Lecture 10

Deift/Zhou steepest descent, Part II

We continue the analysis from the last lecture.

10.1 Construction of the global parametrix

By taking the pointwise limit of the jump matrices for S as $n \rightarrow \infty$, we obtain the following Riemann-Hilbert problem

RH problem 10.1.1. We seek for a function $P_{\infty}: \mathbb{C} \backslash[-a, a] \rightarrow \mathbb{C}^{2 \times 2}$ such that

- P_{∞} is analytic in $\mathbb{C} \backslash[-a, a]$.
- $P_{\infty,+}(x)=P_{\infty,-}(x)\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, for $x \in[-a, a]$.
- $P_{\infty}(z)=I+o(1)$ as $z \rightarrow \infty$.

Lemma 10.1.2. The RHP [1.1.] admits the following solution

$$
P_{\infty}(z)=\frac{1}{2}\left(\begin{array}{cc}
1 & -1 \tag{10.1.1}\\
-\mathrm{i} & -\mathrm{i}
\end{array}\right)\left(\begin{array}{cc}
\left(\frac{z+a}{z-a}\right)^{1 / 4} & 0 \\
0 & \left(\frac{z-a}{z+a}\right)^{1 / 4}
\end{array}\right)\left(\begin{array}{cc}
1 & \mathrm{i} \\
-1 & \mathrm{i}
\end{array}\right)
$$

for $z \in \mathbb{C} \backslash[-a, a]$. Here the quartic roots are taking such that $z \mapsto\left(\frac{z+a}{z-a}\right)^{1 / 4}$ and $z \mapsto\left(\frac{z-a}{z+a}\right)^{1 / 4}$ are analytic in $\mathbb{C} \backslash[-a, a]$ and positive on (a, ∞).

Proof. The proof follows by direct verification, but we will give a more constructive argument. We note that the jump matrix in the RHP can be diagonalized as follows

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
-\mathrm{i} & -\mathrm{i}
\end{array}\right)\left(\begin{array}{cc}
-\mathrm{i} & 0 \\
0 & \mathrm{i}
\end{array}\right)\left(\begin{array}{cc}
1 & \mathrm{i} \\
-1 & \mathrm{i}
\end{array}\right) .
$$

Hence, by defining

$$
D(z)=\frac{1}{2}\left(\begin{array}{cc}
1 & \mathrm{i} \\
-1 & \mathrm{i}
\end{array}\right) P_{\infty}(z)\left(\begin{array}{cc}
1 & -1 \\
-\mathrm{i} & -\mathrm{i}
\end{array}\right),
$$

then D has the properties

$$
\begin{cases}D_{+}=D_{-}\left(\begin{array}{cc}
-\mathrm{i} & 0 \\
0 & \mathrm{i}
\end{array}\right), & \text { on }(-a, a) \\
D(z)=I+o(1), & z \rightarrow \infty\end{cases}
$$

This problem is easily seen to have a diagonal solution $D=\operatorname{diag}\left(d_{1}, d_{2}\right)$, where

$$
\left\{\begin{array}{l}
d_{1,+}=-\mathrm{i} d_{1,-}, \\
d_{1}(z)=1+o(1), \quad \text { on }(-a, a) \\
z \rightarrow \infty
\end{array}\right.
$$

and

$$
\begin{cases}d_{2,+}=\mathrm{i} d_{2,-}, & \text { on }(-a, a) \\ d_{2}(z)=1+o(1), & z \rightarrow \infty\end{cases}
$$

Now note that if we define $t: z \mapsto z^{1 / 4}$ such that t is analytic in $\mathbb{C} \backslash(\infty, 0]$ and positive on $(0, \infty)$ then $t_{+}=\mathrm{i} t_{-}$. Hence we can solve the scalar RHP's for d_{1} and d_{2} by

$$
d_{1}=\left(\frac{z+a}{z-a}\right)^{1 / 4}, \quad d_{2}=\left(\frac{z-a}{z+a}\right)^{1 / 4} .
$$

By expressing P_{∞} in terms of D we obtain the solution in the lemma.

10.2 A first try

As $n \rightarrow \infty$ we expect that S is close to P_{∞}. The reason for this is the following. If we consider $\tilde{R}=S P_{\infty}^{-1}$ then R satisfies the RHP

RH problem 10.2.1. We seek for a function $\tilde{R}: \mathbb{C} \backslash \Sigma_{\tilde{R}} \rightarrow \mathbb{C}^{2 \times 2}$ such that

- R is analytic in $\mathbb{C} \backslash[-a, a]$.
- $\tilde{R}_{+}(x)=\tilde{R}_{-} J_{\tilde{R}}(x)$, for $x \in J_{\tilde{R}}=J_{S} \backslash[-a, a]$
- $\tilde{R}(z)=I+o(1)$ as $z \rightarrow \infty$.
and $J_{\tilde{R}}=P_{\infty} J_{S} P_{\infty}^{-1}$ for $J_{\tilde{R}}$. Since J_{S} converges I exponentially fast pointwise to at $J_{\tilde{R}}$ we have

$$
J_{\tilde{R}} \rightarrow I,
$$

as $n \rightarrow \infty$ pointwise at every point of $J_{\tilde{R}}$. Hence we would naively expect that $\tilde{R} \rightarrow I$ as $n \rightarrow \infty$.

However, pointwise convergence is not sufficient for this conclusion! We need uniform convergence. But we do no have uniform convergence near the points $z= \pm a$. Indeed, $\phi(a)=0$ and therefore $\mathrm{e}^{ \pm n \phi(a)}=1$. As we will see, this is not just a technical issue. The function P_{∞} in (10.1.0) is not a good approximation near $\pm a$, but only a good approximation away from these points. Hence we will find an alternative approximation near \pm, called local parametrices, and this is what we will do next.

10.3 Construction of the local parametrices

Let $U_{ \pm}$be a small neighborhoods around $z= \pm a$. By symmetry, we will take $U_{-a}=-U_{a}$. Then we want the to construct solutions $P_{ \pm}$such that

1. $P_{ \pm a}$ has the exactly the same jump conditions as S in $U_{ \pm a}$
2. $P_{ \pm a}$ satisfies the matching condition on the boundary

$$
P_{ \pm a}(z)=P_{\infty}(z)(I+\mathcal{O}(1 / n)), \text { as } n \rightarrow \infty
$$

uniformly for $z \in \partial U_{ \pm}$.
We will construct such solutions.
Note that locally we have

$$
\phi(z)=c(z-a)^{3 / 2}(1+\mathcal{O}(z-a)), \quad z \rightarrow a,
$$

for some positive constant $c>0$. We start by posing a model RHP, containing all the essential local information of $P_{ \pm a}$.

RH problem 10.3.1. We seek for a function $\Phi: \mathbb{C} \backslash \Sigma_{\Phi} \rightarrow \mathbb{C}^{2 \times 2}$ such that

- Φ is analytic in $\mathbb{C} \backslash \Sigma_{\Phi}$.

Figure 10.1: Jump contours and matrix for Φ

- $\Phi_{+}(\zeta)=\Phi_{-}(\zeta) J_{\Phi}$ for $\zeta \in \Sigma_{\zeta}$.
- $\Phi(\zeta)=\frac{1}{2}\left(\begin{array}{cc}1 & -1 \\ -\mathrm{i} & -\mathrm{i}\end{array}\right)\left(\begin{array}{cc}\zeta^{-1 / 4} & 0 \\ 0 & \zeta^{1 / 4}\end{array}\right)\left(\begin{array}{cc}1 & \mathrm{i} \\ -1 & \mathrm{i}\end{array}\right)\left(I+\mathcal{O}\left(\zeta^{-3 / 2}\right)\right)$ as $\zeta \rightarrow$ ∞.
- Φ bounded near the origin.

We will construct an explicit solution to this RHP. To this end, we will derive an ODE for Φ as we have done before.

First, we are going to transfer this into a constant jump RHP by define

$$
\Psi(\zeta)=\frac{1}{2 \sqrt{\pi}}\left(\begin{array}{cc}
1 & \mathrm{i} \\
-1 & \mathrm{i}
\end{array}\right) \Phi(\zeta)\left(\begin{array}{cc}
\mathrm{e}^{-\frac{2}{3} \zeta^{3 / 2}} & 0 \\
0 & \mathrm{e}^{\frac{2}{3} \zeta^{3 / 2}}
\end{array}\right) .
$$

RH problem 10.3.2. We seek for a function $\Psi: \mathbb{C} \backslash \Sigma_{\Psi} \rightarrow \mathbb{C}^{2 \times 2}$ such that

- Ψ is analytic in $\mathbb{C} \backslash \Sigma_{\Psi}(\zeta)$.
- $\Psi_{+}(\zeta)=\Psi_{-}(\zeta) J_{\Psi}$ for $\zeta \in \Sigma_{\Psi}$.
- $\Psi(\zeta)=\frac{1}{2 \sqrt{\pi}}\left(\begin{array}{cc}\zeta^{-1 / 4} & 0 \\ 0 & \zeta^{1 / 4}\end{array}\right)\left(\begin{array}{cc}1 & \mathrm{i} \\ -1 & \mathrm{i}\end{array}\right)\left(I+\mathcal{O}\left(\zeta^{-3 / 2}\right)\right)\left(\begin{array}{cc}\mathrm{e}^{-\frac{2}{3} \zeta^{3 / 2}} & 0 \\ 0 & \mathrm{e}^{\frac{2}{3} \zeta^{3 / 2}}\end{array}\right)$ as $\zeta \rightarrow \infty$.
- Ψ bounded near the origin.

Figure 10.2: Jump contours and matrix for Ψ

Then, we employ our usual strategy for finding an ODE for Ψ and, after some computation (exercise!), this gives

$$
\frac{\mathrm{d} \Psi}{\mathrm{~d} \zeta}=\left(\begin{array}{ll}
0 & 1 \\
\zeta & 0
\end{array}\right) \Psi(\zeta)
$$

But that means that entries of Ψ satisfy

$$
\left\{\begin{array}{l}
\Psi_{1 j}^{\prime}(\zeta)=\Psi_{2 j}(\zeta) \\
\Psi_{2 j}^{\prime}(\zeta)=\zeta \Psi_{1 j}(\zeta)
\end{array}\right.
$$

Hence, in particular we have,

$$
\left.\Psi_{1 j}^{\prime \prime}(\zeta)=\zeta \Psi_{1 j} \zeta\right) .
$$

which means that the entries in the first row of Ψ are solution to the Airy equation! Hence, we are searching for a solution of the model RHP problem in terms of Airy functions.

Let us now define $\omega=\mathrm{e}^{2 \pi \mathrm{i} 3}$ and

$$
y_{j}(x)=\omega^{j} \operatorname{Ai}\left(\omega_{j} x\right), \quad, j=0,1,2 .
$$

Then each y_{0}, y_{1} and y_{2} are solutions to the Airy equation. They satisfy the relation

$$
y_{0}+y_{1}+y_{2}=0 .
$$

Figure 10.3: Solution for Ψ

Moreover, classical analysis on the Airy function gives

$$
y_{0}(\zeta)=\frac{1}{2 \sqrt{\pi}} \zeta^{-1 / 4}\left(1+\mathcal{O}\left(\zeta^{-3 / 2}\right)\right) \mathrm{e}^{-\frac{2}{3} \zeta^{3 / 2}}
$$

as $\zeta \rightarrow \infty$. Moreover, for any $\varepsilon>0$ the order is uniform or $-\pi+\varepsilon<\arg \zeta<$ $\pi-\varepsilon$.

Then it follows after some computation (exercise) that if we choose Ψ according to Figure $[0.3$ then Ψ solve the RHP [0.3.2. Hence,

$$
\Phi(\zeta)=\frac{\sqrt{\pi}}{2}\left(\begin{array}{cc}
1 & -1 \\
-\mathrm{i} & -\mathrm{i}
\end{array}\right) \Psi(\zeta)\left(\begin{array}{cc}
\mathrm{e}^{\frac{2}{3} \zeta^{3 / 2}} & 0 \\
0 & \mathrm{e}^{-\frac{2}{3} \zeta^{3 / 2}}
\end{array}\right)
$$

solves the model RHP
In the next step we are going map this model RHP onto neighborhoods $U_{ \pm a}$ and construct our local solution $P_{ \pm a}$. We will start with $z=+a$.

We use the conformal map

$$
\beta(z)=\left(\frac{3}{4} \phi(z)\right)^{3 / 2} .
$$

Here the fractional power is taken such that $\beta(z)=c(z-a)(1+\mathcal{O}(z-a)))$ as $z \rightarrow \pm a$. Strictly speaking, β is only defined with a cut at the left of a but it can be continued to be an analytic function in a sufficiently small neighborhood of a. In fact, this neighborhood can be take sufficiently small so that β is conformal. We then choose

$$
P_{a}(z)=E_{n}(z) \Phi\left(n^{2 / 3} \beta(z)\right),
$$

Here E_{n} is an analytic function that we specify in a moment. By choosing the lips of the lens so that they match with the jump contour of Φ (check
that this can done!) and the fact that E_{n} (and hence has no effect on the jump structure), we find that P_{a} o indeed solves the RHP inside U_{a}. We use the freedom in E_{n} to ensure that we have the matching condition.

We define

$$
E_{n}(z)=\frac{1}{2} P_{\infty}(z)\left(\begin{array}{cc}
1 & -1 \\
-\mathrm{i} & -\mathrm{i}
\end{array}\right)\left(\begin{array}{cc}
n^{1 / 6} \beta(z)^{1 / 4} & 0 \\
0 & n^{-1 / 6} \beta(z)^{-1 / 4}
\end{array}\right)\left(\begin{array}{cc}
1 & \mathrm{i} \\
-1 & \mathrm{i}
\end{array}\right)
$$

Then we claim that E_{n} is (or better, extends) to an analytic functions in U_{a}. It is important to note that the fractional powers cancel against each other and there is no branching around a (check!). By invoking the asymptotic behavior of Φ from the RHP 10.3 .] we see that

$$
P_{a}(z)=E_{n}(z) \Phi\left(n^{2 / 3} \beta(z)\right)=P_{\infty}(z)(I+\mathcal{O}(1 / n),
$$

uniformly for $\in \partial U_{a}$ which is the matching condition.
This finishes the contruction of P_{a}. The construction of P_{-a} goes similar. BUt we can also exploit the symmetry and define (check!)

$$
P_{-a}(z)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) P_{a}(-z)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

10.4 Final transformation $S \mapsto R$

We now define

$$
R(z)= \begin{cases}S(z) P_{\infty}(z)^{-1}, & z \in \mathbb{C} \backslash\left(U_{a} \cup U_{-a} \cup \Sigma_{S}\right) \\ S(z) P_{a}(z)^{-1}, & z \in U_{a} \backslash \Sigma_{S} \\ S(z) P_{-a}(z)^{-1}, & z \in U_{-a} \backslash \Sigma_{S} .\end{cases}
$$

Then R satisfies the following RHP
RH problem 10.4.1. We seek for a function $R: \mathbb{C} \backslash[-a, a] \rightarrow \mathbb{C}^{2 \times 2}$ such that

- R is analytic in $\mathbb{C} \backslash[-a, a]$.
- $R_{+}(x)=R_{-} J_{R}(x)$, for $x \in J_{R}$
- $(z)=I+o(1)$ as $z \rightarrow \infty$.

Figure 10.4: Jumps for R
The jump contour Σ_{R} and the jumps J_{R} are indicated in Figure [0.4. Now we have

$$
\left\|J_{R}-I\right\|_{\infty, 2}=\mathcal{O}(1 / n)
$$

as $n \rightarrow \infty$. That means that we have

$$
R(z)=I+\mathcal{O}(1 / n)
$$

as $n \rightarrow \infty$, uniformly for z in compact subsets of $\mathbb{C} \backslash \Sigma_{R}$.
Note that this is only one conclusion for R, In fact, we have a series expansiion for R as discussed in lectures 2 and 3 .

10.5 Conclusions

We now follow the transformation $Y \mapsto T \mapsto S \mapsto R$ and obtain the asymptotic behavior for the orthogonal polynomials and their features. At this point, these just boil down to simple computations. We will present a full presentation of the various asymptotic results we can obtain, but leave this as a very usefull exercise to the reader and encourage to do all the exercises below.

For example, for the polynomial $\phi_{n, n}(z)$, with $z \in \mathbb{C} \backslash \mathbb{R}$,

$$
\pi_{n, n}(z)=Y_{11}(z)=T_{11}(z) \mathrm{e}^{n g(z)}
$$

The unfolding of the next transformation $T \mapsto S$ depends on the location in the plane we are looking. Suppose that z is away from the lens. In fact, we still have some freedom inour choice of the lips of the lenses, hence the followin argument works for z in compact subset of $\mathbb{C} \backslash \mathbb{R}$ (check!).

$$
\begin{aligned}
\pi_{n, n}(z) & =S_{11}(z) \mathrm{e}^{n g(z)} \\
& =\left(R P_{\infty}\right)_{11} \mathrm{e}^{n g(z)} \\
& =\left(P_{\infty}\right)_{11} \mathrm{e}^{n g(z)}(1+\mathcal{O}(1 / n)) \\
& =\frac{1}{2}\left(\left(\frac{z-a}{z+a}\right)^{1 / 4}+\left(\frac{z+a}{z-a}\right)^{1 / 4}\right) \mathrm{e}^{n g(z)}(1+\mathcal{O}(1 / n))
\end{aligned}
$$

as $n \rightarrow \infty$, uniformly for z in compact subsets $\mathbb{C} \backslash \mathbb{R}$. Note that this proves Theorem [...】 from last lecture (check!).

A similar analysis proves the following
Lemma 10.5.1. $\lim _{n \rightarrow \infty} a_{n, n}=a^{2} / 4$
Proof. Exercise.
Exercise 10.5.2. Compute the asymptotic behavior of

- $\pi_{n}(x)$ for x in compact subset of $[-a, a]$.
- $\pi_{n}(x)$ for x near $\pm a$
- $K_{n}(x, x)$ for $x \in \mathbb{R}$
- $K_{n}\left(x_{0}+x / n, x_{0}+y / n\right)$ for $x_{0} \in(-a, a)$ and x, y in compact subsets of \mathbb{R}.

Bibliography

[1] M.J. Ablowitz and A.S. Fokas, Complex variables: introduction and applications. Second edition. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2003.
[2] K. F. Clancey and I. Gohberg, Factorization of matrix functions and singular integral operators. Operator Theory: Advances and Applications, 3. Birkhuser Verlag, Basel-Boston, Mass., 1981
[3] P.A. Deift,Orthogonal polynomials and random matrices: a RiemannHilbert approach. Courant Lecture Notes in Mathematics, 3. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999. viii+273 pp.
[4] A.S. Fokas, A. Its, A.A. Kapaev and V.Y. Novokshenov, Painlev Transcendents. The Riemann-Hilbert approach. Mathematical Surveys and Monographs, 128. American Mathematical Society, Providence, RI, 2006. xii +553 pp .
[5] I. Gohberg and N. Krupnik, One-dimensional linear singular integral equations. I. Introduction. Operator Theory: Advances and Applications, 53. Birkhuser Verlag, Basel, 1992.

