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AbstractÐIn 1972, Reddy showed that the binary circuits realizing Reed-Muller

canonical form are easily testable. In this paper, we extend Reddy's result to

multiple-valued logic circuits, employing more than two discrete levels of signal.

The electronic fabrication of such circuits became feasible due to the recent

advances in integrated circuit technology. We show that, in the multiple-valued

case, several new phenomena occur which allow us to asymptotically reduce the

upper bound on the number of tests required for fault detection, but make the

generation of tests harder.

Index TermsÐMultiple-valued function, Reed-Muller circuit, easily testable circuit,

stuck-at fault.
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1 INTRODUCTION

IN recent years, there have been major advances in integrated
circuit technology which have both made feasible and generated
great interest in electronic circuits which employ more than two
discrete levels of signal. Such circuits, called multiple-valued logic
circuits, offer several potential opportunities for the improvement
of present very-large scale integrated (VLSI) circuit designs.
Serious difficulties with limitations on the number of connections
of an integrated circuit with the external world (pinout problem),
as well as on the number of connections inside the circuit
encountered in some VLSI circuit synthesis, could be substantially
reduced if signals in the circuit are allowed to assume three or
more states rather than only two. Apart from this reduction in the
interconnection problem, applying multiple-valued logic to logic
design has also been shown to allow enhancing circuit perfor-
mance in terms of chip area [4], [5], [6], [7], operation speed [12],
and power consumption [10].

In memory design, a major achievement is Intel's 64-Mbit
Strataflash flash memory device with multilevel storage capability,
announced in 1997 [2]. Each memory cell consists of a single NOR
transistor, implemented using 0.45-micron technology. Two bits of

information are stored in a cell by charging the polysilicon floating
gate of a transistor to four different levels. As a result, cell area is
reduced and the unit cost is dropped to 47 cents per megabit,

which is the lowest cost on the flash memory market at present.
Intel's announcement was followed by Mitsubishi's and SGS-

Thomson's announcement on development of a 64-Mbit multilevel
cell flash memory that will compete with Intel's device [3]. The
production is expected to begin in the second half of 1999. This
new 64-Mbit flash memory will aim to incorporate DiNOR's

inherent speed and NOR's ability to scale down in voltage. The
first device is expected to operate using a 3-volt power supply and

achieve access speeds of 100 to 125 nanoseconds. SGS-Thomson
and Mitsubishi are hoping to compete with Intel by using a
0.20-micron process technology and then migrating to 0.18-micron
technology.

In logic design, among the recent relevant achievements are the
multiple-valued full adder [8], multiplier [9], [10], counter [11], and
A/D converter [12]. The annual IEEE Proceedings of the International
Symposium on Multiple-Valued Logic provides the authoritative
ongoing record of contributions in this area.

In this paper, we show that, besides enhancing circuit
performance in terms of chip area, operation speed, and power
consumption, multiple-valued logic circuits might also offer the
benefit of easier testability. We study logic circuits realizing a
modulo m sum-of-products canonical form of multiple-valued
functions with m being a prime. So far, the applications of this
canonical form to logic design have only been considered for the
case m � 2. The circuits realizing modulo 2 sum-of-products
canonical forms, usually called Reed-Muller canonical circuits, are
known to be easily testable [13], [14], [15]. The upper bound on the
number of tests required to detect all single stuck-at faults in such
circuits is proven to be 3n� 4, where n is the number of primary
inputs [13]. In this paper, we investigate the case of m > 2, with m

being a prime. We show that the upper bound on the number of
tests required to detect all single stuck-at faults in a circuit
realizing a function in modulo m sum-of-products canonical form
is 2n� 4. Generalizing from the two- to the m-valued case,
however, is a nontrivial problem because, for m > 2, several new
phenomena occur which allow us to reduce the upper bound on
the number of tests required for fault detection, but make the
generation of tests harder. We also show that, by adding to the
circuit an extra multiplication modulo m gate with an observable
output, the number of tests required to detect all single stuck-at
faults in the circuit is reducible to four universal tests. Such a
technique has been applied in the binary case as well [13], but then
the number of tests can only be reduced to n� 4, which is
asymptotically worse as compared to the multiple-valued case.

The paper is organized as follows: Section 2 gives the back-
ground for the paper. In Section 3, the upper bound on the number
of tests needed to detect all single stuck-at faults in a circuit
realizing a function in modulo m sum-of-products canonical form
is derived. Section 4 shows that, by adding an extra multiplication
modulo m gate with an observable output to the circuit, the
number of tests needed to detect all single stuck-at faults can be
reduced to four. Section 5 concludes the paper.

2 PRELIMINARIES

We use the standard notation adopted in the areas of multiple-
valued logic and testing. For a more detailed description, the
reader is referred to [16] and [17].

2.1 Modulo m Sum-of-Products Form

A multiple-valued logic functionf�x1; . . . ; xn� is a mapping
f : Mn !M, where M :� f0; 1; . . . ; mÿ 1g is a totally ordered set
and Mn denotes the Cartesian product M �M � . . .�M of n sets
M. We say that f�x1; . . . ; xn� is an n-variable m-valued function.

Cohn [19] has shown that, if m is a prime, then any n-variable
m-valued function has a unique modulo m representation of the
type:

f�x1; . . . ; xn� �
Xmnÿ1

i�0

ci � xi11 � xi22 � . . . � xinn ; �1�
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where ci 2M are constants, ª�º stands for multiplication

modulo m, and
P

stands for addition modulo m. �i1i2 . . . in� is

the m-ary expansion of i with i1 being the least significant digit and

the term x
ij
j denotes the ijth power of the variable xj, j 2 f1; . . . ; ng.

Modulo m addition and multiplication form a Galois Field of order

m, GF �m�. Modulo m sum-of-products forms are polynomials

over GF �m�.
A modulo m sum-of-products form can be implemented by a

logic circuit of the type shown in Fig. 1. It consists of a linear

cascade of two-input addition modulo m gates fed by multi-

plication modulo m gates, one corresponding to each product

term of the expansion (1) with a nonzero constant

ci; i 2 f1; . . . ; mn ÿ 1g. The input x0 has the value of the constant

c0 during normal operation and a value different from c0 during

testing.
For example, the 3-variable 3-valued function

f�x1; x2; x3� � 1x2
1x2 � 2x2

1x
2
2 � 1x1x2x3 � 2x1x2x

2
3

can be implemented by the circuit shown in Fig. 2. The constant 1

is an identity element with respect to multiplication and can

therefore be omitted.
In the two-valued case, the expansion (1) reduces to the zero

polarity Reed-Muller canonical form [20], [21]. For m � 2, the addition

modulo 2 is equivalent to the XOR and the multiplication modulo 2

is equivalent to the AND. The Reed-Muller canonical form often

yields compact representations for the functions which are ªhardº

for the conventional sum-of-product expansion over AND, OR,

and NOT. It is shown to provide a suitable basis for the

implementation of some practical Boolean functions with em-

bedded XOR-logic [22]. The odd-parity function is an example of

such a function. On one hand, it needs 2nÿ1 products of n variables,

each to be written as a sum-of-product expansion over AND, OR,

and NOT. On the other hand, it can be expanded in the Reed-

Muller canonical form using only n products of one variable each,

namely x1 � x2 � . . .� xn.

2.2 Test Generation for Logic Circuits

A fault in an electrical circuit is a physical defect of one or more
components, which can cause the circuit to malfunction. Many
physical faults in electrical circuits can be modeled by a stuck-at
fault logic model. In this kind of fault-model, it is assumed that any
physical fault (such as, for example, short or open diode, broken
wire between gates, etc.) can be modeled by a number of lines in
the corresponding logic circuit permanently fixed at some logic
level 0, 1, ..., or mÿ 1. In this paper, we use the single stuck-at fault
logic model, assuming that a single line in the circuit is fixed at a
logic level 0, 1, ..., or mÿ 1.

Any n-tuple �a1; . . . ; an� 2Mn of values of the input variables
�x1; . . . ; xn� is called test for a fault � if and only if

f�a1; . . . ; an� 6� f��a1; . . . ; an�;
where f��a1; . . . ; an� denotes the function describing the circuit in
the presence of the fault �. Such a test �a1; . . . ; an� is said to detect
the fault �.

In the traditional methods for fault detection, tests are applied
to the circuit under test and the output responses are verified one
by one. Any discrepancy detects a fault. A set T of input vectors is
called a test set for some set of faults F if the observation of the
corresponding outputs allows the detection of every fault from F
in the circuit.

If the circuit is not redundant, the set of mn possible input
vectors is a test set of the circuit. However, if the circuit
implementation is known, it is possible to construct test sets
having less than mn elements. One of the objectives of testing is to
construct minimal test sets. A test set T is called minimal if no other
test set is properly included in T . The search for a minimal test set
is usually carried out in two steps:

1. For each of the possible faults from F , generate the
corresponding tests.

2. Find a minimal cover of the faults by a set of test vectors.

It is proven by Reddy [13] that, for an n-input binary logic
circuit implementing Reed-Muller canonical form, there exists a
minimal test set for all single stuck-at faults of a maximum size
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Fig. 1. Logic circuit scheme realizing the modulo m sum-of-products form.

Fig. 2. Modulo m sum-of-products circuit realization of a function f�x1; x2; x3�.



3n� 4. Sasao [18] has extended Reddy's result for the case of
binary Generalized Reed-Muller circuits, in which the input
variables are allowed to appear in both complemented and non-
complemented forms. In this paper, we extend Reddy's result for
the multiple-valued case. First, we consider faults which occur on
the primary inputs of the circuit.

3 PRIMARY INPUTS

In this section, we show that the number of tests which are needed
to detect all stuck-at faults on primary inputs in a circuit realizing a
modulo m sum-of-products form, as well as in an arbitrary
m-valued combinational logic circuit realizing a function
f�x1; . . . ; xn�, is at most 2n.

If a function f�x1; . . . ; xn� is not degenerate in xi, then we can
always find an assignment �a1; . . . ; aiÿ1; ai�1; . . . ; an� of values for
the variables �x1; . . . ; xiÿ1; xi�1; . . . ; xn� and two values ai and bi,
ai 6� bi, for xi such that

f�a1; . . . ; aiÿ1; ai; ai�1; . . . ; an� 6� f�a1; . . . ; aiÿ1; bi; ai�1; . . . ; an�:
Since the change in the value of xi from ai to bi causes a change in
the value of f , the input vector t1 � �a1; . . . ; aiÿ1; ai; ai�1; . . . ; an� is
a test for all xi stuck-at faults which set the output of the circuit to a
logic value different from f�a1; . . . ; aiÿ1; ai; ai�1; . . . ; an�. On the
other hand, the input vector t2 � �a1; . . . ; aiÿ1; bi; ai�1; . . . ; an� is a
test for all xi stuck-at faults which set the output of the circuit to
f�a1; . . . ; aiÿ1; ai; ai�1; . . . ; an�. Since ai 6� bi, these two cases cover
all m single stuck-at faults on xi and, therefore, T � ft1; t2g is a test
set for all single stuck-at faults on xi. Repeating for n inputs, a set
of 2n tests for all single stuck-at faults on primary inputs of an
arbitrary m-valued combinational logic circuit, m > 1, can be
derived.

For m � 2, the upper bound 2n can be reduced to a tighter
upper bound 2ne, where ne is the number of primary inputs
appearing in an even number of product terms in the Reed-Muller
canonical form of the n-variable Boolean function being realized
[13]. The following procedure is used to find the test set. For a
primary input xi, all AND gates having xi as input are considered.
From these, a gate Gi with the minimal number of other inputs is
selected. Further, two tests, ti1 and ti2 are defined in the following
way:

. ti1 : xi � 0, all other inputs of Gi are 1 and all other
primary inputs are 0;

. ti2 : xi � 1, all other inputs of Gi are 1, and all other
primary inputs are 0.

The test ti1 detects xi stuck-at-1 fault and the test ti2 detects xi
stuck-at-0 faults. The procedure is repeated for all ne inputs.

Unfortunately, this simple procedure cannot be used in the
multiple-valued case for the following reason: In a modulo m sum-
of-products form, a variable xi can appear with �mÿ 1� different
powers. For m � 2, this makes mÿ 1 � 1. Therefore, for any xi, a
single gate Gi having xi as its input and depending on the minimal
number of other inputs can be selected. By assigning all but xi
inputs of Gi to value 1, and all other primary inputs to 0, a single
path from xi to the output is sensitized. So, the effect of a fault on
xi can always be propagated to the output. On the other hand, if
m > 2, then mÿ 1 > 1. Therefore, there may be more than one
multiplication modulo m gate in the circuit, depending on xi
and k other primary inputs. If these k primary inputs are
assigned to 1 and the rest of the primary inputs to 0, then the
effect of a fault on xi is propagated along multiple paths and
thus may be canceled out by the addition modulo m cascade.
For example, consider the circuit shown in Fig. 2 and suppose
we generate tests for the primary input x1. All four multi-
plication modulo m gates have x1 as input, but the first and

the second gates depend on the minimal number of other
primary inputs (x2 only). If we set x2 � 1 and x3 � 0, then the
circuit implements the function f�x1; 1; 0� � 1x2

1 � 2x2
1 � 0, i.e., the

output is not sensitive to x1. However, for the input assignment
x2 � 2 and x3 � 0, the circuit implements the function f�x1; 2; 0� �
2x2

1 � 2x2
1 � 1x2

1 and, thus, the output is sensitive to x1.
Hence, in the case of m > 2, all mk possible combinations of

values for k primary inputs (not assigned to 0) should be examined
to find out which one of them makes the output sensitive to xi.
Such an assignment always exists, provided the circuit doesn't
have redundant multiplication modulo m gates. The smaller the
value of k, the easier it is to find the test for xi. In [1], we proved
that, for a random circuit implementing an m-valued n-variable
function in modulo m sum-of-products form, the probability that
k � 1 is greater than 99.99 percent for any xi, provided n � 3 and
m � 3. We have also described in [1] a procedure for test
generation for primary inputs, handling the specifics of the
m-valued case.

In the next section, we consider the detection of internal faults,
which, in the context of our circuit structure, consists of all faults
other than those considered above on the primary input lines. This
means that all of the inputs to the individual gates comprise the set
of internal faults that we consider.

4 INTERNAL LINES

It is proven in [13] that, in the binary Reed-Muller circuit
realization of an n-variable Boolean function, at most n� 4 tests
are required to detect all internal single stuck-at faults. The proof is
constructive by showing that, independently of the function being
realized, a set T � T1 [ T2 detects all internal single stuck-at faults.
T1, consisting of four tests, is defined by the following table:

It detects all single faults on the inputs of XOR gates and all stuck-
at-0 faults on the inputs of AND gates. T2 is defined by T2 :�
ft21; t22; . . . ; t2ng with the test t2i having xi � 0 and xj � 1 for all
i 6� j, where i; j 2 f1; . . . ; ng. It detects all stuck-at-1 faults on the
inputs of AND gates. So, the n� 4 tests in the test set T � T1 [ T2

detect all internal single stuck-at faults in a binary Reed-Muller
circuit. It is also shown in [13] that, for XOR gates, these n� 4 tests
detect not only single stuck-at faults, but also other faults,
changing the functionality of the XOR gate to any the 15 other
two-variable functions.

We use a similar approach to prove that, in the modulo m sum-
of-products circuit realization of an m-valued function, four tests
are required to detect all internal single stuck-at faults. It might
appear surprising that the multiple-valued case requires fewer
tests than the two-valued one. Before giving the result, we explain
the intuition behind this phenomenon.

Consider an n-input multiplication modulo m gate G with m

being a prime. Let ai 2M be the value of the input variable xi, for
i 2 f1; . . . ; ng. Since the cancellation law of multiplication holds for
GF �m� [23], for any a; b; c 2M , it holds that if a 6� 0 and b 6� c, then
ab 6� ac.

Hence, if an input vector, �a1; . . . ; an� such that ai 6� 0 for all i, is
applied to G, then a change in the value of any single input xi
causes a change in the value on the output. This implies that
�a1; . . . ; an� is a test for all xi stuck-at-ai faults, where ai denotes
any value but ai, i.e., ai 2M ÿ faig.
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Similarly, to detect the remaining stuck-at-ai faults on each

input xi, another input assignment �b1; . . . ; bn� such that bi 6� 0 and

ai 6� bi for all i has to be applied to G.
Hence, any two input assignments �a1; . . . ; an� and �b1; . . . ; bn�

such that ai; bi 6� 0 and ai 6� bi for all i 2 f1; . . . ; ng, detect all single

stuck-at faults on the inputs of a multiplication modulo m gate for

m being a prime greater than two. It is easy to see why m � 2 is an

exception. In the two-valued case, there exists only one input

assignment with all entries different from zero, namely �11 . . . 1�.
Therefore, an n-input multiplication modulo 2 gate (AND gate)

cannot be tested for all single stuck-at faults with only two input

vectors.
Since the cancellation law of addition also holds for GF �m�, we

can similarly show that any two input assignments �a1; . . . ; an� and

�b1; . . . ; bn� such that ai 6� bi for all i 2 f1; . . . ; ng detect all single

stuck-at faults on the inputs of an n-input addition modulo m gate.
Now, we give the main result of the section.

Theorem 1. There exists a universal set of four tests which detects all

single stuck-at faults on internal lines in the modulo m sum-of-

products circuit realization of an m-valued function, with m being a

prime greater than two.

Proof. The proof is constructive. Consider the set T consisting of

four tests defined by the following table:

Let us denote by ik and jk the inputs of the kth addition
modulo m gate in the cascade, as shown in Fig. 1.

1. The first test of T results in applying �0; 0� to each pair
�ik; jk�, detecting all stuck-at-a, a 2M ÿ f0g, faults on ik
and jk.

2. The second test of T results in applying ��; ck� to each
pair �ik; jk�, where ck is the constant (nonzero) which is
fed into the kth multiplication modulo m gate and �
denotes any value from M . It detects all jk stuck-at-0
faults. This test also detects all stuck-at-a, a 2M ÿ f1g,
faults on the inputs of the multiplication modulo m
gates.

3. The third test of T results in applying �1; 0� to each pair
�ik; jk�, detecting all ik stuck-at-0 faults.

4. The fourth test of T applies the value �mÿ 1� to the
inputs of multiplication modulo m gates, detecting all
stuck-at-1 faults on them.

Hence, the four tests completely test the internal lines for all

single stuck-at faults. tu

The above theorem gives us the number of tests which are

sufficient to detect all internal single stuck-at faults in a circuit

realizing a modulo m sum-of-products form. Since the proof is

constructive, it shows how to generate the test set itself. This test

set is universal, i.e., independent of the function being realized.
Unfortunately, unlike the two-valued case, the test set T , given

by Theorem 1, cannot guarantee the detection of other than stuck-

at type faults in addition modulo m gates. For example, consider

the addition modulo m gate in Fig. 1, which is first in the cascade.

If its functionality is changed to truncated sum function, defined by

TSUM�x1; x2� �MIN�x1 � x2; mÿ 1�, with ª+º being the regular

arithmetic addition, then T will not detect such a fault. The first

test of T applies �0; 0� to �i1; j1�. However, the addition modulo m

function is equivalent to truncated sum function for these values,

i.e., TSUM�0; 0� � 0� 0 � 0, so the first test does not detect this

fault. The second test applies �0; c1� to �i1; j1�, where c1 is the

constant fed into the first multiplication modulo m gate. Since, for

any 0 � c1 � mÿ 1, TSUM�0; c1� � 0� c1 � c1, the fault is not

detected. The third test applies �1; 0� to �i1; j1�, but, similarily,

TSUM�1; 0� � 1� 0 � 1. The fourth test applies �0; d1� to �i1; j1�,
where d1 � c1 � �mÿ 1�r, with r being the number of the inputs of

the first multiplication modulo m gate. Since, for any

0 � d1 � mÿ 1, TSUM�0; d1� � 0� d1 � d1, the fault will not be

detected. Thus, none of the four tests of T detect the fault changing

the functionality of addition modulo m gate to truncated sum

function.

5 TESTABILITY BY HARDWARE REDUNDANCY

It is shown in [13] that, by providing a binary Reed-Muller circuit

with an extra AND gate having an observable output, n� 4 tests

for internal lines also detect all single stuck-at faults on primary

inputs. We show that a similar technique can be used to ensure

that the four tests for internal lines given by Theorem 1 also detect

all single stuck-at faults on primary inputs of a circuit realizing a

modulo m sum-of-products form. Notice, that this is asymptoti-

cally better as compared to the binary case.
Consider a modulo m sum-of-products circuit realization of

an m-valued function f�x1; . . . ; xn� having an extra multi-

plication modulo m gate G� depending on all input variables

x1; . . . ; xn and with an output g (Fig. 3). If g is also observable,

then two input assignments �a1; . . . ; an� and �b1; . . . ; bn� such that

ai; bi 6� 0 and ai 6� bi for all i, detect all single stuck-at faults on the

inputs of G�. These two tests also detect all single stuck-at faults on

primary inputs x1; . . . ; xn since a single path is sensitized from

each xi to the output g. Observing the second and the fourth tests

from the test set T from Theorem 1:
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Fig. 3. Logic circuit with an extra multiplication modulo m gate G�.



we see that the assignments for x1; . . . ; xn satisfy the requirements
ai; bi 6� 0, and ai 6� bi for all i 2 f1; . . . ; ng. Thus, the test set T
detects all single stuck-at faults on primary inputs as well as on the
inputs of G�.

So, by adding to the circuit an extra multiplication modulo m
gate with an observable output, the number of tests needed to
detect all single stuck-at faults is reducible to four.

6 CONCLUSION

In this paper, we extended the result of Reddy [13] to m-valued
case, for m being a prime greater than two. We show that, for
m > 2, several new phenomena occur which allow us to reduce the
upper bound on the number of tests required for fault detection to
2n� 4, but make the generation of tests harder. We also show that,
by adding to the circuit an extra multiplication modulo m gate
with an observable output, the number of tests required to detect
all single stuck-at faults in the circuit is reducible to four universal
tests, which is asymptotically better compared to the reduction
obtained in binary case from applying a similar technique.
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