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Abstract

Three-level logic is shown to have a potential for reduction of the area over two-
level implementations, as well as for a gain in speed over multi-level implementations.
In this paper we present an heuristic algorithm, AOXMIN-MV, targeting a three-level
logic expression which is an XOR of two sum-of-products. For some practical func-
tions, such an AND-OR-XOR expression may have up to 27 times less product-terms
compared to the classical sum-of-products form. Several algorithms for finding mini-
mal AND-OR-XOR expressions were presented, but they all are time-consuming for
large functions. The algorithm presented here solves this problem by (1) introducing
an estimation metric, checking whether the input function is likely to have a compact
AND-OR-XOR expression; (2) employing a new strategy for decomposing the input
function into two sum-of-products; (3) treating the output part of a multiple-output
function as a single multiple-valued variable. The experimental results show that these
modification yield a faster and more efficient algorithm. Furthermore, it gives a solu-
tion to a more general problem of minimization of multiple-valued input binary-valued
output logic functions.

1 Introduction

Three-level logic is shown to be a good trade-off between the speed of two-level logic
and the density of multi-level logic [1]. The optimization problem for three-level logic
is harder than that for two-level logic, but much simpler than for multi-level logic. The
existing algorithms for logic optimization cannot be directly adapted to handle the three-
level problem efficiently.

Many devices for implementing three-level logic are industrially offered, e.g. Xilinx’s
XC4000E and XC4000X series Field Programmable Gate Arrays [2], or Altera’s Apex
20K, Flex 10KE and Flex 8000 Programmable Logic Devices (PLDs) families [3], [4]. A
simplified logic block of these devices consists of a set of Programmable Logic Arrays,
implementing the first two levels of logic, and a set of logic expanders, implementing the



third level. Each logic expander can be programmed to realize any function of two variables.
Such a logic block implements a logic expression of the type:

(1)

where denotes an arbitrary product-term involving some of the variables
or their complements, “ ” denotes a binary operation, and .

The first algorithm, addressing the optimization of such PLDs, was presented in 1991 by
Malik, Harrison and Brayton in [5]. It was shown that the number of products in the three-
level expression obtained by the algorithm can be significantly smaller (up to a factor of 5)
than the number of products in the expression obtained by a two-level AND-OR minimizer.
The algorithm [5] first determines a minimal expression (1) for the case of “ ” = AND,
and then applies output phase optimization to the logic expander to check suitability of the
other choices of “ ”. Such a scheme minimizes (1) for all interesting cases except “ ” =
XOR, “ ” = XNOR. A modified version of the algorithm [5], aiming to reduce its run-time
performance, is presented in [6].

Several algorithm addressing “ ” = XOR case were presented in [7], [8] and [9]. It
was shown that an AND-OR-XOR expression has a smaller upper bound on the number of
product-terms than the upper bound of an AND-OR or an AND-XOR expansion, implying
the existence of a more economical circuit implementation for some functions [10], [11]
. Furthermore, the experimental results of [8] have demonstrated that, for some functions,
assigning “ ” = XOR may lead to a reduction by a factor of 27 in the number of product-
terms in the expression (1) compared to the number of product-terms in the sum-of-product
expression obtained by a two-level AND-OR minimizer.

Unfortunately, the algorithms [7]-[9] can be time-consuming for large functions. Our
experimental results show that only about 30% of practical functions have compact AND-
OR-XOR forms, and for the rest the number of product-terms in their minimal AND-OR-
XOR form is comparable to the number of product-terms in their minimal sum-of-products
form. For a large benchmark, running an XOR-based optimization algorithm for several
hours to find out that the size of the resulting AND-OR-XOR expression is very similar to
the cover produced by a two-level AND-OR minimizer Espresso [12] is quite depressing.

We have found an efficient solution to this problem. We have developed an estimation
metric, which gives a fast answer as to whether an input function is suitable for “ ” = XOR
(XNOR) optimization or not. This metric is used in the new algorithm AOXMIN-MV for
finding minimal AND-OR-XOR expressions, which is reported in this paper. It evolved
from the algorithm for three-level AND-OR-XOR MINimization AOXMIN [8]. The novel
features of AOXMIN-MV are:

1. AOXMIN-MV uses the new estimation metric, checking suitability of the input func-
tion for “ ” = XOR (XNOR) in the expression given by the equation (1) or not. If the
function is found not suitable, the algorithm terminates. Otherwise, it continues.

2. AOXMIN-MV uses an extension of Fiduccia/Mattheyses partitioning algorithm for
finding a best decomposition of the on-set of the input function into two groups [13].
In AOXMIN, this decomposition was made randomly.



3. AOXMIN was essentially a single-output minimizer. For a multiple-output problem,
it minimized each function independently, and then applied Espresso to the resulting
set of functions. Such an approach produces unsatisfactory results for many multiple-
output functions. In our new implementation, we use the technique suggested in [15]
and [16], and treat the output part as a single multiple-valued variable.

The AOXMIN-MV gives better solutions and is much faster compared to AOXMIN. For
example, it takes just 4 minutes to find the 18 product-terms solution for t481 benchmark,
while AOXMIN needed 8 hours to compute it. Furthermore, AOXMIN-MV gives a solution
to a more general problem of minimization of multiple-valued input, binary-valued output
logic functions.

The paper is organized as follows. Section 2 describes the basic notation and definitions
which are used in the sequel. Section 3 presents the AOXMIN-MV algorithm. In Section 4
the algorithm is demonstrated on the example of a 2-bit multiplier. Section 5 includes the
experimental results. In the final section, some conclusions are drawn and directions for
further research are proposed.

2 Preliminaries

We use the standard definitions and notation in the area of logic synthesis ([12], [17]). The
most important notions are briefly summarized in this section.

2.1 Multiple-valued input binary-valued output functions

A multiple-valued input, binary-valued output function is a mapping
, where the sets for ,

represent the sets of values the variable may assume, and . denotes a
don’t care value.

An -input -output switching function can be represented by a multiple-valued input
binary-valued output function of variables, where for , and

. It is easily proven that the boolean minimization problem for multiple-output
functions is equivalent to the minimization of a multiple-valued function of this form.

A point in the domain of the function is called a minterm. The on-set
, the don’t care-set and the off-set of are the sets of minterms that are mapped by
to 1, and 0, respectively.

Let be a variable taking values from the set , and let . Then represent
the characteristic function

if
otherwise

is called a literal of variable . The complement of a literal (written ) is the

literal .
A product-term is a Boolean product (AND) of one or more literals. If a product-term

evaluates to 1 for a given minterm, the product-term is said to contain the minterm. A
sum-of-products is a Boolean sum (OR) of product-terms.



2.1.1 Operations on product-terms

Let and denote product-terms.
The complement of a product-term , denoted by is the sum-of-products .
The intersection of product-terms and , denoted by , is the product-terms

which is the largest product-term contained in both and . If
for some , then , and and are said to be disjoint. Otherwise,

they intersect.
The union of product-terms and , denoted by , is the product-term

which is the smallest product-term containing both and .
The exclusive-or of two and , denoted by , is the product-term ,

where ), for .

2.1.2 Positional cube notation

Let be a product-term. It can be represented by a binary vector:

where if , and otherwise. Such a notation is called a positional cube or
simply a cube [18]. A cube is a convenient representation for product-terms, and we often
use the terms cube and product-term interchangeably.

We use to represent the binary vector . The notation refers to
the bitwise OR of two binary vectors, refers to the bitwise AND, and denotes the
bitwise complement of a binary vector.

A sum-of-products is represented by a set of cubes, also called a cover. The size of a
cover is the number of cubes in it. We denote the size of a cover by . The complement
of a cover is the intersection of the complements for each cube of the cover. The intersection
(union or exclusive-or) of two covers is defined as the union of the pairwise intersection
(union or exclusive-or) of the cubes from each cover.

The cube provides a convenient data structure for computer implementation of the al-
gorithm where one bit is used for each part of the cube. Boolean operations on cubes are
performed as word-wide operations (e.g. the intersection of two cubes is the cube which
results from the component-wise Boolean AND of two cubes), which is more efficient than
manipulating the binary vectors element by element.

3 The algorithm AOXMIN-MV

In this section we describe the structure of the AOXMIN-MV algorithm. The pseudocode
is shown in Figure 1.

AOXMIN-MV receives as its input an incompletely specified multiple-output Boolean
function (in Espresso format). It returns as its output two sets of cubes, and , such
that either or the complement of is a cover for . The objective is to
minimize the total number of cubes in and .



AOXMIN-MV
input: on-set , don’t care set and off-set of
output: sets of cubes , and such that , if , and , if ,
total number of cubes in and .

/* Initialization */
Cover ;
Cover ;

if
initial cost = ;

else
initial cost = ;

best cost = initial cost;

/* Checking whether is likely to have a compact AND-OR-XOR form */
Check ;

if best cost
best , best , best cost ;

Check ;
if best cost

best , best , best cost ;

/* Main minimization loop */
if best cost initial cost

if
best , best , best cost GroupMigration ;

if
best , best , best cost GroupMigration ;

return best , best , best cost ;

else
return ”function is unlikely to have a compact AND-OR-XOR form ;

Figure 1: Pseudocode of the AOXMIN-MV algorithm.



First, the covers for the on-set and off-set of the input function are computed by em-
ploying the subroutine Cover(). Cover() implements Reduce(), Expand() and Irredundant()
subroutines of Espresso [12] to comprise a single pass of the minimization algorithm. If

, then the cost is initialized to . Otherwise, it is set to .

Check
input: on-set and off-set of
output: sets of cubes and partitioning , number of equivalence classes of , and two sets of cubes

and , such that .

DivideEqClasses ;
RandomPartitioning ;

Obtain ;
return ;

Figure 2: Pseudocode of the Check() subroutine.

The next step is to check whether the input function is likely to have a compact AND-
OR-XOR form. This is done by the subroutine Check(), whose pseudocode is shown in
Figure 2. As a preprocessing step, Check() performs clustering of the cubes into

equivalence classes with respect to the equivalence relation , where is the
transitive closure of , and is defined by

iff

Two cubes are in relation either when they intersect, or when they are connected through
a chain of intersecting cubes. Thus, the equivalence classes of form a partition of a set of
cubes into connected chains of cubes. The clustering is performed by DivideEqClasses()
subroutine, implementing a classical algorithm for computing a transitive closure [19]. Di-
videEqClasses() takes a set of cubes as its input, computes which cubes are connected, and
labels each cube with the number of the equivalence class to which it belongs. It returns the
total number of of the classes in the set (for pseudocode of DivideEqClasses(), see [8]).

After clustering, the equivalence classes are randomly partitioned by RandomParti-
tioning() into two groups, and , such that and . and
are used by the the subroutine Obtain() to construct two different sets of cubes, and ,
satisfying , which would possibly be of a total size smaller than .

Obtain
input: sets of cubes and , partitioning and off-set of .
output: sets of cubes and , such that

Cover ;
;

Cover ;
return

Figure 3: Pseudocode of the Obtain() subroutine.



Obtain() uses the following property: If than, for any cube ,
. This property trivially follows from the properties of the XOR

operation. The two basic steps of Obtain() are:

1. Obtain such that and .

2. Obtain such that .

The first step can be converted to the problem of finding a cover for the incompletely
specified function with the on-set , the don’t care set and the off-set . The cover is
computed by employing Cover().

Next, we determine which cubes from are specified to 1 in the obtained cover, by
computing the intersection . Finally, we invoke Cover() to compute a cover for the
completely specified function with the on-set and the off-set .

Let us prove that the relation holds:

since
from the above property

Clearly, implies .
Check() is invoked first starting from the on-set , and then starting from the off-set

of . Each time the best solution is updated. If neither of the costs obtained is smaller than
the initial cost, than it is assumed that the function is unlikely to have a compact AND-OR-
XOR form, and the algorithm terminates. Otherwise, the subroutine GroupMigration() is
called first using and as the initial partition, and then using and as the initial
partition.

GroupMigration() implements a group migration algorithm [13] which is an extension
of Fiduccia/Mattheyses iterative improvement algorithm [14]. Group migration algorithm
repeats the following: given an initial partitioning of objects into two groups, for each
object determine the decrease in cost if the object were moved to the other group. Then,
move the object that produces the greatest decrease or smallest increase in cost and mark it
as moved. After all objects have been moved once, the lowest-cost partitioning is selected.
If this partitioning has a higher cost then the initial one, then the algorithm stops. Otherwise
it iterates taking the new partitioning for the initial partitioning.

The pseudocode shown in Figure 4 details a group migration algorithm for improving
an initial partitioning of objects into two groups. In our case, objects are equivalence classes
of , computed by DivideEqClasses() and partitioned between the sets and . A pro-
cedure Move class returns a new partition of classes between and obtained
by moving all the cubes belonging to a given equivalence class class , ,
from the set , , to the set , , . Each equivalence class
has flag, moved, which indicates whether it has been moved or not. The variable best-
move class is the equivalence class that, when moved, yields the best cost improvement,
and bestmove cost is the resulting cost. Our experimental results show that the number of
times the do-loop repeats in usually less than three.



GroupMigration , best cost,
input: sets of cubes and , partitioning on-set , the number of equivalence classes in , off-set ,
current best cost and an integer
output: sets of cubes best and best , such that , updated best cost, and an integer
.

do
/* Initialization */

init cost = best cost;
for each class

class .moved = false;

/* Create a sequence of moves */
for from 1 to

bestmove cost = ;
for each class not class .moved

Move , class ;
Obtain ;

if bestmove cost
bestmove cost = ;
bestmove class = class ;

if bestmove cost best cost
bestpart , bestpart ;
best , best , best cost , bestmove cost, i ;

Move bestmove class ;
bestmove class = bestmove class.moved;

/* Update if a better cost was found, else exit */
if best cost init cost

bestpart , bestpart ;
else

return best , best , best cost ;
while best cost init cost ;

Figure 4: Pseudocode of the GroupMigration() subroutine.



GroupMigration() is called only if the number of equivalence classes, obtained by
DivideEqClasses(), is greater than two. Otherwise, and have at most one class each
and moving it to the opposite group will cause one of and to become the empty set.
If is an empty set, then is an empty set, and thus . Therefore,
and invoking GroupMigration() for the case brings no reduction in the total size of

and .

4 Example: a 2-bit multiplier

In this section, we demonstrate the algorithm AOXMIN-MV on the example of a 2-bit
multiplier. The input of the algorithm is a specification of the 2-bit multiplier in Espresso
format, shown in Figure 5.

.i 4

.o 4
1010 1000
1001 0100
1011 1100
0110 0100
0101 0010
0111 0110
1110 1100
1101 0110
1111 1001
.e

Figure 5: Specification of a 2-bit multiplier in Espresso format.

First, AOXMIN-MV applies Cover() to compute the minimal covers for the on-set and
off-set of the function. The resulting covers and are shown below (in positional cube
notation, with “-” separating positions in the cube). Recall, that the output part of the
cube is treated as a single multiple-valued variable (4-valued variable for the 4-output 2-bit
multiplier).

01-11-01-11-1000 11-11-11-10-0011
01-11-10-01-0100 11-10-11-11-0011
10-01-01-01-0110 01-11-01-11-0010
11-01-01-10-0100 01-01-01-01-0100
11-01-10-01-0010 10-11-11-11-1001
01-01-01-01-0001 10-11-10-11-1100
01-10-11-01-0100 10-10-11-11-1111

11-10-11-10-0111
11-11-10-11-1001
11-11-10-10-1111

Since , initial cost = 7. Next, the subroutine Check() is invoked, first starting
from the the cover . The cubes in are divided into equivalence classes in the following
way:



01-11-01-11-1000 class 1
01-11-10-01-0100 class 2
10-01-01-01-0110 class 3
11-01-01-10-0100 class 4
11-01-10-01-0010 class 5
01-01-01-01-0001 class 6
01-10-11-01-0100 class 2

Thus, . The generated equivalence classes are randomly partitioned into two groups
as follows:

group 1: classes 1, 3, 4 and 5
group 2: classes 2 and 6

The resulting sets of cubes , are

01-11-01-11-1000 01-10-11-01-0100
10-01-01-01-0110 01-11-10-01-0100
11-01-01-10-0100 01-01-01-01-0001
11-01-10-01-0010

Next, Obtain() is invoked to compute the cost of the resulting partitioning. First,
Cover() is applied to compute the cover for the function with the on-set , the don’t care
set and the off-set . The resulting cover is as follows:

11-11-11-11-1010
11-01-01-11-0100

Now, it is determined which cubes from are specified to 1 in the above , by comput-
ing the intersection . For the positional cube representation, the intersection of two
cubes can be computed as component-wise Boolean AND of the two cubes. The resulting
(non-empty) cubes are shown below.

11-11-11-10-0010
11-10-11-11-0010
01-11-01-11-0010
01-01-01-01-0100
10-11-11-11-1000
10-11-10-11-1000
10-10-11-11-1010
11-10-11-10-0010
11-11-10-11-1000
11-11-10-10-1010

These cubes are added to , and the function with the on-set , the don’t care
set and the off-set it is minimized by Cover(). The resulting cover is:



11-10-11-11-0010
11-11-11-10-0010
10-11-11-11-1000
11-11-10-11-1000
01-11-11-01-0100
01-01-01-01-0011

The cost of the cover is equal to the total number of cubes in and , i.e. it is 8.
Next, the above steps are repeated starting from . The cubes from are divided into

equivalence classes in the following way:

11-11-11-10-0011 class 1
11-10-11-11-0011 class 1
01-11-01-11-0010 class 1
01-01-01-01-0100 class 2
10-11-11-11-1001 class 1
10-11-10-11-1100 class 1
10-10-11-11-1111 class 1
11-10-11-10-0111 class 1
11-11-10-11-1001 class 1
11-11-10-10-1111 class 1

Since , there is a unique partitioning for them, namely:

01-01-01-01-0100 11-11-10-10-1111
11-11-10-11-1001
11-10-11-10-0111
10-10-11-11-1111
10-11-10-11-1100
10-11-11-11-1001
01-11-01-11-0010
11-10-11-11-0011
11-11-11-10-0011

The results of the computation after invoking of Obtain() are shown below.

11-01-01-11-0100 10-01-01-01-0100 11-10-11-11-0011
11-01-01-10-0100 11-11-10-11-1001

01-11-01-11-0010
11-11-11-10-0111
10-11-11-11-1101

Since , the obtained cost is smaller than the current best cost. Thus,
the best cost is updated to 6 and the main minimization loop starts. Since ,
GroupMigration is called. The equivalence classes of are subsequently
moved to the opposite group by Move class and then the cost of the move is com-
puted by Obtain(). After all classes have been marked as moved, the resulting best cost
remains 6. Since , the algorithm terminates returning the above and as the
best solution. It can be easily checked that .



Table 1: Comparison with Espresso -Dopo and with AOXMIN-MV -long.

Example Espresso -Dopo AOXMIN-MV AOXMIN-MV -long
function ,sec ,sec ,sec impr.

5xp1 7 10 64 0.21 8 29 40 8 29 40 0 1
alu4 14 8 359 34 9 210 243 9 210 243 0 1
b9 16 5 119 0.78 12 31 118 12 31 118 0 1
clip 9 5 95 0.99 5 77 17 5 77 17 0 1
dist 8 5 109 1.2 7 85 23 7 85 23 0 1
ex7 16 5 119 0.76 12 31 119 12 31 119 0 1

f51m 8 8 76 0.90 6 27 55 6 27 55 0 1
life 9 1 84 0.42 20 40 200 20 40 200 0 1
radd 8 5 61 0.24 6 14 15 6 14 15 0 1
rd53 5 3 19 0.01 4 13 13 4 13 13 0 1
rd73 7 3 83 0.11 13 49 494 13 49 494 0 1
rd84 8 4 192 0.46 21 109 1566 21 109 1566 0 1
root 8 5 49 0.41 1 51 3.3 1 51 3.3 0 1
t481 16 1 481 1.6 9 9 218 9 9 218 0 1
xor5 5 1 12 0.01 2 4 7.3 2 4 7.3 0 1
z4 7 4 45 0.11 4 14 9.3 4 14 9.3 0 1

in2 19 10 136 2.3 136 0 1.1 5 115 1053 0.12 957.3
t1 21 23 85 5.1 89 0 5.9 8 75 101 0.07 17.1

tial 14 8 359 18 361 0 4.2 6 296 406 0.16 96.7
x9dn 27 7 116 13 120 0 1.2 1 112 179 0.06 149.2

amd 14 24 66 2.5 68 0 1.1 68 0 361 0 328.2
b2 16 17 106 3.6 110 0 3.9 110 0 1669 0 427.9
b10 15 11 100 1.6 100 0 0.92 100 0 80 0 87.0
bc0 26 11 185 6.6 185 0 4.1 185 0 487 0 118.8

bench1 9 9 139 7.0 140 0 3.2 140 0 382 0 119.4
cordic 23 2 155 63 163 0 12 163 0 12 0 1
duke2 22 29 86 4.4 87 0 3.2 87 0 8.6 0 1.8

ex1010 10 10 279 32 324 0 17 324 0 9584 0 563.8
exam 10 10 58 7.3 59 0 2.6 59 0 11 0 4.2
gary 15 11 107 1.6 108 0 1.2 108 0 204 0 170.0
in0 15 11 106 1.4 108 0 1.1 108 0 183 0 166.4
in1 16 17 106 3.6 110 0 0.9 110 0 1670 0 1855.6
in5 24 14 62 5.4 62 0 2.2 62 0 63 0 28.6

misex3 14 14 189 59 207 0 20 207 0 1300 0 65.0
misex3c 14 14 199 19 196 0 6.2 196 0 1195 0 192.7

p1 8 18 48 2.3 48 0 1.1 48 0 11 0 10.0
ryy6 16 1 112 0.17 7 1 0.18 7 1 0.18 0 1
sao2 10 4 37 0.13 38 0 0.83 38 0 30 0 36.1
shift 19 16 100 0.34 100 0 0.29 100 0 479 0 1651.7

sym10 10 1 210 1.9 130 1 0.76 130 1 1.9 0 2.5
t2 17 16 53 1.8 53 0 0.87 53 0 63 0 72.4

table3 14 14 175 20 175 0 18 175 0 77921 0 3896.1
table5 17 15 158 30 158 0 19 158 0 59620 0 2293.1
ts10 22 16 128 0.46 128 0 0.64 128 0 1589 0 2482.8
vg2 25 8 110 9.3 110 0 1.7 110 0 81 0 47.6

x1dn 27 6 110 7.2 110 0 1.3 110 0 49 0 37.8

average 14 11 127 8.1 85 17 71.2 71 47 3520.3 0.009 345.6



5 Experimental results

We have applied the algorithm AOXMIN-MV to a set of benchmark functions. The results
were compared to the solutions produced by the two-level AND-OR minimizer Espresso
[12], to the results of the 3-level AND-OR-XOR minimizers reported in [7] and [9], and
to the results of the previous version of the algorithm, AOXMIN [8]. AOXMIN-MV,
AOXMIN and Espresso were run on a Sun Ultra 60 operating two 360 MHz CPU and
768 Mb memory.

The purpose of the first experiment was to evaluate how good the estimation subroutine
Check() is. To do this, we have added to the AOXMIN-MV the option -long. If AOXMIN-
MV is run with this option, when the checking if best cost initial cost is skipped,
and GroupMigration() is invoked for the case best cost initial cost as well. Thus, a
comparison of the runs of AOXMIN with and without -long option gives us an idea of
whether we would get a better result if we would perform do-loop for the case best cost

initial cost as well. Table 1 shows the results of the comparison of AOXMIN-MV and
AOXMIN-MV -long in terms of the total number of products and in the resulting and

(columns 6, 7 and 9, 10), and the time taken in seconds (columns 8 and 11). The time
is user time measured using the UNIX system command time. The table also shows the
number of products in the cover obtained by Espresso with output phase optimization
(-Dopo option) and the time to compute it (columns 3 and 4, respectively). Columns 2
and 3 give the number of inputs and the outputs of the benchmark functions.

To make the comparison more clear, we have splitted the table into 3 parts: the upper
part shows the benchmarks which successfully passed if best cost initial cost checking
of AOXMIN-MV and the lower two parts show the benchmarks which did not pass. Clearly,
in the first case, GroupMigration() is invoked for both AOXMIN-MV and AOXMIN-MV
-long, and therefore they produce the same results in terms of products and time. The mid-
dle part shows the benchmarks for which AOXMIN-MV -long found the solution with a
smaller number of cubes than AOXMIN-MV, i.e. these are incorrectly estimated cases. The
last too columns of the table show the improvement of AOXMIN-MV -long over AOXMIN-

MV, computed as AOXMIN-MV -long

AOXMIN-MV
and the number of times AOXMIN-MV -long is

slower than AOXMIN. The lower part of the table shows the cases when invoking Group-
Migration() brought no improvement. One can see that AOXMIN-MV is 345 times faster
on average than AOXMIN-MV -long, at the expense of only 0.9% more product-terms in
the obtained solution.

Table 2 shows the results of the comparison of AOXMIN-MV and the previous version
of the algorithm, AOXMIN [8]. AOXMIN takes as its argument an integer , determin-
ing the number of random partitionings to perform. For all benchmarks, we run AOXMIN
for up to 50 iterations, and we show the lowest number of iterations for achieving the best
result.

The upper part of the table shows the functions estimated as likely to have a compact
AND-OR-XOR expression. AOXMIN is usually faster, because several random partition-
ings take less time than the group migration algorithm, but AOXMIN-MV produces better
results. Furthermore, when running AOXMIN, we never know how many random partition-
ings we have to make to find the best solution. For most functions, it is too time-consuming



Table 2: Comparison with AOXMIN.

Example AOXMIN AOXMIN-MV
function n m t,sec t,sec

5xp1 7 10 42 2.26 10 37 40.47
clip 9 5 95 1.91 10 82 17.32
rd53 5 3 19 4.12 20 17 13.17
rd73 7 3 83 4.61 10 62 494.21
rd84 8 4 192 10.42 10 130 1566.52
t481 16 1 18 3143.31 50 18 218.16
xor5 5 1 12 2.16 20 6 7.25
alu4 14 8 447 19.38 1 219 243.03

duke2 22 29 87 4.32 1 87 3.21
ex1010 10 10 725 19.38 1 306 17.70
misex3c 14 14 197 13.07 1 196 6.2
table3 14 14 176 19.69 1 175 18.12
table5 17 15 158 20.69 1 158 19.44

bw 5 28 24 3.29 1 28 0.46

to run more than 50 partitionings. For example, 50 runs of AOXMIN takes 8 hours. Con-
trary, AOXMIN-MV needs just 4 mins to find the same solution.

The lower part of the table shows the functions estimated as unlikely to have a compact
AND-OR-XOR expression. AOXMIN-MV is faster than a single run of AOXMIN, due to
the fact that it uses Cover(), which is faster than Espresso used by AOXMIN. Since Cover()
performs only a single pass of a minimization algorithm, the resulting cover may be larger,
as in the case of bw. However, AOXMIN-MV may be much better utilization of common
subterms, like in the case of ex1010.

Table 3: Comparison with the algorithm [7].

function n m Algorithm [7] AOXMIN-MV

5xp1 7 10 47 37
9sym 9 1 73 73
clip 9 5 92 82
rd73 7 3 83 62
sao2 10 4 33 38
t481 16 1 364 18

adder 2-bit 4 3 7 7
adder 3-bit 6 4 26 11
adder 4-bit 8 5 37 20
adder 5-bit 10 6 79 39

Table 3 shows the results of the comparison of AOXMIN-MV and the algorithm [7].
The benchmark results for the algorithm [9] are taken from the reference [9]. Unfortunately,



the timing is not reported in [9].
The algorithm [7] first generates a minimal expansion of the function in terms of of

XOR and AND operations (XOR of AND-terms). Some of the XOR’s are then converted
into OR’s, and subsequently, a graph coloring technique is used for the minimization of
XOR’s in the final expansion. Our algorithm shows better results for all functions except

.

Table 4: Comparison with the algorithm [9]; is the user time on HP180, provided by the
authors of [9]; is the user time measure in our experiments (on Sun Ultra 60).

function n m Algorithm [9] AOXMIN-MV
,sec ,sec

mlp4 8 8 75 1956.31 122 0.87
rd53 5 3 17 27.98 17 13.17
rd73 7 3 54 386.37 62 494.21
rd84 8 4 99 1319.94 130 1566.52
z4 7 4 22 433.91 18 9.53

Table 4 shows the results of the comparison of AOXMIN-MV and the algorithm [9].
The benchmark results and timing for the algorithm [9] were kindly provided by the authors
of [9].

The algorithm [9] decomposes the function to the subfunctions of up to 5 variables and
then apply an exact algorithm to find the AND-OR-XOR expression for the individual sub-
functions. Finally, the AND-OR-XOR expression for the complete function is composed
from these expressions. Clearly, for small functions, such an algorithm is likely produce
a better solution than our algorithm. Unfortunately, it is infeasible for larger functions,
because it is too time-consuming.

6 Conclusion

This paper presents a heuristic algorithm, AOXMIN-MV, for three-level AND-OR-XOR
minimization. Compared to the previous version AOXMIN, reported in [8], the main novel
features of AOXMIN-MV are: (1) an estimation metric, checking whether the input func-
tion is likely to have a compact AND-OR-XOR expression; (2) a different strategy for
partitioning the on-set of the input function into two groups, based on an extension of
Fiduccia/Mattheyses partitioning algorithm; (3) better utilization of common subterms, due
to the treatment of the output part of a multiple-output function as a single multiple-valued
variable. The experimental results show that, these modifications yield to a faster and more
efficient algorithm.

Two major facets of our algorithm require further research. First, we are presently
working on extending it to handle AND and OR cases. That would give us an algorithm
targeting a minimal expression of the type shown in equation (1) for any binary operation
“ ”. Such an algorithm could be used for multi-level logic optimization by being applied



recursively to the resulting solution until no more improvement is encountered. We are also
investigating the possibility of integrating our algorithm with SIS [20].

Second, presently we use a very simple cost measure (number of products), which
is might not be suitable for some FPGA architectures, like, for example, look-up table
based architecture. We need to incorporate a more sophisticated cost measure, reflecting
the specific of the target architecture.

Further work on the efficiency of the algorithm might also incorporate representation
of multiple-valued input binary-valued output functions by Multiple-Valued Decision Dia-
grams (MDD) [21], and performing the basic operation of the algorithm directly on graphs.
Since there is no direct correspondence between the size of the cover for the function and
the size of the MDD that represents it, very large cube covers can be captured and efficiently
manipulated using this representation.
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