\phi w_{+})\tilde{w}_{-}) + \mathcal{C}_{-}((\mathcal{C}_{+}\phi w_{-})\tilde{w}_{+}) + \mathcal{C}_{-}((\mathcal{C}_{-}\phi w_{+})\tilde{w}_{+}) \end{aligned}$$

and now use $C_+ = C_- + I$, $C_- = C_+ - I$, $w_-\tilde{w}_- = w_- + \tilde{w}_-$ and $w_+\tilde{w}_+ = -w_+ - \tilde{w}_-$ to arrive at

$$\begin{aligned} \mathcal{C}_{\tilde{w}}\mathcal{C}_{w}\phi &= \mathcal{C}_{+}((\mathcal{C}_{-}\phi w_{-})\tilde{w}_{-}) + \mathcal{C}_{+}((\mathcal{C}_{-}\phi w_{+})\tilde{w}_{-}) + \mathcal{C}_{-}((\mathcal{C}_{+}\phi w_{-})\tilde{w}_{+}) \\ &+ \mathcal{C}_{-}((\mathcal{C}_{+}\phi w_{+})\tilde{w}_{+}) + \mathcal{C}_{+}(\phi w_{-}\tilde{w}_{-}) - \mathcal{C}_{-}(\phi w_{+}\tilde{w}_{+}) \\ &= \mathcal{T}_{w}\phi + \mathcal{C}_{+}(\phi w_{-} + \tilde{w}_{-}) + \mathcal{C}_{-}(\phi w_{+} + \tilde{w}_{+}) \\ &= \mathcal{T}_{w}\phi + \mathcal{C}_{w}\phi + \mathcal{C}_{\tilde{w}\phi} \end{aligned}$$

and from here (3.0.1) follows. This means that $(I - C_{\tilde{w}})(I - C_w) - I$ is compact. By reversing the roles of w and \tilde{w} we can argue similarly and find that $(I - C_w)(I - C_{\tilde{w}}) - I$ is compact and hence $I - C_w$ is Fredholm. \Box

Theorem 3.0.8. Assume that w_{\pm} are nilpotent. Then $I - C_w$ is Fredholm with index 0.

Proof. If w_{\pm} are nilpotent, i.e. $w_{\pm}^{k+1} = 0$ for some k, then for any $t \in [0, 1]$ we have $(I \pm tw_{\pm})^{-1} = \sum_{j=0}^{k} (-t)^{j} (\pm 1)^{j} w_{\pm}^{j}$ and $\det(1 \pm tw_{\pm}) = 1$. Hence, for any $t \in [0, 1]$ the above discussion applies and $I - \mathcal{C}_{tw} = I - t\mathcal{C}_{w}$ is a Fredholm operator. Moreover, $t \mapsto I - t\mathcal{C}_{w}$ is a continuous map that connect $I - \mathcal{C}_{w}$ to I. By Proposition 3.0.4 the index is also continuous and does not change. Clearly, the index of I is zero and therefore the same is true for $I - \mathcal{C}_{w}$.

Assume that w_{\pm} are nilpotent. Then $I - C_W$ is invertible iff $I - C_W$ is injective. Hence let m^h be a solution to $(I - C_w)m = 0$. Then, as before, one can check that

$$Y^h(z) = \mathcal{C}(m^h w)(z),$$

is a solution to the homogeneous RHP

RH problem 3.0.9. We seek a $k \times k$ -matrix valued function such that

- 1. Y^h is analytic in $\mathbb{C} \setminus \Gamma$.
- 2. $Y^h_+ = Y^h_- J$ on $\Gamma \setminus \Gamma_p$
- 3. $Y^h(z) = o(1)$ as $z \to \infty$.

This means the following principle:

Corollary 3.0.10. Assume that w_{\pm} are nilpotent and assume that the the only solution to the homogeneous RHP is the trivial solution $Y^h = 0$. Then there exists a solution to the inhomogeneous RHP for Y.

Finally, we mention (without proof) the following theorem.

Theorem 3.0.11 (Analytic Fredholm Theorem). Assume that w_{\pm} are nilpotent and that $w_{\pm} = w_{\pm,\zeta}$ are entire as functions of ζ . Then $I - C_{w_{\zeta}}$ is invertible for no $\zeta \in \mathbb{C}$ or $(I - C_{W_{\zeta}})^{-1}$ is a meromorphic function of ζ .

Exercise 3.0.12. Show that the discussion in this section applies to the RHP for the Painlevé II equation in Lecture 1.

Bibliography

- M.J. Ablowitz and A.S. Fokas, Complex variables: introduction and applications. Second edition. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2003.
- [2] K. F. Clancey and I. Gohberg, Factorization of matrix functions and singular integral operators. Operator Theory: Advances and Applications, 3. Birkhuser Verlag, Basel-Boston, Mass., 1981
- [3] P.A. Deift, Orthogonal polynomials and random matrices: a Riemann-Hilbert approach. Courant Lecture Notes in Mathematics, 3. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999. viii+273 pp.
- [4] A.S. Fokas, A. Its, A.A. Kapaev and V.Y. Novokshenov, Painlev Transcendents. The Riemann-Hilbert approach. Mathematical Surveys and Monographs, 128. American Mathematical Society, Providence, RI, 2006. xii+553 pp.
- [5] I. Gohberg and N. Krupnik, One-dimensional linear singular integral equations. I. Introduction. Operator Theory: Advances and Applications, 53. Birkhuser Verlag, Basel, 1992.