
Lecture 2

Singular integral operators

In this lecture we will discuss the relation between Riemann-Hilbert prob-
lems and integral equations. In particular, this will gives a a useful criterion
when a Riemann-Hilbert problem has a solution. Since the emphasize of
the present course is on the use of Riemann-Hilbert problems for asymptotic
analysis, we will be brief in our discussion and often only provide sketches
of some of the proofs.

2.1 Integral equation: heuristics

The Riemann-Hilbert problems discussed in this course are equivalent to
integral equations on Γ. Let us first proceed in a formal way, to see the
point of the upcoming analysis. Write J = I + W and Y = I + X. Then
the jump condition in RHP ?? can be rewritten to

X+(z) = X−(z) +X−(z)W (z) +W (z).

Moreover, X(z) = o(1) as z → ∞. But then, using the Cauchy Transform
(i.e. Sokhotski-Plemelj formula), we can write

X(z) = CX−W (z) + CW (z). (2.1.1)

By taking the limiting value at the −-side we have

X−(z) = (CX−W )− (z) + (CW )− (z).

And this is a (singular) integral equation for X−. If we can solve this
equation then we can retrieve X from (2.1.1). Clearly, the above heuristic
derivation needs clarifications/justifications at several points.
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2.2 The Riemann-Hilbert problem revisited

We will now exclude endpoints from our discussion on RHP’s. Hence we
consider Γ = ∪γj a finite union of simple closed (in C̄) curves. We allow
the curves to intersect, but we assume that there are only finite number of
intersection points and that each intersection is transversal. In that case
we can obtain partition C \ Γ as Ω− ∪ Ω+ such that Ω± are disjoint and
Γ = ∂Ω±. This also provides Γ with an orientation by insisting that Ω+ is
always at the left-hand side. Finally, we assume that the unbounded parts
of Γ will converge to straight lines at ∞.

We recall the Riemann-Hilbert problem in standard form.

RH problem 2.2.1. Let k ∈ N, Γ ⊂ C be a contour and J : Γ → Ck×k.
Find a function Y : C→ Ck×k with the following properties

1. Y is analytic in C \ Γ

2. Y+(z) = Y−(z)J(z) for z ∈ Γ

3. Y (z) = 1 + o(1) as z →∞.

We will always work here with the following assumptions on J

Assumptions 2.2.2. We assume the following on J

• J is smooth on each arc of Γ \ Γp.

• J(z)− I → 0 rapidly as z →∞ along Γ.

• J is bounded.

• det J = 1.

These assumptions are stronger than necessary in the following discus-
sion and can easily be relaxed by following the proofs. On the other hand,
they are not too restrictive for our purposes and they hold in most RHP’s
of interest to us.

We are going to redefine what we mean with the limiting values at Γ.
Let f be an analytic function on C \ Γ and f± ∈ L2(Γ, |ds|). Let z ∈ Γ \ Γp
and {ζ(t)| − t0 < t < t0} be a parametrization of a small part of the arc
around ζ(0) = z. Set ζ̂0 = ζ ′(0)/|ζ ′(0) be the tangent to the arc at z. The
for sufficiently small ε we have that {ζ(t) ± iεζ̂0| − t0 < t < t0} are at the
±-side of the arc. Then we say that

lim
z′→z

z at ±-side

f(z′) = f±(z), (2.2.1)
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iff, for some t0 > 0, we have

lim
ε↓0

∫ t0

−t0
|f(ζ(t)± iεζ̂0)− f±(ζ(t))|2|dζ(t)| = 0.

The jump condition in the RHP 2.2.1 has to be understood in this sense.
To ensure uniqueness we need to put certain conditions on the behavior

of the solution of the RHP near the points of intersection. There are various
way of doing this. One way is the following, taken from [3].

Let z ∈ Γp and consider first the limiting value in one of the components
say Ω̃ that has z as a (irregular) boundary point. Then fix v such that
z + εiv ∈ Ω̃ and as ε ↓ 0 approaches z non-tangential to ∂Ω̃. Let {ζ(t) =
z+ tv+ ivh(t) | −t0 < t < t0} be a parametrization of part of ∂Ω̃ containing
z = ζ(0). Here h is piecewise real analytic function with h(0) = 0. Then we
say that f(z′) converges as z′ → z in Ω̃ iff f(z+ tv+ivh(t)(1+ε)) converges
as ε→ 0 in L2((−t0, t0)). Then we say that f(z′) converges as z′ → z if this
holds in any component Ω̃ that has z as a boundary point.

In the RHP we pose the extra condition that Y (z′) converges as z′ → z
at every point of intersection.

These technical definitions are chosen such that we have the following.

Theorem 2.2.3. If n = 2, then the solution to the RHP is unique, if it
exists.

Proof. See [3, Th. 7.18]

2.3 Boundary values of the Cauchy transform

Proposition 2.3.1. Let f ∈ L2(Γ). Then there exists C±f ∈ L2(Γ) such
that

lim
z′→z

z at ±-side

Cf(z′) = C±f±(z), (2.3.1)

Moreover, the maps C± : f 7→ C±f are bounded linear operators on L2(Γ).
Finally, C+ − C− = I and C+C− = C−C+ = 0, i.e. C+ and C− are comple-
mentary projections.

Sketch of the proof. The fact that C± are well-defined and bounded opera-
tors on L2((Γ) is a fundamental result that, for arbitrary Γ require significant
technical effort. The main message (i.e. the fact that the singularity in the
integral when approaching the contour Γ still gives a bounded operator) can
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be more easily seen in the special case Γ = R. Since Γ is smooth away
from intersection points, this special case is representative for the general
situation (although the extension to the general situation still requires a
non-trivial effort).

So let us assume that Γ = R. In that case, we have

Cf(x± iε) =
1

2πi

∫
R

f(y)

y − x∓ iε
dy

=
1

2πi

∫
R
f(y)

y − x± iε

(y − x)2 + ε2
dy

=
1

2πi

∫
R
f(y)

y − x
(y − x)2 + ε2

dy ± 1

2π

∫
R
f(y)

ε

(y − x)2 + ε2
dy

Now y 7→ 1
π

ε
(y−x)2+ε2

converges to the δ-function at x, so the second integral

converges back to 1
2f (in L2) sense. The first integral also converges. Indeed,

by taking the Fourier transform, we see that the limit converges in L2 to
the inverse Fourier transform (up to a multiple of −1

2i ) of

ω 7→ − i

2
sign(ω)f̂(ω),

where f̂ is the Fourier transform of f . This is known in the literature as the
Hilbert transform

Hf(x) =
1

π
P.V.

∫
f(y)

x− y
dy := lim

δ↓0

1

π

∫
|y−x|≥δ

f(y)

x− y
dy. (2.3.2)

Since in the Fourier domain it is a multiplication operator with a unimodular
function, it is a bounded operator on L2(R). Concluding

C±f = ±1

2
f − 1

2i
Hf,

and we see that both C± are bounded. Also the identities C+ − C− = I and
C+C− = C−C+ = 0 are easily verified (using H2 = −I).

We will not discuss the case of general contours Γ here. But only mention
that the Hilbert transform can also be defined on L2(Γ) using the Cauchy
Principal value integral and this defines a bounded operator (see [5, Th.
3.1]). Also, the Cauchy transform can be shown to converge at every point
of intersection in the sense that is given in the beginning of the section.

Finally, in an exercise in the previous set of lecture notes we proved
that, for general contours Γ, we have C+f(z)−C−f(z) = f(z) if f is analytic
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at z ∈ Γ \ Γp. By using a continuity argument one can now show that
C+f−C−f = f for general f ∈ L2. The fact that C+C− = C−C+ = O, can be
seen as follows: let f ∈ L2. Then C−f is the boundary value (in L2-sense) of
a function that is analytic in Ω−. If z ∈ Ω+, the we can deform the integral
in

C(C−f)(z) =
1

2πi

∫
Γ

C−f(y)

y − z
dy,

into a union of closed simple contours Γ−, with each contour in a connected
component of Ω− and write

C(C−f)(z) =
1

2πi

∫
Γ−

Cf(y)

y − z
dy.

By analyticity of Cf in Ω−, the integral vanishes. 1

One can prove that for any f ∈ L2(Γ) the non-tangential point wise limit
C±f(z) exist almost everywhere. If we assume some regularity we have a
stronger statement.

Proposition 2.3.2. Suppose that f ∈ C1 and f, f ′ ∈ L2(Γ). Then for all
z ∈ Γ \ Γp the pointwise limits C±f(z) exist and f(z) = C+f(z) − C−f(z).
Moreover, Cf(z) → 0 as z → ∞ uniformly in Ω̄ for any unbounded compo-
nent Ω of C \ Γ.

Exercise 2.3.3. Consider the unit circle Γ = {|z| = 1} and equip it with
anti-clockwise orientation, so that Ω+ = {|z| < 1} and Ω− = {|z| > 1}.

Let f ∈ L2(Γ) and write f in a Fourier series f(z) =
∑∞

k=−∞ f̂kz
k. Show

that C+f =
∑∞

k=0 f̂kz
k and C−f = −

∑k=−1
−∞ f̂kz

k, to conclude that C± are
bounded, C+ − C− = I and C+C− = C−C+ = O.

2.4 Solving the RHP

Assume that J can be factorized

J = J−1
− J+,

where J± are invertible, bounded and satisfy the Assumption 2.2.2. Then
set

w± = ±(J± − I).

1Exercise: use a similar procedure to compute C−C−. Also note that our assumptions
on Γ in the beginning of this second lecture are crucial for this argument.
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and

w = w+ + w−.

Now we define the operator

Cwf = C+ (fw−) + C− (fw+) .

Since w± are bounded, the operator Cw is a bounded operator on L2(Γ).

Theorem 2.4.1. Suppose that I−Cw is invertible on L2(Γ). Let m ∈ L2(Γ)
be the solution to

(I − Cw)m = C+w− + C−w+.

Then

Y (z) = I + C ((I +m)w) (z)

solve the RHP 2.2.1.

Proof. (See also [3, Th. 7.103]. Here we only check the jump conditions.
By using w = w+ + w−, C+ − C− = I and the definition of m we find

Y+ = I + C+(mw) + C+w

= I + C+(mw+) + C+(mw−) + C+w+ + C+w−

= I + C−(mw+) + C+(mw−) + C−w+ + C+w− +mw+ + w+

= I + Cwm+ C−w+ + C+w +mw+

= I +m+mw+ + w+ = (I +m)(I + w+).

In the same way one can prove

Y− = (I +m)(I − w−).

Therefore

Y+ = Y−(I − w−)−1(1 + w+) = Y−J,

and hence the jump follows.

Remark 2.4.2. An important situation for which we know that 1 − Cw is
invertible, is when ‖Cw‖∞ < 1. In that case the inverse can be given by
a Neumann series. For this to happen, we need ‖w±‖∞ to be small. In
particular, we see that when the jump matrices are a small perturbation of
the identity then the Riemann-Hilbert problem can be solved by a Neumann
series. This is an important observation when we deal with asymptotics.
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Remark 2.4.3. The operator Cw depends on the factorization J = J−1
− J+.

For each different factorization we obtain a different operator for the RHP.
But we arrive a the same solution. (As it is unique). The freedom in the
choice of factorization turns out to be useful in certain cases.

Proposition 2.4.4. Consider J (∞) and a sequence J (n) for n ∈ N and

assume that w
(n)
± → w

(n)
± as n → ∞ both in L2 and L∞. Assume that

I−Cw(∞) is invertible. Then I−Cw(n) for sufficiently large n and Y (n)(z)→
Y (∞)(z) uniformly on compact subsets of C \ Γ.

Proof. The map (w+, w−) 7→ Cw is linear and ‖Cw‖ ≤ c(‖w+‖∞+ +‖w−‖∞)

for some c > 0. But then by assumption that w
(n)
→ → w(∞) in L∞ we have

(I − Cw(n))−1 =
∞∑
j=0

(I − Cw(∞))−j(Cw(n)−w(∞))j(I − Cw(∞))−1,

and the series converges for large enough n.

Moreover, by the assumption that w
(n)
→ → w(∞) both in L∞ and L2

m(n) = (I−Cw(n))−1
(
C+w

(n)
− + C−w

(n)
+

)
→ (I−Cw(∞))−1

(
C+w

(∞)
− + C−w

(∞)
+

)
= m(∞),

as n→∞. Finally, for the same reasons,

Y (n)(z) = I + C
(

(I +m(n))w(n)
)

(z)

→ I + C
(

(I +m(∞))w(∞)
)

(z) = Y (∞)(z), (2.4.1)

as n → ∞. Moreover, the converge is uniform for z in compact subset of
C \ Γ.
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