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Abstract—In 1972, Reddy showed that the binary circuits realizing Reed-Muller
canonical form are easily testable. In this paper, we extend Reddy’s result to
multiple-valued logic circuits, employing more than two discrete levels of signal.
The electronic fabrication of such circuits became feasible due to the recent
advances in integrated circuit technology. We show that, in the multiple-valued
case, several new phenomena occur which allow us to asymptotically reduce the
upper bound on the number of tests required for fault detection, but make the
generation of tests harder.

Index Terms—Multiple-valued function, Reed-Muller circuit, easily testable circuit,
stuck-at fault.
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1 INTRODUCTION

IN recent years, there have been major advances in integrated
circuit technology which have both made feasible and generated
great interest in electronic circuits which employ more than two
discrete levels of signal. Such circuits, called multiple-valued logic
circuits, offer several potential opportunities for the improvement
of present very-large scale integrated (VLSI) circuit designs.
Serious difficulties with limitations on the number of connections
of an integrated circuit with the external world (pinout problem),
as well as on the number of connections inside the circuit
encountered in some VLSI circuit synthesis, could be substantially
reduced if signals in the circuit are allowed to assume three or
more states rather than only two. Apart from this reduction in the
interconnection problem, applying multiple-valued logic to logic
design has also been shown to allow enhancing circuit perfor-
mance in terms of chip area [4], [5], [6], [7], operation speed [12],
and power consumption [10].

In memory design, a major achievement is Intel’s 64-Mbit
Strataflash flash memory device with multilevel storage capability,
announced in 1997 [2]. Each memory cell consists of a single NOR
transistor, implemented using 0.45-micron technology. Two bits of
information are stored in a cell by charging the polysilicon floating
gate of a transistor to four different levels. As a result, cell area is
reduced and the unit cost is dropped to 47 cents per megabit,
which is the lowest cost on the flash memory market at present.

Intel’s announcement was followed by Mitsubishi’s and SGS-
Thomson’s announcement on development of a 64-Mbit multilevel
cell flash memory that will compete with Intel’s device [3]. The
production is expected to begin in the second half of 1999. This
new 64-Mbit flash memory will aim to incorporate DiNOR'’s
inherent speed and NOR'’s ability to scale down in voltage. The
first device is expected to operate using a 3-volt power supply and
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achieve access speeds of 100 to 125 nanoseconds. SGS-Thomson
and Mitsubishi are hoping to compete with Intel by using a
0.20-micron process technology and then migrating to 0.18-micron
technology.

In logic design, among the recent relevant achievements are the
multiple-valued full adder [8], multiplier [9], [10], counter [11], and
A/D converter [12]. The annual IEEE Proceedings of the International
Symposium on Multiple-Valued Logic provides the authoritative
ongoing record of contributions in this area.

In this paper, we show that, besides enhancing circuit
performance in terms of chip area, operation speed, and power
consumption, multiple-valued logic circuits might also offer the
benefit of easier testability. We study logic circuits realizing a
modulo m sum-of-products canonical form of multiple-valued
functions with m being a prime. So far, the applications of this
canonical form to logic design have only been considered for the
case m = 2. The circuits realizing modulo 2 sum-of-products
canonical forms, usually called Reed-Muller canonical circuits, are
known to be easily testable [13], [14], [15]. The upper bound on the
number of tests required to detect all single stuck-at faults in such
circuits is proven to be 3n + 4, where n is the number of primary
inputs [13]. In this paper, we investigate the case of m > 2, with m
being a prime. We show that the upper bound on the number of
tests required to detect all single stuck-at faults in a circuit
realizing a function in modulo m sum-of-products canonical form
is 2n 4+ 4. Generalizing from the two- to the m-valued case,
however, is a nontrivial problem because, for m > 2, several new
phenomena occur which allow us to reduce the upper bound on
the number of tests required for fault detection, but make the
generation of tests harder. We also show that, by adding to the
circuit an extra multiplication modulo m gate with an observable
output, the number of tests required to detect all single stuck-at
faults in the circuit is reducible to four universal tests. Such a
technique has been applied in the binary case as well [13], but then
the number of tests can only be reduced to n+4, which is
asymptotically worse as compared to the multiple-valued case.

The paper is organized as follows: Section 2 gives the back-
ground for the paper. In Section 3, the upper bound on the number
of tests needed to detect all single stuck-at faults in a circuit
realizing a function in modulo m sum-of-products canonical form
is derived. Section 4 shows that, by adding an extra multiplication
modulo m gate with an observable output to the circuit, the
number of tests needed to detect all single stuck-at faults can be
reduced to four. Section 5 concludes the paper.

2 PRELIMINARIES

We use the standard notation adopted in the areas of multiple-
valued logic and testing. For a more detailed description, the
reader is referred to [16] and [17].

2.1 Modulo m Sum-of-Products Form

A multiple-valued logic functionf(zi,...,xz,) is a mapping

f:M"— M, where M :={0,1,...,m — 1} is a totally ordered set

and M" denotes the Cartesian product M x M x ... x M of n sets

M. We say that f(z1,...,z,) is an n-variable m-valued function.
Cohn [19] has shown that, if m is a prime, then any n-variable

m-valued function has a unique modulo m representation of the

type:

¢ - x 1'22332" (1)

f(xh-'
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Fig. 1. Logic circuit scheme realizing the modulo m sum-of-products form.
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where ¢; € M are constants, stands for multiplication
modulo m, and Y stands for addition modulo m. (i1és...4,) is
the m-ary expansion of 7 with ¢; being the least significant digit and
the term x;/ denotes the i;th power of the variable z;, j € {1,...,n}.
Modulo m addition and multiplication form a Galois Field of order
m, GF(m). Modulo m sum-of-products forms are polynomials
over GF(m).

A modulo m sum-of-products form can be implemented by a
logic circuit of the type shown in Fig. 1. It consists of a linear
cascade of two-input addition modulo m gates fed by multi-
plication modulo m gates, one corresponding to each product
term of the expansion (1) with a nonzero constant
ci, 1€ {1, .
¢y during normal operation and a value different from ¢y during
testing.

For example, the 3-variable 3-valued function

,m" —1}. The input x, has the value of the constant

2 2,2 2
fz1, @2, x3) = lajzs @ 2xiz; ® laixoxs @ 201225

can be implemented by the circuit shown in Fig. 2. The constant 1
is an identity element with respect to multiplication and can
therefore be omitted.

In the two-valued case, the expansion (1) reduces to the zero
polarity Reed-Muller canonical form [20], [21]. For m = 2, the addition
modulo 2 is equivalent to the XOR and the multiplication modulo 2
is equivalent to the AND. The Reed-Muller canonical form often
yields compact representations for the functions which are “hard”
for the conventional sum-of-product expansion over AND, OR,
and NOT. It is shown to provide a suitable basis for the
implementation of some practical Boolean functions with em-
bedded XOR-logic [22]. The odd-parity function is an example of
such a function. On one hand, it needs 2" ! products of n variables,
each to be written as a sum-of-product expansion over AND, OR,
and NOT. On the other hand, it can be expanded in the Reed-
Muller canonical form using only n products of one variable each,
namely 21 ® 22 ® ... & xy.

2.2 Test Generation for Logic Circuits
A fault in an electrical circuit is a physical defect of one or more
components, which can cause the circuit to malfunction. Many
physical faults in electrical circuits can be modeled by a stuck-at
fault logic model. In this kind of fault-model, it is assumed that any
physical fault (such as, for example, short or open diode, broken
wire between gates, etc.) can be modeled by a number of lines in
the corresponding logic circuit permanently fixed at some logic
level 0, 1, ..., or m — 1. In this paper, we use the single stuck-at fault
logic model, assuming that a single line in the circuit is fixed at a
logic level 0, 1, ..., or m — 1.

Any n-tuple (ay,...,a,) € M" of values of the input variables
(@1,...,2,) is called fest for a fault « if and only if

flay, .. a,) # f*(a,.

where f*(ai,...,a,) denotes the function describing the circuit in
the presence of the fault «. Such a test (ai,...,a,) is said to detect
the fault a.

In the traditional methods for fault detection, tests are applied
to the circuit under test and the output responses are verified one
by one. Any discrepancy detects a fault. A set T of input vectors is
called a fest set for some set of faults F if the observation of the
corresponding outputs allows the detection of every fault from F
in the circuit.

If the circuit is not redundant, the set of m" possible input
vectors is a test set of the circuit. However, if the circuit
implementation is known, it is possible to construct test sets
having less than m™ elements. One of the objectives of testing is to
construct minimal test sets. A test set T' is called minimal if no other
test set is properly included in T'. The search for a minimal test set
is usually carried out in two steps:

@),

1. For each of the possible faults from F, generate the
corresponding tests.

2. Find a minimal cover of the faults by a set of test vectors.

It is proven by Reddy [13] that, for an n-input binary logic
circuit implementing Reed-Muller canonical form, there exists a
minimal test set for all single stuck-at faults of a maximum size

X3

X2
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Fig. 2. Modulo m sum-of-products circuit realization of a function f(z1,zs,z3).
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3n +4. Sasao [18] has extended Reddy’s result for the case of
binary Generalized Reed-Muller circuits, in which the input
variables are allowed to appear in both complemented and non-
complemented forms. In this paper, we extend Reddy’s result for
the multiple-valued case. First, we consider faults which occur on
the primary inputs of the circuit.

3 PRIMARY INPUTS

In this section, we show that the number of tests which are needed
to detect all stuck-at faults on primary inputs in a circuit realizing a
modulo m sum-of-products form, as well as in an arbitrary
m-valued combinational logic circuit realizing a function
f(z1,...,z,), is at most 2n.

If a function f(x1,...,x,) is not degenerate in z;, then we can

always find an assignment (ai,...,a;—1,a;41,...,a,) of values for
the variables (z1,...,%-1,%it1,...,%,) and two values a; and b;,
a; # b;, for z; such that

f(ah sy Qi1 Gy Qi1 - ,CLn) 75 f(a’h s >a’i717bi7a‘i+17 s ,(Ln,)‘

Since the change in the value of z; from a; to b; causes a change in
the value of f, the input vector ¢, = (a1, ..., ai-1,ai, Qis1,...,0y) 1S
a test for all z; stuck-at faults which set the output of the circuit to a
logic value different from f(ai,...,a-1,a;,Git1,...,a,). On the
other hand, the input vector t» = (a1,...,ai-1,b, Git1,...,a,) is a
test for all z; stuck-at faults which set the output of the circuit to
flai,...,a;-1,a;,ai41,- .. ,a,). Since a; # b;, these two cases cover
all m single stuck-at faults on ; and, therefore, T' = {t,¢,} is a test
set for all single stuck-at faults on ;. Repeating for n inputs, a set
of 2n tests for all single stuck-at faults on primary inputs of an
arbitrary m-valued combinational logic circuit, m > 1, can be
derived.

For m = 2, the upper bound 2n can be reduced to a tighter
upper bound 2n., where n, is the number of primary inputs
appearing in an even number of product terms in the Reed-Muller
canonical form of the n-variable Boolean function being realized
[13]. The following procedure is used to find the test set. For a
primary input x;, all AND gates having z; as input are considered.
From these, a gate GG; with the minimal number of other inputs is
selected. Further, two tests, ¢;; and t;, are defined in the following
way:

e t;:x;=0, all other inputs of G; are 1 and all other
primary inputs are 0;
e tp:x; =1, all other inputs of G; are 1, and all other
primary inputs are 0.

The test t;; detects z; stuck-at-1 fault and the test t;» detects xz;
stuck-at-0 faults. The procedure is repeated for all n. inputs.

Unfortunately, this simple procedure cannot be used in the
multiple-valued case for the following reason: In a modulo m sum-
of-products form, a variable z; can appear with (m — 1) different
powers. For m = 2, this makes m — 1 = 1. Therefore, for any z;, a
single gate G; having z; as its input and depending on the minimal
number of other inputs can be selected. By assigning all but z;
inputs of G; to value 1, and all other primary inputs to 0, a single
path from z; to the output is sensitized. So, the effect of a fault on
x; can always be propagated to the output. On the other hand, if
m > 2, then m —1 > 1. Therefore, there may be more than one
multiplication modulo m gate in the circuit, depending on z;
and k other primary inputs. If these k primary inputs are
assigned to 1 and the rest of the primary inputs to 0, then the
effect of a fault on z; is propagated along multiple paths and
thus may be canceled out by the addition modulo m cascade.
For example, consider the circuit shown in Fig. 2 and suppose
we generate tests for the primary input z;. All four multi-
plication modulo m gates have z; as input, but the first and
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the second gates depend on the minimal number of other
primary inputs (zo only). If we set o =1 and z3 =0, then the
circuit implements the function f(z,1,0) = 11% D 2;10% =0, i.e., the
output is not sensitive to z;. However, for the input assignment
23 = 2 and x5 = 0, the circuit implements the function f(z1,2,0) =
222 @ 222 = 12?2 and, thus, the output is sensitive to z;.

Hence, in the case of m > 2, all m* possible combinations of
values for k primary inputs (not assigned to 0) should be examined
to find out which one of them makes the output sensitive to z;.
Such an assignment always exists, provided the circuit doesn’t
have redundant multiplication modulo m gates. The smaller the
value of k, the easier it is to find the test for z;. In [1], we proved
that, for a random circuit implementing an m-valued n-variable
function in modulo m sum-of-products form, the probability that
k <1 is greater than 99.99 percent for any x;, provided n > 3 and
m > 3. We have also described in [1] a procedure for test
generation for primary inputs, handling the specifics of the
m-valued case.

In the next section, we consider the detection of internal faults,
which, in the context of our circuit structure, consists of all faults
other than those considered above on the primary input lines. This
means that all of the inputs to the individual gates comprise the set
of internal faults that we consider.

4 INTERNAL LINES

It is proven in [13] that, in the binary Reed-Muller circuit
realization of an n-variable Boolean function, at most n + 4 tests
are required to detect all internal single stuck-at faults. The proof is
constructive by showing that, independently of the function being
realized, a set T' = T} U T, detects all internal single stuck-at faults.
Ty, consisting of four tests, is defined by the following table:

Top X1 T2 ... Tp
0 0 0 ... 0
0 1 1 1
1 0 0 0
1 1 1 1

It detects all single faults on the inputs of XOR gates and all stuck-
at-0 faults on the inputs of AND gates. T is defined by T :=
{ta1,t22,...,t2,} with the test ¢y having z; =0 and z; = 1 for all
i # j, where i,j € {1,...,n}. It detects all stuck-at-1 faults on the
inputs of AND gates. So, the n + 4 tests in the test set T = T1 UT5
detect all internal single stuck-at faults in a binary Reed-Muller
circuit. It is also shown in [13] that, for XOR gates, these n + 4 tests
detect not only single stuck-at faults, but also other faults,
changing the functionality of the XOR gate to any the 15 other
two-variable functions.

We use a similar approach to prove that, in the modulo m sum-
of-products circuit realization of an m-valued function, four tests
are required to detect all internal single stuck-at faults. It might
appear surprising that the multiple-valued case requires fewer
tests than the two-valued one. Before giving the result, we explain
the intuition behind this phenomenon.

Consider an n-input multiplication modulo m gate G with m
being a prime. Let a; € M be the value of the input variable x;, for
1 € {1,...,n}. Since the cancellation law of multiplication holds for
GF(m) [23], for any a,b,c € M, itholds that if a # 0 and b # ¢, then
ab # ac.

Hence, if an input vector, (a4, ..., a,) such that a; # 0 for all 4, is
applied to G, then a change in the value of any single input z;
causes a change in the value on the output. This implies that
(a1,...,ay,) is a test for all z; stuck-at-a; faults, where @; denotes
any value but g;, ie., @ € M — {a;}.
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Fig. 3. Logic circuit with an extra multiplication modulo m gate G*.

Similarly, to detect the remaining stuck-at-a; faults on each

input z;, another input assignment (by, ..., b,) such that b, # 0 and
a; # b; for all i has to be applied to G.
Hence, any two input assignments (a1, ...,a,) and (by,...,b,)

such that a;, b; # 0 and a; # b; for all i € {1,...,n}, detect all single
stuck-at faults on the inputs of a multiplication modulo m gate for
m being a prime greater than two. It is easy to see why m = 2 is an
exception. In the two-valued case, there exists only one input
assignment with all entries different from zero, namely (11...1).
Therefore, an n-input multiplication modulo 2 gate (AND gate)
cannot be tested for all single stuck-at faults with only two input
vectors.

Since the cancellation law of addition also holds for GF'(m), we
can similarly show that any two input assignments (ay, ..., a,) and
(b1,...,b,) such that a; # b; for all i € {1,...,n} detect all single
stuck-at faults on the inputs of an n-input addition modulo m gate.

Now, we give the main result of the section.

Theorem 1. There exists a universal set of four tests which detects all
single stuck-at faults on internal lines in the modulo m sum-of-
products circuit realization of an m-valued function, with m being a
prime greater than two.

Proof. The proof is constructive. Consider the set T' consisting of
four tests defined by the following table:

o T o ... Ip
0 0 0 0
0 1 1 1
1 0 0 0

m—1
Let us denote by i; and j;. the inputs of the kth addition
modulo m gate in the cascade, as shown in Fig. 1.

0 m—1 m-—1

1. The first test of T results in applying (0,0) to each pair
(ik, j), detecting all stuck-at-a, a € M — {0}, faults on iy,
and jj.

2. The second test of T results in applying (x,c;) to each
pair (ix, ji), where ¢, is the constant (nonzero) which is
fed into the kth multiplication modulo m gate and *
denotes any value from M. It detects all j; stuck-at-0
faults. This test also detects all stuck-at-a, a € M — {1},
faults on the inputs of the multiplication modulo m
gates.

3. The third test of T results in applying (1, 0) to each pair
(ik, jr), detecting all ¢, stuck-at-0 faults.

4. The fourth test of T' applies the value (m — 1) to the
inputs of multiplication modulo m gates, detecting all
stuck-at-1 faults on them.

Hence, the four tests completely test the internal lines for all
single stuck-at faults. O

The above theorem gives us the number of tests which are
sufficient to detect all internal single stuck-at faults in a circuit
realizing a modulo m sum-of-products form. Since the proof is
constructive, it shows how to generate the test set itself. This test

set is universal, i.e., independent of the function being realized.
Unfortunately, unlike the two-valued case, the test set T, given

by Theorem 1, cannot guarantee the detection of other than stuck-
at type faults in addition modulo m gates. For example, consider
the addition modulo m gate in Fig. 1, which is first in the cascade.
If its functionality is changed to truncated sum function, defined by
TSUM(z1,22) = MIN(z1 + x2,m — 1), with “+” being the regular
arithmetic addition, then 7" will not detect such a fault. The first
test of T" applies (0, 0) to (i1, j1). However, the addition modulo m
function is equivalent to truncated sum function for these values,
ie., TSUM(0,0) =040 =0, so the first test does not detect this
fault. The second test applies (0,c1) to (i1,71), where ¢; is the
constant fed into the first multiplication modulo m gate. Since, for
any 0<¢; <m—1, TSUM(0,¢;) =0® ¢; = ¢, the fault is not
detected. The third test applies (1,0) to (i1,1), but, similarily,
TSUM(1,0) = 1@ 0 = 1. The fourth test applies (0,d;) to (i1,41),
where di = ¢; - (m — 1)", with r being the number of the inputs of
the first multiplication modulo m gate. Since, for any
0<d; <m-—1, TSUM(0,d;) =0®d; =d;, the fault will not be
detected. Thus, none of the four tests of T detect the fault changing
the functionality of addition modulo m gate to truncated sum
function.

5 TESTABILITY BY HARDWARE REDUNDANCY

It is shown in [13] that, by providing a binary Reed-Muller circuit
with an extra AND gate having an observable output, n + 4 tests
for internal lines also detect all single stuck-at faults on primary
inputs. We show that a similar technique can be used to ensure
that the four tests for internal lines given by Theorem 1 also detect
all single stuck-at faults on primary inputs of a circuit realizing a
modulo m sum-of-products form. Notice, that this is asymptoti-

cally better as compared to the binary case.

Consider a modulo m sum-of-products circuit realization of
an m-valued function f(z,...,2,) having an extra multi-
plication modulo m gate G* depending on all input variables
z1,...,2, and with an output g (Fig. 3). If g is also observable,
.yay) and (by,...,b,) such that

a;,b; # 0 and a; # b; for all ¢, detect all single stuck-at faults on the

then two input assignments (ay, ..

inputs of G*. These two tests also detect all single stuck-at faults on
primary inputs zi,...,, since a single path is sensitized from
each z; to the output g. Observing the second and the fourth tests

from the test set T' from Theorem 1:
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Zo T T2 Ty
0 0 0 0
0 1 1 1
1 0 0 0
0 m—1 m-1 m—1

we see that the assignments for x4, ..., z, satisfy the requirements
a;,b; #0, and a; #b; for all i € {1,...,n}. Thus, the test set T
detects all single stuck-at faults on primary inputs as well as on the
inputs of G*.

So, by adding to the circuit an extra multiplication modulo m
gate with an observable output, the number of tests needed to
detect all single stuck-at faults is reducible to four.

6 CONCLUSION

In this paper, we extended the result of Reddy [13] to m-valued
case, for m being a prime greater than two. We show that, for
m > 2, several new phenomena occur which allow us to reduce the
upper bound on the number of tests required for fault detection to
2n + 4, but make the generation of tests harder. We also show that,
by adding to the circuit an extra multiplication modulo m gate
with an observable output, the number of tests required to detect
all single stuck-at faults in the circuit is reducible to four universal
tests, which is asymptotically better compared to the reduction
obtained in binary case from applying a similar technique.
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