
Lecture 1

Introduction

We start these lecture notes with an informal discussion on Riemann-Hilbert
problems.

1.1 What is a Riemann-Hilbert problem?

Roughly speaking a Riemann-Hilbert problem is the following. Suppose we
have a (matrix-valued) function in the complex plane that is analytic except
at a some given contour. When passing this contour the function makes a
jump. Suppose that we know the contour and the jump explicitly. To what
extend can we reconstruct the function from these data?

Let us consider a finite union of analytic arcs Γ ⊂ C . The arcs may
have endpoints and they might intersect The collection of endpoints and
points of intersection will be denoted by Γp. For simplicity, we will assume
that such intersection is always transversal. We then equip each arc with
an orientation. When traveling along the contour in positive directions we
call the right-hand side the −-side and the left-hand side the +-side. Note
that this assignment is local and that the +-side for one arc, may be the
minus-side of another arc. Examples of contours are the real line Γ = R,
the unit circle Γ = T or the combination Γ = R ∪ T. See also Figure 1.1.

With these assumptions we define for a function Y on C \ Γ its limiting
values by

Y±(z) = lim
z′→z

z′ at ±-side

Y (z′),

for z ∈ Γ, provided that the limit exists. The following is a standard form
of a Riemann-Hilbert problem that we will discuss in this course.
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Figure 1.1: An example of a configuration of jump contours.

RH problem 1.1.1. Let k ∈ N, Γ ⊂ C be a contour and J : Γ → Ck×k.
Find a function Y : C→ Ck×k with the following properties

1. Y is analytic in C \ Γ

2. Y+(z) = Y−(z)J(z) for z ∈ Γ \ Γp

3. Y (z) = 1 + o(1) as z →∞.

Note that part of the Riemann-Hilbert problem is that the limiting values
Y± exist. For now we will always assume that J is sufficiently smooth. It
is perfectly fine that in the first reading the reader assumes J is an entire
function. Later we will also assume that J is in L2(Γ) and the jump condition
has to be understood to hold in L2 sense. We will discuss a precise definition
later.

1.1.1 Existence and uniqueness

At this point the reader may wonder about the existence and uniqueness for
such a problem. In this course, we will mostly start with a Riemann-Hilbert
problem for which the uniques solution can be characterized explicitly and
this is not an important issue at the start. But, afterwards we will manipu-
late the Riemann-Hilbert problem so that it is easy to deduce the (asymp-
totic) behavior of the solution when changing the parameters involved. It is
important that we have a thorough understanding of what a correctly stated
Riemann-Hilbert problem should look like. We will briefly comment on this
here.

The existence of a solution is typically non-trivial. It is usually proved
by an explicit construction of the solution or by general principles, some of
which we will discuss later.
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The uniqueness of the solution is often much easier to show. If detJ = 1,
this is guaranteed by the condition at infinity and choosing appropriate
conditions near points of self-intersection of Γ.

Let us assume that Γp = ∅ for the moment. In that case we see that for
any solution Y we have

detY+(z) = det (Y−(z)J(z)) = detY−(z),

for z ∈ Γ and hence detY is an entire function satisfying detY (z) = 1+o(1)
as z → ∞. By Liouville’s Theorem we then deduce that detY (z) = 1. In
particular, Y −1 exists.

Now let Y1 and Y2 be two solutions to the RH problem and define Z =
Y1Y

−1
2 . Then Z is analytic in C \ Γ and

Z+(z) = Y1+(z)(Y −1
2 )+(z) = Y1−(z)J(z)(Y2+(z))−1

= Y1−(z)(Y −1
2 )−(z) = Z−(z), (1.1.1)

for z ∈ Γ. Hence, if Γp = ∅, we see that Z is an entire function and Z(z) =
I + o(1) as z → ∞. Again by Liouville’s Theorem we have Z(z) = I and
hence Y1 = Y2, establishing the uniqueness of the solution of the Riemann-
Hilbert problem.

In case Γp 6= ∅, we do no immediately know that detY is entire, but
only that detY is meromorphic with possible singularities at Γp. However,
by choosing appropriate conditions on the precise behavior of Y near these
points, the singularities for detY are removable and we do have that detY
is entire again. Similarly for Z.

1.1.2 The Cauchy integral

The RH problem is multliplicative. We will also frequently encounter additive
RH problems in this course, which can be solved in terms of the Cauchy
operator that maps a function f on the contour Γ to a function on C \Γ by

Cf(z) =
1

2πi

∫
Γ

f(y)

z − y
dy.

Then, under some smoothness conditions on f we have that g = Cf is a
solution to the following Riemann-Hilbert problem.

RH problem 1.1.2. Find g with the following properties

• g is analytic in C \ Γ.
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• g+(z) = g−(z) + f(z) for z ∈ Γ \ Γp.

• g(z) = o(1) as z ∈ ∞.

Again to ensure uniqueness we need to pose conditions near the points
Γp.

Exercise 1.1.3. Prove that if f is analytic at z ∈ Γ \ Γp we indeed have
(Cf)+(z)− (Cf)−(z) = f(z). What can you say about (Cf)+(z)+(Cf)−(z)?

Remark 1.1.4. One may hope to reduce a multiplicative RHP into an
additive one by the logarithmic map. Indeed, if Y solves the RHP 1.1.1,
then {

log Y+(z) = log Y−(z) + log J(z), z ∈ Γ

log Y (z) = o(1/z), z →∞

and hence

Y (z) = exp

(
1

2πi

∫
Γ

log J(w)

z − w
dw

)
, (1.1.2)

is a candidate for a solution to RHP 1.1.1. However, we need to explain
what we mean log J(w). And even if we do, the formula may not be correct.

For example, take J = R, k = 1 and assume that J is continuous on
R with J(x) → 1 as x → +∞ and J(x) 6= 0 for x ∈ R. Then it is clear
what we mean with log J(x) by using the branch of the logarithm such that
log J(x)→ 0 as x→ +∞. However, when we continue to −∞, we may end
up at a different branch if log J(x) → 2πiN as x → −∞ for an integer N
(the winding number). If N 6= 0, then the Cauchy integral diverges and the
right-hand side of (1.1.2) is ill-defined.

Exercise 1.1.5. Consider the following Riemann-Hilbert problem

RH problem 1.1.6. Find a function Y : C \ [−1, 1] → C2×2 with the
following properties

1. Y is analytic in C \ [−1, 1]

2. Y+(x) = Y−(x)

(
0 1
−1 0

)
for x ∈ (−1, 1)

3. Y (z) = I + o(1) as z →∞.

4. Y (z) = O((z ± 1)−1/4) as z → ±1.

Solve the following exercises:
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a) Show that the solution, if exists, is unique.

b) Find a RHP for the function

Z(z) =
1

2

(
1 i
1 −i

)
Y (z)

(
1 1
−i i

)
.

(The jump-matrix for Z should be diagonal).

c) Solve the RHP for Z (Hint: first take the logarithm formally and use
the Cauchy transform to find logZ. Justify your answer afterwards.)

d) Find the unique solution for Y

1.2 Why do we care about Riemann-Hilbert prob-
lems?

Many objects of interest in analysis or mathematical physics can be formu-
lated as a Riemann-Hilbert problem. In this course we will show that having
such a formulation can be good starting point for an asymptotic analysis of
the system. We will do this by considering three concrete examples:

• Toeplitz determinants.

• Painlevé II equation.

• Orthogonal polynomials.

Historically, these three examples have been an important motivation for
the development of Riemann-Hilbert methods in asymptotic analysis. It
should also be noted that all three examples have important applications to
Random Matrix Theory.

There is another important source of problems that can be studied using
Riemann-Hilbert problems that we will not study in these lectures: the
study of solutions to non-linear PDEs, such as the long time behavior of the
NLS or KdV equations.

1.2.1 From Airy to Painlevé II

We start by discussing the Painlevé II equation. The Painlevé equations are
non-linear second order differential equations, whose only moveable singular-
ities (moveable means that their location varies with the initial conditions)
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are poles. That means that the location of other type of singularities do
not depend on the precise solution. This definition was given by Painlevé
in an attempt to extend the realm of classical functions that are solutions
to linear second order differential equations, such as Hermite polynomials,
Bessel Functions, Airy functions, etcetera. Up to transformations, there are
only six such equations (apart from the linear equations). After an initial
spark of activity in this area around 1900, interest decreased in the years
afterwards. They were re-discovered in the mahtematical physics literature
where they appear naturally in several places. For instance, the Painlevé II
equation appears in the search of self-similarity solutions to the KdV equa-
tion. Their importance was quickly recognized and to this date, the study
of Painlevé euqation remains an important challenge. They are sometimes
referred to as the ”special functions of the 21th century”.

As mentioned, classical special functions are solutions to second order
linear differential equation and typically can be represented in terms of inte-
grals, which is very useful for asymptotic analysis. However, when we deal
with solutions to non-linear equations, we can no longer expect to have such
integral representations. In that case, one may try to formulate the solution
as a Riemann-Hilbert problem and start the asymptotic analysis from there.

Let us start with the following second order differential equation

y′′(x) = xy(x). (1.2.1)

This equation is called the Airy equation. It is the simplest equation for
which there is a turning point. With this we mean the following. If x large
bot postive, we expect the solution to grow or decay exponentially since
y′′/y is positive. On the other hand, for x large but negative, we have that
y′′/y is negative and we expect its solution to oscillate. Hence, solutions
behave very differently at ±∞.

First, note that it is easy to write the general solution to this equation
in integral form. To this end, let γj be contours connecting e(2j−1)πi/3∞
to e(2j+1)πi/3∞, for j = 0, 1, 2, and define the function yj by the complex
integrals

yj(x) =
1

2πi

∫
γj

e
1
3
t3−xtdt, j = 0, 1, 2. (1.2.2)

By integration by parts, it is easy to see that all yj are solutions to the Airy
equation. Of course, the three together should be linearly dependent and
indeed we have

y0 + y1 + y2 = 0.

Any two of the three are independent and span the solution space.
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Figure 1.2: A plot of the Airy function Ai(x). For negative x we see oscil-
lations and for x positive there is exponential decay.

The solution y0 is a special solution and is called the Airy function,
usually denoted by Ai. The Airy function has the following asymptotic
expansions

Ai(x) = y0(x) ∼


e−

2
3x

3/2

2
√
πx1/4

, x→ +∞
sin( 2

3
(−x)3/2+π/4)√
π(−x)1/4

, x→ −∞

A natural way to prove these expansions is to use steepest descent techniques
(also called stationary phase method) for the integral representation (1.2.2)
(see Chapter 6 of [1] for a discussion on this method).

Now let us modify the Airy equation and include a cubic term

y′′(x) = xy(x) + 2(y(x))3. (1.2.3)

This non-linear equation is known in the literature as the Painlevé II equa-
tion (with α = 0). There is no integral representation for the general solu-
tion for his equation and an asymptotic analysis is therefore non-standard.
Nevertheless, we would like to answer question such as the following

1. What can we say about the asymptotic behavior of a solution y(x) as
x→∞ and x→ −∞?

2. From the differential equation, one may conjecture that for every c ∈ C
there exists solution to the Painlevé II equation for which

y(x) ∼ cAi(x)

as x→ +∞. Is that indeed true?
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3. Solutions to the Painlevé II equation are in general not entire functions
and will have poles. What can we say about the locations of the poles?

4. If we view the Painlevé II equation as a a perturbed Airy equation
and introduce a parameter ε and consider y′′(x) = xy(x) + ε(y(x))3.
Can we find a family of solutions {yε}ε so that in the limit ε ↓ 0, the
converges to a solution to the Airy equation?

These are all natural questions that are very well suited for a Riemann-
Hilbert approach, as we will see in this course. Moreover, such type of
questions are not only interesting from a mathematical point of view, but
often have a strong motivation from various applications from physics.

1.2.2 From integral representation to Riemann-Hilbert prob-
lem

We now show that both solutions to the Airy equation and the Painlevé II
equation can be formulated in terms of a RHP.

We can write the general solution to the Airy equation as

y(x) =
s1

2πi

∫ eπi/3∞

0
e

1
3
z3−xzdz +

s2

2πi

∫ −∞
0

e
1
3
z3−xzdz

+
s3

2πi

∫ e−πi/3∞

0
e

1
3
z3−xzdz (1.2.4)

where we let s1, s2, s3 ∈ C satisfying

s1 + s2 + s3 = 0.

Because of this condition the function y solves the Airy equation, which can
be proved using the integration by parts.

We now characterize the solutions to the Airy equation in terms of RHP.
We use the notation

γ1 = eπi/3[0,∞), γ2 = eπi[0,∞), and γ3 = e−πi/3[0,∞).

RH problem 1.2.1. Let x ∈ C. We seek for a function Y (·) = Y (·;x) such
that

• Y is analytic in C \ R.

• Y+(z) = Y−(z)

(
1 sje

− 1
3
z3+xz

0 1

)
for z ∈ γj.
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Figure 1.3: The jump contours for RHP 1.2.1

• Y (z) = I + o(1) as z →∞.

• Y is bounded near 0.

with s1, s2, s3 ∈ C such that s1 + s2 + s3 = 0.

Proposition 1.2.2. The solution to the RHP 1.2.1 is unique and given by

Y (z) =

(
1 1

2πi

∑2
j=0 sj

∫
γj

e
1
3 t

3−zt

t−z dt

0 1

)
, (1.2.5)

for z ∈ C \ Γ. Moreover, if we write

Y (x) = Y (z;x) = I +
Y (1)(x)

z
+O(1/z2), z →∞.

Then −Y (1)
11 (x) is the solution to the Airy equation with parameters s0, s1

and s2.

Proof. Write

Y =

(
Y11 Y12

Y21 Y22

)
.

Then it follows from the jump condition that{
Y11,+(z) = Y11,−(z),

Y21,+(z) = Y21,−(z),

for z ∈ Γ. Since Y is bounded near the origin we see that Y11 and Y21 are
entire functions. By the asymptotic condition at infinity we then conclude
Y11 = 1 and Y21 = 0 which proves the first column.
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Figure 1.4: The jump contours for RHP 1.2.3

Let us come to the second column. From the jump condition we have

Y22,+(z) = Y22,−(z) + sjY21−(z)ez
3−tz,

for z ∈ γj . Since Y21 = 0 we also have that Y22 is entire and hence Y22 = 1.
For the remaining entry Y12 we find from the jump condition and using
Y11 = 1 that

Y12,+(z) = Y12,−(z) + sje
z3−tz

and Y12(z) = o(1) as z →∞. Since at the intersection point Y is bounded,
the unique solution to this additive RHP is given by the Cauchy transform

Y12(z) =

3∑
j=1

sj
2πi

∫
γj

et
3−xt)

t− z
dt,

as given in the statement. This proves (1.2.5).

That −Y (1)
11 solves the Airy equation with given parameters follows by

expanding 1/(t− z) for z near infinity.

It is clear from the proof that this result extends to other integral rep-
resentations. In other words, all classical special functions that admit an
integral representation can be characterized by a RHP of the above form.
Moreover, such RHP characterizations also exist for special functions that
fall outside this class, such as the Painlevé transcendents. As an exmaple we
now formulate a RHP for the Painlevé II equation (1.2.3), by introducing
extra jumps on the contours γ̃j = −γj in the RHP (1.2.1). See also Figure
1.4

RH problem 1.2.3. Let x ∈ C. We seek for a function Y (·) = Y (·;x) such
that
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• Y is analytic in C \ R.

• Y+(z) = Y−(z)

(
1 sje

− 1
3
z3+xz

0 1

)
for z ∈ γj.

• Y+(z) = Y−(z)

(
1

sje
1
3
z3−xz 1

)
for z ∈ γ̃j.

• Y (z) = I + o(1) as z →∞.

• Y is bounded near 0,

with s1, s2, s3 ∈ C such that s1 + s2 + s3 + s1s2s3 = 0.

Proposition 1.2.4. The solution to the RHP 1.2.3 is unique and depends
meromorphically on x. Moreover, if we write

Y (x) = Y (z;x) = I +
Y (1)(x)

z
+O(1/z2), z →∞.

Then −2Y
(1)

11 (x) is a solution to the Painlevé II equation.

A proof of this fact will be given in a later stage of the course. Here it
comes out of the blue, but we will see that there is a general mechanism that
given both RHP 1.2.1 and (1.2.3) as special cases of a more general RHP.

An important difference betwee RHP (1.2.1) and (1.2.3) is that in the
latter, we include jump with lower triangular jump matrices. In particu-
lar, the jump matrices for the different contours do no always commute. For
RHP’s that have commuting jump matrices one may hope to find an explicit
(integral) representations in terms of elementary function for the solution
as in RHP 1.2.1 and Exercise 1.1.3. But for the RHP 1.2.3 this is a differ-
ent story altogether. Nevertheless, the RHP is well-suited for asymptotic
analysis.

1.2.3 Orthogonal polynomials

Another important example, where Riemann-Hilbert techniques have proved
to be useful is the study of orthogonal polyomials.

Let w be a non-negative function on R such that
∫
|x|kw(x)dx <∞ for

all k ∈ R. Then we can view the space of polynomials as a subspace of
L2(R, w(x)dx). Clearly, the monomials

{1, x, x2, x3, x4, . . .}
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form a basis for the subspace of polynomials. By applying Gramm-Schmidt
we can turn this into an orthogonal basis of monic polynomials

{π0(x), π1(x), π2(x), . . .}.

In other words πk = xk + · · · is the unique monic polynomial of degree k
such that ∫

R
πk(x)xjw(x)dx = 0, j = 0, 1, . . . , k − 1.

We will also use the notation

h2
k =

∫
(πk(x))2w(x)dx.

RH problem 1.2.5. We seek for a function Y : C \ R→ C2×2 such that

• Y is analytic in C \ R.

• Y+(x) = Y−(x)

(
1 w(x)
0 1

)
, for x ∈ R.

• Y (z) = (I + o(1))

(
zn 0
0 z−n

)
as z →∞.

Proposition 1.2.6. The solution to the RHP 1.2.5 is unique and given by

Y (z) =

(
πn(z) 1

2πi

∫
R
πn(x)w(x)

x−z dx

− 2πi
h2n−1

πn−1(z) − 1
h2n−1

∫
R
πn−1(x)w(x)

x−z dx

)
. (1.2.6)

Proof. The spirit of the proof is similar to the proof of Proposition 1.2.2 and
we leave it as a very useful exercise. A full proof and extensive discussion
will be given at a later stage of the course.

1.2.4 Toeplitz determinants

Denote the unit circle with T = {z ∈ C | |z| = 1}. Let a : T → C be an
integrable function and

ak =
1

2π

∫
a(z)

dz

zk+1
, k ∈ Z.
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Then the Toeplitz matrix Tn(a) of size n ∈ N is defined as the n× nmatrix

Tn(a) = (aj−k)
n
j,k=1 =



a0 a−1 a−2

a1 a0 a−1 a−2

a2 a1 a0
. . .

. . .

a2
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . a−2

. . .
. . .

. . . a−1

a2 a1 a0


n×n

Another words, a Toeplitz matrix is a square matrix wthat is constant along
the diagonals.

The function a(z) is called the symbol of the Toeplitz matrix.

Toeplitz matrices play an important role in various parts of mathematical
physics. A particular question that one often wants to understand, is about
the behavior of the Toeplit determinant as the size tends to infinity.

An example of a celebrated result for determinant of Toeplitz matrices
is the Strong Szegő Limit Theorem.

Theorem 1.2.7. Let f(z) =
∑∞

n=−∞ fnz
n such that

∑∞
n=−∞ |n||fn|2 <∞,

then

detTn(ef ) = enf0e
∑∞
n=1 nfnf−n(1 + o(1)),

as n→∞

This theorem has important consequences. One such consequence is a
Central Limit Theorem for linear statistics for the eigenvalues of a randomly
chosen unitary matrix (wih respect to the Haar measure).

In this course we will see a proof of this statement for symbols that are
analytic in an annulus using Riemann-Hilbert techniques

The Riemann-Hilbert problem that is associated to the Toeplitz deter-
minant is the following

RH problem 1.2.8. Find a function Y : C \ T :→ C2 such that

1. Y is analytic C \ T

2. Y+(z) = Y−(z)

(
a(z) −(a(z)− 1)zn

(a(z)− 1)z−n 2− a(z)

)
3. Y (z) = I + o(1) as z →∞
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Here the +-side is the interior and the −-side is in the exterior of the unit
disk.

The Toeplitz determinant can be represented in terms of the solution to
this Riemann-Hilbert problem. The exact expression and the proof of this
statement are more involved and will be postponed for now.

1.2.5 Non-linear Schrödinger equation

Finally, Riemann-Hilbert problems also appear naturally from inverse scat-
tering for PDE’s. The following example is taken from [3]. For more exam-
ples, details and references we refer to [3].

Consider the non-linear Schrdinger equation{
ψt = ψxx − 2ψ|ψ|2

ψ(x, 0) = ψ0(x) ∈ S(R),
(1.2.7)

where S(R) stands for the Schwarz class. By the princples of inverse scat-
tering there is a bijection from S(R) to {r ∈ S(R) | |r(x)| < 1} that maps
ψ0 to r.

Let R be oriented from left to right. Consider the followign RHP.

RH problem 1.2.9. Find a function Y : C \ R→ C2×2 such that

1. Y is analytic in C \ R.

2. Y+(z) = Y−(z)

(
1− |r(z)|2 − ¯r(z)e−2i(2tz2+xz)

r(z)e2i(2tz2+xz) 1

)
for z ∈ R.

3. Y (z) = I + o(1) as z →∞.

Proposition 1.2.10. For (x, t) let Y (·;x, t) be the solution for the RHP
1.2.9. Expand

Y (z;x, t) = I +
Y (1)(x, t)

z
+O(z−2), z →∞.

Then 2iY (1)(x, t) solves the non-linear Schrdinger equation with y0 (deter-
mined by r) as initial data .
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