
Lecture 10

Deift/Zhou steepest descent,
Part II

We continue the analysis from the last lecture.

10.1 Construction of the global parametrix

By taking the pointwise limit of the jump matrices for S as n → ∞, we
obtain the following Riemann-Hilbert problem

RH problem 10.1.1. We seek for a function P∞ : C\ [−a, a] → C2×2 such
that

• P∞ is analytic in C \ [−a, a].

• P∞,+(x) = P∞,−(x)

(
0 1
−1 0

)
, for x ∈ [−a, a].

• P∞(z) = I + o(1) as z → ∞.

Lemma 10.1.2. The RHP 10.1.1 admits the following solution

P∞(z) =
1

2

(
1 −1
−i −i

)
(
z+a
z−a

)1/4
0

0
(
z−a
z+a

)1/4
( 1 i

−1 i

)
(10.1.1)

for z ∈ C\ [−a, a]. Here the quartic roots are taking such that z 7→
(
z+a
z−a

)1/4
and z 7→

(
z−a
z+a

)1/4
are analytic in C \ [−a, a] and positive on (a,∞).
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Proof. The proof follows by direct verification, but we will give a more
constructive argument. We note that the jump matrix in the RHP can be
diagonalized as follows(

0 1
−1 0

)
=

1

2

(
1 −1
−i −i

)(
−i 0
0 i

)(
1 i
−1 i

)
.

Hence, by defining

D(z) =
1

2

(
1 i
−1 i

)
P∞(z)

(
1 −1
−i −i

)
,

then D has the propertiesD+ = D−

(
−i 0

0 i

)
, on (−a, a)

D(z) = I + o(1), z → ∞.

This problem is easily seen to have a diagonal solution D = diag(d1, d2),
where {

d1,+ = −id1,−, on (−a, a)

d1(z) = 1 + o(1), z → ∞.

and {
d2,+ = id2,−, on (−a, a)

d2(z) = 1 + o(1), z → ∞.

Now note that if we define t : z 7→ z1/4 such that t is analytic in C \ (∞, 0]
and positive on (0,∞) then t+ = it−. Hence we can solve the scalar RHP’s
for d1 and d2 by

d1 =

(
z + a

z − a

)1/4

, d2 =

(
z − a

z + a

)1/4

.

By expressing P∞ in terms of D we obtain the solution in the lemma.

10.2 A first try

As n → ∞ we expect that S is close to P∞. The reason for this is the
following. If we consider R̃ = SP−1

∞ then R satisfies the RHP

RH problem 10.2.1. We seek for a function R̃ : C \ΣR̃ → C2×2 such that
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• R is analytic in C \ [−a, a].

• R̃+(x) = R̃−JR̃(x), for x ∈ JR̃ = JS \ [−a, a]

• R̃(z) = I + o(1) as z → ∞.

and JR̃ = P∞JSP
−1
∞ for JR̃. Since JS converges I exponentially fast

pointwise to at JR̃ we have
JR̃ → I,

as n → ∞ pointwise at every point of JR̃. Hence we would naively expect

that R̃ → I as n → ∞.
However, pointwise convergence is not sufficient for this conclusion! We

need uniform convergence. But we do no have uniform convergence near the
points z = ±a. Indeed, ϕ(a) = 0 and therefore e±nϕ(a) = 1. As we will see,
this is not just a technical issue. The function P∞ in (10.1.1) is not a good
approximation near ±a, but only a good approximation away from these
points. Hence we will find an alternative approximation near ±, called local
parametrices, and this is what we will do next.

10.3 Construction of the local parametrices

Let U± be a small neighborhoods around z = ±a. By symmetry, we will
take U−a = −Ua. Then we want the to construct solutions P± such that

1. P±a has the exactly the same jump conditions as S in U±a

2. P±a satisfies the matching condition on the boundary

P±a(z) = P∞(z)(I +O(1/n)), as n → ∞

uniformly for z ∈ ∂U±.

We will construct such solutions.
Note that locally we have

ϕ(z) = c(z − a)3/2(1 +O(z − a)), z → a,

for some positive constant c > 0. We start by posing a model RHP, contain-
ing all the essential local information of P±a.

RH problem 10.3.1. We seek for a function Φ : C \ΣΦ → C2×2 such that

• Φ is analytic in C \ ΣΦ.
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(
0 1
−1 0

)
(

1 0

e
4
3
ζ3/2 1

)

(
1 0

e
4
3
ζ3/2 1

)

(
1 e−

4
3
z3/2

0 1

)

Figure 10.1: Jump contours and matrix for Φ

• Φ+(ζ) = Φ−(ζ)JΦ for ζ ∈ Σζ .

• Φ(ζ) = 1
2

(
1 −1
−i −i

)(
ζ−1/4 0

0 ζ1/4

)(
1 i
−1 i

)(
I +O(ζ−3/2)

)
as ζ →

∞.

• Φ bounded near the origin.

We will construct an explicit solution to this RHP. To this end, we will
derive an ODE for Φ as we have done before.

First, we are going to transfer this into a constant jump RHP by define

Ψ(ζ) =
1

2
√
π

(
1 i
−1 i

)
Φ(ζ)

(
e−

2
3
ζ3/2 0

0 e
2
3
ζ3/2

)
.

RH problem 10.3.2. We seek for a function Ψ : C \ΣΨ → C2×2 such that

• Ψ is analytic in C \ ΣΨ(ζ).

• Ψ+(ζ) = Ψ−(ζ)JΨ for ζ ∈ ΣΨ.

• Ψ(ζ) = 1
2
√
π

(
ζ−1/4 0

0 ζ1/4

)(
1 i
−1 i

)(
I +O(ζ−3/2)

)(e− 2
3
ζ3/2 0

0 e
2
3
ζ3/2

)
as ζ → ∞.

• Ψ bounded near the origin.
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(
0 1
−1 0

)
(
1 0
1 1

)

(
1 0
1 1

)

(
1 1
0 1

)

Figure 10.2: Jump contours and matrix for Ψ

Then, we employ our usual strategy for finding an ODE for Ψ and, after
some computation (exercise!), this gives

dΨ

dζ
=

(
0 1
ζ 0

)
Ψ(ζ).

But that means that entries of Ψ satisfy{
Ψ′

1j(ζ) = Ψ2j(ζ),

Ψ′
2j(ζ) = ζΨ1j(ζ).

Hence, in particular we have,

Ψ′′
1j(ζ) = ζΨ1jζ).

which means that the entries in the first row of Ψ are solution to the Airy
equation! Hence, we are searching for a solution of the model RHP problem
in terms of Airy functions.

Let us now define ω = e2πi3 and

yj(x) = ωj Ai(ωjx), , j = 0, 1, 2.

Then each y0, y1 and y2 are solutions to the Airy equation. They satisfy the
relation

y0 + y1 + y2 = 0.
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(
y0 −y2
y′0 −y′2

)

(
y0 y1
y′0 y′1

)(
−y2 y1
−y′2 y′1

)

(
−y1 −y2
−y′1 −y′2

)

Figure 10.3: Solution for Ψ

Moreover, classical analysis on the Airy function gives

y0(ζ) =
1

2
√
π
ζ−1/4

(
1 +O(ζ−3/2)

)
e−

2
3
ζ3/2 ,

as ζ → ∞. Moreover, for any ε > 0 the order is uniform or −π+ε < arg ζ <
π − ε.

Then it follows after some computation (exercise) that if we choose Ψ
according to Figure 10.3 then Ψ solve the RHP 10.3.2. Hence,

Φ(ζ) =

√
π

2

(
1 −1
−i −i

)
Ψ(ζ)

(
e

2
3
ζ3/2 0

0 e−
2
3
ζ3/2

)
,

solves the model RHP 10.3.1.
In the next step we are going map this model RHP onto neighborhoods

U±a and construct our local solution P±a. We will start with z = +a.
We use the conformal map

β(z) = (
3

4
ϕ(z))3/2.

Here the fractional power is taken such that β(z) = c(z − a)(1 +O(z − a)))
as z → ±a. Strictly speaking, β is only defined with a cut at the left of
a but it can be continued to be an analytic function in a sufficiently small
neighborhood of a. In fact, this neighborhood can be take sufficiently small
so that β is conformal. We then choose

Pa(z) = En(z)Φ(n
2/3β(z)),

Here En is an analytic function that we specify in a moment. By choosing
the lips of the lens so that they match with the jump contour of Φ (check
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that this can done!) and the fact that En (and hence has no effect on the
jump structure), we find that Pa o indeed solves the RHP inside Ua. We use
the freedom in En to ensure that we have the matching condition.

We define

En(z) =
1

2
P∞(z)

(
1 −1
−i −i

)(
n1/6β(z)1/4 0

0 n−1/6β(z)−1/4

)(
1 i
−1 i

)
Then we claim that En is (or better, extends) to an analytic functions in Ua.
It is important to note that the fractional powers cancel against each other
and there is no branching around a (check!). By invoking the asymptotic
behavior of Φ from the RHP 10.3.1 we see that

Pa(z) = En(z)Φ(n
2/3β(z)) = P∞(z)(I +O(1/n),

uniformly for ∈ ∂Ua which is the matching condition.

This finishes the contruction of Pa. The construction of P−a goes similar.
BUt we can also exploit the symmetry and define (check!)

P−a(z) =

(
1 0
0 −1

)
Pa(−z)

(
1 0
0 −1

)
.

10.4 Final transformation S 7→ R

We now define

R(z) =


S(z)P∞(z)−1, z ∈ C \ (Ua ∪ U−a ∪ ΣS)

S(z)Pa(z)
−1, z ∈ Ua \ ΣS

S(z)P−a(z)
−1, z ∈ U−a \ ΣS .

Then R satisfies the following RHP

RH problem 10.4.1. We seek for a function R : C \ [−a, a] → C2×2 such
that

• R is analytic in C \ [−a, a].

• R+(x) = R−JR(x), for x ∈ JR

• (z) = I + o(1) as z → ∞.
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P∞(I +O(1/n))P∞(z)−1 P∞(I +O(1/n))P∞(z)−1

P∞

(
1 0
enϕ 1

)
P−1
∞

P∞

(
1 0
enϕ 1

)
P−1
∞

P∞

(
1 e−nϕ

0 1

)
P−1
∞P∞

(
1 e−nϕ

0 1

)
P−1
∞

Figure 10.4: Jumps for R

The jump contour ΣR and the jumps JR are indicated in Figure 10.4.
Now we have

∥JR − I∥∞,2 = O(1/n),

as n → ∞. That means that we have

R(z) = I +O(1/n),

as n → ∞, uniformly for z in compact subsets of C \ ΣR.
Note that this is only one conclusion for R, In fact, we have a series

expansiion for R as discussed in lectures 2 and 3.

10.5 Conclusions

We now follow the transformation Y 7→ T 7→ S 7→ R and obtain the asymp-
totic behavior for the orthogonal polynomials and their features. At this
point, these just boil down to simple computations. We will present a full
presentation of the various asymptotic results we can obtain, but leave this
as a very usefull exercise to the reader and encourage to do all the exercises
below.

For example, for the polynomial ϕn,n(z), with z ∈ C \ R,

πn,n(z) = Y11(z) = T11(z)e
ng(z)



10.5. CONCLUSIONS 9

The unfolding of the next transformation T 7→ S depends on the location
in the plane we are looking. Suppose that z is away from the lens. In fact,
we still have some freedom inour choice of the lips of the lenses, hence the
followin argument works for z in compact subset of C \ R (check!).

πn,n(z) = S11(z)e
ng(z)

= (RP∞)11e
ng(z)

= (P∞)11e
ng(z)(1 +O(1/n))

=
1

2

((
z − a

z + a

)1/4

+

(
z + a

z − a

)1/4
)
eng(z)(1 +O(1/n))

as n → ∞, uniformly for z in compact subsets C \R. Note that this proves
Theorem 1.1.1 from last lecture (check!).

A similar analysis proves the following

Lemma 10.5.1. limn→∞ an,n = a2/4

Proof. Exercise.

Exercise 10.5.2. Compute the asymptotic behavior of

• πn(x) for x in compact subset of [−a, a].

• πn(x) for x near ±a

• Kn(x, x) for x ∈ R

• Kn(x0 + x/n, x0 + y/n) for x0 ∈ (−a, a) and x, y in compact subsets
of R.
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