AOXMIN-MV: A Heuristic Algorithm for
AND-OR-XOR Minimization

E. V. Dubrova D.M. Miller J.C.Muzio

Electronic System DesignLab VLS| Design and Test Group
Department of Electronics Department of Computer Science
Royal Institute of Technology University of Victoria
KTH-Electrum, Electrum 229 P.O.Box 3055
S-164 40 Kista, Sweden Victoria, B.C., Canada, V8W 3P6
elena@ele.kth.se {mmiller, jmuzio}@csr.uvic.ca

Abstract

Three-level logic is shown to have a potential for reduction of the area over two-
level implementations, aswell asfor againin speed over multi-level implementations.
In this paper we present an heuristic algorithm, AOXMIN-MV, targeting a three-level
logic expression which is an XOR of two sum-of-products. For some practical func-
tions, such an AND-OR-XOR expression may have up to 27 times less product-terms
compared to the classical sum-of-products form. Several algorithms for finding mini-
mal AND-OR-XOR expressions were presented, but they all are time-consuming for
large functions. The algorithm presented here solves this problem by (1) introducing
an estimation metric, checking whether the input function is likely to have a compact
AND-OR-XOR expression; (2) employing a new strategy for decomposing the input
function into two sum-of-products; (3) treating the output part of a multiple-output
function as asingle multiple-valued variable. The experimental results show that these
modification yield a faster and more efficient algorithm. Furthermore, it gives a solu-
tion to amore general problem of minimization of multiple-valued input binary-valued
output logic functions.

1 Introduction

Three-level logic is shown to be a good trade-off between the speed of two-level logic
and the density of multi-level logic [1]. The optimization problem for three-level logic
is harder than that for two-level logic, but much simpler than for multi-level logic. The
existing agorithms for logic optimization cannot be directly adapted to handle the three-
level problem efficiently.

Many devices for implementing three-level logic are industrially offered, e.g. Xilinx's
XC4000E and XC4000X series Field Programmable Gate Arrays [2], or Altera's Apex
20K, Flex 10KE and Flex 8000 Programmable Logic Devices (PLDs) families [3], [4]. A
simplified logic block of these devices consists of a set of Programmable Logic Arrays,
implementing the first two levels of logic, and a set of logic expanders, implementing the

thirdlevel. Each logic expander can be programmed to realize any function of two variables.
Such alogic block implements alogic expression of the type:

f@y,.) =(Pi+...+ Pr)o (Peyr+... + Pr) D

where P;, i € {1,...,r} denotesan arbitrary product-term involving some of the variables
z1,--.,T, Or their complements, “o” denotes abinary operation,and 1 < k& < r.

Thefirst algorithm, addressing the optimization of such PLDs, was presented in 1991 by
Malik, Harrison and Brayton in [5]. It was shown that the number of productsin the three-
level expression obtained by the algorithm can be significantly smaller (up to afactor of 5)
than the number of productsin the expression obtained by atwo-level AND-OR minimizer.
The algorithm [5] first determines a minimal expression (1) for the case of “o” = AND,
and then applies output phase optimization to the logic expander to check suitability of the
other choices of “o”. Such a scheme minimizes (1) for all interesting cases except “o” =
XOR, “o” = XNOR. A modified version of the algorithm [5], aiming to reduce its run-time
performance, is presented in [6].

Several agorithm addressing “o” = XOR case were presented in [7], [8] and [9]. It
was shown that an AND-OR-XOR expression has a smaller upper bound on the number of
product-terms than the upper bound of an AND-OR or an AND-XOR expansion, implying
the existence of a more economical circuit implementation for some functions [10], [11]
. Furthermore, the experimental results of [8] have demonstrated that, for some functions,
assigning “o” = XOR may lead to areduction by afactor of 27 in the number of product-
termsin the expression (1) compared to the number of product-termsin the sum-of-product
expression obtained by atwo-level AND-OR minimizer.

Unfortunately, the algorithms [7]-[9] can be time-consuming for large functions. Our
experimental results show that only about 30% of practical functions have compact AND-
OR-XOR forms, and for the rest the number of product-terms in their minimal AND-OR-
XOR form is comparable to the number of product-termsin their minimal sum-of-products
form. For alarge benchmark, running an XOR-based optimization agorithm for several
hours to find out that the size of the resulting AND-OR-XOR expression is very similar to
the cover produced by atwo-level AND-OR minimizer Espresso [12] is quite depressing.

We have found an efficient solution to this problem. We have developed an estimation
metric, which gives afast answer asto whether an input function is suitable for “o” = XOR
(XNOR) optimization or not. This metric is used in the new agorithm AOXMIN-MV for
finding minimal AND-OR-XOR expressions, which is reported in this paper. It evolved
from the algorithm for three-level AND-OR-XOR MINimization AOXMIN [8]. The novel
features of AOXMIN-MV are:

1. AOXMIN-MYV usesthe new estimation metric, checking suitability of the input func-
tionfor “o” = XOR (XNOR) in the expression given by the equation (1) or not. If the
function is found not suitable, the algorithm terminates. Otherwise, it continues.

2. AOXMIN-MV uses an extension of Fiduccia/Mattheyses partitioning algorithm for
finding a best decomposition of the on-set of the input function into two groups[13].
In AOXMIN, this decomposition was made randomly.

3. AOXMIN was essentially a single-output minimizer. For a multiple-output problem,
it minimized each function independently, and then applied Espresso to the resulting
set of functions. Such an approach produces unsatisfactory results for many multiple-
output functions. In our new implementation, we use the technique suggested in [15]
and [16], and treat the output part as a single multiple-valued variable.

The AOXMIN-MYV gives better solutionsand is much faster compared to AOXMIN. For
example, it takes just 4 minutes to find the 18 product-terms solution for t481 benchmark,
while AOXMIN needed 8 hoursto computeit. Furthermore, AOXMIN-MV givesasolution
to amore general problem of minimization of multiple-valued input, binary-valued output
logic functions.

The paper isorganized asfollows. Section 2 describesthe basic notation and definitions
which are used in the sequel. Section 3 presents the AOXMIN-MV agorithm. In Section 4
the algorithm is demonstrated on the example of a 2-bit multiplier. Section 5 includes the
experimental results. In the final section, some conclusions are drawn and directions for
further research are proposed.

2 Prdiminaries

We use the standard definitions and notation in the area of logic synthesis ([12], [17]). The
most important notions are briefly summarized in this section.

2.1 Multiple-valued input binary-valued output functions

A multiple-valued input, binary-valued output function f(z1,...,z,) iSsamapping f :
P, x Py x...x P, - B,wherethesets P, = {0,1,...,p; — 1} fori € {1,...,n},
represent the sets of p; values the variable z; may assume, and B € {0, 1, *}. * denotes a
don't care value.

An n-input m-output switching function can be represented by a multiple-valued input
binary-valued output function of n + 1 variables, wherep; = 2 fori € {1,...,n}, and
Pn+1 = m. Itiseasly proven that the boolean minimization problem for multiple-output
functionsis equivalent to the minimization of a multiple-valued function of thisform.

A pointinthedomain P; x P, x ... x P, of thefunctioniscalled aminterm. The on-set
F, thedon't care-set D and the off-set R of f are the sets of minterms that are mapped by
fto1, x and O, respectively.

Let z; be avariable taking values from the set P;, and let S; C P;. Then z" represent
the characteristic function

25 — 1 ifz; €8
©) 0 otherwise

7" is called aliteral of variable z;. The complement of aliteral 2 (written ;") is the
literal 2.

A product-termis a Boolean product (AND) of one or more literals. If a product-term
evaluates to 1 for a given minterm, the product-term is said to contain the minterm. A
sum-of-products is a Boolean sum (OR) of product-terms.

2.1.1 Operationson product-terms

LetS =222 ... z5n and T = z1'z2? ... 21 denote product-terms.

The complement of aproduct-term S, denoted by S isthe sum-of-products U

The intersection of product-terms .S and T', denoted by S N T, is the product terms
g g S20 2 pSanTn which is the largest product-term contained in both S and 7. If
S;NT; = @ forsomei, then SNT = @, and S and T are said to be digoint. Otherwise,
they intersect.

The union of product-terms S and 7", denoted by S U T', is the product-term z;
25?92 | z5nUTn which is the smallest product-term containing both S and T.

Theexclusweor of two S and T, denoted by S@ T, isthe product-term 21 252 .. zfin
where R; = (S; NT;) U (S; NT;), fori € {1,...,n}.

_Sz

S1UTy

2.1.2 Positional cube notation

Let 251252 ... 25 be aproduct-term. It can be represented by a binary vector:
Clcl Cpl 1_02C2 sz 1 C%L...Cﬁnil

Wherecg =0if j € 5;, and cZ = 1 otherwise. Such anotationis called apositional cube or
simply acube [18]. A cubeis a convenient representation for product-terms, and we often
use the terms cube and product-terminterchangeably.

We use ¢; to represent the binary vector ¢} ..., The notation ¢; U d; refers to
the bitwise OR of two binary vectors, ¢; N d; refersto the bitwise AND, and ¢; denotesthe
bitwise complement of a binary vector.

A sum-of-products is represented by a set of cubes, also called a cover. The size of a
cover isthe number of cubesin it. We denote the size of acover F by |F'|. The complement
of acover istheintersection of the complementsfor each cube of the cover. Theintersection
(union or exclusive-or) of two covers is defined as the union of the pairwise intersection
(union or exclusive-or) of the cubes from each cover.

The cube provides a convenient data structure for computer implementation of the al-
gorithm where one bit is used for each part of the cube. Boolean operations on cubes are
performed as word-wide operations (e.g. the intersection of two cubes is the cube which
results from the component-wise Boolean AND of two cubes), which is more efficient than
mani pul ating the binary vectors element by element.

3 Thealgorithm AOXMIN-MV

In this section we describe the structure of the AOXMIN-MV algorithm. The pseudocode
isshown in Figure 1.

AOXMIN-MYV receives asits input an incompletely specified multiple-output Boolean
function f (in Espresso format). It returns as its output two sets of cubes, g, and go, such
that either g; @ g2 or the complement of g; @ g» is a cover for F. The objective is to
minimize the total number of cubesin g, and gs.

AOXMIN-MV(F, D, R)

input: on-set F', don’t care set D and off-set R of f

output: sets of cubes g1, g2 and i € {0,1} suchthat (g1 ® g2) D F,ifi =0,and (g1 D g2) 2 F,ifi =1,
total number of cubesin g; and g-.

* Initialization */
F + Cover(F, D, R);
R + Cover(R,D, F);

it (|F| < |R)
initial_cost = |F[;
else
initial_cost = |R|;

best_cost = initial _cost;

[* Checking whether f islikely to have a compact AND-OR-XOR form */
(FI: F23NFa91192) — CheCk(F’ R);
if (lg1] + |g2| < best_cost)

(best_g1, best_g», best_cost,) = (g1, g2, |g1] + |g21, 0);

(R1, R2, Ng, g1, 92) <+ Check(R, F);
if (g1 + |g2| < best_cost)
(best_g1, beg_QQ, beg_COSt, /L) = (gl’g% |91| + |92|’ 1)’

/* Main minimization loop */
if (best_cost < initial_cost) {
if (NF > 2)
(best_g1, best_g», best_cost, i) < GroupMigration(Fy, F», Nr, R, best_cost,0);

if (NR > 2)
(best_g1, best_g-, best_cost, i) «+ GroupMigration(R1, Rz, Ng, F), best_cost, 1);

return(best_g1, best_g2, best_cost, 7);

}

else
return(” functionis unlikely to have a compact AND-OR-XOR form);

Figure 1. Pseudocode of the AOXMIN-MV algorithm.

First, the covers for the on-set and off-set of the input function are computed by em-
ploying the subroutine Cover (). Cover () implements Reduce(), Expand() and I rredundant()
subroutines of Espresso [12] to comprise a single pass of the minimization algorithm. If
|F| < |R|, thenthe costisinitialized to | F'|. Otherwise, itisset to | R|.

Check(F, R)

input: on-set F' and off-set R of f

output: setsof cubes F; and F> partitioning F', number of equivalence classes N of F', and two sets of cubes
g1 andgz, such that (g1 (S) 92) DF.

Nr < DivideEqClasses(F);

(F1, F») < RandomPartitioning(F, Nr);
(gl,gz) — Obtajn(Fl, Fz,R);
return(Fl,F2,N,gl,g2);

Figure 2: Pseudocode of the Check() subroutine.

The next step is to check whether the input function is likely to have a compact AND-
OR-XOR form. Thisis done by the subroutine Check(), whose pseudocode is shown in
Figure 2. As a preprocessing step, Check() performs clustering of the cubes¢; € F into

equivalence classes with respect to the equivalence relation R 4 R+, where R+ is the
transitive closure of R, and R is defined by

(Ci,Cj) S 7%, iff (01 N cy 75 @)

Two cubesarein relation R either when they intersect, or when they are connected through
achain of intersecting cubes. Thus, the equivalence classes of R form a partition of a set of
cubes into connected chains of cubes. The clustering is performed by DivideEqClasses()
subroutine, implementing a classical algorithm for computing a transitive closure [19]. Di-
videEqClasses() takes a set of cubes asitsinput, computes which cubes are connected, and
labels each cube with the number of the equivalence classto which it belongs. It returnsthe
total number of NV of the classesin the set (for pseudocode of DivideEgClasses(), see [8]).
After clustering, the equivalence classes are randomly partitioned by RandomPar ti-
tioning() into two groups, F; and Fs, suchthat F; U F, = F and F1; N Fy, = @. F; and Fy
are used by the the subroutine Obtain() to construct two different sets of cubes, g; and go,
satisfying g1 @ g2 = F', which would possibly be of atotal size smaller than |F|.

Obtain(Fi, F», R)
input: sets of cubes F and F>, partitioning F' and off-set R of f.
output: setsof cubes g; and g», suchthat g1 & g» = F

g1 < Cover(F1, R, F»);
g2+ F, U(RNg1);

g2 cher(gzaQ:Fl);
return(gi, g2)

Figure 3: Pseudocode of the Obtain() subroutine.

Obtain() uses the following property: If g1 & go = F than, for any cube ¢ € R,
(g1 Uc) ® (g2 Uc) = F. This property trivialy follows from the properties of the XOR
operation. The two basic steps of Obtain() are:

1. Obtaing; suchthat F; C g1 C F1UR, g1 N Fy =@ and \g1| < ‘F1|
2. Obtain g, suchthat g1 ® go = F.

The first step can be converted to the problem of finding a cover for the incompletely
specified function with the on-set F, the don't care set R and the off-set F;,. The cover is
computed by employing Cover ().

Next, we determine which cubes from R are specified to 1 in the obtained cover, by
computing the intersection R N ¢;. Finally, we invoke Cover () to compute a cover for the
completely specified function with the on-set F» U (R N g1) and the off-set F;.

Let us prove that therelation g; @ g, = F holds:

1) FieF,=F {snce F, UF, = F,FiNF, =0}
2) (RU(@NR)®(FRRU(gNR)=F {from the above property}
3 g®o(RU@MNR)=F {Fi Cg1 CFLUR}
4) g@®gp=F {92 = F> U (g1 N R}

Clearly, g1 ® go = F implies(g1 ® go) "R = Q.

Check() isinvoked first starting from the on-set F', and then starting from the off-set R
of f. Eachtime the best solution is updated. If neither of the costs obtained is smaller than
theinitial_cost, than it is assumed that the functionis unlikely to have acompact AND-OR-
XOR form, and the algorithm terminates. Otherwise, the subroutine GroupMigration() is
called first using F} and F; astheinitial partition, and then using R; and Ry astheinitial
partition.

GroupMigration() implements agroup migration algorithm[13] which isan extension
of Fiduccia/Mattheyses iterative improvement algorithm [14]. Group migration agorithm
repeats the following: given an initial partitioning of objects into two groups, for each
object determine the decrease in cost if the object were moved to the other group. Then,
move the object that produces the greatest decrease or smallest increasein cost and mark it
as moved. After all objects have been moved once, the lowest-cost partitioning is selected.
If this partitioning has a higher cost then theinitial one, then the algorithm stops. Otherwise
it iterates taking the new partitioning for the initial partitioning.

The pseudocode shown in Figure 4 details a group migration algorithm for improving
aninitial partitioning of objectsinto two groups. In our case, objects are equivalence classes
of F', computed by DivideEqClasses() and partitioned between the sets F; and F;. A pro-
cedure Move(Fy, Fy, class;) returns anew partition of classes between F; and F» obtained
by moving al the cubes belonging to a given equivalence class class;, j € {1,...,Ng},
from the set Fy, k € {1,2}, totheset F}, | € {1,2}, k # I. Each equivaence class
has flag, moved, which indicates whether it has been moved or not. The variable best-
move_class is the equivalence class that, when moved, yields the best cost improvement,
and bestmove_cost is the resulting cost. Our experimental results show that the number of
times the do-loop repeats in usually less than three.

GroupMigration(Fy, F», R, best_cost, N)

input: sets of cubes F; and F», partitioning on-set F', the number Ny of equivalence classesin F, off-set R,
current best cost and an integer 4

output: sets of cubes best_g; and best_g2, such that best_g1 @ best_g2 = F, updated best cost, and an integer
1.

do {
/* Initialization */
init_cost = best_cost;
for (eachclass; € F1 U F»)
class;.moved = false;

/* Create a sequence of Ny moves*/
for (¢ from1to Nr) {
bestmove_cost = oo;
for (each class; not class;.moved) {
(F1, F2) < Move(Fi, F», class));
(91,92) < Obtain(Fy, F, R);
if (Jg1] + |g2| < bestmove_cost)
bestmove_cost = [g1] + [gal;
bestmove_class = class;;
}
if (bestmove_cost < best_cost) {
(bestpart_F1, bestpart_F») = (F1, F);
(best_g1, best_g2, best_cost, i) = (g1, g2, bestmove_cost, i);
}
}
(F1, F») < Move(F1, F», bestmove_class);
bestmove_class = bestmove_class.moved;

}

[* Update (F1, F») if abetter cost was found, else exit */
if (best_cost < init_cost)
(F1, F>) = (bestpart_F1, bestpart_F3);
else
return(best_g1, best_g», best_cost, 7);
} while(best_cost < init_cost);

Figure 4: Pseudocode of the GroupMigration() subroutine.

GroupMigration() is called only if the number of equivalence classes, obtained by
DivideEqClasses(), is greater than two. Otherwise, F; and F;, have at most one class each
and moving it to the opposite group will cause one of F; and F, to become the empty set.
If Fy isan empty set, then g; isan empty set, and thus go = F'. Therefore, |g1| + |g2| = | F|
and invoking GroupMigration() for the case N < 2 brings no reduction in the total size of
g1 and go.

4 Example: a2-bit multiplier

In this section, we demonstrate the algorithm AOXMIN-MV on the example of a 2-bit
multiplier. The input of the algorithm is a specification of the 2-bit multiplier in Espresso
format, shown in Figure 5.

i4

.04

1010 1000
1001 0100
1011 1100
0110 0100
0101 0010
0111 0110
1110 1100
1101 0110
1111 1001
.e

Figure 5: Specification of a 2-bit multiplier in Espresso format.

First, AOXMIN-MV applies Cover () to compute the minimal covers for the on-set and
off-set of the function. The resulting covers F' and R are shown below (in positional cube
notation, with “-” separating positions in the cube). Recall, that the output part of the
cube istreated as a single multiple-valued variable (4-valued variable for the 4-output 2-bit
multiplier).

F

01-11-01-11-1000
01-11-10-01-0100
10-01-01-01-0110
11-01-01-10-0100
11-01-10-01-0010
01-01-01-01-0001
01-10-11-01-0100

R

11-11-11-10-0011
11-10-11-11-0011
01-11-01-11-0010
01-01-01-01-0100
10-11-11-11-1001
10-11-10-11-1100
10-10-11-11-1111
11-10-11-10-0111
11-11-10-11-1001
11-11-10-10-1111

Since |F| < |R|, initial_cost = 7. Next, the subroutine Check () isinvoked, first starting
from the the cover F. The cubesin F' are divided into equivalence classes in the following

way:

01-11-01-11-1000 class1
01-11-10-01-0100 class2
10-01-01-01-0110 class3
11-01-01-10-0100 class4
11-01-10-01-0010 class5
01-01-01-01-0001 class6
01-10-11-01-0100 class2

Thus, Nr = 6. The generated equivalence classes are randomly partitioned into two groups
asfollows:

groupl: classesl, 3,4and5
group 2: classes2 and 6

Theresulting sets of cubes Fy, F» are

F1 F2

01-11-01-11-1000
10-01-01-01-0110
11-01-01-10-0100

01-10-11-01-0100
01-11-10-01-0100
01-01-01-01-0001

11-01-10-01-0010

Next, Obtain() is invoked to compute the cost of the resulting partitioning. First,
Cover () is applied to compute the cover for the function with the on-set F, the don’t care
set R and the off-set F5. Theresulting cover g1 isasfollows:

g

11-11-11-11-1010
11-01-01-11-0100

Now, it is determined which cubesfrom R are specified to 1in the above g1, by comput-
ing the intersection R N g;. For the positiona cube representation, the intersection of two
cubes can be computed as component-wise Boolean AND of the two cubes. The resulting
(non-empty) cubes are shown below.

RNg

11-11-11-10-0010
11-10-11-11-0010
01-11-01-11-0010
01-01-01-01-0100
10-11-11-11-1000
10-11-10-11-1000
10-10-11-11-1010
11-10-11-10-0010
11-11-10-11-1000
11-11-10-10-1010

These cubes are added to F5, and the function with the on-set F, U (RN g1), thedon’t care
set @ and the off-set F; it isminimized by Cover (). The resulting cover is:

g2
11-10-11-11-0010
11-11-11-10-0010
10-11-11-11-1000
11-11-10-11-1000
01-11-11-01-0100
01-01-01-01-0011

The cost of the cover is equal to the total number of cubesin g; and go, i.e. itis8.
Next, the above steps are repeated starting from R. The cubesfrom R are divided into
equivalence classes in the following way:

11-11-11-10-0011 class1
11-10-11-11-0011 class1
01-11-01-11-0010 class1
01-01-01-01-0100 class2
10-11-11-11-1001 class1
10-11-10-11-1100 class1
10-10-11-11-1111 class1
11-10-11-10-0111 class1
11-11-10-11-1001 class1
11-11-10-10-1111 class1

Since Nr = 2, thereisaunique partitioning for them, namely:

Ry Ry

01-01-01-01-0100 11-11-10-10-1111
11-11-10-11-1001
11-10-11-10-0111
10-10-11-11-1111
10-11-10-11-1100
10-11-11-11-1001
01-11-01-11-0010
11-10-11-11-0011
11-11-11-10-0011

The results of the computation after invoking of Obtain() are shown below.

g1 FNnag g2
11-01-01-11-0100 10-01-01-01-0100 11-10-11-11-0011
11-01-01-10-0100 11-11-10-11-1001

01-11-01-11-0010
11-11-11-10-0111
10-11-11-11-1101

Since |g1| + |g2| = 6, the obtained cost is smaller than the current best cost. Thus,
the best cost is updated to 6 and the main minimization loop starts. Since Np > 2,
GroupMigration(Fy, F», R, 6,0) iscaled. The equivalence classes of F' are subsequently
moved to the opposite group by Move(F1, F», class;) and then the cost of the moveis com-
puted by Obtain(). After all classes have been marked as moved, the resulting best_cost
remains 6. Since Np = 2, the algorithm terminates returning the above g; and g, as the
best solution. It can be easily checked that (g1 @ g2) = F'.

Table 1: Comparison with Espresso -Dopo and with AOXMIN-MV -long.

Example Espresso -Dopo AOXMIN-MV AOXMIN-MV -long
function | n | m || p® t,5ec l91] | lg2] | ti.sec || lg1] | lg2] | t2.sec || impr. | ta/ts
5xpl 7 10 64 0.21 8 29 40 8 29 40 0 1
aud 14| 8 || 359 34 9 210 | 243 9 210 243 0 1
b9 16 | 5 119 0.78 12 31 118 12 31 118 0 1
clip 9 5 95 0.99 5 7 17 5 7 17 0 1
dist 8 5 109 1.2 7 85 23 7 85 23 0 1
7 16 | 5 119 0.76 12 31 119 12 31 119 0 1
f51m 8 8 76 0.90 6 27 55 6 27 55 0 1
life 9 1 84 0.42 20 40 200 20 40 200 0 1
radd 8 5 61 0.24 6 14 15 6 14 15 0 1
rd53 5 3 19 0.01 4 13 13 4 13 13 0 1
rd73 71 3 83 0.11 13 49 494 13 49 494 0 1
rds4 8 4 192 0.46 21 109 1566 21 109 1566 0 1
root 8 5 49 041 1 51 33 1 51 33 0 1
t481 16 1 481 1.6 9 9 218 9 9 218 0 1
Xxor5 5 1 12 0.01 2 4 7.3 2 4 7.3 0 1
z4 7 4 45 011 4 14 9.3 4 14 9.3 0 1
in2 19 | 10 136 23 136 0 11 5 115 1053 0.12 957.3
t1 21 | 23 85 51 89 0 59 8 75 101 0.07 171
tial 14 | 8 359 18 361 0 4.2 6 296 406 0.16 96.7
x9dn 27| 7 116 13 120 0 12 1 112 179 0.06 149.2
amd 14 | 24 66 25 68 0 11 68 0 361 0 328.2
b2 16 | 17 || 106 3.6 110 0 3.9 110 0 1669 0 4279
b10 15 | 11 || 100 16 100 0 0.92 100 0 80 0 87.0
bcO 26 | 11 185 6.6 185 0 4.1 185 0 487 0 118.8
benchl 919 139 7.0 140 0 3.2 140 0 382 0 119.4
cordic 23| 2 155 63 163 0 12 163 0 12 0 1
duke2 22| 29| 86 44 87 0 3.2 87 0 8.6 0 18
ex1010 10 | 10 || 279 32 324 0 17 324 0 9584 0 563.8
exam 10 | 10 || 58 7.3 59 0 2.6 59 0 11 0 42
gary 15| 11 107 1.6 108 0 12 108 0 204 0 170.0
in0 15| 11 106 14 108 0 11 108 0 183 0 166.4
inl 16 | 17 || 106 3.6 110 0 0.9 110 0 1670 0 1855.6
in5 24 | 14 62 54 62 0 22 62 0 63 0 28.6
misex3 | 14 | 14 || 189 59 207 0 20 207 0 1300 0 65.0
misex3c | 14 | 14 199 19 196 0 6.2 196 0 1195 0 192.7
pl 8 | 18 || 48 23 48 0 11 48 0 11 0 10.0
ryyé 16 1 112 0.17 7 1 0.18 7 1 0.18 0 1
sa02 10 | 4 37 0.13 38 0 0.83 38 0 30 0 36.1
shift 19 | 16 || 100 0.34 100 0 0.29 100 0 479 0 1651.7
sym10 10 1 210 19 130 1 0.76 130 1 19 0 25
t2 17 | 16 || 53 18 53 0 0.87 53 0 63 0 724
table3 14 | 14 175 20 175 0 18 175 0 77921 0 3896.1
tables 17 | 15 || 158 30 158 0 19 158 0 59620 0 2293.1
ts10 22 | 16 128 0.46 128 0 0.64 128 0 1589 0 2482.8
vg2 25| 8 || 110 9.3 110 0 17 110 0 81 0 47.6
x1dn 27 | 6 || 110 7.2 110 0 13 110 0 49 0 37.8

[average | 14 [11 [127 [81 || 8 | 17 | 712 || 71 | 47 [35203]| 0.000 | 3456 |

5 Experimental results

We have applied the algorithm AOXMIN-MYV to a set of benchmark functions. The results
were compared to the solutions produced by the two-level AND-OR minimizer Espresso
[12], to the results of the 3-level AND-OR-XOR minimizers reported in [7] and [9], and
to the results of the previous version of the algorithm, AOXMIN [8]. AOXMIN-MYV,
AOXMIN and Espresso were run on a Sun Ultra 60 operating two 360 MHz CPU and
768 Mb memory.

The purpose of the first experiment was to evaluate how good the estimation subroutine
Check() is. To do this, we have added to the AOXMIN-MV the option -long. If AOXMIN-
MV is run with this option, when the checking if (best_cost < initial_cost) is skipped,
and GroupMigration() is invoked for the case best_cost > initial_cost as well. Thus, a
comparison of the runs of AOXMIN with and without -long option gives us an idea of
whether we would get a better result if we would perform do-loop for the case best_cost
> initial_cost as well. Table 1 shows the results of the comparison of AOXMIN-MV and
AOXMIN-MV -long in terms of the total number of products and in the resulting ¢; and
go (columns 6, 7 and 9, 10), and the time taken in seconds (columns 8 and 11). Thetime
is user time measured using the UNIX system command time. The table aso shows the
number of products p¢ in the cover obtained by Espresso with output phase optimization
(-Dopo option) and the time ¢ to compute it (columns 3 and 4, respectively). Columns 2
and 3 give the number of inputs n and the outputs m of the benchmark functions.

To make the comparison more clear, we have splitted the table into 3 parts: the upper
part shows the benchmarkswhich successfully passed if (best_cost < initial_cost) checking
of AOXMIN-MV and the lower two parts show the benchmarkswhich did not pass. Clearly,
in the first case, GroupMigration() isinvoked for both AOXMIN-MV and AOXMIN-MV
-long, and therefore they produce the same results in terms of products and time. The mid-
dle part shows the benchmarks for which AOXMIN-MV -long found the solution with a
smaller number of cubesthan AOXMIN-MV, i.e. these areincorrectly estimated cases. The
last too columns of the table show theimprovement of AOXMIN-MV -long over AOXMIN-
MV, computed as 1 — (‘gl‘ﬁtﬁ')’ﬁ’x“"”“"“v""“g and the number of times AOXMIN-MV -longis
slower than AOXMIN. gluﬁe |é’\7\,€roﬁ“gpf'g= the table shows the cases when invoking Group-
Migration() brought no improvement. One can see that AOXMIN-MV is 345 times faster
on average than AOXMIN-MV -long, at the expense of only 0.9% more product-termsin
the obtained solution.

Table 2 shows the results of the comparison of AOXMIN-MV and the previous version
of the algorithm, AOXMIN [8]. AOXMIN takes as its argument an integer N, determin-
ing the number of random partitionings to perform. For all benchmarks, we run AOXMIN
for up to 50 iterations, and we show the lowest number of iterations for achieving the best
result.

The upper part of the table shows the functions estimated as likely to have a compact
AND-OR-XOR expression. AOXMIN is usualy faster, because several random partition-
ings take less time than the group migration algorithm, but AOXMIN-MV produces better
results. Furthermore, when running AOXMIN, we never know how many random partition-
ings we have to make to find the best solution. For most functions, it istoo time-consuming

Table 2: Comparison with AOXMIN.

Example AOXMIN AOXMIN-MV
function | n | m || |g1] + |g2] t,sec Niter || |91] + |92] t,sec
5xpl 7 | 10 42 2.26 10 37 40.47
clip 915 95 191 10 82 17.32
rd53 51| 3 19 4.12 20 17 13.17
rd73 71 3 83 4.61 10 62 494.21
rds4 8 | 4 192 10.42 10 130 1566.52
481 16| 1 18 314331 | 50 18 218.16
xorS 511 12 216 20 6 7.25
aud 14| 8 447 19.38 1 219 243.03
duke2 | 22 | 29 87 4.32 1 87 321
ex1010 | 10 | 10 725 19.38 1 306 17.70
misex3c | 14 | 14 197 13.07 1 196 6.2
table3 14 | 14 176 19.69 1 175 18.12
table 17 | 15 158 20.69 1 158 19.44
bw 51|28 24 3.29 1 28 0.46

to run more than 50 partitionings. For example, 50 runs of AOXMIN takes 8 hours. Con-

trary, AOXMIN-MV needs just 4 minsto find the same solution.

Thelower part of the table shows the functions estimated as unlikely to have a compact
AND-OR-XOR expression. AOXMIN-MV isfaster than asingle run of AOXMIN, due to
thefact that it uses Cover (), which isfaster than Espresso used by AOXMIN. Since Cover ()
performs only asingle pass of a minimization algorithm, the resulting cover may be larger,
as in the case of bw. However, AOXMIN-MV may be much better utilization of common

subterms, like in the case of ex1010.

Table 3 shows the results of the comparison of AOXMIN-MV and the agorithm [7].
The benchmark resultsfor the algorithm [9] are taken from the reference[9]. Unfortunately,

Table 3: Comparison with the algorithm [7].

function n | m || Algorithm[7] || AOXMIN-MV
lg91] + [g2] lg1] + |g2]

5xpl 7 110 47 37
9sym 9 1 73 73
clip 9 | 5 92 82
rd73 7 3 83 62
san2 10| 4 33 38
481 6|1 364 18
adder 2-bit | 4 3 7 7
adder 3-bit | 6 4 26 11
adder4-bit | 8 | 5 37 20
adder 5-bit | 10 | 6 79 39

the timing is not reported in [9].

The algorithm [7] first generates a minimal expansion of the function in terms of of
XOR and AND operations (XOR of AND-terms). Some of the XOR's are then converted
into OR’s, and subsequently, a graph coloring technique is used for the minimization of
XOR'sin the final expansion. Our algorithm shows better results for all functions except
5a02.

Table 4: Comparison with the algorithm [9]; ¢! is the user time on HP180, provided by the
authors of [9]; ¢ isthe user time measure in our experiments (on Sun Ultra 60).

function | n | m Algorithm [9] AOXMIN-MV
lg1] +1g2] | t'.sec || [ga]+ g2l | t7.seC
mip4 8| 8 75 1956.31 122 0.87
rd53 5|3 17 27.98 17 13.17
rd73 713 54 386.37 62 494.21
rds4 8| 4 99 1319.94 130 1566.52
74 7| 4 22 433.91 18 9.53

Table 4 shows the results of the comparison of AOXMIN-MV and the algorithm [9].
The benchmark results and timing for the algorithm [9] were kindly provided by the authors
of [9].

The algorithm [9] decomposes the function to the subfunctions of up to 5 variables and
then apply an exact algorithm to find the AND-OR-XOR expression for the individual sub-
functions. Finaly, the AND-OR-XOR expression for the complete function is composed
from these expressions. Clearly, for small functions, such an agorithm is likely produce
a better solution than our algorithm. Unfortunately, it is infeasible for larger functions,
becauseit is too time-consuming.

6 Conclusion

This paper presents a heuristic algorithm, AOXMIN-MV, for three-level AND-OR-XOR
minimization. Compared to the previous version AOXMIN, reported in [8], the main novel
features of AOXMIN-MV are: (1) an estimation metric, checking whether the input func-
tion is likely to have a compact AND-OR-XOR expression; (2) a different strategy for
partitioning the on-set of the input function into two groups, based on an extension of
Fiduccia/lM attheyses partitioning algorithm; (3) better utilization of common subterms, due
to the treatment of the output part of a multiple-output function as a single multiple-valued
variable. The experimental results show that, these modificationsyield to afaster and more
efficient algorithm.

Two major facets of our algorithm require further research. First, we are presently
working on extending it to handle AND and OR cases. That would give us an algorithm
targeting a minimal expression of the type shown in equation (1) for any binary operation

o”. Such an agorithm could be used for multi-level logic optimization by being applied

recursively to the resulting solution until no more improvement is encountered. We are also
investigating the possibility of integrating our algorithm with SIS[20].

Second, presently we use a very simple cost measure (number of products), which
is might not be suitable for some FPGA architectures, like, for example, look-up table
based architecture. We need to incorporate a more sophisticated cost measure, reflecting
the specific of the target architecture.

Further work on the efficiency of the algorithm might also incorporate representation
of multiple-valued input binary-valued output functions by Multiple-Valued Decision Dia-
grams (MDD) [21], and performing the basic operation of the algorithm directly on graphs.
Since there is no direct correspondence between the size of the cover for the function and
the size of the MDD that representsit, very large cube covers can be captured and efficiently
mani pulated using this representation.

Acknowledgment

The authors are grateful to Debatosh Debnath and Tsutomu Sasao from Kyushu Institute of
Technology for providing us with the benchmark results and timing for the algorithm [9].

This work was supported in part by Research Grant No 240-98-101 from the Swedish
Research Council for Engineering Sciences and by a fellowship from the Knut and Alice
Wallenbergs foundation of Sweden.

References

[1] T. Sasao,”Onthecomplexity of three-level logic circuits’, Proc. MCNC Int. Workshop
on Logic Synthesis, Research Triangle Park, North Carolina, May 1989.

[2] "Thehome pagefor programmablelogic’, 1999. Xilinx Corporation, http://www. xil-
inx.com/products/products.htm.

[3] "FLEX Devices’, 1999. Altera Corporation, http://www.altera.com/html/products/
flex.html.

[4] "APEX 20K Device Family”, 1999. Altera Corporation, http://www.altera.com/html/
products/apex.html.

[5] A.A.Malik, D. Harrison, R.K. Brayton, " Three-level decomposition with application
to PLDs’, IEEE Int. Conference on Computer Design, 1991, pp. 628-633.

[6] E. Dubrova, P. Ellervee " A fast algorithm for three-level logic optimization”, Proc.
Int. Workshop on Logic Synthesis, Lake Tahoe, May 1999, pp. 251-254.

[7] T. Sasao, "A design method for AND-OR-EXOR three-level networks’, Proc. Int.
Workshop on Logic Synthesis, Lake Tahoe, May 1995.

[8] E. V. Dubrova, D. M. Miller, J. C. Muzio, "AOXMIN: A three-level heuristic AND-
OR-XOR minimizer for Boolean functions’, Prac. 3rd Inter national Workshop on the

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Applications of the Reed-Muller Expansion in Circuit Design, Oxford, U.K., Sept.
1997, pp. 209-218.

D. Debnath, T. Sasao, " A heuristic algorithm to design AND-OR-EXOR three-level
networks’, Proc. Asia and South Pacific Design Automation Conf. (ASP-DAC’ 98),
Yokohama, Japan, Feb. 1998.

E. V. Dubrova, D. M. Miller, J. C. Muzio, "Upper bound on number of product-terms
in AND-OR-XOR expression of logic functions®, Electronics Letters, vol. 31, 1995,
pp. 541-542.

D. Debnath, T. Sasao, " Exclusive-OR of two sum-of products expressions: simplifi-
cation and an upper bound on the number of products’, Proc. 3rd International Work-
shop on the Applications of the Reed-Muller Expansion in Circuit Design (1997),
45-60.

R.K. Brayton, G. Hachtel, C. McMullen, A. Sangiovanni-Vincentelli, Logic Mini-
mization Algorithmsfor VLS Synthesis, Kluwer, 1984.

D. Gajski, N. Dutt, A. Wu, S. Lin, High Level Synthesis: Introduction to Chip and
System Design, Kluwer, 1992,

C. M. Fiduccia, R. M. Mattheyses, ”A linear time heuristic for improving network
partitions’, Proc. 19th ACM/IEEE Design Automation Conference, 1982, pp. 175-
181.

T. Sasao, " An application of multiple-valued logic to adesign of programmable logic
arrays’, Proc. 8th Int. Symp. Multiple-Valued Logic, May 1978, pp. 65-72.

R. Rudell, A. Sangiovanni-Vincentelli, "Multiple-valued minimization for PLA opti-
mization”, IEEE Trans. on Computer-Aided Design, vol. CAD-6, No. 5, Sept. 1987,
pp. 727-749.

G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, 1994.

Y. H. Su, P. T. Cheung, " Computer minimization of multi-valued switching functions”,
|EEE Trans. Comput., vol. C-21, 1972, pp. 995-1003.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to Algorithms, The MIT
Press, Cambridge, England, 1997.

E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R.K. Brayton, A. Sangiovanni-
Vincentelli, ” Sequentia circuit design using synthesis and optimization”. Proc. Int.
Conf. Computer design, 1992, pp. 328-333.

D. M. Miller, "Multiple-valued logic design tools’, Proc. 23rd Int. Symp. Multiple-
Valued Logic, May 1993, pp. 2-11.

